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ABSTRACT

Through a series of convection-permitting regional-scale ensembles based on the Weather Research and
Forecasting (WRF) Model, this study investigates the predictability of multiscale weather and convectively
coupled equatorial waves during the active phase of a Madden—Julian oscillation (MJO) event over the Indian
Ocean from 12 October to 12 November 2011. It is found that the practical predictability limit, estimated by the
spread of the ensemble perturbed with realistic initial and boundary uncertainties, is as much as 8 days for hor-
izontal winds, temperature, and humidity for scales larger than 2000 km that include equatorial Rossby, Kelvin,
inertia—gravity, and mixed Rossby—gravity waves. The practical predictability limit decreases rapidly as scale
decreases, resulting in a predictable time scale less than 1 day for scales smaller than 200 km. Through further
experiments using minute initial and boundary perturbations an order of magnitude smaller than the current
realistic uncertainties, the intrinsic predictability limit for tropical weather at larger scales (>>2000 km) is estimated
to be achievable beyond 2 weeks, but the limit is likely still less than 3 days for the small scales (<200 km).

1. Introduction

The tropical atmosphere consists of weather systems
spanning a wide range of spatial and temporal scales. At
the planetary scale, the Madden—Julian oscillation (MJO)
is found to be the dominant mode of intraseasonal vari-
ability with typical periods of 20-100 days (Madden and
Julian 1971, 1972; Zhang 2005). The active phase of an
MJO is characterized by enhanced deep convection and
intense precipitation that propagates eastward at a speed
around 5ms™ . Within the MJO envelope, a wide variety
of convectively coupled equatorial waves (CCEWs;
Wheeler and Kiladis 1999; Kiladis et al. 2009) reside,
including equatorial Rossby, Kelvin, mixed Rossby—
gravity (MRG), and inertia—gravity (IG) waves. The
equatorial Rossby waves are large-scale “‘cyclone pairs”
that propagate westward at a speed around 4.5ms !
(Kiladis et al. 2009). The equatorial Kelvin waves are also
known as the super cloud clusters that propagate east-
ward at a speed of 15-20ms ' (Nakazawa 1988;
Dunkerton and Crum 1995). The MRG waves propagate
westward at a speed of 15-20ms ™' and have the potential
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to develop into tropical cyclones (Takayabu and Nitta
1993; Dickinson and Molinari 2002). The westward-
propagating IG (WIG) waves have a wide range of spa-
tiotemporal scales, ranging from smaller-scale diurnal to
semidiurnal variations to larger-scale 2-day waves
(Haertel and Kiladis 2004).

How predictable are the tropical weather systems and
CCEWs? The concept of atmospheric predictability can
be grossly categorized into intrinsic versus practical pre-
dictability (Lorenz 1996; Melhauser and Zhang 2012).
Intrinsic predictability refers to the ability to predict given
nearly perfect representation of the dynamical system
(by a forecast model) and nearly perfect initial/boundary
conditions, an inherent limit due to the chaotic nature of
the atmosphere (Lorenz 1963, 1969; Zhang et al. 2003,
2007, Sun and Zhang 2016). Practical predictability,
sometimes also referred to as the prediction skill, is the
ability to predict given realistic uncertainties in both the
forecast model and initial and boundary conditions
(Lorenz 1982, 1996; Zhang et al. 2002, 2006) that can both
be large at present. The limit of practical predictability
can potentially be extended through the use of more ac-
curate initial conditions (resulting from better data as-
similation methods and/or observations) and/or better
forecast models (better model physics, numerics, and/or
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resolution). Meanwhile, recent studies suggest the pre-
dictability of multiscale midlatitude weather and tropical
cyclones can be intrinsically limited because of the chaotic
nature of moist convection and the rapid upscale error
growth, as shown for winter cyclones (Zhang et al. 2003,
2007; Sun and Zhang 2016), summertime continental
mesoscale convective systems (e.g., Bei and Zhang 2007;
Melhauser and Zhang 2012; Selz and Craig 2015; Zhang
et al. 2016), and hurricanes (e.g., Zhang and Sippel 2009;
Tao and Zhang 2015).

To the best of our knowledge, the predictability of
multiscale tropical weather beyond tropical cyclones is
rather underexplored. Using a then-operational global
prediction system under a perfect model assumption,
Reynolds and Webster (1994) found that the internal
error growth rate in the tropics is several times slower
than that in midlatitudes, while the external error growth
rate due to model deficiencies is considerably larger.
Using a global convection-permitting aquaplanet model
configured with different resolutions, Mapes et al. (2008)
revealed that predictability of tropical weather can be
potentially limited by error growth from midlatitude
moist baroclinic systems. Several estimates of MJO pre-
dictability have been made from global model simulation
(Waliser et al. 2003; Nasuno 2013; Neena et al. 2014a,b).
Ling et al. (2014) suggested that MJO predictability may
differ greatly when considering global or local scales and
during different MJO phases. Such scale dependency also
results in a more limited predictability estimated from
higher-resolution simulation than coarser-resolution
global models (Miyakawa et al. 2014).

In 2011, the Dynamics of the MJO (DYNAMO) field
campaign was conducted over the Indian Ocean to
gather more observations, to advance physical un-
derstanding of MJOs, and ultimately to improve MJO
prediction (Zhang et al. 2013; Yoneyama et al. 2013).
Two moderate-to-strong MJO events occurred during
October and November 2011 and were well observed by
the field campaign, as documented in Johnson and
Ciesielski (2013). More recently, Wang et al. (2015)
conducted a successful simulation of these MJOs using
the Weather Research and Forecasting (WRF) Model at
the convection-permitting resolution with 9-km grid
spacing. They showed that the model is capable of re-
producing most of the observed MJO features, including
its eastward propagation, dynamical structure, and the
overall rainfall pattern and magnitude. Sensitivity ex-
periments with the same regional WRF configuration in
Zhang et al. (2017) subsequently demonstrated the
crucial importance of the global circumnavigating mode
in the MJO initiation and propagation. These results
motivate the use of such a model as a proxy of the
tropical atmosphere for studying its predictability. To
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the best of our knowledge, the current study represents
the first systematic investigation of both the practical
and intrinsic limits of multiscale predictability of tropical
weather and CCEWs through a series of unprecedented
convection-permitting regional-scale ensemble simula-
tions. The resulting predictability estimates provide a
benchmark for the future investigation with improved
modeling systems.

The remainder of the paper is laid out as follows. The
model configuration and design of ensemble simulation
are described in section 2. In section 3, an overview is
given for the simulated features of CCEWs. The prac-
tical predictability is estimated in section 4, followed by
an intrinsic predictability assessment in section 5. In
section 6, the error growths are analyzed for CCEWs to
illustrate their distinct predictability limits. Section 7
summarizes the findings of this study.

2. Experimental design
a. Model configuration and the control simulation

In this study, the WRF Model, version 3.4.1
(Skamarock et al. 2008), is employed to conduct simu-
lations. The model configuration is similar to that de-
scribed in section 2a of Wang et al. (2015). The
computational domain covers the equatorial Indian
Ocean and part of the Maritime Continent (20°S-20°N,
50°-120°E). The model grid is 445 X 778 with 9-km
spacing, and it has 45 vertical levels with 9 levels in the
lowest 1km and a model top at 20 hPa. The initial con-
dition (IC) and lateral boundary condition (LBC) are
specified by the ERA-Interim data (Dee et al. 2011).
The sea surface temperature (SST) for the lower
boundary condition is updated every 6 h according to the
ERA-Interim data.

The WRF double-moment (WDM) scheme (Lim
and Hong 2010) is used to parameterize cloud physics
with modifications to the shape parameters and ter-
minal velocity of snow. Both shortwave and longwave
radiation are treated with the CAM scheme (Collins
et al. 2004). Surface processes are represented with the
unified Noah model (Chen and Dudhia 2001) with
variable surface skin temperature (Zeng and Beljaars
2005). Sub-grid-scale turbulent eddy mixing is pa-
rameterized using the Yonsei University (YSU) PBL
scheme (Hong et al. 2006). No cumulus parameteri-
zation is used, and organized convective motion is
explicitly represented by the 9-km model grid. A
control simulation of the MJO active phase is initial-
ized at 0000 UTC 12 October and integrated for
31 days, which ends on 12 November 2011. Section 3
will provide an overview of the simulated period and
validation of model simulation with observations.
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FI1G. 1. Horizontal maps of 5-day accumulated precipitation (mm) on (a),(d) 20 Oct, (b),(e) 28 Oct, and
(c),(f) 5 Nov. The results are compared between (a)-(c) TRMM observation and (d)—(f) WRF control simulation.

b. Ensemble simulation

A pair of 20-member ensembles is conducted to study
the practical versus intrinsic predictability of the tropical
weather systems and CCEWs. The first ensemble simu-
lation designed to examine the practical predictability
limits starts from 18 October to 2 November (corre-
sponding to the MJO phases 1-3). The IC and LBC en-
semble perturbations are sampled from the operational
European Centre for Medium-Range Weather Forecasts
(ECMWEF) global ensemble forecasts archived in The
Observing System Research and Predictability Experi-
ment (THORPEX) Interactive Grand Global Ensemble
(TIGGE).! The TIGGE archives 15-day global forecasts
of horizontal winds, temperature, geopotential height,
and specific humidity at eight pressure levels (1000, 925,
850, 700, 500, 300, 250, and 200 hPa) at 12-h intervals. The

! More information on the TIGGE dataset can be found online
(https://software.ecmwf.int/wiki/display/ TIGGE).

then-operational ECMWF ensemble has a horizontal
resolution of 32 km (T639) for the first 10 days and 63 km
(T319) from day 10 to day 15. Ensemble perturbations
from the first 20 TIGGE members are interpolated to the
9-km WRF model grid and to 6-h intervals in time and
then are added to the control IC and LBC generated from
ERA-Interim data. Since the TIGGE ensemble forecasts
are valid at the same time as the IC and LBC being per-
turbed, the ensemble perturbations are physically consis-
tent with the flow-dependent realistic uncertainties of the
unperturbed model atmosphere. With the global model
uncertainties downscaled to the regional model at the
9-km resolution, the ensemble forecasts designed herein
will provide a realistic estimate of the practical pre-
dictability of the tropical weather and CCEWs during the
MJO active phase under a perfect model assumption.
The intrinsic predictability is estimated from another
set of 20-member ensemble simulations with the IC and
LBC perturbation uncertainties reduced to 1% in terms
of error energy (or 10% error magnitude) comparing to
the ensemble described above, which is a level of


https://software.ecmwf.int/wiki/display/TIGGE

3774

(a) Observation (TRMM + ERA)
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(b) WRF simulation (CTRL)
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FIG. 2. Longitude-time plots of 850-hPa zonal wind (col
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or shading from —20 to 20 m s~ ') and precipitation (black

contours of 15 mm day ') averaged over 5°S-5°N. The results are compared between (a) TRMM precipitation and
ERA-Interim zonal wind and (b) WRF control simulation. The white grid and numbers to the right indicate the
observed phase of the October 2011 MJO [according to Fig. 6 from Johnson and Ciesielski (2013)]. The pre-
cipitation and wind fields are plotted at 3-h intervals, except for ERA wind, which is at 6-h intervals.

accuracy that is unlikely to be achievable in the fore-
seeable future. In other words, we seek the upper bound
in prediction using a perfect model under nearly perfect
initial and boundary conditions following Lorenz (1996).

¢. Predictability metric

The limit in predictability will be quantified in terms
of relative magnitude between the reference and error
spectral energy, R(k) and E(k), defined respectively as

2

R(k) = z (‘%)k k (1)
R+i2=k2 Ty
and
1 Y2
P !
E(k) k§+k2§‘:k2 N — 1 Z{ (x i )kx,ky’ (2)

where x denotes the variable in consideration,
X= (1/N)2§ilxi is the ensemble mean, x; = x; — X is the
ensemble perturbation, subscripti =1, 2,..., N indexes

the ensemble member, the hat denotes the Fourier
transformation in two horizontal dimensions, and the
subscripts k, and k, are the zonal and meridional
wavenumbers, respectively. Following Bei and Zhang
(2014), the reference and error energy are decomposed
into spectral components (i.e., a function of global
wavenumber k) and calculated separately for each
model variable to demonstrate the scale and variable
dependency in predictability. The variables of interest
in this study are the u- and v-component winds, tem-
perature, specific humidity, and precipitation. For the
sake of simplicity, the u and v winds are combined as
kinetic energy (KE), that is, (1/2)(u? +v?). The refer-
ence and error KE are calculated by first evaluating
(1) and (2) for u and v and then taking their average.
Bei and Zhang (2014) used only one perturbed sim-
ulation and its difference with the unperturbed (control)
simulation to measure the error energy. Only one re-
alization of forecast error was available; therefore, the
predictability estimate was less robust. More ideally, one
can use an ensemble to sample the forecast error and
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FIG. 3. Wheeler—Kiladis space—time spectra of precipit
control simulation averaged over 15°S-15°N that is (a),(c)
Signal strengths from 1.1 to 2 are shown (shading). The
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(c) WRF, symmetric
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ation from (a),(b) TRMM observation and (c),(d) WRF
symmetric and (b),(d) antisymmetric about the equator.
solid curves correspond to dispersion relations for dry

equatorial waves with equivalent depth of 15m. The zonal wavenumber and time frequency are labeled with
corresponding zonal wavelength and time period, respectively; positive (negative) wavelength indicates eastward

(westward)-propagating signals.

provide a much more robust estimate for predictability.
In their predictability study on tropical cyclone in-
tensity, Judt et al. (2016) defined an error energy as the
averaged squared differences between two members
from a 20-member ensemble, and the reference energy
was defined as the averaged energy from each member.
The predictability limit was defined as the forecast
time at which error saturates; that is, the error energy
becomes close enough to the reference energy. One
caveat of this predictability limit definition is that the
error growth usually slows down as it approaches satu-
ration so that the exact saturation time is difficult to
evaluate because of this asymptotic behavior.

In this study, a slightly different definition is used.
The error energy (noise) is defined as the ensemble
variance, and the reference energy (signal) is defined as
the energy associated with the ensemble mean. As er-
rors grow, the small-scale reference energy from the
ensemble mean will decrease because of the smoothing
among ensemble members. The predictability limit is

defined as the forecast time at which error energy
reaches and exceeds the reference energy (signal-to-
noise ratio drops below 1).

3. Overview of the control simulation

The control simulation conducted in this study is
mostly consistent with the control experiment results
from Wang et al. (2015) except that the simulation starts
from a later time and analysis nudging is not performed.
The active MJO phase features the eastward propaga-
tion of large-scale organized convection and pre-
cipitation. Figure 1 compares the 5-day accumulated
precipitation from the control simulation to the Tropical
Rainfall Measuring Mission (TRMM) observations.
During the simulated period, the precipitation center
moves across the Indian Ocean (phases 1-3) and to the
Maritime Continent (phases 4 and 5). The propagation
of the MJO is not at a constant speed. Phase 2 takes
much longer (10 days) than the following phases.



3776

Consistent with Wang et al. (2015), the eastward prop-
agation of the simulated precipitation agrees with the
observation as shown in the Hovmoller diagrams in
Fig. 2. At 850 hPa, westerlies (easterlies) are found west
(east) of the precipitation center, which is the typical
large-scale MJO flow pattern.

At smaller scales, the simulated precipitation shows
IG wave signals over the Maritime Continent
(90°-120°E). The propagation direction of these 1G
waves follows the prevailing zonal wind, that is, WIG
waves in easterly wind and vice versa. At least some of
these waves and precipitation patterns over the Mari-
time Continent are likely forced by the thermal diurnal
cycles associated with the landmass (Mapes et al. 2003;
Love et al. 2011). The precipitation over the Indian
Ocean (50°-90°E) is organized into several 2-day epi-
sodes that are modulated by the phase of the MJO and
several episodes of westward-propagating equatorial
Rossby waves and eastward-propagating equatorial
Kelvin waves (hereafter referred to as Rossby and
Kelvin waves for simplicity). The model simulation of
these finer-scale features is less accurate than the MJO
signal itself as compared to the observations. There are
generally mismatches in timing of the IG waves over the
Indian Ocean.

However, the model simulation has a relatively good
representation of the spectral modes of the multiscale
CCEWs. Figure 3 compares the Wheeler and Kiladis
(1999) space-time spectra (WK spectrum) of pre-
cipitation between the observation and the control
simulation. Compared to the TRMM observation, the
WRF simulation captures most of the CCEW modes
although with errors in their signal strengths. The zonal
wavelengths and time periods of the simulated waves
agree with the observation except that Kelvin waves are
propagating more slowly and the large-scale eastward-
propagating IG (EIG) waves are missing the 2.5-day
period in the simulation. The signal strengths of diurnal
WIG, MRG, and Rossby waves are weaker in the sim-
ulation than in the observation, while Kelvin wave and
MJO signal strengths are comparable to the observa-
tion. The large-scale 2-day WIG wave signals are sim-
ulated stronger than the observation. The WK spectra
are calculated for a single MJO active phase during the
simulated 1-month period, which is a relatively short
sample size. Therefore, the large-scale low-frequency
wave signals are expected to have some errors due to
sampling noises. The errors in model and the specified
initial and boundary conditions also cause the simulated
WK spectra to differ from observation. Despite these
discrepancies, the WRF simulation provides a reason-
able representation of the observed CCEW and well
serves the need as a control simulation.
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FIG. 4. Longitude-time plot of RM-DTE (ms™'; shading) at
850 hPa and the precipitation from the control simulation (black
contour of 15 mm day ') averaged over 5°S=5°N. The RM-DTE is
the square root of ensemble-averaged DTE between the perturbed
ensemble simulations and the control simulation from 18 Oct to 2
Nov (shown as t = 0-15 days).

4. Limit of practical predictability

To estimate the practical predictability (prediction
skill) of the tropical multiscale weather and CCEWs, the
error growth during the first ensemble simulation is in-
vestigated in this section. Figure 4 shows the longitude—
time Hovmoller diagram of root-mean difference total
energy [RM-DTE; as defined in Melhauser and Zhang
(2012)], which is a combined measure of errors in hori-
zontal winds and temperature. As forecast time prog-
resses, the overall error increases because of the realistic
uncertainties from the LBC. Larger RM-DTE is located
near the region of stronger precipitation. There are ap-
parent westward-propagating streaks of RM-DTE that
are related to the CCEWs over the entire domain. The
errors associated with the IG waves over the Maritime
Continent have diurnal maxima following the peak
precipitation, and there is no obvious trend during the
2-week period. On the other hand, the three successive
moist phases of Kelvin waves over the Indian Ocean has
increasingly larger errors. Such error growth behavior
indicates a flow dependency in predictability that is
more limited in the areas of precipitative systems.

Figure 5 shows the spectra of reference and error
energy, E(k) and R(k), for KE, temperature, specific
humidity, and precipitation. Let / = k' be the hori-
zontal wavelength; the spectra are plotted as a function
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FIG. 5. Reference energy spectra R(k) averaged over the 15 days (black lines) and error energy spectra E(k)
(color coded with simulation time ¢t = 0-15 days) for (a) kinetic energy, (b) temperature, (c) specific humidity, and
(d) precipitation. The shown spectrum is averaged over the vertical levels.

of k but labeled with its corresponding / values. The
time-averaged reference KE spectrum (black line in
Fig. 5a) has a —5/3 slope at small scales and transitions
to a steeper —3 slope at around / = 500 km toward larger
scales. According to Lorenz (1969) and Rotunno and
Snyder (2008), there will be a predictability limit for the
small scales because of its shallower spectral slope. The
temperature and humidity spectra (Figs. Sb,c) have a
similar shape compared to the KE spectrum, while the
precipitation spectrum (Fig. 5d) is much shallower. Er-
ror energy spectral evolution can be viewed from the
colored lines with time progresses from blue to red. At
t = 0, the initial error KE from the ECMWF analysis is
about one order of magnitude smaller than the reference
energy at large scales and becomes comparable with
reference energy at intermediate scales around [/ =
500km. The initial error is artificially too small at small
scales, because the ECMWF analyses are archived at a
relatively coarse resolution (32km) and thus not fully
resolving / < 200 km. The error growth is more or less
linear at larger scales, while the small-scale error

saturates almost immediately. At small scales, the error
energy exceeds the time-averaged reference energy,
indicating the loss of predictability. Compared to other
variables, precipitation has a wider range of scales with
lost predictability after several forecast days.

To further illustrate the time evolution of errors at
different scales, the reference and error energy are av-
eraged over three arbitrarily selected scale ranges: large
(I > 2000km), intermediate (200 < / < 2000km), and
small (/ < 200km), and their time series are shown in
Fig. 6. The errors in KE, temperature, and humidity
have similar multistage growth behavior as described in
Zhang et al. (2007). Small-scale errors grow the fastest in
the first 12 h, and then after saturation, they stay at rel-
atively the same level. Large- and intermediate-scale
errors grow slowly during the whole simulation period,
and the large-scale error never reached reference energy
for KE. The predictability limit not only depends on the
rate of error growth but is also complicated by the var-
iations in reference energy. For temperature, the refer-
ence energy has a clear diurnal cycle at both large and
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FIG. 6. Time series of spectral energy averaged at large (L; / > 2000 km; black), intermediate (M; 200 < / < 2000 km; blue),
and small (S; / < 200 km; red) scales for (a) kinetic energy, (b) temperature, (c) specific humidity, and (d) precipitation.
The thick lines show the error energy, while thin lines show the reference energy.

small scales. The large-scale reference energy also ap-
pears to be modulated by the low-frequency waves; the
humidity reference energy has three minima that are as-
sociated with the precipitation episodes over the Indian
Ocean. For precipitation, the small- and intermediate-
scale error energy exceeds their corresponding reference
energy very early in the simulation, and the large-scale
error energy is comparable to the reference after 4 days
of simulation, but the exact time for loss of predict-
ability is uncertain because of the constantly varying
reference energy.

Figure 7 plots the estimated practical predictability
limits (thick lines) as a function of horizontal wave-
length. At large scales, the KE and temperature have
practical predictability limits up to 15 days, followed by
the specific humidity, which has a limit of 8 days, and
practical predictability of precipitation is limited to only
3 days. The predictability of all variables dropped sig-
nificantly across the intermediate scale. The practical
predictability is limited to less than 12h for KE,

temperature, and specific humidity for scales / < 200 km
and / < 800 km for precipitation.

5. Limit of intrinsic predictability

In this section, the intrinsic predictability limit is
identified by investigating the second ensemble simula-
tion with IC and LBC error energy reduced to 1%, a
level of accuracy that is unlikely to be attainable in the
foreseeable future. Figure 8 shows the time series of
error energy of this new ensemble (red) for KE and
precipitation at three scales and compares their error
evolution to the original ensemble with 100% error
(blue). When error energy is reduced to 1%, the large-
and intermediate-scale error KE (Figs. 8a,b) still grows
at a similar rate as the 100% error case during most of
the simulation period, although there is some indication
of increased error growth rate during the first 3 days. By
the end of simulation, error KE from the 1%-error case
remains an order of magnitude lower than that from the
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FIG. 7. Predictability limits for kinetic energy (black), tempera-
ture (blue), specific humidity (red), and precipitation (green)
plotted as a function of zonal wavenumber (labeled as wavelength).
Thick (thin) lines are practical (intrinsic) predictability limits. The
limits are defined as the time it takes for the error energy (100%
error for practical limit and 1% error for intrinsic limit) to reach
reference energy. The limits are calculated for each member, and
the ensemble average is plotted. Smoothing is applied across the
wavelength to remove some noise for better visualization.

100%-error case. This indicates that the intrinsic pre-
dictability for these scales is likely to be achievable
beyond the 15-day simulation period, since the pre-
dictability horizon can be extended by reducing the IC
and LBC errors.

On the other hand, the small-scale error KE (Fig. 8c)
grows much more rapidly and the reduced error only
delays the loss of predictability by about 1 day. This
behavior is as expected according to Rotunno and
Snyder (2008) because of the —5/3 power law of small-
scale KE. The intermediate-scale KE error growth rate
is higher at the beginning of the simulation, because part
of the intermediate-scale range has a shallower KE
spectrum (200 < / < 500km). The temperature and
humidity error energy results for the 1%-error case are
similar to KE (not shown), and precipitation (Figs. 8d-f)
also displays similar behavior, but its range of scales that
have limited predictability is much wider than other
variables. The intrinsic predictability limits are also
plotted as thin lines in Fig. 7 as a function of horizontal
wavenumber. For the —5/3 power-law range (I <
500km), theories predict that predictability will be
limited. The results are consistent with the theory that
reducing the IC and LBC error perturbations to 10%
does not increase the predictability limit 10 times. The
intrinsic predictability limit for KE is about 10 days at
I = 500km and decreases to <1 day at small scales. The
same predictability limit is true for other variables such
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as temperature and humidity but not for precipitation,
which has more limited intrinsic predictability.

For regional models, the specification of LBC is non-
trivial for the accuracy of simulation. To evaluate the
relative importance of IC and LBC, an extra set of en-
semble simulations are conducted with perturbations
(from 100% error) only added to the IC, and the results
are plotted in Fig. 8 as gray lines (IC error only). For large-
and intermediate-scale KE, the LBC error contributes a
lot to the overall error growth; without LBC error, the
error energy remains at a similar IC error level throughout
the simulation. However, for small-scale KE, a correct
LBC does not help to reduce the initial error growth; it
only slightly reduces errors later in the simulation when
they are already saturated. For precipitation, the large-
scale error energy is reduced by specifying a correct LBC,
while the intermediate- and small-scale errors are not
significantly reduced before saturation. The intermediate-
scale precipitation error is only occasionally lowered with
the correct LBC, indicating a mixed influence from the
boundary and local regions.

Similar to the definition of error doubling time
(Lorenz 1969), an “‘error growth time” is defined as the
time in which the initial error energy grows two orders of
magnitude (from 1% to 100% initial error energy).
Figure 9 plots the error growth time as a function of the
horizontal wavenumber. For / > 500km, the error
growth time exceeds 15 days for KE and temperature
and ~10 days for humidity. The error growth rate rap-
idly increases as / decreases from 500 to 100 km; for / <
100 km, the error growth time is well below 6h. The
precipitation error growth rate is much higher than
other variables for the large and intermediate scales.
However, its error growth rate increases more smoothly
across scales, unlike other variables that have a rapid
growth-rate boost within a narrow scale band.

6. Predictability of CCEWs at different scales

In the previous sections, the practical and intrinsic
predictability limits are estimated for different model
variables and for different spatial scales. To identify the
underlying processes for the error growth at different
spatial and temporal scales, a Wheeler—Kiladis space—
time spectral analysis is conducted in this section to
extract CCEWs from the simulation and study the pre-
dictability associated with each wave mode.

Figure 10 shows the WK spectra for precipitation
from the control simulation. Both the zonal wave-
number and time frequency axes are shown in log scale.
The spatial scale is again separated into large (L), in-
termediate (M), and small (S) scales similar to previ-
ous sections; the specified temporal- and spatial-scale
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FIG. 8. Time series of spectral error energy integrated within (a),(d) L, (b),(e) M, and (c),(f) S scales for (a)-(c) kinetic energy and
(d)—(f) precipitation. The reference error energy is shown as black lines, the blue (red) lines show the error energy from the 100% (1% )-
error case, and the gray lines show the case with errors only in the initial condition.

windows for the CCEWs are indicated with black boxes.
Along with the MJO signal, the Rossby (n = 1 ER),
Kelvin, MRG, 2-day WIG (n = 1 WIG_L), and EIG
(n = 0 EIG_L) waves all reside in the large scale. At
intermediate scales, the n = 1 IG waves (WIG_M and
EIG_M) with diurnal to semidiurnal periods are the
dominant wave modes. The small scale has no clearly
identifiable wave signals. Precipitation signals related to
small-scale moist convection spread throughout the
small-scale spectrum, and according to the previous sec-
tions, its predictability is intrinsically limited to <1 day.

A space-time bandpass filter is applied to the
precipitation field to extract each wave mode according
to its period and wavelength window as shown in Fig. 10.
Since the perturbed ensemble forecast is performed only
for a shorter 15-day period, the control simulation is

used to fill in the missing days before filtering.
Figures 11a—e show longitude—time plots for the filtered
precipitation associated with large-scale waves. Spa-
ghetti plots of a selected precipitation contour (black)
among members from the first ensemble (100% error)
are shown in Figs. 11f—j, and they are compared to the
1%-error cases in Figs. 11k—o. For the ensemble with
100% error sampled from the ECMWF forecasts, the
precipitation contours diverge and become out of phase.
However, when the error energy is reduced to 1%,
the contours remain in phase among members
throughout the whole simulation. The same analysis is
performed for the intermediate-scale IG waves, and
results are shown in Fig. 12. In contrast to large-scale-
wave results, the error reduction does not bring the
contours in phase and large displacement errors still
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FIG. 9. Error growth time (days) plotted as a function of zonal
wavenumber (labeled as wavelength) for kinetic energy (black),
temperature (blue), specific humidity (red), and precipitation
(green). The error growth time is defined as the time it takes for
1% initial error to grow and reach 100% initial error. The growth
time is calculated for each member, and the ensemble average is
plotted.

exist for intermediate-scale waves. These results agree
with the findings from the previous section that the es-
timated large-scale predictability for precipitation can
potentially be extended from 3 to ~15 days if errors are
reduced to 1%, while for intermediate scales, its pre-
dictability remains intrinsically limited (Fig. 7).

Table 1 lists the averaged pattern correlations between
perturbed and unperturbed simulations as a more quan-
titative measure of CCEW phase errors. A correlation of
1 indicates that two waves are perfectly in phase, while
zero correlation indicates two waves completely out of
phase. For precipitation, the large-scale CCEWs all show
that a significant improvement in wave phase (from ~0.6
to ~0.8 correlation) is possible, which is contrasted by the
intermediate-scale IG waves that stay out of phase
(correlation <0.3) even with reduced error. For other
variables, results from the previous section show that the
practical predictability for KE, temperature, and humidity
is much less limited than precipitation at large and in-
termediate scales. Therefore, the zonal wind, temperature,
and humidity phases associated with Rossby, Kelvin, and
MRG waves can potentially be improved to almost perfect
(correlation >0.9) with reduced error. The intermediate-
scale predictability for zonal wind, temperature, and hu-
midity is more limited but less so than precipitation.

7. Concluding remarks

In this study, the October 2011 MJO active phase
is simulated using the WRF Model with similar
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F1G. 10. As in Figs. 3c and 3d, but for zonal wavenumber and
time frequency shown in log scale. Space-time filtering windows
are shown as black boxes for ER wave, Kelvin wave, MRG wave,
n = 1 WIG wave at intermediate scale (WIG_M) and at large
scale (WIG_L), n = 0 EIG at large scale (EIG_L), and n = 1 EIG
at intermediate scale (EIG_M).

configuration as Wang et al. (2015). The control simu-
lation is initialized with ERA-Interim data. The model
faithfully reproduced most of the large-scale features of
the MJO and CCEWs. We conducted 20 perturbed
simulations for the 15-day period from 18 October to
2 November to estimate the practical predictability of
the multiscale tropical weather. The IC and LBC per-
turbations are sampled from the ECMWF global
ensemble forecasts from the TIGGE archive. Pre-
dictability limit is defined as the time in which error
energy (ensemble variance) reaches/exceeds the refer-
ence energy (energy associated with the ensemble-mean
field). Intrinsic predictability is identified by another set
of perturbed simulations with the IC and LBC error
energy reduced to 1%. Two-dimensional spectral de-
composition is applied to the error and reference energy
to reveal the horizontal-scale dependency in pre-
dictability. The predictability limits are calculated sep-
arately for kinetic energy, temperature, specific
humidity, and precipitation at each scale. Findings from
this study are summarized as follows:

1) The practical predictability is scale and variable
dependent. For large-scale (/ > 2000 km) horizontal
winds and temperature, the practical predictability
limit is ~15 days, and for humidity, the limit is
~8 days. The predictability rapidly drops across the
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FIG. 11. (a)—(e) Longitude-time plots of precipitation (color shading every 1 mm day ™~ from —10 to 10 mm day " '; zero shown in white)
filtered for (a) Rossby, (b) Kelvin, (c¢) MRG, (d) WIG_L, and (e) EIG_L waves and averaged over 0°-5°N. (f)—(j) Spaghetti plots of the
contours highlighted in black in (a)—(e); each color corresponds to a member from the perturbed ensemble simulation (100%-error case).
(k)—(o) As in (f)-(j), respectively, but for the ensemble simulation with error energy reduced to 1%.

2)

intermediate scale (200 < [ <2000 km), and for small
scales (I < 200km), their practical predictability is
limited to <12h. Precipitation has more limited
predictability than other variables; its large-scale
practical predictability limit is only 3 days and drops
to <12h for the smaller scales.

Intrinsic predictability limits for horizontal winds,
temperature, and humidity are >10 days for scales
larger than 500km. At these larger scales, the
practical predictability horizon can be well extended
by reducing errors in IC and LBC. However, for
scales smaller than 500 km, the intrinsic predictability
limit decreases; at <100-km scales, the limit is <1 day,
which is likely related to a shallower —5/3 power law
in the KE spectrum. For precipitation, a wider range
of its smaller scales has intrinsically limited predict-
ability compared to other variables.

3)

4)

Error growth rate is low at large scales and high at small
scales; the increase takes place in a very narrow scale
range (100-500km) for horizontal winds, temperature,
and humidity. On the other hand, precipitation error
growth rate increases more smoothly across scales.
Large-scale CCEWs (i.e., Rossby, Kelvin, MRG, and
the 2-day IG waves) have a predictability that can be
potentially improved by reducing the IC and LBC
errors. With errors reduced to 1%, the zonal wind,
temperature, and humidity associated with large-
scale waves can be improved to almost perfectly in
phase. However, for the intermediate scale, the
diurnal and semidiurnal IG waves have a predict-
ability that is more intrinsically limited.

The current findings encourage the future develop-

ment in data assimilation and modeling systems to
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FIG. 12. As in Fig. 11, but for the two intermediate-scale waves,
WIG_M and EIG_M. Only five members are shown in the
spaghetti plots, and the longitude—time plots are zoomed in on
60°-80°E and the first 5 days of the simulation.

further improve the predictability of CCEWs. However,
the authors would like to point out some caveats in
interpreting the results in this paper. The convection-
permitting WRF Model, although providing a reason-
able representation of CCEWs, is still not perfect. In this
study, only the uncertainties from model IC and LBC
are accounted for when estimating practical pre-
dictability. While the IC and LBC uncertainties are
sampled from realistic forecast errors, the estimated
practical predictability may potentially differ from those
estimated from other modeling systems that account for
additional error sources (e.g., model dynamics, physics
parameterizations, and low-boundary-condition forc-
ings). The predictability estimates from the MJO active
phase event in this study may also differ from those es-
timated for other events.

The current study only simulates a 15-day period within
an MJO active phase, which is not long enough to estimate
the predictability of MJO itself. In previous MJO pre-
dictability studies using global model simulations, the
practical predictability estimates range from 15 to 45 days,
depending on the models and diagnostics used
(Gottschalck et al. 2010; Vitart and Molteni 2010; Neena
et al. 2014b; Hamill and Kiladis 2014). The MJO pre-
dictability metric is usually based on the real-time

YING AND ZHANG

3783

TABLE 1. Averaged pattern correlation between member (per-
turbed run) and the control (unperturbed run) for zonal wind,
temperature, specific humidity, and precipitation associated with
each CCEW mode. The improvement in pattern correlation from
the 100% error case to the 1% error case is indicated by an arrow.

CCEW Specific

mode  Zonal wind Temperature humidity Precipitation
Rossby  0.84—0.99 0.85—0.99 0.72—0.97 0.75—0.88
Kelvin  0.77—097 0.82—0.97 0.67—0.92 0.65—0.85
MRG 0.75—0.95 0.64—0.94 0.65—094 0.64—0.86
WIG_L 0.51-086 051—0.86 046—081 045—0.74
EIG.L 051—-085 0.64—0.92 049—0.83 0.46—0.70
WIG_M 027—-043 0.38—050 027—044 0.17—0.28
EIG.M 0.16—027 033—045 0.17—032 0.09—0.17

multivariate MJO (RMM) index (Wheeler and Hendon
2004), which captures more of the large-scale features of
the MJO signal. Ling et al. (2014) suggested that, when
finer-scale local features are included, the estimated pre-
dictability becomes more limited than when using a global
measure. The predictability of MJO is also found to be
dependent on its phase (Waliser et al. 2003; Nasuno 2013;
Neena et al. 2014a,b). While the active phase of the MJO
has better predictability, the models have difficulty in ac-
curately predicting the timing of convection onset during
its suppressed phase. As an extension of these global
model MJO predictability studies, the current study
provides a comprehensive predictability estimate for the
multiscale CCEWs during an MJO active phase. How the
predictability estimates change for a suppressed MJO
phase may be a future research topic.

The selection of MJO diagnostics is also nontrivial in
predictability studies. Waliser et al. (2009) proposed sev-
eral candidate MJO diagnostics that can capture more
small-scale details of MJO than traditional ones. Results in
this paper show that predictability is variable dependent.
Therefore, process-oriented diagnostics (Kim et al. 2014)
that targets the tropospheric moisture or even pre-
cipitation may result in very different predictability esti-
mates compared to just using dynamic variables. A longer
regional simulation with convection-permitting resolution
may be the next step to facilitate a comprehensive pre-
dictability study that compares different diagnostics.
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