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1 Overview

Work in computer vision and natural language processing involving images and text
has been experiencing explosive growth over the past decade, with a particular boost
coming from the neural network revolution. The present volume brings together five
research articles from several different corners of the area: multilingual multimodal
image description (Frank et al.), multimodal machine translation (Madhyastha
et al., Frank et al.), image caption generation (Madhyastha et al., Tanti et al.),
visual scene understanding (Silberer et al.), and multimodal learning of high-level
attributes (Sorodoc et al.). In this article, we touch upon all of these topics as we
review work involving images and text under the three main headings of image
description (Section 2), visually grounded referring expression generation (REG)
and comprehension (Section 3), and visual question answering (VQA) (Section 4).

2 Image description

Descriptive text is associated with images in a variety of different ways in the
computer vision and NLP fields, in particular (i) individual lexical items associated
with images or image regions (typical of image labeling), and (ii) phrases or sentences
associated with regions or the image as a whole (typical of image description). Image
labeling (or tagging, or indexing) goes back at least to the 1960s (Rosenfeld 1978); its
aim is to attach labels to regions that are meaningful to a human observer such that
the labels capture the meaning. Image description aims to produce a summarizing
description, in structured natural language, of a whole image (or region), typically
involving the prioritization of more important elements and relationships. This is
the focus of this section, which is divided into three main subsections, on datasets
(Section 2.1), models (Section 2.2), and evaluation (Section 2.3). We use the term
image description as the name of the field, but understand it to cover the automatic
generation of any structured text intended to convey the content of an image. We
argue below that different image text types can most meaningfully be defined relative
to a real-world application context.
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2 A. Belz et al.
Table 1. Image description datasets
Name Attribution Images Notes Language(s)
IAPR-TC12 Grubinger et al. 2006 20,000 EL, YT G,E S
BBC News Feng and Lapata 2008 3,361 NO, YT E
PascallK Rashtchian et al. 2010 1,000 EL, NT E
SBUIM Captions Ordonez, Kulkarni and 1,000,000 NO, YT E
Berg 2011
VLT2K Elliott and Keller 2013 2,424 EL, NT E
Abstract Scenes Zitnick and Parikh 2013 10,020 EL, NT E
Sentences3D Kong et al. 2014 1,449 EL, YT E
Flickr8K Hodosh and Hockenmaier 8,092 EL, NT E
2013
Li et al. 2016 E, C
Unal et al. 2016 E, T
Flickr30K Young et al. 2014 31,783 EL, NT E
Elliott et al. 2016 E, G
Elliott et al. 2017 E,G,F
van Miltenburg et al. 2017 2,014 E,D
De¢ja Captions Chen et al. 2015 4,000,000 NO, NT E
MSCOCO Lin et al. 2015 164,062 EL, NT E
Yoshikawa et al. 2017 E, J
Miyazaki and Shimizu 26,500 E,J
2016
MMT17-Test2 Elliott et al. 2017 461 E, G, F
MS SIND Huang et al. 2016 81,743 EL, NT E
Visual Genome Krishna et al. 2017 108,077 EL, NT E
MMT17-Test1 Elliott et al. 2017 1,071 EL, NT E, G

EL = elicited; NO = naturally occurring; YT = there is a clear application task; NT = no
task; G = German; E = English; S = Spanish; C = Mandarin; T = Turkish; F = French;
D = Dutch; J = Japanese.

2.1 Data for image description tasks
2.1.1 Datasets

Table 1 provides an overview of image description datasets in terms of number of
images, language(s) the descriptions are in, whether there is an explicit or implied
real-world application task (e.g. news article image captioning), and whether they
were elicited from contributors, or collected from sources where they occur naturally.

The IAPR-TC12 benchmark (Grubinger et al. 2006a) has 20,000 images from a
travel company’s photo collection each with text captions in German, English,
and Spanish. The dataset was intended for benchmarking retrieval systems in
ImageCLEF 2006. Images depict a wide range of travel-related topics, including
sport, landmarks, animals, group shots, landscapes, etc. In contrast to other datasets
reviewed here, the collection contains sets of images that depict very similar content
(e.g. the same cathedral), but from different angles, dates, etc. Original annotations
by the travel company were quality-checked, corrected, and completed by direct
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A man holds a ball in a puppies mouth. Woman at table busy with something

A puppy bites a ball. A woman by the table preparing drinks.
Someone is putting something in the white dog’s A woman at the dining table with wine, beer, and
mouth. lemons.

A tan puppy with a hand holding something in a woman at a dinner table writing on her note-
his mouth. book

A small puppy being fed a chocolate treat. A woman sits with her head down at a table that

has alcohol beverages and accessories on it.

Fig. 1. Two images from PascallK; original spelling errors
(Rashtchian et al. 2010).

contributors (not crowdsourced). E.g. a photo of a brown sandy beach; the dark blue
sea with small breaking waves behind it; a dark green palm tree in the foreground on
the left; a blue sky with clouds on the horizon in the background.

The BBC News Database (Feng and Lapata 2008) contains 3,361 image-caption-
document tuples collected from the BBC News website. Captions are often nondes-
criptive, e.g. Breastfed babies tend to be brighter for an image showing a baby being
breastfed. The implicit image description task is news image caption generation, but
Feng and Lapata use the data for image labeling.

For PascallK, Rashtchian et al. (2010) used Mechanical Turk to collect five
descriptions each for 1,000 VOC’08 images (50 selected randomly from each of the
20 VOC’08 classes). Contributors had to have high HIT rates and pass a language
competence test, leading to relatively high text quality with few grammatical or
spelling mistakes. Two example images and their descriptions are shown in Figure 1.

The SBUIM team collected one million Flickr images with naturally occurring
captions (Ordonez et al. 2011), filtering initial search results to retain only images
with captions containing at least two words from the original query, and at least
one preposition (indicating visible spatial relationships). For examples see Figure 2.

For VLT2K, Elliott and Keller (2013) used the images from the VOC’11 ac-
tion recognition taster competition (Everingham et al., 2011), and collected three
descriptions per image via Mechanical Turk. Subsequent annotation steps added
visual dependency relations, and associated image regions with descriptions.

The Abstract Scenes dataset (Zitnick and Parikh 2013) consists of 1,002 sets
of ten similar abstract scenes and one associated description. Mechanical Turk
contributors created individual scenes of children playing using clip art. Other
contributors described the scenes using 1-2 sentences. Finally, contributors created
nine more scenes to match each description. This dataset differs from the others in
its use of cartoon-like scenes in which physical properties can be unrealistic.

The Sentences3D team (Kong et al. 2014) collected descriptions and annotations
for the 1,449 photos of indoor scenes in the NYU-RGBD v2 dataset via Mechanical
Turk. Descriptions vary from one to ten sentences, and tend to be complex with
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Little girl and her dog in northern Interior design of modern white and Emma in her hat lking super cute
Thailand. They both seemed brown living room furniture against white
interested in what we were doing wall with a lamp hanging.

Fig. 2. Image and caption examples from SBUIM.

multiple mentions of visual objects. Additional annotations (by direct contributors)
link nouns and pronouns to the visual objects they describe.

Flickr8K has 8,092 images of people/animals performing some action from six
Flickr groups (Hodosh, Young and Hockenmaier 2013). Five descriptions per image
were collected via Mechanical Turk; QA measures were e.g. a spelling/grammar
test, and location in the United States. Contributors were asked to write single
sentences describing the depicted scenes, situations, events and entities. This dataset
was extended in Flickr30K (Young et al. 2014) to 31,783 images. As a further
extension, Multi30K (Elliott et al. 2016) added 31,014 German translations of the
original English descriptions (one per image), and 155,070 German original image
descriptions (five per image).

Extensions of Flickr30K to other languages exist. Van Miltenburg et al. annotated
2,014 images from the validation and test parts of Flickr30K with five Dutch
descriptions each via Crowdflower, using the same collection regime (van Miltenburg,
Elliott and Vossen 2017). Unal et al. collected Turkish descriptions for Flickr8K,
again using the same regime (Unal et al. 2016). Li et al. extended the dataset
to Chinese, creating Mandarin captions by (i) machine translating the original
descriptions with Google and Baidu, and (ii) crowdsourcing new descriptions (Li
et al. 2016).

Lin et al. collected two sets of image descriptions for the MS COCO corpus of 2.5
million labeled objects in 328,000 images, one containing five descriptions for every
image in the training, validation and test sets; the other having forty descriptions
each for a random subset of 5,000 test set images (Lin et al. 2014a). The latter were
collected with the aim of achieving higher correlation with human judgments in
automatic evaluation via a large number of reference descriptions.

MMT-Test2 (which the MMT team call the Ambiguous COCO test data) is a
collection of 461 MS COCO images selected for containing an ambiguous verb
(fifty-six verbs in total), in a complex process (Elliott et al. 2017) that involved
information from the VerSe dataset of ambiguous-verb captions (Gella, Lapata and
Keller 2016).

The STAIR Captions dataset (Yoshikawa, Shigeto and Takeuchi 2017) is an
extension of MS COCO to Japanese, with five descriptions for each MS COCO
image, obtained with slightly different instructions, using crowdsourcing and direct
contributions. An earlier Japanese MS COCO extension for a subset of 26,500 images
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crowdsourced 3-5 Japanese descriptions per image, again using a slightly different
collection regime, including a caption quality filtering step at the end (Miyazaki and
Shimizu 2016).

The Déja Captions team collected 760 million image/text pairs from Flickr, using
693 frequent nouns for queries (Chen et al. 2015a). They segmented texts into
sentences and filtered out those that did not contain the query term. Only captions
which very closely resembled at least one other caption for a different image were
then retained. The result was a collection of 180 K unique captions for 4 million
images. As with the Abstract Scenes dataset, there are multiple images per caption,
whereas with other datasets in this section it is the other way round.

MS SIND (Huang et al. 2016) is a dataset of story-like image sequences paired
with: (1) descriptions for each image in isolation, (2) descriptions for each image
when seen in a sequence, and (3) descriptions that form a narrative over an image
sequence (images/sentences aligned). Image sequences were obtained from Flickr
albums, only retaining ‘storyable’ albums with 10-50 photos, taken within 48 h.

The Visual Genome dataset (Krishna et al. 2017a) has region descriptions (in
addition to six other annotation components) for 108,077 images, e.g. for an image
with three regions: man jumping over a fire hydrant, yellow fire hydrant, and woman
in shorts is standing behind the man.

MMT-Testl (ak.a. Multi30K 2017 test data) is a new dataset of images/texts
collected from some of the same Flickr groups as Flickr30K, and some new groups
(Elliott et al. 2017) in a multistep process, resulting in a final set of 1,071 images/texts,
each supplemented by one professional German translation, and five crowdsourced
German descriptions.

The datasets reviewed in this section differ on many dimensions, including size,
ranging from a few thousand images (PascallK, BBC News, VLT2K) to a million
and more (SBU1IM, D¢ja Captions). English remains the most frequent language,
but other languages are being seen more frequently, mostly as extensions of English
datasets. The images in all but one dataset (Abstract Scenes) are photos, mostly
user-generated (except BBC News). In some cases, labeled object bounding boxes or
region masks (VLT2K, MS COCO, Sentences3D, Visual Genome) around objects
are available. Most datasets have image texts elicited from contributors for the
specific purpose of creating the corpus, but some, including the very large datasets,
have naturally occurring image texts (BBC News, SBUIM, D¢ja Captions).

2.1.2 Collecting human-generated image descriptions

Quality assurance measures, instructions, and guidelines to contributors when
eliciting image descriptions can vary substantively between datasets. The IAPR
TC-12 descriptions were intended to describe ‘what can be recognized in an image
without any prior information or extra knowledge’ (p. 6). The creators decided
not to ask for full sentences, or for descriptions of the entire image, specifically to
thwart people’s natural storytelling tendencies. They did not constrain the number
of phrases that could be used or their order, and considerable variation can be
seen in both. A typical example is a brown cathedral with two towers and three green
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doors; a square with street lamps, green spaces, flowers, a tree, benches, and people in

front of it; grey cobblestones in the foreground, a hill and clouds in the background.

For VLT2K, Elliot and Keller placed similar restrictions on contributors, asking
them to describe an image in two sentences, the first describing the action in the
image, the person performing the action and the region involved in the action; the
second describing any other regions in the image not directly involved in the action;
e.g. A man is riding a bike down the road. A car and trees are in the background.

For most datasets, however, the only structural restriction is that descriptions
should have one or two sentences describing the whole image. This allows a wide

variety of style and focus which researchers seek to control by lists of DOs and
DON’Ts which can be detailed. For example, for MS COCO:

Please describe the image

Describe all the important parts of the scene.

Do not start the sentences with ‘There is’.

Do not describe unimportant details.

Do not describe things that might have happened in the future or past.
Do not describe what a person might say.

Do not give people proper names.

The sentences should contain at least eight words.

Looking at image descriptions in datasets reveals that contributors do not always
follow such instructions, producing descriptions such as: An empty boat begs to
be used; The happy lady enjoys her surroundings; Take a solitude horse ride in the
beautiful country; and The curious dog looks to do some damage to the pots. It appears
that more rigorous control, as e.g. for [APR-TC12 and VLT2K, is needed to constrain
people to producing descriptions that describe only what can be seen.

2.1.3 How humans describe images

Human-authored image descriptions tend to prioritize mention of foregrounded
and/or large entities, their attributes (color, size, etc.), and relationships linking
them, to each other and to their surroundings. However, human authors have strong
tendencies to add many different kinds of conjectured content, attributing emotions
and intent to people and animals, placing the image in the context of a story, or
ascribing subjective properties to image elements. The examples in Figure 1 exhibit
several forms of conjecture. For the picture on the left, it is unclear whether the
object in the dog’s mouth is a chocolate treat, a ball, or something else. Is the object
being put into, held in, or in fact retrieved from, the dog’s mouth? Is it a puppy
or a grown dog? Is its color white or tan? For the picture on the right, is the
woman working on her notebook, preparing drinks, or is she busy with something
unidentifiable? In the (naturally occurring) captions of the images in Figure 2 proper
names, subjective attributes, and attribution of state of mind are all used.

From guessing emotional states to being more precise than the information in
an image permits, people have a tendency to fill in the missing bits, to tell a story.
Moreover, they do this in a myriad of different ways. On the one hand, humans
have these tendencies, on the other hand researchers try to quell them and elicit
descriptions that only talk about what can be seen in an image, moreover only what
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is ‘important.” This strong pull between what people come up with when asked to
describe an image, and what researchers try to get them to do, raises questions about
whether this is a good way to collect training and evaluation data.

2.1.4 Human-generated image descriptions as training and evaluation data

The datasets above are used to train the methods in Section 2.2, and as reference data
by many of the evaluation methods in Section 2.3. Systems are trained to produce
similar image descriptions to those in these datasets, and the image descriptions
they generate are considered good if they are similar to those in the datasets, yet
there is a lack of clarity in the field regarding both (i) what these image texts are,
and (i1) what they are meant to be for. Regarding the former, the main distinction
drawn is between descriptions and captions. For example, Bernardi et al. (2016)
distinguish descriptions which ‘verbalize visual and conceptual information depicted
in the image, i.e., descriptions that refer to the depicted entities, their attributes and
relations, and the actions they are involved in’ (p. 4), and captions which ‘typically
[...] verbalize information that cannot be seen in the image [providing] personal,
cultural, or historical context for the image’ (p. 18). Similarly, Frank et al. in this
volume ‘define descriptions as sentences that are solely and literally about an image,
whereas captions are more naturalistic sentences associated with, but not necessarily
descriptions of, an image’ (p. 3).

A text accompanying an image in a real-world context (e.g. a caption, article,
title, alt text) can normally be unambiguously assigned to a category. Take away the
context however, and it is far less clear what category a text belongs to. In Figure 3,
for example the Flickr caption on the left makes no reference to anything visible in
the image; the text in the middle is a caption from a news website, and is highly
descriptive; the text on the right was elicited for PascallK as a description, but is
very ‘caption-like’. All examples in Figure 2 are naturally occurring captions, but
the first sentence on the left, and the whole caption in the middle, neatly fit both of
the definitions of descriptions above.

The question is, does it make sense to say that a text that naturally occurs as a
caption is not a caption because it does not fit some definition of captions? It seems
more practical to say that a text is a caption because it appears in a particular
place alongside an image, regardless of its textual properties, i.e. to tie the definition
to application context. Systems trained on naturally occurring captions have this
real-world grounding by default, and an implied application task: to generate the
kinds of texts normally seen as captions in the particular context data was collected
from.

Image description generation systems do not have this real-world grounding: there
is no standard definition of what a description is, and there are no naturally occurring
image texts unambiguously identifiable as descriptions. This has two implications:
(i) for data collection: there is no obvious way to constrain the kinds of texts
that should be elicited from contributors; and (ii) for evaluation: because elicited
descriptions are used for both training and evaluation where systems are deemed
good in proportion to the similarity of their output to the elicited descriptions, the
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Sail on by. The pro-democracy activists An empty boat begs to be used.
Joshua Wong, Alex Chow and
Nathan Law outside the Court
of Final Appeal in Hong Kong
on Tuesday.

Fig. 3. From left: Image and caption from D¢ja Captions; news image from
New York Times, Feb 6 2018, 11:55 (https://www.nytimes.com/2018/02/06/world/asia/
hong-kong-joshua-wong-appeal.html); image and elicited description from PascallK.

result is a closed system in which questions of what collected tests are meant to
be good for, and whether they are in fact good for it, are not directly addressed
at all (Belz 2009). This is why real-world grounding is needed: an explicitly stated
application context would address both of these questions, an issue which we will
pick up again in the section on extrinsic evaluation below (Section 2.3.3).

2.2 Image description methods

A basic division in image description is between (i) methods that create descriptions
for new images from scratch, and (ii) methods that retrieve similar image/description
pairs from the training data, and use those to create a description for a new image.
The latter are a form of memory-based learning, known as retrieval-based methods
in image description. These subdivide into methods that assess the similarity of new
cases with known cases in visual space, and generate descriptions in textual space
(Hodosh et al. 2013; Karpathy, Joulin and Fei-Fei 2014; Chen and Zitnick 2015;
Vinyals et al. 2015); and those, now the more common, which involve some form of
joint modeling of the visual and textual spaces (Ordonez et al. 2011; Gupta, Verma
and Jawahar 2012; Mason and Charniak 2014; Yagcioglu et al. 2015).

Methods that create a new description for a given image from scratch, often
called generative methods (Lin et al. 2014a; Elliott and de Vries 2015; Fang et
al. 2015; Ortiz, Wolff and Lapata 2015), tend to have the following component
steps: (1) Image analysis, sometimes broken down into (a) identification of type and,
optionally, location of, objects and background/scene in the image, and (b) detection
of attributes, relations and activities involving objects from Step 1; and (2) generation
of a word string from a representation of the output from Step 1. Sometimes, a
third, re-ranking step is added. The distinguishing difference between the two types
of approaches is that retrieval-based approaches must consult a memory bank of
training instances during application, whereas generative approaches create models
that abstract away from the individual instances seen during training, generalize
over them, and are usually in some respect more effective and/or efficient than
consulting training instances individually during application.
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The above division is into two contrasting paradigms, broad-strokes outlines of
general approach, which do not imply specific techniques to implement them. In
the next section, we select a small number of reference papers, provide a detailed
description of the methods presented in them, and describe a set of paradigmatically
similar methods in relation to them. In Section 2.2.3, we briefly highlight some
current trends in the field. Given that a very recent survey reviews a large cross-
section of image description methods in detail (Bernardi et al. 2016), we do not aim
to provide an exhaustive survey of image description papers here.

2.2.1 Generative approaches

As laid out in more detail above, generative methods start with some form of image
analysis, mapping images to representations that encode information intended to be
more useful or efficient for generating descriptions than the raw pixel-grid values.
These may be readily interpretable by humans (symbolic representations of objects,
attributes, relations, ‘stuff’, etc.), or not (vectors of real numbers). For Step 1a, some
systems identify labeled regions (Farhadi et al. 2010; Kulkarni et al. 2011; Yatskar,
Vanderwende and Zettlemoyer 2014), others directly map images to words (Fang
et al. 2015). Step 1b determines object attributes (Kulkarni et al. 2011; Yatskar et al.
2014), spatial relationships (Yang et al. 2011; Elliott and Keller 2013; Muscat and
Belz 2017), activities (Elliott and Keller 2013; Yatskar et al. 2014), etc. In Step 2,
systems differ in linguistic knowledge brought to bear on the generation process.
Some view the task as linearizing labels, relations, and attributes from Step 1 (Li
et al. 2011; Fang et al. 2015); others slot them into templates (Kulkarni et al. 2011;
Yang et al. 2011; Elliott and Keller 2013), yet others use grammar to construct
descriptions (Mitchell et al. 2012; Kuznetsova et al. 2014). Some approaches (Fang
et al. 2015; Wang, Schwing and Lazebnik 2017) add a final re-ranking step, e.g.
the latter uses CIDEr (see Section 2.3.2) to calculate a ‘consensus evaluation score’
between candidate captions and their nearest neighbors retrieved via a cross-modal
embedding space.

The standard architecture that has emerged for generative image description
comprises an encoder, usually a CNN (convolutional neural network), which maps
images to more efficient and/or more task-suitable representations of themselves,
and a decoder, an RNN (recurrent neural network) or LSTM (an RNN with long
short-term memory), which maps the new representations to descriptions. In a
typical example of this approach, Lu et al. (2017) use the last convolutional layer
of a ResNet with dimensionality 2,048 x 7 x 7 to produce encodings, obtaining a
global image feature vector as the normalized sum over the spatial CNN feature
vectors at each of the k grid locations. The decoder is a single layer LSTM with
hidden vector size 512, which takes as input the global image feature vector from
the CNN stage concatenated with the current word embedding vector, and produces
a prediction of the next word as output. During training CIDETr is used to assess
progress.

An increasingly common addition to this basic architecture is a visual attention
mechanism, which typically produces a spatial map that identifies the specific image
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region(s) most relevant to the current word prediction task (Karpathy and Fei-
Fei 2015; Xu et al. 2015). Lu et al’s (2017) contribution is a version that only
switches on when needed, based on the insight that nonvisual words such as
determiners, as well as other words in contexts where the predictive power of
the preceding word(s) is particularly strong, do not benefit from visual attention.
The key idea is that the model learns to extract a ‘visual sentinel’ vector from the
decoder’s memory of visual and linguistic information; an adaptive context vector is
modeled as a mixture of the spatially attended image features and the visual sentinel
vector, the latter controlled by a weight called the ‘sentinel gate’. The diagrams
below show the standard attention architecture (left) in comparison with Lu et al.’s
adaptive extension (right), where V' = [vy,...,v;] are the spatial image features at
time t, a,1,...a.;, the attention weights, h, the hidden state, s; the visual sentinel
vector, f§; the sentinel gate, ¢, the context vector, and ¢, the new adaptive context
vector:

Karpathy and Fei-Fei (2015), in the image analysis step, detect objects with a
Region CNN, pretrained on ImageNet and finetuned on the 200 ImageNet classes.
They use the top 19 detected locations as well as the whole image, and compute
representations (sets of vectors) based on the 19 bounding boxes (region-based
embedding). They obtain a word-based embedding in the same space with a bi-
RNN, and compute pairwise similarities between individual region and word vectors
as their inner products. They then obtain an alignment that pairs multiple words to
single regions with a Markov Random Field. The resulting single-region/multiword
alignments are used in Step 2, which outputs a list of snippets for identified
regions.

Gan et al. (2017b) also use a standard CNN-LSTM set-up, but extend each weight
matrix of the conventional LSTM to an ensemble of tag-specific weight matrices
(blue triangles below). The degree to which each member of the ensemble is used to
generate a caption is tied to the image-dependent probability of the corresponding
tag. The following diagram presents the generation process in outline:

SNOW 1000 —
skii 0.593 o c e
iing | 0. »
LSTM ——{ )
man | 0.917
H skope 0.898 T
z person | 0.889 man
-4 mil | 0808 )
- covered | 0.750 H
— ] !
rding | 0.627

<e0s>

- !W ¢ ! "
Generated caption: a man riding skis down a snow covered slope C}—A -| LSTM |— H:)
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2.2.2 Retrieval-based approaches

Gupta et al’s (2012) description generator is an archetypal example of a retrieval-
based approach, and comprises the following five steps:

(1) Extract image features: RGB and HSV histograms for color; Gabor and Haar
descriptors for texture; GIST for scene; SIFT for shape. Feature extraction
is repeated (except GIST) for three vertical and three horizontal image slices.
Finally, vectors are concatenated into a single feature vector for each feature
type.

(2) Retrieve k nearest images: compute distance between image feature vectors,
using L; distance for color vectors, L, for texture and scene, x> for shape. Image
distance is then the dot product of distance weights and feature vectors.

(3) Parse the descriptions of the k most similar images, using the Stanford de-
pendency parser; extract object 1-tuples (subjects and objects), attribute/object
2-tuples (attribute + subject, attribute + object), action 2-tuples (e.g. verb +
subject), and relation 3-tuples (e.g. verb + preposition + object) from the
dependency parse.

(4) Compute a probability score for each candidate tuple (any tuple derived from
one of the k retrieved descriptions) on the basis of relative image similarity
(compared to the other k —1 most similar images) and relative Google frequency
(compared to the other candidate tuples). Tuples are ‘integrated’ by slotting them
into a predefined tripartite syntactic template.

(5) Score the resulting ‘triples’ with the joint probability of their component tuples.
Depending on the dataset, the top-scoring triple or the syntactically aggregated
top three triples are passed to SimpleNLG for surface realization.

One of two seminal papers in the retrieval-based area, Ordonez et al. (2011) present
a simpler method that uses GIST and tiny-image for Step 1, and the sum of GIST
similarity and tiny-image color similarity for Step 2. Following re-ranking of the
most similar images, Steps 3-5 are trivial as the description of the top image is
simply transferred as the output description. Kulkarni et al. (2011) and Yang et al.
(2011) use approaches similar to Gupta et al. for Step 3, but apply different syntactic
templates in Step 4. Some techniques are familiar from generative approaches, e.g.
Yagcioglu et al. (2015) use encodings produced by a CNN trained on ImageNet for
Step 1. Mason and Charniak (2014) construe Step 4 as multidocument extractive
summarization over the retrieved descriptions.

The above methods do not involve representations in a shared visual-textual
space. Other retrieval-based methods, in addition to image similarity, also assess the
match between possible descriptions and the input image. For example, Farhadi et
al. (2010), in the original retrieval-based method, map both images and descriptions
to < object,action,scene > triples, using small multilabel Markov random fields.
They consider the top k triples predicted for images and descriptions, and compute
a rank-based similarity measure to select the description to be transferred.

Hodosh et al. (2013) construe image description explicitly as a matter of ranking
candidate descriptions, and the natural inverse of image retrieval, best implemented
by a uniform approach. They focus on the problem of learning an appropriate
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mapping between images and descriptions for which they use Kernel Canonical
Correlation Analysis with a wide range of different image and text kernels. Learned
projection weights map KCCA image and description vectors to an induced shared
space in which images are expected to appear nearer sentences they are more strongly
associated with (i.e. that describe them well). Candidate descriptions are ranked in
order of their cosine similarity in this space with the new image to be described.

2.2.3 Some recent trends

Attention mechanisms have been garnering increasing interest as additions to
encoder—decoder architectures for image description (Xu et al. 2015; You et al. 2016;
Lu et al. 2017), with extensions to the basic mechanism emerging. For example, You
et al. selectively attend to candidate semantic concepts, fusing them into hidden states
and outputs. Lu et al. (see above) introduce a selective visual attention mechanism
that switches off when not needed.

Another trend is region-based image description (Karpathy and Fei-Fei 2015;
Krishna et al. 2017b; Kinghorn, Zhang and Shao 2018). E.g. the latter use a regional
object detector and RNN-based attribute prediction in addition to encoder—decoder
language generation, e.g. performing well at cross-domain generalization.

There is a growing interest in incorporating high-level concepts into neural
architectures, rather than relying on lower-level image features alone. One approach
trains a CNN classifier for each attribute (word) in the training descriptions (Wu
et al. 2017); the resulting set of attribute likelihoods for an image is viewed as a
high-level representation of its content. An RNN then generates captions on the
basis of the attribute likelihoods. Similarly, Gan et al. (2017) compute tags (words)
from images, and use the probability of each tag to compose the parameters in an
LSTM (see Section 2.2.1).

More generally, bringing linguistic knowledge into neural-based image description
is being explored. One approach uses dependency trees to embed sentences for image
retrieval (Socher et al. 2014); another (Venugopalan et al. 2016) integrates a neural
LM and distributional semantics obtained from large text corpora into an LSTM for
video description. The ACL 2018 Workshop on Relevance of Linguistic Structure
in Neural Architectures for NLP is a sign of growing interest.

Other recent developments are generating captions with creativity (Chen et al.
2015a), sentiment (Mathews, Xie and He 2016), and humorous/romantic/plain styles
(Gan et al. 2017a); unsupervised learning of image-to-text mappings (Hendricks et al.
2016); and generating paragraph-long descriptions (Krause et al. 2017).

2.3 Evaluation of image description methods

A range of evaluation methods have been used in image description. Using the
taxonomy developed in previous work (Belz and Hastie 2014), we distinguish the
following method categories. Intrinsic measures assess properties of systems or
components in their own right, for example comparing their outputs to model
outputs in a corpus, whereas extrinsic measures assess the effect of a system on
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something that is external to it, for example human performance at a given task
or the value added to an application. One subcategory of intrinsic methods are
output quality measures, which can be either automatically assessed or human-assessed.
Subcategories of extrinsic measures are user task success measures, which assess
impact on users’ ability to perform a given task, and system purpose success measures,
which assess impact on a system’s achievement of (an aspect of) its stated purpose.

By far the most common evaluation measures in image description are intrinsic
assessments of output quality. Both automatic and human-assessed measures have
been used, and we assess each of those in turn below (Sections 2.3.2 and 2.3.1). In
Section 2.3.3, we briefly review the few extrinsic measures in the field.

2.3.1 Intrinsic human-assessed output-quality measures

Human assessment of the quality of generated outputs in image description tends to
take the form of asking participants, mainly on crowdsourcing platforms, to answer
questions about aspects of the texts, by selecting a score on a verbal descriptor
scale of 1-3 or 1-5 where each number is accompanied by an explanatory bit
of text. For example, Elliot and Keller crowdsourced five judgments each for 101
image/description pairs, using three criteria assessed on scales of 1-5:

(1) Grammaticality : give high scores if the description is correct English and doesn’t
contain any grammatical mistakes.

(2) Action: give high scores if the description correctly describes what people are
doing in the image.

(3) Scene: give high scores if the description correctly describes the rest of the image
(background, other objects, etc).

Gupta et al. (2012) collected human judgements on 100 and 500 images from the
Pascal and IAPR TC-12 datasets, respectively, using rating criteria of Readability
and Relevance, and scales from 1-3, adopted from Li et al. (2011).

The Readability and Grammaticality criteria above seek to assess if a text is the
kind of text a native speaker would produce (most commonly called ‘Grammatic-
ality’); the other criteria address aspects of what is called Adequacy in MT, in this
context the appropriateness of the text for the image. Grammaticality (e.g. Kulkarni
et al. 2011; Li et al. 2011; Yang et al. 2011; Gupta et al. 2012; Kuznetsova et al.
2012; Mitchell et al. 2012; Elliott and Keller 2013; Hodosh et al. 2013) and Adequacy
(e.g. Li et al. 2011; Yang et al. 2011; Gupta et al. 2012; Kuznetsova et al. 2012;
Mitchell et al. 2012; Elliott and Keller 2013) are the two most common criteria used
in the field. Other criteria have been used, for example Creativity (Li et al. 2011),
and Human-likeness (Mitchell et al. 2012).

The 2015 COCO Image Captioning Challenge took a different approach. Here,
texts generated by all 15 competing systems, plus human and random texts, were
assessed on five criteria; scores were derived either from verbal descriptor scale
judgments, or the assessors’ response was converted to a percentage, as follows:

(1) Quverall caption quality
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(a) Percentage of captions evaluated as better or equal to human caption.
(b) Percentage of captions that pass the Turing test.

(2) Correctness: Average correctness of the captions on a scale 1-5 (incorrect—
correct).

(3) Detailedness: Average detail of the captions from 1-5 (lacking details—very
detailed).

(4) Saliency: Percentage of captions that are similar to human description.

Two criteria are assessed on verbal descriptor scales as above, with Correctness a
form of Adequacy. However, with the other criteria the organizers made an attempt
to reduce subjectivity and variability in judgments by making them comparative.

Reporting of human-assessed evaluation experiments in noncompetition contexts
in the field is frequently patchy, omitting crucial details such as how many evaluators
were used, who they were, or reporting statistical significance assessments without
giving the method used for the assessment. Human assessment is notoriously
hard to reproduce and compare across experiments even where those involve
the same data; an established standard framework of assessment criteria, exper-
imental design, and contributor recruitment would go some way toward addressing
this.

2.3.2 Intrinsic automatic output-quality measures

The main automatic metrics for assessing output quality that have been used
in image description are BLEU and Meteor from machine translation, ROUGE
from summarization, and CIDEr and SPICE that were specifically developed for
evaluation of image descriptions. Table 2 presents an overview of metrics, the field
they originated in, when they were introduced, and a sample of papers they have been
used in. Below, we briefly summarize the metrics developed for image description
(assuming the other three are well enough known).

CIDEr (Vedantam, Zitnick and Parikh 2014) differs from other n-gram metrics
such as BLEU mainly in that it assigns lower weights to n-grams that are common
to reference image descriptions (using tf-idf).

SPICE (Anderson et al. 2016) starts by dependency-parsing the generated sentence
and the reference sentences, then maps the result to a ‘scene graph’ of objects,
relations, and object attributes. It constructs the union of scene graphs for the
reference sentences, then turns both the graph for the generated sentence, and
the union-graph for the reference sentences into tuple sets comprising 1-tuples for
objects, 2-tuples for attributes, and 3-tuples for relations. Finally, Recall, Precision,
and F-score are computed on the two tuple sets.

Most recently, Kilickaya et al. have proposed the use of the word mover distance
(WMD) document similarity metric for image description (Kilickaya et al. 2017).
WMD is similar in spirit to edit-distance metrics and computes the distance between
generated text and reference text on the basis of the Euclidean distance between
word2vec embeddings of words used as the cost of replacing one word with another.

Other metrics have been used, e.g. where a system produces ranked outputs,
model performance can be measured by the rank of the original image or caption
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Table 2. Intrinsic output-quality metrics that have been used in image description

Metric Origin Examples of use

BLEU-n 2002, MT  (Farhadi et al. 2010; Kulkarni et al. 2011; Yang et al. 2011; Li
et al. 2011; Ordonez et al. 2011; Gupta et al. 2012; Elliott and
Keller 2013; Hodosh et al. 2013; Karpathy et al. 2014;
Kuznetsova et al. 2014; Devlin et al. 2015; Huang et al. 2016;
Dai et al. 2017; Gan et al. 2017b; Lu et al. 2017; Wu et al.
2017; Kinghorn et al. 2018)

ROUGE 2004, Sum (Yang et al. 2011; Gupta et al. 2012; Hodosh et al. 2013; Fang
et al. 2015; Dai et al. 2017; Gan et al. 2017b; Wu et al. 2017;
Kinghorn et al. 2018)

Meteor 2005, MT  (Yang et al. 2011; Karpathy et al. 2014; Kuznetsova et al. 2014;
Chen and Zitnick 2015; Devlin et al. 2015; Elliott and de Vries
2015; Fang et al. 2015; Jia et al. 2015; Karpathy and Fei-Fei
2015; Ortiz et al. 2015; Vinyals et al. 2015; Xu et al. 2015;
Yagcioglu et al. 2015; Huang et al. 2016; Gan et al. 2017b;
Dai et al. 2017; Wu et al. 2017; Kinghorn et al. 2018)

CIDEr 2014, ID  (Vedantam et al. 2014; Karpathy et al. 2014; Chen and Zitnick
2015; Fang et al. 2015; Karpathy and Fei-Fei 2015; Vinyals
et al. 2015; Yagcioglu et al. 2015; Dai et al. 2017; Gan et al.
2017b; Lu et al. 2017; Wu et al. 2017)

SPICE 2016, ID (Anderson et al. 2016; Dai et al. 2017; Lu et al. 2017)

WMD 2017, ID  (Kilickaya et al. 2017)

in the ranked list of outputs, e.g. R@k (Recall at k) is the percentage of queries for
which the correct response was among the first k results; median rank of the correct
response in the ranked list of results is also used (Hodosh et al. 2013).

Some research has shown Meteor to correlate well with human judgments in this
field (Huang et al. 2016). The paper that introduced CIDEr (Vedantam et al. 2014)
found that the latter outperformed Meteor in most cases, but by a small margin.
Evaluated on the 2015 COCO Challenge test data and human judgments for all five
assessment criteria (see previous section for details), SPICE was shown (Anderson
et al. 2016) to correlate far better with the human judgments than any of the other
metrics discussed above in terms of Pearson’s r, with extremely high values for r
except for detailedness, which it clearly is not suitable for. WMD has not been
shown to clearly outperform SPICE (Kilickaya et al. 2017).

The aim of meta-evaluation is often presented as determining which metric is best
at predicting human judgment, not which metric is best at assessing a specific criterion
(best = strongest correlation with human assessments of the same criterion). Clearly,
the metrics in this section are not suitable for assessing how detailed a description
is (only if a description is as detailed as the average human one); SPICE is not
suitable for Fluency, BLEU is, etc. Which metric is best depends on the assessment
criterion. The evidence currently is that SPICE, CIDEr, and Meteor, in this order,
predict human Adequacy and Grammaticality assessments well.
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2.3.3 Extrinsic evaluation measures

An extrinsic form of evaluation for image description, more specifically a user-task-
success measure, was proposed by Ordonez et al. (2011) who presented contributors
on Mechanical Turk with two images and one caption, and asked them to assign
the caption to the ‘more relevant’ image. One of the two images was a system-
generated one, whereas the other was selected randomly from the dataset. One of
the ‘systems’ evaluated was the set of original human descriptions. The evaluation
involved hundred images and showed that contributors were able to identify the
correct picture from an original human description 96% of the time. For the best
system, contributors were able to select the correct image 66.7% of the time.

Huang et al. (2016) used crowdsourcing to ask five contributors per story to rate
how strongly they agreed with the statement If these were my photos, I would like
using a story like this to share my experience with my friends (on a Likert-type scale
of ‘strongly disagree’ to ‘strongly agree’). This measure can be seen as assessing
system purpose success (see above), in terms of the likelihood that end users will
actually use the image-series descriptions generated by systems. However, rather
than evaluate actual use rates in a real-world context such as Flickr, contributors
are asked to judge how likely they would be to use the texts in a real-world context.
This is a surrogate measure reminiscent of the ‘pseudoextrinsic’ measure of Overall
Responsiveness used in the TAC’08 summarization competition where the question
was What would I pay for this summary of the answers to my questions?

In many situations, real-world extrinsic evaluation is not feasible, simply because
it is expensive and time-consuming to set up and run. However, extrinsic grounding,
where an application task is explicitly defined, data is collected within the context
of the application task, and evaluations can be carried out by comparing against
extrinsically grounded reference data, should be feasible in many situations, and
would help begin to address the vexed questions from Section 2.1.4.

3 Referring expression generation and comprehension

Much of everyday language and discourse concerns the visual world around us;
this makes understanding the relationship between objects in the physical world
and language describing the objects an important challenge for AI. While image
description strives to construct broad descriptions of image content, referring
expressions, REs, are a more focused form of language, used to identify a particular
object or temporal event in an image or video. People use such expressions all
the time, especially in dialogue to indicate a particular object or event to a co-
observer, e.g. the woman in the blue shirt, or when she took a bite of the apple.
Computational models that generate and comprehend such expressions have broad
applicability to human—computer interaction, especially for agents such as robots,
interacting with people in the real world. Successful models need to connect visual
interpretations of objects in the world to natural language that describes an object
or event.

In the RE problem, there is a pragmatic interaction between agents that involves
two main tasks: (a) a speaker task where one must generate a natural language
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expression given a target and its surrounding world context; and (b) a listener task
where one must interpret and comprehend the expression and map it to the correct
target. We refer to these two tasks as REG and comprehension, respectively. In this
section, we review work on REs, including datasets and methods for generation and
comprehension in images and videos.

3.1 Referring expression datasets

Some initial datasets in REG used graphics engines to produce images of ob-
jects (van Deemter, van der Sluis and Gatt 2006; Viethen and Dale 2008) with
corresponding shared evaluation challenges (Gatt and Belz 2010). Recently more
realistic datasets have been introduced, consisting of craft objects like pipecleaners,
and ribbons (Mitchell, van Deemter and Reiter 2010), or everyday home and office
objects such as staplers or combs (Mitchell, Reiter and van Deemter 2013a), arrayed
on a simple background. These datasets helped move REG research into the domain
of real world objects.

In the past few years, datasets have become even larger and more realistic and
expanded to include video REs. The Referlt Dataset (Kazemzadeh et al. 2014)
was perhaps the first large-scale RE dataset to be based on complex real world
scenes. The images used to construct this dataset were originally sampled from
the ImageCLEF TAPR image retrieval dataset (Grubinger et al. 2006b), a large
collection of scene images with associated object segmentations. The ReferIt dataset
was collected via a simple two-player online game (the Refer[tGame) to crowdsource
REs. In this game, Player 1 is shown an image with a highlighted target object and
asked to write a natural language expression referring to the target. Player 2 is
shown only the image and RE and asked to click on the corresponding object. If
the players do their job correctly, they receive points and the expression is added to
the dataset. This allows both data collection and verification within the game.

Based on this game, Yu et al. (2016a) further collected the RefCOCO and
RefCOCO+ datasets, building on the MS COCO image collection (Lin et al. 2014b).
In the RefCOCO dataset, no restrictions are placed on the type of language used in
the REs, while in the RefCOCO+ dataset players are stopped from using location
words in their REs by adding ‘taboo’ words to the ReferltGame. Thus, RefCOCO+
tends to focus more on appearance based descriptions. Another dataset based on
MS COCO images has been collected, called the Google Refexp dataset (Mao et al.
2016). During collection of this dataset, one set of workers on Mechanical Turk
were asked to write REs for objects. Another set of workers were asked to click on
the indicated object given an RE. In Table 3, we show the statistics of each of the
above-mentioned four datasets. REs in RefCOCO and RefCOCO+ tend to contain
fewer words than those in Refexp since the competitive and time-based nature of
games encourages players to write only the amount of information necessary to
convey the correct object to the other player. Refexp contains more caption-like
REs with many details about each referred object since labelers were encouraged to
do so. Figure 5 shows example images and expressions.
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Table 3. Four referring expression datasets that use realistic images

Dataset #images  #expressions  Collection way Expression style
Referit 19.894 130,525 Referit game Free style
RefCOCO 19,994 142,210 Referit game Free style
RefCOCO+ 19,992 141,564 Referit game Abs. Loc forbidden
Google Refexp 104,560 26,711 Two rounds COCO-caption style

RefCOCO+

Google Refexp

RefCOCO

dude on right man in the middle in yellow man with hand up guy in grey shirt playing wii in

man on the right man in the middle man with scarf holding bar |dark jeans
front middle yellow guy man with plaid scarf man in grey shirt and jeans

Fig. 4. Example images and referring expressions from RE datasets.

Text query : The little girl jumps back up after falling.
lllllll!llllll_lllllllli:llllllllll_lII.I'T!.I_ C__!llli-’lllll--llillll_l

28l _Badl -

¢

et o ENEN

Fig. 5. Example video and temporal RE in DiDeMo (Hendricks et al. 2017).

More recently, inspired by the two-player game GuessWhat, a task for localizing
an unknown object by comprehending a sequence of questions and answers was
introduced (De Vries et al. 2017). An example sequence is (‘Is it a vase?’, ‘Yes’), (‘Is
it in the left corner?, ‘No’), (‘Is it the purple one?, ‘Yes’), etc.

In addition to image-based RE datasets, in the past year several video-based
RE datasets and related tasks have been proposed. One example is the task of
RE-guided tracking where a natural language specification indicates what object
to track in a video (Li et al. 2017). Other work (Hendricks et al. 2017) considers
retrieving a specific temporal video segment (a moment rather than an object)
given a natural language text description. They introduce a dataset called Distinct
Describable Moments (DiDeMo) with language annotations of video segments. We
show an example of a video-expression pair in Figure 4. The whole dataset consists
of 40,000 pairs of localized video moments and corresponding expressions.

3.2 Referring expressions for images

Research on understanding how people generate REs has a long history, dating back
to the 1970s (Winograd 1972). Early work in REG (Dale and Reiter 1995; Dale and
Reiter 2000) explored research related to the Gricean maxims (Grice 1975) which
provide principles for how people will behave in conversation, including quality, ,
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Loss

| % 4 2 FC Concat LSTM Generation

__Speaker

Listener

| | Ll — ‘
| MLP | | L2-Normalization ::l Embeddin g}

i [ Man in the middle [ . Loss
wearing yellow LSTM ]—" MLP H L2-Normalization

Fig. 6. Joint speaker—listener—reinforcer model for RE generation/comprehension
(Yu et al. 2017).

quantity, relevance, and manner. More recently, there has been progress examining
other aspects of the RE problem such as types of attributes used (Mitchell et al.
2013a), modeling variations between speakers (Viethen and Dale 2010; Van Deemter
et al. 2012; Mitchell, van Deemter and Reiter 2013b; Viethen, Mitchell and Krahmer
2013), incorporating visual classifiers (Mitchell, van Deemter and Reiter 2011),
producing algorithms to refer to object sets (Ren, Van Deemter and Pan 2010;
FitzGerald, Artzi and Zettlemoyer 2013), or examining impoverished perception
REG (Fang et al. 2013). There have been REG shared-task competitions since 2007
(Gatt and Belz 2010). Krahmer and van Deemter provide a good survey of work in
this area (Krahmer and van Deemter 2012).

In the past few years, deep learning techniques have been widely applied in RE
research. In the following, we denote r as the RE and o as the target object. As
described above, there are typically two tasks explored in the literature. The first
task is referring expression comprehension, requiring a system to select the region
described by a given RE. To address this problem, some work (Hu et al. 2016; Mao
et al. 2016; Nagaraja, Morariu and Davis 2016; Yu et al. 2016a) models P(r|o),
selecting the object o from the image that maximizes this probability. Alternatively,
some works model P(o,r) directly (Rohrbach et al. 2016; Wang, Li and Lazebnik
2016a; Liu et al. 2017; Wang et al. 2018; Yu et al. 2018), by learning an embedding
that minimizes the distance between object-expression pairs. The second task is
REG, which asks a system to compose a natural language expression for a specified
object within an image, i.e. P(r|o). Many recent works (Mao et al. 2016; Yu et al.
2016a; Liu et al. 2017) use CNN-LSTM structures to generate expressions.

One current state-of-art model is the speaker—listener—reinforcer model (Yu et al.
2017), a unified framework for comprehension and generation tasks (see Figure 6).
The speaker module generates REs, the listener comprehends REs, and the reinforcer
uses a reward function to guide sampling of more discriminative expressions. The
speaker is modeled using a CNN-LSTM framework. VGGNet (Simonyan and
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Zisserman 2015) is used to extract a visual representation for the target object
and other visual context. Then, an LSTM (Hochreiter and Schmidhuber 1997) is
used to generate the most likely expression given the visual representation. Given
a target object o;, its VGG-fc7 feature v; is first extracted. Its global context g;, is
modeled as features extracted from the VGG-fc7 layer for the entire image. Finally,
its location/size is modeled as a five-dimensional vector, [;, encoding the top-left
and bottom-right corners of o0;, as well as its relative size with respect to the image,
ie. li = [, %, W %, V‘;:ﬂ’q]. The speaker model also considers visual comparisons
to produce expressions contrasting the target object from other related objects. The
comparison features are composed of (a) appearance similarity dv;, and (b) location
and size similarity 6/, The final visual representation for the target object is a
concatenation of the above features followed by a fully connected layer fusing them
together, r; = Wy, [v;, g, I;, 0vi, 01;] + by, This joint feature is then fed into the LSTM
for RE generation. During training the negative log-likelihood is minimized:

Lj(0) = — > log P(rilo;: 0)
= —ZZlogP(rﬂr{_l,-~.,Vi1,0i;9)
i t

A joint-embedding model is used for the listener which merges visual information
from the target object and semantic information of the corresponding RE into a
joint embedding space such that their embedded vectors are close to each other.
An LSTM encodes the input RE and the same visual representation as the speaker
is used to encode the target object. Visual representation and word-embedding are
shared with the speaker so that speaker and listener are aware of each other’s
behavior. In the embedding part, two MLPs and two L2 normalization layers are
applied on top of each view. The inner product of the two normalized representations
is computed as their similarity score S(r,0). In training, two contrastive triplets are
sampled for enforcing a higher similarity between a positive match than the negative
matches, which constructs a ranking loss:

(1)

L'(0) = [4 max(0, M + S(r:, o) — S(ri, 07))
i (2)
+ )le max(0, M + S(rj, 0;) — S(ri, 0i))]

where the negative matches are randomly chosen from the other objects and
expressions in the same image. The reinforcer guides the speaker to generate less
ambiguous expressions. It is composed of a discriminative reward function and
performs a nondifferentiable policy gradient update to the speaker. During training,
the reinforcer takes the sampled expression wq.; from the speaker and feeds it to a
pretrained reward function. The goal is to maximize the reward expectation F(wy.r)
under the distribution of p(wj.r;0) parameterized by the speaker, i.e. J = Ep,.,)[F].
This reward function is another listener trained with 1-d Logistic Regression loss to
produce a score between 0 and 1. At inference time, the speaker output P(r|o) and
listener output P(r,0) are used together for both the comprehension and generation
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RefCOCO TestA RefCOCO TestB RefCOCO+ TestA RefCOCO+ TestB RefCOCOg Validation

the back of woman with a
green coat and black purse

zebra with butt toward
the camera

girl in green left half orange

Fig. 7. Comprehension examples in Yu et al. (2017). Green box shows the ground-truth
region, blue box shows correct comprehension using the
proposed model.

RefCOCO TestA RefCOCO TestB RefCOCO+ TestA RefCOCO+ TestB
- "

RefCOCOg Validation

|8y : ; : | o
| . L na
person in white jacket bottom left bowl white sheep closest to us

Fig. 8. Generation examples in Yu et al. (2017). Each sentence shows the generated
expression for one of the depicted objects (color coded to indicate correspondence).

tasks. Figures 7 and 8 show example results on these two tasks using the joint
speaker—listener—reinforcer model.

3.3 Referring expressions for video

To address the temporal localization task (Figure 4) the Moment Context Network
(MCN) was proposed (Hendricks et al. 2017). Given input video frames v = v,
where t €0,..., T — 1 indexes time, a proposed temporal interval T = tg¢art : Tends
and an expression r, the goal is to find the moment described by r:

7 = argmin_Dy(s,v, 1) (3)

where Dy(r,v,7) measures the distance between a temporal interval t and RE r.
The MCN network is shown in Figure 9. Video moments are encoded into visual
temporal context features: video features reflecting what is occurring within each
moment, global video features providing broader context for each moment, and
temporal endpoint features indicating when a moment occurs within a longer video.

To construct the local and global visual features, fc7 features are extracted for
each frame using VGGNet. Then, the local features are constructed by temporally
pooling features within each specific moment, and global features are constructed by
averaging over all video frames. Temporal endpoint features indicate the start and
endpoint of a candidate moment (normalized to the interval [0,1]). The concatenation
of these features are fed into a MLP to get the final visual feature for a moment
P). Additionally, the authors also incorporate optical flow (Wang et al. 2016b) as
a motion feature for each moment P{. The language encoding is similar to Yu
et al. (2017), where an LSTM is used to encode the input expression and its last
hidden state is fed into a MLP to yield the embedded feature P}. Then, the distance
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Fig. 9. Moment Context Network (MCN) used in Hendricks et al. (2017).

between a moment and an RE is computed as
Dy(r,v,1) = | Py (v,7) = Py ()| + 0[Py (f.7) — Py (r)] (4)

where # is a tunable ‘late fusion’ scalar. A ranking loss similar to Eq. (2) is used
for training. At inference time, each temporal segment is compared with the input
expression, and the nearest one is selected as the referring moment (Eq. (3)).

4 Visual question answering

Another language and vision task that has received increasing attention recently is
VQA. VQA systems take as input an image or video along with relevant natural
language questions, and produce an answer to those questions. Questions can be
open ended, requiring systems to produce a natural language answer, or a set of
multiple choice answers is provided, requiring systems to select the best answer
from a list. One driving factor for the introduction of VQA was that despite
progress on image and video captioning, automatic evaluation of descriptions is still
a challenging open research problem. Multiple choice VQA provides a task that is
simple to evaluate automatically. Additionally, VQA provides a nice tool for more
fine-grained evaluation of algorithms since different types of questions can be used
to probe and evaluate various aspects of visual understanding, ranging from object
identification, counting, or appearance, to more complex visual understanding of
interactions, and inferences about why or how something is occurring in an image
or video. In this section, we describe existing VQA datasets and review some efforts
toward building VQA systems.

4.1 VQA in images
4.1.1 Image-based VQA datasets

Several VQA datasets have recently been constructed. We review some of the
prominent efforts here. Statistics about all of the datasets are presented in Table 4.
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Table 4. Image VQA Dataset statistics, including: number of question—answer pairs
(#QA ), number of images (#Images), question ty e (QType), average question length
(QLen), average answer length (ALeng and eva uation type (Eva)g

Dataset #QA #Images QType QLen AlLen Eval
DAQUAR 12,468 1,449  Human 11.5 1.2 WUPS
COCO-QA 117,684 69,172 Synthesized 8.7 1.0 Word matching
FM-IQA 316,193 158,392  Human 7.38 3.82 Turing test
Visual Madlibs 56,468 9,688  Human 49 2.8 Multiple-choice
VQA 614,163 204,721 Human 6.2 1.1 Open-ended
Visual7W 327,939 47,300 Human 6.9 2.0 Multiple-choice
CLEVER 100,000 999,968  Synthesized 18.0 1.0 Word matching

DAQUAR (Malinowski and Fritz 2014) was built on the NYU indoor scene
RGB-D dataset (Silberman et al. 2012), a collection of indoor environments with
associated RGB and depth camera images and annotated object class labels. To
construct the dataset, the DAQUAR authors asked five in-house participants to
provide questions and answers based on these images. Questions generally refer to
everyday objects and relationships between objects, e.g. ‘Q: what is on the right
side of the notebook on the desk in image4, A: plastic cup of coffee’. Answers are
evaluated using the WUPS score to compute how close the produced answer from a
system matches the ground truth answer. WUPS is a soft measure based on the Wu
and Palmer score (Wu and Palmer 1994), which calculates the semantic relatedness
of terms by considering the depths of their synsets in the WordNet taxonomy, along
with the depth of the least common subsumer.

COCO-QA (Ren, Kiros and Zemel 2015a) is built on the MS COCO dataset
(Section 2.1.1). QA pairs are automatically generated from image descriptions using
four question templates: Object Questions, Number Questions, Color Questions, and
Location Questions. For example, a description reading ‘A man is riding a horse’ can
be automatically transformed into the question “What is the man riding? Each an-
swer consists of a single word, allowing models to treat the problem as a classification
task without considering natural language generation, simplifying evaluation.

FM-IQA (Gao et al. 2015) is also built on MS COCO (FM stands for Freestyle
Multilingual). Annotators provide freestyle question—answer pairs in Chinese, then
each question—answer pair is translated into English. Arguing that automatic metrics
like WUPS, BLEU, METEOR, or CIDEr cannot accurately evaluate model capacity,
the authors conduct a Visual Turing Test (Turing 1950) instead, where answers are
mixed between humans and model, then human judges are asked to distinguish
models from humans, and provide a score indicating the answer quality.

Visual Madlibs (Yu et al. 2015) is again built on MS COCO. Questions are designed
with twelve fill-in-the-blank templates, to collect targeted descriptions about: people
and objects, their appearance, activities, and interactions, as well as inferences about
the general scene or its broader context. Collected descriptions are used for two
tasks: (a) fill-in-the-blank description generation (similar to image captioning, but
more focused on a particular image aspect), and (b) multiple-choice fill-in-the-blank
question answering. In the latter, given an image and a partial description such as
‘The person is [blank] the frisbee’, the task is to select the correct choice from four
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answers. This provides an multiple-choice test for evaluation; varying the selection
of negative answers can make questions for model testing easier or harder.

VQA (Antol et al. 2015) is built on top of MS COCO. The questions in VQA are
free-form and open-ended and the answers are also free-form, both of which were
written by humans. For each question, there are ten answers gathered from humans.
Similar to Visual Madlibs, there are also two tasks in VQA: open-ended answering
and multiple-choice. For evaluation of the open-ended task, a predicted answer
is deemed accurate if at least three humans provided that exact answer. As most
answers (89.32%) are single word, there is no high-order n-gram matching issue.
For the multiple-choice task, each question is associated with eighteen candidate
answers. Most recent research works on the first open-ended task.

VQA v2 (Goyal et al. 2017) is a second, more balanced version of the VQA
dataset, created to address the visual priming bias problem in the original VQA. For
example, people tend to raise the question ‘Is there a clock tower in the picture?
only on images that contain clock towers. This makes blindly answering ‘Yes’ to
‘Do you see...?”” and ‘Is there ...?7” an easy way to achieve high model accuracy. In
order to ease this bias issue, the authors collected complementary images for biased
questions so that each question has two complementary images that look similar but
have different answers. This balanced dataset was constructed to encourage VQA
models to focus more on visual understanding than learning dataset biases.

Visual7W (Zhu et al. 2016) is part of the Visual Genome project (Krishna et al.
2017a) and similar to Visual Madlibs. Arguing that many relevant image question
pairs relate to local image regions rather than to the entire image, the authors
establish a link between text descriptions and regions through object grounding
to construct region based visual questions. There are in total six W question types
(what, where, when, who, why, and how), and a seventh which question category. Each
question is associated with four answers, only one of which is correct. In addition, for
each question, the object-level grounding (object being mentioned by the QA pairs)
is provided, resolving the co-reference ambiguity between images and questions. At
test time, this provides a way to analyze the behavior of attention-based models.

CLEVR (Johnson et al. 2017a) is somewhat different from the above datasets.
Arguing that existing VQA datasets have strong biases that models can exploit to
correctly answer questions without reasoning, the authors propose CLEVR, which is
specifically designed for visual reasoning. Images in CLEVR are computer generated
using Blender. Each scene contains three to ten objects with random shapes, sizes,
materials, colors, and positions. The questions are also generated and each question
is associated with a functional program that can be executed on an image’s scene
graph, with its answer also known. One example question is “‘What color is the cube
to the right of the yellow sphere?. Answering this question requires a model to
locate the ‘yellow sphere’, then find the ‘right cube’, and finally infer its color.

4.1.2 Image-QA models

Image-QA models take as input an image, I, and question Q = {¢,|t = 1,..., T},
made up of T words. Usually they then compute image features V' using visual
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Image feature

yes:0.81

Softmax

: Word feature
O| people

One-hot vector

Fig. 10. Image-based VQA Baseline model used in (Zhou et al. 2015).

recognition algorithms to answer Q. For an open-ended question-answering task,
the QA system could be formulated as a generation model 4 = G(V, Q), producing
a natural language sentence answer, or as a classification task 4 = C(V, Q) to select
the most likely answer from a (sometimes large) predefined set of answers. For
multiple-choice QAs, candidate answers, C, are provided to the system along with
I and Q as input. In these tasks, C are often fed into the model and the candidate
with highest probability C* = argmax_ P(c;|V,Q),¢; € C is selected.

Baseline: Given the rapid development and advances in CNNs, almost all
recent VQA papers use CNNs for their underlying visual feature representation;
popular architectures include AlexNet (Krizhevsky, Sutskever and Hinton 2012),
VGGNet (Simonyan and Zisserman 2015), GoogLeNet (Szegedy et al. 2015),
ResNet (He et al. 2016), InceptionNet (Szegedy et al. 2017), etc.

One well-known baseline (Zhou et al. 2015) proposed a simple model for VQA on
the VQA vl dataset. This model, illustrated in Figure 10, uses a visual representation
produced by the last fully-connected/average-pooling output of a CNN, ie, V €
R and bag-of-words as the question representation. These image and language
representations are then concatenated and the combined feature is sent to a softmax
layer to predict the answer class. Note that in this model both the open-ended and
multiple-choice tasks are formulated as classification tasks. While simple, the model
achieved comparable performance to several more complicated approaches at that
time. Improvements over this baseline used RNN (Antol et al. 2015; Malinowski,
Rohrbach and Fritz 2015; Ren et al. 2015a) or a language CNN (Ma, Lu and Li
2016) to model the question (and answer).

Attention Models : Since then, most research has focused on modeling the interac-
tion between image content and question for improving performance, as well as on
model interpretability. In many cases, an answer only relates to a small portion of
the image, e.g. the answer to the question What is the color of the boy’s shirt? given
an image containing a boy and a cat, only relates to the boy. Thus, using global
image features to predict the correct answer usually leads to suboptimal results due
to noisy information introduced by the irrelevant image regions.

To address this issue, recent models (Yang et al. 2016; Xiong, Merity and Socher
2016; Xu and Saenko 2016; Shih, Singh and Hoiem 2016; Chen et al. 2015b; Das
et al. 2017; Selvaraju et al. 2017) examine different spatial regions within the image
and compare their contents (and locations) to help in answering visual questions.
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L
.I-'Li

Q: how many snowboarders in many in snowboarders in how many snowboarders in
formation in the snow, four is formation in the , four is formation in the snow , four is formation in the snow , four is
sitting? A: 5 ? sitting ? sitting ?

Fig. 11. Visualization of image and question co-attention maps in (Lu et al. 2016). From
left to right: original image and question pairs, word-level co-attention maps, phrase-level
co-attention maps, question-level co-attention maps. The attentions are scaled from red:high
to blue:low.

Rather than extracting a single feature for the whole image, these models compute
visual representations consisting of the last convolutional output V € R?*%, where d
is the feature dimension and G is the number of spatial grids. These are fed through
a single layer neural network and then a softmax function generates an attention
distribution over image regions:

g = LSTM(Q)
H, = tanh(W,V + W,q) (5)

a’ = softmax(w,vav)

where W, € R**? and w;,, € R are the transformation matrices. Then, the
weighted sum of visual representations v guided by the question is computed as
U= ZIG=1 a;vi

In addition to modeling ‘where to look’ through visual attention, it can also be
useful to model ‘what words to listen to’ (Nam, Ha and Kim 2017; Lu et al. 2016).
A co-attention model has been proposed (Lu et al. 2016) that jointly reasons about
question-guided visual attention and image-guided question attention. This model co-
attends to the image and question in a hierarchical structure over word-level, phrase-
level, and question-level embeddings. Given the embedding E = {¢/|t = 1,..., T}
for the input question words Q and the question-guided visual representation v, the
image-guided question representation is computed as

H, = tanh(W.E + W,v)

q __ T
a® = softmax(w; ,Hy)
T
q" = E aje
=1

where W,, € R**? and wy,,, € R are the transformation matrices. Lu et al. (2016)
recursively encode the attention features for word, phrase, and question. Figure 11
shows an example, where we can see that the model jointly co-attends to interpretable
regions of images and questions to predict the answer.

While most of the above work used concatenations, element-wise products or
sums for interactions between the visual and textual representations, Multimodel
Compact Bilinear pooling (MCB) (Fukui et al. 2016) is an alternative solution
for cross-modality interaction. MCB pooling projects an outer product to a lower

(6)
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Fig. 12. Model proposed by (Anderson et al. 2017).

dimensional space and avoids computing the outer product directly. Fukui et al’s
model uses MCB twice, once to predict spatial attention and once to predict the
answer, achieving state-of-art results in 2016.

Most recently, the winning model of the 2017 VQA Challenge was a bottom-up
and top-down attention model (Anderson et al. 2017). The authors argued that a
uniform grid of equally sized and shaped receptive fields—irrespective of the content
of the image—as usually used in attention models, is suboptimal. Instead, their
bottom-up mechanism proposes a set of detected image regions for consideration,
with each region represented by a pooled convolutional feature vector. These bottom-
up regions are detected by Faster R-CNN (Ren et al. 2015b); a top-down mechanism
then uses task-specific context to predict an attention distribution over the proposed
image regions. The full VQA model is shown in Figure 12.

Modular Networks : The first module network for question answering was proposed
in 2016 (Andreas et al. 2016a) and later extended to VQA (Andreas et al. 2016b).
Neural module networks (NMN) approach the VQA task by dynamically composing
networks of independent neural modules, jointly trained. Modules are selected based
on a parse of the question to utilize only modules that are relevant to the particular
question content. Specifically, the authors define the following modules: [COMP:
Please insert bracket around display list item, that is, 1., 2.... should be changed to

(1), (2)..]

1. Attention module attend[c] performs Image — Attention to spatially
select mentioned objects c.

2. Re-attention module re-attend[c] takes an attention heatmap and maps it
to another attention, i.e. Attention — Attention.

3. Combination module combined[c] merges two attentions into a single atten-
tion, i.e. Attention X Attention — Attention.

4. Classification module classify[c] takes an attention and image then maps
them to a distribution over labels, i.e. Image X Attention — Label.

5. Measurement module measure[c] takes an attention and maps it to a
distribution over labels, i.e. Attention — Label.

Given a question, modules are selected based on a language parser (De Marneffe
et al. 2006), and are then mapped to a network structure assembling the relevant
modules (see Figure 13 for an example). Given the question ‘What color is his
tie?”, NMN generates its composition of classify[color] (attend[tie]), the
answer coming from the final classification module for color labels. This strategy
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attend[tie]

classify[color] yellow

Fig. 13. NMN for answering ‘“What color is his tie?" by
Andreas et al. (2016b).

takes advantage of the inherently compositional property of language, and inspired
further work on visual reasoning (Johnson et al. 2017b; Hu et al. 2017).

4.2 VQA in video
4.2.1 Video-based QA datasets

TGIF-QA (Jang et al. 2017) This dataset consists of QA pairs on animated GIFs,
collected using predefined templates. The QA pairs include three tasks: (1) counting
the number of repetitions of a given action, (2) detecting a repeated action
given its count, and (3) identifying state transitions, i.e. what happened before
or after a specified action state. For example, ‘Q: What does the duck do 3
times?, A: Shake head’. In addition, the authors also generate Frame-QAs for
object/number/color/location questions that are answered by one of the frames.

LSMDC-QA (Maharaj et al. 2017) is built on LSMDC (Rohrbach et al. 2015), a
dataset for movie description. To construct this dataset, the authors recast the video
description problem as a fill-in-the-blank question-answering task. Given a video
and its description with one word blanked-out, the goal is to predict the missing
word, e.g. ‘Q: She opens the [blank]. A: door’. The blanked words cover entities,
actions and attributes, requiring models to understand the visual content of videos.
Since each fill-in the blank answer is a single word evaluation is simple.

VideoQA (Zhu et al. 2015) The videos used in this dataset are from TACoS
Multilevel (Regneri et al. 2013) cooking dataset, MPII-MD (Rohrbach et al. 2015)
movie description dataset, and TRECVID MEDTest (Over et al. 2014) web videos.
The authors generate three types of QA pairs from their associated descriptions:
Inferring the past, Describing the present, and Predicting the future. For each
description, some phrase or words are blanked out, which are used to answer the
three types of questions, e.g. ‘Q: Predict the future. He [blank] cucumber on plate.
A: places’. There are four candidate fill-in-the-blank answers, where only one is
correct, a simple multiple-choice evaluation.

MovieQA (Tapaswi et al. 2016) This dataset contains more diverse sources of
information compared with the other video-based VQA datasets, including plot
synopses, videos, subtitles, DVS, and scripts. Here, the authors use plot synopses to
collect questions about movies. During data collection, each annotator is shown a
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Table 5. Video question answering datasets information including number of
question—answer pairs, number of videos, average video length and source domain

Dataset #QA #videos  Avg. video length Domain
TGIF-QA 165,165 71,741 31s Social media GIFs
LSMDC-QA 348,998 111,744 48 s Movie

VideoQA 390,744 109,895 - Cooking/Movie/Web
MovieQA 6,462 6,771 200 s Movie

PororoQA 8,913 16,066 ~1s Cartoon

MarioQA 187,757 187,757 <6's Game

paragraph from a plot synopsis then asked to provide questions and answers related
to the provided plot. This often results in complex high-level questions that require
a great deal of understanding to answer. For, example, ‘Why does Cypher betray
Morpheus? in the Matrix movie. Multiple-choice is used for evaluation. The whole
dataset contains 408 movies and 14,944 QAs, but only 140 videos have video to plot
alignment, resulting in 16,066 video clips (Table 5).

PororoQA (Kim et al. 2017) Different from above, the media domain of PororoQA
is cartoons, sampled from the popular children’s series ‘Pororo’. This show has a
simple, clear, and coherent story structure and a small environment compared to
dramas or movies. Each of the 16,066 video clips contain dialogs and each clip is
short (thirty-four frames). All questions and answers were written by people and
evaluation is multiple-choice question answering, where each question is coupled
with five possible answers (one correct and four incorrect). This dataset allows for
reasoning about characters that carry over the whole dataset, e.g. ‘Q: What does
Pororo think when he hides behind the tree? A: Pororo thinks Loopy can’t find him’.

MarioQA (Mun et al. 2017) MarioQA is a synthetic video QA dataset, constructed
on Super Mario Bros gameplay videos. Questions are synthesized using templates,
asking about event-centric questions, counting questions, and state questions, e.g.
‘Q: What enemy did Mario kill by stomping?, A: Para Goomba’. These questions
are split into different levels of reasoning complexity: questions without temporal
relationships (NT), questions with easy temporal relationships (ET), and questions
with hard temporal relationships (HT). These event-centric questions are especially
suited to evaluate the temporal reasoning capability of algorithms.

4.2.2 Video-QA models

Frame representation : Each video is composed of a set of frames F = {Fy, F»,..., Fx}.
Similar to image-based VQA models, CNNs are typically used for extracting visual
representations. We denote each frame feature as F, = {f,;|i = 1,..., G}, where n
denotes the nth frame and G is the number of regions. Note, the frame feature here
is not restricted to CNN features on RGB images. Some recent works also consider
using optical flow or spatial-temporal features via C3D (Hendricks et al. 2017; Jang
et al. 2017; Jang et al. 2017).

The simplest way to abstract the representation of each F, is via mean pooling.
Additionally, spatial attention models can be used to learn which regions of F, to
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attend to for a given question Q. The spatial attention score for each region can be
computed as (Yu et al. 2016b; Jang et al. 2017; Zhao et al. 2017):

Spi = wtanh( quq + Wfsfni + by) (7)
where W, and Wy, are transformation matrices and by is a bias term. For each region
i, the normalized attention is computed as oy = —ben)  where ¢ = LSTM(Q) is

Zi eXp(Sm')
the question feature as in Eq. (5). Then, the spatially attended visual representation

for each frame is computed as v, = >, otifni.

Video representation: Given frame features (with or without attention), the next
step is to encode the whole video. One method uses mean-pooling, f, (Venugopalan
et al. 2015) v = %Zn fn, as the final video representation, but this weights the
importance of each frame equally ignoring information about what portion of
the video the question focuses on. Some authors (Yu et al. 2016b; Zhao et al.
2017; Jang et al. 2017) model video as a temporal sequence and use an RNN
to encode its information. For example, if we use an LSTM to encode the
video, then a corresponding sequence of hidden states v = hy can be computed
as (Yu et al. 2016b): h, = LSTM(v,, h,—1). The final output is then the final video
representation v.

In addition to spatial attention, temporal attention can also play an important
role for localizing what portion of the video content is useful for answering
a given question. Zhao et al. (2017) and Jang et al. (2017) consider applying
a temporal attention model, computing the relevance scores over each hidden
state h,,:

s = wOtanh(Wyeq + Wich, + by) (8)

n

The attention score for each frame (hidden state) is thus

exp(s})

hn= Do eXp(Snt))

©)

The attentional pooled feature v = ) f,h, is regarded as a question-driven video
representation.

Question answering : Similar to image-based QA, the inference model depends
on the type of question—answer pairs. As in image-based VQA, for the open-ended
question-answering task the model is formulated as a generation/classification model
producing a sentence answer, while for multiple-choice QAs a classification model
is typically used. Taking the classification model as an example, given the video
representation v and question representation ¢, one approach is to first fuse the
video and question modalities (Jang et al. 2017): v, = tanh(W,v) ® q, where & is
an element-wise sum and W, is a transformation matrix to make the dimensions
of the two modalities equal. A linear classifier can be defined that takes as input
the video-question vector v,, computing the confidence score for the cth answer as
s = softmax(W,v, 4 b.), where W, and b, are model parameters. At inference time,
the solution is simply selected as ¢* = argmax, ..s..
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5 Conclusion

We have reviewed recent work in language and vision tasks, including datasets and
methods for producing general natural language descriptions of images (Section 2),
referring expression generation and comprehension (Section 3), and VQA (Section 4).
There has been a great deal of progress on each of these tasks, largely due to the
growing availability of large labeled datasets and neural learning based methods.
Moving forward, we foresee vision and language tasks moving into the real world
where intelligent agents collaborate and communicate with people. This implies a
need for algorithms that can produce not just static language about fixed physical
objects and scenes, but also adaptively interact with people through dialog and
exploration. As a result, there will be new data and evaluation challenges that will
be exciting to investigate.
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