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ABSTRACT

The intrinsic error tolerance of neural network (NN) makes ap-

proximate computing a promising technique to improve the en-

ergy efficiency of NN inference. Conventional approximate com-

puting focuses on balancing the efficiency-accuracy trade-off for

existing pre-trained networks, which can lead to suboptimal so-

lutions. In this paper, we propose AxTrain, a hardware-oriented

training framework to facilitate approximate computing for NN

inference. Specifically, AxTrain leverages the synergy between two

orthogonal methodsÐone actively searches for a network parame-

ters distribution with high error tolerance, and the other passively

learns resilient weights by numerically incorporating the noise

distributions of the approximate hardware in the forward pass dur-

ing the training phase. Experimental results from various datasets

with near-threshold computing and approximation multiplication

strategies demonstrate AxTrain’s ability to obtain resilient neural

network parameters and system energy efficiency improvement.

CCS CONCEPTS

· Hardware → Hardware-software codesign;
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1 INTRODUCTION

An Artificial Neural Network (ANN) is a biologically inspired ma-
chine learning model that has been practically demonstrated to
deliver superior performance in many recognition, mining, and
synthesis (RMS) applications [1]. The success of ANN can be at-
tributed to innovations across the computing system stack: To
achieve higher accuracy, deeper and more complex networks are
created along with more advanced training algorithms. To speed
up network training and deployment, powerful specialized parallel
computing engines (e.g., GPUs) are designed to accelerate computa-
tionally intensive mathematical operations. Despite the improved
performance, energy efficiency still remains a limiting factor when
deploying advanced ANNs into edge devices with stringent power
budgets.
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Figure 1: Different types of minimums in NN weight space.

A growing body of research has been proposed to tackle energy
efficiency from diverse perspectives. Algorithmically, the focus is to
simplify neural network (NN) by either using more concise network
models (e.g. ResNet [2] and binary neural networks [3]) or pruning
and compressing existing models [4]. From the hardware perspec-
tive, efficiency-driven optimizations have been conducted at the
architecture, circuit, and device levels. Customized NN accelerators
aim at higher energy efficiency, approximate circuits trade accuracy
for energy efficiency [5, 6], and emerging technologies (e.g. RRAM
crossbar) perform low power NN computation in memory [7]. In
this paper, we investigate an auxiliary approach with a focus on net-
work training that can be generally applied to diverse approximate
computing techniques. The approach is orthogonally compatible
with techniques to improve energy efficiency from other domains.

Existing approximate computing techniques are confined to ex-
ploiting pre-trained NNs, which can result in suboptimal solutions.
Without knowledge of the underlying hardware, NN algorithms
optimize only for accuracy under the assumption of ideal hardware
implementation, yet they do not consider hardware-specific error
tolerance. Therefore, small noises from approximate hardware may
lead to severe network accuracy degradation. Compromises often
have to be made to maintain the accuracy target, leading to con-
servative approximation and failure to exploit all the opportunities
for efficiency improvement.

The key question is how to train a robust neural network that
not only achieves high accuracy given ideal hardware assumptions,
but is also resilient to noise and errors, so that more aggressive
approximation could be applied without severely compromising
accuracy. As Fig.1 illustrates, a conventional training algorithm
is dedicated to searching for a łglobalž minimum which has the
smallest loss across the weight space, ignoring higher loss in the
vicinity of the minimum. Thus perturbations by approximate com-
puting could easily result in significant loss, as indicated by łLocal
minimum 1ž. Instead of minimizing loss at a single minimum point,
our proposed hardware-oriented training seeks a łnear optimalž
minimum where a łflatž and łgood enoughž loss surface is pre-
ferred and the globally smallest error is not mandatory, as łLocal
minimum 2ž depicts. Thanks to the flat error surface, the NN now
exhibits a higher degree of tolerance for approximate computing
induced noise.



In this paper, we propose AxTrain, a hardware-oriented NN train-
ing framework for approximate computing. AxTrain explores two
different paths towards high resilience: an active method (AxTrain-
act) that explicitly biases the training process to a noise insensitive
minimum; and a passive method (AxTrain-pas) that exposes the
model of low-level hardware imperfection to the high-level training
algorithm for noise tolerance. AxTrain then leverages the synergy
between active and passive methods to facilitate approximate com-
puting.

In the AxTrain-act method, the innovation is to guide the training
algorithm to improve both network loss and noise resilience directly.
During training, noise sensitivity is also back propagated along
with network loss to the network parameters, and those parameters
get updated in order to minimize loss and noise sensitivity. This
solution can be seen as an artificial regularization term to bias the
training algorithm towards a high resilience (flat) and accurate
(near optimal) minimum, similar to the L2 norm regularization for
the over-fitting problem.

For the AxTrain-pas method, the error tolerance property of the
NN is leveraged to reduce side effect from approximate computing.
Rather than training with ideal hardware models, numerical func-
tional models of the approximate hardware are incorporated along
the forward pass in the training step, so that the training algorithm
can learn the noise distribution of the approximate hardware on
its own and descend to a minimum which is robust to approximate

computing. Thanks to the knowledge of approximate hardware, the
training process experiences different train sets with slightly modi-
fied statistical distributions in each epoch, and arrives at a robust
model that yields high accuracy with approximate computing.

Finally, to evaluate the effectiveness of the proposed AxTrain
framework, we study two popular approximate computing tech-
niques: approximate multiplier and near threshold voltage (NTV)
based memory storage [8], because multiplication and parameter
storage dominate power consumption in NN accelerators.

2 RELATEDWORK AND BACKGROUND

2.1 Related Work

Approximate computing is a promising technique for efficiency
optimization[9, 10]. Diverse techniques have been explored in prior
work that apply approximate computing approaches to improve NN
energy efficiency. Minerva [11]is an example that uses circuit-level
techniques to handle memory error in NN accelerators, employing
Razor sampling circuits for fault detection and equipping the weight
fetch stage with bit masking and word masking for flipped weights
to mitigate bit-flip errors caused by NTV-based weight storage.
Several other prior works on NN accelerators demonstrate the
benefit of approximation at the architecture level: Olivier shows
NN accelerators can tolerate transistor-level faults [12]; Zidong
et al. exploit NN’s tolerance for arbitrary approximate multiplier
configurations through exhaustive design space exploration [13].
Recent research proposes more explicit techniques to exploit NN’s
intrinsic error tolerance and flexibility during training to improve
efficiency. For example, both AxNN and ApproxAnn take neuron
criticality into consideration and perform periodical retraining for
self-healing [14, 15]. AxNN proposes the characterization of neuron
criticality first, then the replacement of non-critical neurons with
their approximate versions. To ensure targeted accuracy, iterative
retraining is used for error recovery. Inspired by AxNN, ApproxAnn
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Figure 2: A typical neural network topology.

proposes a more reliable way to quantify neuron criticality and
adopts iterative heuristics to gain maximum efficiency.

Although AxNN and ApproxAnn both strive to take the advan-
tage of NN’s pliable training process to improve energy efficiency,
certain limitations in their techniques persist: 1) They require highly
configurable hardware where modes of multipliers can be individu-
ally adjusted; 2) Due to area and power constraints in large-scale
networks with time-multiplexed multipliers, periodic runtime mul-
tiplier reconfiguration will inevitably degrade accelerator perfor-
mance; 3) Approximation is performed on a pre-trained network
with hardware-agnostic training, which does not optimize for error
tolerance, so the target accuracies in their designs are met with rel-
atively conservative approximations. All these limitations motivate
our AxTrain framework.

2.2 Neural Network Preliminary

At the architecture level, ANN can be seen as a parallel computing
engine which consists of a large number of basic hardware elements,
such as multipliers, accumulators, and nonlinear transformation
units. A typical neural network as shown in Fig.2 consists of an
input layer, multiple hidden layers, and an output layer. During
the forward pass, the input layer retrieves inputs, a0, of a task
sample and directly passes them to the next layer. To generate
activations, ai , for each neuron i in a hidden layer, the hidden layer
first performs multiplication and accumulation,

∑n
j=1 aj ×wi j , using

activations aj from the previous layer and network parametersW
(including weights and biases), then feeds the intermediate results

to a nonlinear transformation h, such as Sigmoid ( 1
1+exp−x ) for the

output layer, ReLu (max(x , 0)) for hidden layers. This process is
repeated layer by layer until the output layer is reached, and the
final activations (outputs) from the output layer are generated for
regression and classification.

NN training aims at exploring network parameters which min-
imize the error between network outputs and targets. To reduce
the error, backpropagation (BP) is used to propagate output error
from the output layer to the previous layers consecutively and to
quantify error contributions from network parameters by taking
derivatives of the output error with respect to these parameters.
Then the parameters are updated in a backward pass using stochas-
tic gradient descent to the derivatives to reduce output error. The
mathematical equations for training can be summarized as:

The derivative of the output error with respect to ith neuron in
layer l is

∂E

∂x li

= (

Nl+1
∑

j=1

∂E

∂x l+1j

×wl+1
ji ) × h′(x li ) (1)
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The weights’ gradient and updating method are derived as

∂E

∂wl
ji

=

∂E

∂x lj

× al−1i (2)

wl
ji = w

l
ji − η∆wl

ji (3)

where η is the learning rate.

3 AXTRAIN FRAMEWORK

In this section, we present the proposed hardware-oriented Ax-
Train framework that searches for a łnear optimalž and resilient
minimum to facilitate approximate computing and achieve a better
tradeoff between inference accuracy and energy efficiency. Specifi-
cally, AxTrain exploits two differentmethods: AxTrain-act explicitly
regularizes the NN to descend to parameter distributions that are
insensitive to noise; and AxTrain-pas intentionally models approxi-
mate computing-induced noise in the forward-pass of the training
and internalizes the noise distribution in its learned weights. Fi-
nally AxTrain leverages the synergy between the active and passive
methods by first training with AxTrain-act to reduce overall sensi-
tivity and then with AxTrain-pas to learn hardware-specific noise.

3.1 AxTrain-active Method
3.1.1 Define NN sensitivity-oriented regularization.

AxTrain-act introduces robustness as an additional regulariza-
tion term to an NN’s cost function to drive NN training. In machine
learning, regularization is a process that can introduce prior knowl-
edge to the training process to express preference in the solution.
For example, an L2 regularization term reduces the magnitudes of
NN weights and limits NN capacity to prevent over-fitting. Simi-
larly, AxTrain-act defines robustness and incorporates it into the
cost function for training, as illustrated below.

Etot = E + γ · S(w) (4)
where E is the original NN output error. S(w) represents the net-
work sensitivity, and a lower sensitivity suggests higher resilience
and more robustness to noise. We use γ as a preference factor for
sensitivity. Based on Eq.4, AxTrain-act minimizes not only network
error but also noise sensitivity. To reduce the output error, E, train-
ing algorithm employs backpropagation to evaluate the gradient
∂E
∂w l

i j

and update network weights as described in Section 2.

Since themagnitude of S(w) should reflect how output deviations
are affected by noisy weights, we define a NN’s sensitivity as

S(w) =
∑

k

(
∑

∀l,i j

|wl
i j | |
∂Ok

∂wl
i j

|) (5)

This definition satisfies four important aspects: 1) We employ abso-
lute values to guarantee that the training process works on worst-
case sensitivity reduction, and noises from those sensitive weights

cannot cancel out each other to arrive at a smaller S(w). 2)
∂Ok

∂w l
i j

is the derivative of an output k to a weight ij in layer l , which
is used to measure the outputs’ response with respect to weights
perturbation. 3) |w | is also incorporated, since induced noise from
the approximate hardware is usually proportional to the magnitude
of weight. 4) To minimize heuristic intervention in the optimiza-
tion process, we capture the total sensitivity by summing across all
weights, instead of ranking or partitioning individual weight [14].
Based on this definition, we can infer that a network with small
S(w) would behave similarly with and without noise, and hence

exhibit better resilience against approximation. The challenge now
is how to reduce network sensitivity S(w) in training.

3.1.2 Derive gradients. Inspired by BP and SGD (stochastic gra-
dient descent), we propose to calculate the gradients that measure
how the sensitivity changes with respect to the weights and then
update the weights accordingly to reduce sensitivity, similar to the
conventional BP weight updates for minimizing loss.

Taking a specific weight wi j as an example, to minimize the
sensitivity we should make the update along its negative gradient
∂S (w )
∂wi j

, which can be derived as

∂S(w)

∂wi j
=

∂
∑

k (
∑

ab |wab | |
∂Ok

∂wab
|)

∂wi j

=

∑

k

(siдn(wi j )|
∂Ok

∂wi j
|

+

∑

ab

(|wab |siдn(
∂Ok

∂wab
) · (

∂2Ok

∂wab∂wi j
))

(6)

The first term, siдn(wi j )|
∂Ok

∂wi j
|, is evaluated using BP.

Evaluation of the second term for allw is complicated because of
the second order derivative (Hessian matrix). Directly calculating
the Hessian is a time-consuming process, hence we adopt Pearlmut-
ter’s algorithm [16] to speed up the computation, since Pearlmut-
ter’s algorithm can compute NN’s łHessian (H) vector (V) productž
in O(n) time simply by another round of forward-backward

propagation. In our case, |w | · siдn( ∂O
∂w

) could be denoted as vec-

tor V , while ∂2O
∂wab ∂wi j

as the Hessian matrix H for all parameters.

Pearlmutter’s algorithm proposes the R operator which facilitates
calculation as

RV { f (w)} =
∂ f (w + rV )

∂r

�

�

�

�

r=0
(7)

Hence the second termV ×H of Eq.6 is transformed into RV {
∂Ok

∂w l
i j

}.

After applying R operator to Eq.2, we have:

RV {
∂Ok

∂wl+1
i j

} = RV {
∂Ok

∂x l+1i

· alj } = RV {
∂Ok

∂x l+1i

}alj + RV {alj }
∂Ok

∂x l+1i

(8)

To compute this equation, we can obtain RV {
∂Ok

∂x l+1

i

} and RV {al
j
}

with a second round propagation as follows:
1) For the forward pass, the R operator is applied to get RV {aj }:

RV {x l+1j } = RV {

n
∑

i=0

ali ·w l+1
ji } =

∑

i

V l+1
ji · ali +

∑

i

w l+1
ji · RV {ali } (9)

RV {al+1j } = RV {hl+1(x l+1j )} = h(l+1)′(x l+1j ) · RV {x l+1j } (10)

For the input layer, RV {a
(0)
j } = 0. After forward propagation, we

can get RV {alj };
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2)For the backward pass in the hidden layers to get RV {
∂Ok

∂xi
}:

RV {
∂O

∂x l
i

} = RV {(

Nl+1
∑

j=1

∂O

∂x l+1
j

·w l+1
ji ) · h′(x li )}

= h
′′
(x li )RV {x li }(

Nl+1
∑

j=1

∂O

∂x l+1
j

·w l+1
ji )

+ h′(x li )(

Nl+1
∑

j=1

∂O

∂x l+1
j

· V l+1
ji ) + h′(x li )(

Nl+1
∑

j=1

RV {
∂O

∂x l+1
j

} ·w l+1
ji )

(11)

Here we omit further similar derivation for the output layer. Once

we have RV {aj } and RV {
∂Ok

∂xi
}, they can be substituted into Eq.8,

and then into Eq.6, and the influence of network weights on sensi-

tivity,
∂S (w )
∂wi j

, can be computed. Note that for AxTrain-act, the train-

ing overhead is the time consumed for another round of forward-

backward propagation per batch to derive the
∂S (w )
∂wi j

, which does

not burden the inference system in an off-line training scenario.

3.1.3 Update the preference factor adaptively.

As defined in Eq.4, AxTrain-act optimizes both the network error
and sensitivity, and uses a preference factor γ to control the relative
magnitude of the sensitivity-related update rate. A large γ may
reduce final network accuracy, while a small one could prevent full
reduction of sensitivity. To ensure NN accuracy and convergence,
we leverage an adaptive update method for γ based on [17]. Instead
of a fixed value,γ is updated on a per epoch basis. A ∆γ is added toγ
for lower sensitivity if the error in the current epoch is smaller than
the weighted sum (0.5, 0.25, 0.125 ...) of training errors in previous
epochs or the current error is smaller than a pre-defined accuracy
bound. Otherwise, a ∆γ is subtracted to preserve training accuracy.

3.2 AxTrain-passive Method

Different from AxTrain-act, which explicitly optimizes for robust-
ness, AxTrain-pas exposes the nonideality of approximate hardware
to the training algorithm by numerically mimicking its inexact op-
erations in the forward propagation. Because of the incorporated
hardware knowledge, AxTrain-pas can learn the noise distribution
from approximate hardware and implicitly exploit the noise insensi-
tive minimum. AxTrain-pas is a hardware-oriented approach which
can be generally applied to most approximate techniques in NN
accelerators: approximate arithmetic operations [13] for neuron
calculation and fuzzy memorization [10] for parameter storage.

In neuron calculation, the most computational intensive opera-
tions consist of weight activationmultiplications and later additions.
Multipliers usually consume higher power and contribute more
delays to the critical path than the adders used for accumulations,
while the precision of multiplications is relatively less critical than
that of additions for NN output accuracy. All these considerations
make multipliers better candidates for approximation, as shown in
Fig.3, where an approximate multiplier is used in a neuron process-
ing element. Every time a neuron forward calculation,

∑n
j=1 aj ·wi j ,

is performed, the original accurate multiplications are replaced by
their approximate counterparts.

Power consumption for parameter storage also plays a signifi-
cant role in NN accelerators, since NNs often consist of thousands
of weight parameters. Fuzzy storage is thus leveraged to trade de-
creased weight precision for power reduction. Fig.3 also shows
fuzzy storage for local and global weights. To model the effect of
approximate computing in the training algorithm, AxTrain-pas
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Figure 3: Approximate computing in neural network accelerators.

models the noise induced to network weights by fuzzy memoriza-
tion whenever the weights are retrieved in the forward propagation.
Taking NTV-based fuzzy storage (detailed later) as an example, NTV
causes random bit flips, since low supply voltage renders SRAM
cells less reliable. During training, AxTrain-pas models NTV in-
duced flips as stochastic noise [8] and injects the noise by randomly
flipping the bits in network weights at a certain probability (based
on voltage level and technology). Note that AxTrain-pas applies ap-
proximation statically throughout the network. This policy reduces
hardware complexity, such as the support for runtime multiplier
reconfiguration and memory mode switching.

When applying approximate computing in NN, we should first
minimize noise from the approximate hardware itself. Taking NTV-
based storage as an example, the upper bound of noise in a weight is
determined by the binary format used to represent network weights,
e.g., the noise magnitude for a sign-bit flip in a fixed-point number
corresponds to the maximum value that the fixed point format can
represent. Hence unnecessary high order bits that do not affect
accuracy should be eliminated to confine the effect of the noise.
Fortunately, most network weights can be easily regularized to
concentrated over a range of 10−3 ∼ 10−1, so integer bits may not
be necessary to represent the weights. In this case the network’s
activations typically are almost two orders of magnitude larger
than the weights, which suggests activations and weights should
be represented in different fixed-point formats. Hence, dynamic
fixed point representation is used in NN accelerators to maintain
network functionality and confine noise [18].

Calculate gradients by straight-through estimator. After
augmenting the forward propagation pass with numerical models
of approximate computing, a natural question arises: how are the
gradients backpropagated through approximate hardware? Given
the nonlinear or stochastic nature of approximate hardware, it
is hard to analytically compute the precise derivatives across the
entire input range for approximate operations. Inspired by Hinton’s
lecture (12b) [19] and Bengio’s work [20], we adopt the łstraight-
through estimatorž technique in AxTrain-act as below:

дrad_in = дrad_out · 1 | |дrad_out |<1 (12)

This BP method directly passes gradients from the outputs of an
approximate operator to its inputs, while preventing noise-induced
large gradients from disturbing the training algorithm’s conver-
gence. Base on our experimental evaluation, this BP method is
effective for AxTrain-pas training.

We examine the efficacy of AxTrain-act and AxTrain-pas by
comparing their weight sensitivity (flatness) with conventional
BP. Fig.4 shows the relative sensitivities of weights from the last
(most critical) layer of an multilayer perceptron (MLP) model for
the MNIST digit recognition datasets, where the deeper blue range
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Figure 5: FlexFlow Architecture.

indicate less sensitive weights. AxTrain-pas is trained with approx-
imate multipliers in the most aggressive mode. Fig. 4 demonstrates
the AxTrain-act significantly reduces the sensitivities across all the
network weights, while AxTrain-pas implicitly learns noise dis-
tribution and selectively reduces the sensitivity for those weights
which suffer larger noise from the approximate multiplier.
4 EXPERIMENTAL METHODOLOGY

NN accelerator architecture. To evaluate the energy efficiency
improvement from approximate computing, we implement a flex-
ible data-driven NN accelerator named łFlexFlowž ([21]) tailored
for ANN and shown in Fig.5. FlexFlow employs a weight buffer and
a neuron buffer for storage, a group of processing engines (PE) for
computation, and an instruction decoder for controlling. To per-
form neuron calculation, each PE consists of a multiplier, an adder,
a neuron local memory, a weight local memory, and a controller.

Case studies on two approximate hardware. 1) Approxi-
mate multiplier. Without loss of generality, to assess the implica-
tions of approximate multiplications in NN accelerator, we adopt
an existing approximate multiplier for weight-activation multipli-
cation [22]. This design explores the tradeoff between precision
and computing efficiency based on changing the effective width k
for computation. Generally, in the operands of the multiplier, from
the MSB to the LSB only the first nonzero bit and its consecutive
k − 1 bits are retrieved (with the last bit set) for computations. In
this way, with a smaller k configuration, the approximate multiplier
gains higher energy efficiency at a cost of increased noise. And in
the experiment, we adopt four configurations (K1, K2, K3, K4).

2)Near threshold voltage storage. For fuzzy storage, we lever-
age NTV supply voltage for SRAM weight storage. Conventionally,
SRAM works as a reliable storage at nominal voltage (e.g., 1.1V).
To improve energy efficiency, the SRAM supply voltage can be
reduced to the NTV regime at the risk of bit flipping [8]. In this
case, the supply voltage can be treated as a knob to tune approxi-
mate computing and determine the noise probability. We select two
representative knobs (flip rate@voltage: 10%@400mV, 1%@660mV,
0.1%@850mV [8]) for each applications, as Table 1 depicts.

Power evaluation flow. To evaluate the power improvement
from the approximate multiplier, we first implement approximate

Table 1: Applications and Parameters.

Dataset Description NN topology Agg/Con volt

Breast cancer Diagnose cancer 30,64,64,2 400mV,660mV
Image seg Classify outdoor image 19,64,64,7 660mV,850mV
Ionosphere Identify radar target 34,50,50,2 660mV,850mV
Satimage Classify satellite image 36,64,64,7 660mV,850mV
MNIST-MLP Recognize written digit 784,128,128,10 660mV,850mV
MNIST-CNN CNN for MNIST LeNet5 660mV,850mV
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Figure 6: Output loss under different approximate multipliers.
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hardware using Verilog and then synthesize the design using the
Synopsys Design Compiler with the TSMC 65nm library. The power
results are gathered using Synopsys PrimeTime. We evaluate the
NTV-based storage by CACTI-P[23].

Training tool and Dataset. To evaluate the accuracy of NN,
we implement the training algorithm and inference simulator using
the PyTorch deep learning framework. The datasets we used are
detailed in Table 1. Breast cancer, Image segmentation, Ionosphere,

and Satimage are obtained from the UCI Machine Learning Repos-
itory, and MNIST is a well known dataset for digit classification.
We evaluate both the MLP and CNN models for MNIST. For each
dataset, 80% of samples are used for training, while the remaining
20% are used for testing. In the off-line training, the networks are
first trained with AxTrain-act until both the network error and sen-
sitivity cost converge, then tuned with AxTrain-pas for a few more
epochs (e.g., 10 epochs for MNIST ) without hurting the accuracy.

5 EXPERIMENTAL RESULTS

We conduct experiments for six representative applications with
four approximate multiplier configurations (K1, K2, K3, K4) and
two NTV levels, which include an aggressive (Agg) lower voltage
and a conservative (Con) higher voltage, as as Table 1 illustrates.

First, we compare the output error of NN under different approx-
imate multiplier configurations with networks trained by conven-
tional BP, AxTrain-act, and AxTrain, as shown in Fig.6. The errors
under different approximate configurations are normalized to orig-
inal network results with accurate multipliers for each application.
Fig.6 shows that the network outputs suffer larger error with more
aggressive approximation configurations. Compared with conven-
tional BP scheme, AxTrain-act exhibits higher noise tolerance by
reducing error by 40.77%, 34.56% and 25.15% on average for K1,
K2 and K3, respectively, while AxTrain further reduces error to
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Figure 9: Power consumption under approximate multiplication

and NTV based storage.

75.61%, 58.45%, 37.66%. We notice that in a few rare cases (like K4
in MNIST ), when using multipliers with conservative approxima-
tion, AxTrain-act performs slightly better than AxTrain. Due to
the intrinsic error tolerance of the NN, the accuracy degradation
caused by conservative approximate multipliers is quite small, thus
the improvement headroom is limited.

For NTV-based SRAM weight storage, we show the results from
fifty runs, since NTV induced bit-flipping is a probabilistic event.
Fig.7 demonstrates the average accuracies and the deviations. The
output accuracies for both aggressive and conservative NTV in-
crease by 32.10% and 8.163% on average, compared with conven-
tional BP. This figure also indicates AxTrain reduces the side effects
of bit flip in aggressive NTV mode and restores the output quality
to a higher level, equals to conventional BP attains in conservative
NTV mode. Note that accuracy is used as the comparison metric
instead of network error, because error magnitude for conventional
BP in the MNIST-Agg case is too large to be properly shown.

For a thorough evaluation of AxTrain, we also implement a
recent approach, ApproxAnn, that can be used compatibly with
AxTrain-act, thanks to the orthogonality of our training-based
approach in supplementing efficient techniques from other do-
mains. Unlike AxTrain, which uses one approximate configuration
throughout the inference, ApproxAnn sets a target accuracy re-
quirement (2% maximum allowed degradation in this case). It then
retrains a pre-trained BP network to employ as many approximate
multipliers as possible to replace accurate multipliers without ex-
ceeding the requirement. Hence we compare the number of approx-
imate multipliers ApproxAnn could use with pre-trained networks
using conventional BP and AxTrain-act, and we show the results
for aggressive approximation (K1, K2) in Fig.8. As expected, NN
under less aggressive K2 could always employ a larger number of
multipliers than under more aggressive K1. ApproxAnn with an
AxTrain-trained network could use 23.33% more approximate mul-
tipliers on average in the K2 mode and 25.51% more in the K1 mode
than ApproxAnn-BP, which means AxTrain helps ApproxAnn to
better exploit the power saving opportunity. Finally, to demonstrate
the benefit of AxTrain at the system level, we compare the FlexFlow
accelerator’s lowest power consumption that approximate comput-
ing could attain using AxTrain and conventional BP, while keeping
a target accuracy (maximum 2% degradation to accurate implemen-
tation), as depicted in Fig.9. On the X axis in this figure, we also
show the approximation mode that AxTrain and BP apply. This
figure shows that AxTrain’s higher noise resilience could result
in more aggressive approximation, which leads to lower power
consumption than conventional BP. To be specific, computational
power and storage power are reduced by 41.57% and 33.14% on av-
erage, correspondingly. We also compare the computational power

consumption under approximate multiplier between AxTrain and
ApproxANN, and AxTrain requires 25.73% less power consumption
than ApproxANN on average. Notably in the Satimage dataset the
in NTV storage case, a conservative voltage of 0.85V is enforced to
maintain tight accuracy constraint. By relaxing the allowed degra-
dation to 6%, a 27.01% power reduction is achieved under 0.66V.
6 CONCLUSION
Approximate computing leverages the intrinsic error tolerance of a
neural network for improved energy efficiency.Themain objective is
maintaining good enough accuracy with aggressive approximation.
In this paper, we propose the AxTrain framework to optimize NNs
for both accuracy and robustness. Using both explicit training and
implicit learning, AxTrain reduces NN’s sensitivity and improves
its resilience against approximation. Experimental results under
NTV and approximate multiplier based approximate computing
techniques reveal AxTrain could lead to more robust networks than
conventional hardware-agnostic training frameworks.
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