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1 Overview10

Work in computer vision and natural language processing involving images and text11

has been experiencing explosive growth over the past decade, with a particular boost12

coming from the neural network revolution. The present volume brings together five13

research articles from several different corners of the area: multilingual multimodal14

image description (Frank et al.), multimodal machine translation (Madhyastha15

et al., Frank et al.), image caption generation (Madhyastha et al., Tanti et al.),16

visual scene understanding (Silberer et al.), and multimodal learning of high-level17

attributes (Sorodoc et al.). In this article, we touch upon all of these topics as we18

review work involving images and text under the three main headings of image19

description (Section 2), visually grounded referring expression generation (REG)20

and comprehension (Section 3), and visual question answering (VQA) (Section 4).21

2 Image description22

Descriptive text is associated with images in a variety of different ways in the23

computer vision and NLP fields, in particular (i) individual lexical items associated24

with images or image regions (typical of image labeling), and (ii) phrases or sentences25

associated with regions or the image as a whole (typical of image description). Image26

labeling (or tagging, or indexing) goes back at least to the 1960s (Rosenfeld 1978); its27

aim is to attach labels to regions that are meaningful to a human observer such that28

the labels capture the meaning. Image description aims to produce a summarizing29

description, in structured natural language, of a whole image (or region), typically30

involving the prioritization of more important elements and relationships. This is31

the focus of this section, which is divided into three main subsections, on datasets32

(Section 2.1), models (Section 2.2), and evaluation (Section 2.3). We use the term33

image description as the name of the field, but understand it to cover the automatic34

generation of any structured text intended to convey the content of an image. We35

argue below that different image text types can most meaningfully be defined relative36

to a real-world application context.37
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Table 1. Image description datasets

Name Attribution Images Notes Language(s)

IAPR-TC12 Grubinger et al. 2006 20,000 EL, YT G, E, S
BBC News Feng and Lapata 2008 3,361 NO, YT E
Pascal1K Rashtchian et al. 2010 1,000 EL, NT E
SBU1M Captions Ordonez, Kulkarni and

Berg 2011
1,000,000 NO, YT E

VLT2K Elliott and Keller 2013 2,424 EL, NT E
Abstract Scenes Zitnick and Parikh 2013 10,020 EL, NT E
Sentences3D Kong et al. 2014 1,449 EL, YT E
Flickr8K Hodosh and Hockenmaier

2013
8,092 EL, NT E

Li et al. 2016 E, C
Unal et al. 2016 E, T

Flickr30K Young et al. 2014 31,783 EL, NT E
Elliott et al. 2016 E, G
Elliott et al. 2017 E, G, F
van Miltenburg et al. 2017 2,014 E, D

Déjà Captions Chen et al. 2015 4,000,000 NO, NT E
MSCOCO Lin et al. 2015 164,062 EL, NT E

Yoshikawa et al. 2017 E, J
Miyazaki and Shimizu

2016
26,500 E, J

MMT17-Test2 Elliott et al. 2017 461 E, G, F
MS SIND Huang et al. 2016 81,743 EL, NT E
Visual Genome Krishna et al. 2017 108,077 EL, NT E
MMT17-Test1 Elliott et al. 2017 1,071 EL, NT E, G

EL = elicited; NO = naturally occurring; YT = there is a clear application task; NT = no
task; G = German; E = English; S = Spanish; C = Mandarin; T = Turkish; F = French;
D = Dutch; J = Japanese.

2.1 Data for image description tasks38

2.1.1 Datasets39

Table 1 provides an overview of image description datasets in terms of number of40

images, language(s) the descriptions are in, whether there is an explicit or implied41

real-world application task (e.g. news article image captioning), and whether they42

were elicited from contributors, or collected from sources where they occur naturally.43

The IAPR-TC12 benchmark (Grubinger et al. 2006a) has 20,000 images from a44

travel company’s photo collection each with text captions in German, English,45

and Spanish. The dataset was intended for benchmarking retrieval systems in46

ImageCLEF 2006. Images depict a wide range of travel-related topics, including47

sport, landmarks, animals, group shots, landscapes, etc. In contrast to other datasets48

reviewed here, the collection contains sets of images that depict very similar content49

(e.g. the same cathedral), but from different angles, dates, etc. Original annotations50

by the travel company were quality-checked, corrected, and completed by direct51
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A man holds a ball in a puppies mouth. Woman at table busy with something
.sknirdgniraperpelbatehtybnamowA.llabasetibyppupA

Someone is putting something in the white dog’s
mouth.

A woman at the dining table with wine, beer, and
lemons.

A tan puppy with a hand holding something in
his mouth.

a woman at a dinner table writing on her note-
book

A small puppy being fed a chocolate treat. A woman sits with her head down at a table that
has alcohol beverages and accessories on it.

Fig. 1. Two images from Pascal1K; original spelling errors
(Rashtchian et al. 2010).

contributors (not crowdsourced). E.g. a photo of a brown sandy beach; the dark blue52

sea with small breaking waves behind it; a dark green palm tree in the foreground on53

the left; a blue sky with clouds on the horizon in the background.54

The BBC News Database (Feng and Lapata 2008) contains 3,361 image-caption-55

document tuples collected from the BBC News website. Captions are often nondes-56

criptive, e.g. Breastfed babies tend to be brighter for an image showing a baby being57

breastfed. The implicit image description task is news image caption generation, but58

Feng and Lapata use the data for image labeling.59

For Pascal1K, Rashtchian et al. (2010) used Mechanical Turk to collect five60

descriptions each for 1,000 VOC’08 images (50 selected randomly from each of the61

20 VOC’08 classes). Contributors had to have high HIT rates and pass a language62

competence test, leading to relatively high text quality with few grammatical or63

spelling mistakes. Two example images and their descriptions are shown in Figure 1.64

The SBU1M team collected one million Flickr images with naturally occurring65

captions (Ordonez et al. 2011), filtering initial search results to retain only images66

with captions containing at least two words from the original query, and at least67

one preposition (indicating visible spatial relationships). For examples see Figure 2.68

For VLT2K, Elliott and Keller (2013) used the images from the VOC’11 ac-69

tion recognition taster competition (Everingham et al., 2011), and collected three70

descriptions per image via Mechanical Turk. Subsequent annotation steps added71

visual dependency relations, and associated image regions with descriptions.72

The Abstract Scenes dataset (Zitnick and Parikh 2013) consists of 1,002 sets73

of ten similar abstract scenes and one associated description. Mechanical Turk74

contributors created individual scenes of children playing using clip art. Other75

contributors described the scenes using 1–2 sentences. Finally, contributors created76

nine more scenes to match each description. This dataset differs from the others in77

its use of cartoon-like scenes in which physical properties can be unrealistic.78

The Sentences3D team (Kong et al. 2014) collected descriptions and annotations79

for the 1,449 photos of indoor scenes in the NYU-RGBD v2 dataset via Mechanical80

Turk. Descriptions vary from one to ten sentences, and tend to be complex with81
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Fig. 2. Image and caption examples from SBU1M.

multiple mentions of visual objects. Additional annotations (by direct contributors)82

link nouns and pronouns to the visual objects they describe.83

Flickr8K has 8,092 images of people/animals performing some action from six84

Flickr groups (Hodosh, Young and Hockenmaier 2013). Five descriptions per image85

were collected via Mechanical Turk; QA measures were e.g. a spelling/grammar86

test, and location in the United States. Contributors were asked to write single87

sentences describing the depicted scenes, situations, events and entities. This dataset88

was extended in Flickr30K (Young et al. 2014) to 31,783 images. As a further89

extension, Multi30K (Elliott et al. 2016) added 31,014 German translations of the90

original English descriptions (one per image), and 155,070 German original image91

descriptions (five per image).92

Extensions of Flickr30K to other languages exist. Van Miltenburg et al. annotated93

2,014 images from the validation and test parts of Flickr30K with five Dutch94

descriptions each via Crowdflower, using the same collection regime (van Miltenburg,95

Elliott and Vossen 2017). Unal et al. collected Turkish descriptions for Flickr8K,96

again using the same regime (Unal et al. 2016). Li et al. extended the dataset97

to Chinese, creating Mandarin captions by (i) machine translating the original98

descriptions with Google and Baidu, and (ii) crowdsourcing new descriptions (Li99

et al. 2016).100

Lin et al. collected two sets of image descriptions for the MS COCO corpus of 2.5101

million labeled objects in 328,000 images, one containing five descriptions for every102

image in the training, validation and test sets; the other having forty descriptions103

each for a random subset of 5,000 test set images (Lin et al. 2014a). The latter were104

collected with the aim of achieving higher correlation with human judgments in105

automatic evaluation via a large number of reference descriptions.106

MMT-Test2 (which the MMT team call the Ambiguous COCO test data) is a107

collection of 461 MS COCO images selected for containing an ambiguous verb108

(fifty-six verbs in total), in a complex process (Elliott et al. 2017) that involved109

information from the VerSe dataset of ambiguous-verb captions (Gella, Lapata and110

Keller 2016).111

The STAIR Captions dataset (Yoshikawa, Shigeto and Takeuchi 2017) is an112

extension of MS COCO to Japanese, with five descriptions for each MS COCO113

image, obtained with slightly different instructions, using crowdsourcing and direct114

contributions. An earlier Japanese MS COCO extension for a subset of 26,500 images115
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crowdsourced 3–5 Japanese descriptions per image, again using a slightly different116

collection regime, including a caption quality filtering step at the end (Miyazaki and117

Shimizu 2016).118

The Déjà Captions team collected 760 million image/text pairs from Flickr, using119

693 frequent nouns for queries (Chen et al. 2015a). They segmented texts into120

sentences and filtered out those that did not contain the query term. Only captions121

which very closely resembled at least one other caption for a different image were122

then retained. The result was a collection of 180 K unique captions for 4 million123

images. As with the Abstract Scenes dataset, there are multiple images per caption,124

whereas with other datasets in this section it is the other way round.125

MS SIND (Huang et al. 2016) is a dataset of story-like image sequences paired126

with: (1) descriptions for each image in isolation, (2) descriptions for each image127

when seen in a sequence, and (3) descriptions that form a narrative over an image128

sequence (images/sentences aligned). Image sequences were obtained from Flickr129

albums, only retaining ‘storyable’ albums with 10–50 photos, taken within 48 h.130

The Visual Genome dataset (Krishna et al. 2017a) has region descriptions (in131

addition to six other annotation components) for 108,077 images, e.g. for an image132

with three regions: man jumping over a fire hydrant, yellow fire hydrant, and woman133

in shorts is standing behind the man.134

MMT-Test1 (a.k.a. Multi30K 2017 test data) is a new dataset of images/texts135

collected from some of the same Flickr groups as Flickr30K, and some new groups136

(Elliott et al. 2017) in a multistep process, resulting in a final set of 1,071 images/texts,137

each supplemented by one professional German translation, and five crowdsourced138

German descriptions.139

The datasets reviewed in this section differ on many dimensions, including size,140

ranging from a few thousand images (Pascal1K, BBC News, VLT2K) to a million141

and more (SBU1M, Déjà Captions). English remains the most frequent language,142

but other languages are being seen more frequently, mostly as extensions of English143

datasets. The images in all but one dataset (Abstract Scenes) are photos, mostly144

user-generated (except BBC News). In some cases, labeled object bounding boxes or145

region masks (VLT2K, MS COCO, Sentences3D, Visual Genome) around objects146

are available. Most datasets have image texts elicited from contributors for the147

specific purpose of creating the corpus, but some, including the very large datasets,148

have naturally occurring image texts (BBC News, SBU1M, Déjà Captions).149

2.1.2 Collecting human-generated image descriptions150

Quality assurance measures, instructions, and guidelines to contributors when151

eliciting image descriptions can vary substantively between datasets. The IAPR152

TC-12 descriptions were intended to describe ‘what can be recognized in an image153

without any prior information or extra knowledge’ (p. 6). The creators decided154

not to ask for full sentences, or for descriptions of the entire image, specifically to155

thwart people’s natural storytelling tendencies. They did not constrain the number156

of phrases that could be used or their order, and considerable variation can be157

seen in both. A typical example is a brown cathedral with two towers and three green158
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doors; a square with street lamps, green spaces, flowers, a tree, benches, and people in159

front of it; grey cobblestones in the foreground; a hill and clouds in the background.160

For VLT2K, Elliot and Keller placed similar restrictions on contributors, asking161

them to describe an image in two sentences, the first describing the action in the162

image, the person performing the action and the region involved in the action; the163

second describing any other regions in the image not directly involved in the action;164

e.g. A man is riding a bike down the road. A car and trees are in the background.165

For most datasets, however, the only structural restriction is that descriptions166

should have one or two sentences describing the whole image. This allows a wide167

variety of style and focus which researchers seek to control by lists of DOs and168

DON’Ts which can be detailed. For example, for MS COCO:169

• Please describe the image170

• Describe all the important parts of the scene.171

• Do not start the sentences with ‘There is’.172

• Do not describe unimportant details.173

• Do not describe things that might have happened in the future or past.174

• Do not describe what a person might say.175

• Do not give people proper names.176

• The sentences should contain at least eight words.177

Looking at image descriptions in datasets reveals that contributors do not always178

follow such instructions, producing descriptions such as: An empty boat begs to179

be used; The happy lady enjoys her surroundings; Take a solitude horse ride in the180

beautiful country; and The curious dog looks to do some damage to the pots. It appears181

that more rigorous control, as e.g. for IAPR-TC12 and VLT2K, is needed to constrain182

people to producing descriptions that describe only what can be seen.183

2.1.3 How humans describe images184

Human-authored image descriptions tend to prioritize mention of foregrounded185

and/or large entities, their attributes (color, size, etc.), and relationships linking186

them, to each other and to their surroundings. However, human authors have strong187

tendencies to add many different kinds of conjectured content, attributing emotions188

and intent to people and animals, placing the image in the context of a story, or189

ascribing subjective properties to image elements. The examples in Figure 1 exhibit190

several forms of conjecture. For the picture on the left, it is unclear whether the191

object in the dog’s mouth is a chocolate treat, a ball, or something else. Is the object192

being put into, held in, or in fact retrieved from, the dog’s mouth? Is it a puppy193

or a grown dog? Is its color white or tan? For the picture on the right, is the194

woman working on her notebook, preparing drinks, or is she busy with something195

unidentifiable? In the (naturally occurring) captions of the images in Figure 2 proper196

names, subjective attributes, and attribution of state of mind are all used.197

From guessing emotional states to being more precise than the information in198

an image permits, people have a tendency to fill in the missing bits, to tell a story.199

Moreover, they do this in a myriad of different ways. On the one hand, humans200

have these tendencies, on the other hand researchers try to quell them and elicit201

descriptions that only talk about what can be seen in an image, moreover only what202
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is ‘important.’ This strong pull between what people come up with when asked to203

describe an image, and what researchers try to get them to do, raises questions about204

whether this is a good way to collect training and evaluation data.205

2.1.4 Human-generated image descriptions as training and evaluation data206

The datasets above are used to train the methods in Section 2.2, and as reference data207

by many of the evaluation methods in Section 2.3. Systems are trained to produce208

similar image descriptions to those in these datasets, and the image descriptions209

they generate are considered good if they are similar to those in the datasets, yet210

there is a lack of clarity in the field regarding both (i) what these image texts are,211

and (ii) what they are meant to be for. Regarding the former, the main distinction212

drawn is between descriptions and captions. For example, Bernardi et al. (2016)213

distinguish descriptions which ‘verbalize visual and conceptual information depicted214

in the image, i.e., descriptions that refer to the depicted entities, their attributes and215

relations, and the actions they are involved in’ (p. 4), and captions which ‘typically216

[...] verbalize information that cannot be seen in the image [providing] personal,217

cultural, or historical context for the image’ (p. 18). Similarly, Frank et al. in this218

volume ‘define descriptions as sentences that are solely and literally about an image,219

whereas captions are more naturalistic sentences associated with, but not necessarily220

descriptions of, an image’ (p. 3).221

A text accompanying an image in a real-world context (e.g. a caption, article,222

title, alt text) can normally be unambiguously assigned to a category. Take away the223

context however, and it is far less clear what category a text belongs to. In Figure 3,224

for example the Flickr caption on the left makes no reference to anything visible in225

the image; the text in the middle is a caption from a news website, and is highly226

descriptive; the text on the right was elicited for Pascal1K as a description, but is227

very ‘caption-like’. All examples in Figure 2 are naturally occurring captions, but228

the first sentence on the left, and the whole caption in the middle, neatly fit both of229

the definitions of descriptions above.230

The question is, does it make sense to say that a text that naturally occurs as a231

caption is not a caption because it does not fit some definition of captions? It seems232

more practical to say that a text is a caption because it appears in a particular233

place alongside an image, regardless of its textual properties, i.e. to tie the definition234

to application context. Systems trained on naturally occurring captions have this235

real-world grounding by default, and an implied application task: to generate the236

kinds of texts normally seen as captions in the particular context data was collected237

from.238

Image description generation systems do not have this real-world grounding: there239

is no standard definition of what a description is, and there are no naturally occurring240

image texts unambiguously identifiable as descriptions. This has two implications:241

(i) for data collection: there is no obvious way to constrain the kinds of texts242

that should be elicited from contributors; and (ii) for evaluation: because elicited243

descriptions are used for both training and evaluation where systems are deemed244

good in proportion to the similarity of their output to the elicited descriptions, the245
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stsivitcaycarcomed-orpehT.ybnoliaS
Joshua Wong, Alex Chow and
Nathan Law outside the Court
of Final Appeal in Hong Kong
on Tuesday.

An empty boat begs to be used.

Fig. 3. From left: Image and caption from Déjà Captions; news image from
New York Times, Feb 6 2018, 11:55 (https://www.nytimes.com/2018/02/06/world/asia/
hong-kong-joshua-wong-appeal.html); image and elicited description from Pascal1K.

result is a closed system in which questions of what collected tests are meant to246

be good for, and whether they are in fact good for it, are not directly addressed247

at all (Belz 2009). This is why real-world grounding is needed: an explicitly stated248

application context would address both of these questions, an issue which we will249

pick up again in the section on extrinsic evaluation below (Section 2.3.3).250

2.2 Image description methods251

A basic division in image description is between (i) methods that create descriptions252

for new images from scratch, and (ii) methods that retrieve similar image/description253

pairs from the training data, and use those to create a description for a new image.254

The latter are a form of memory-based learning, known as retrieval-based methods255

in image description. These subdivide into methods that assess the similarity of new256

cases with known cases in visual space, and generate descriptions in textual space257

(Hodosh et al. 2013; Karpathy, Joulin and Fei-Fei 2014; Chen and Zitnick 2015;258

Vinyals et al. 2015); and those, now the more common, which involve some form of259

joint modeling of the visual and textual spaces (Ordonez et al. 2011; Gupta, Verma260

and Jawahar 2012; Mason and Charniak 2014; Yagcioglu et al. 2015).261

Methods that create a new description for a given image from scratch, often262

called generative methods (Lin et al. 2014a; Elliott and de Vries 2015; Fang et263

al. 2015; Ortiz, Wolff and Lapata 2015), tend to have the following component264

steps: (1) Image analysis, sometimes broken down into (a) identification of type and,265

optionally, location of, objects and background/scene in the image, and (b) detection266

of attributes, relations and activities involving objects from Step 1; and (2) generation267

of a word string from a representation of the output from Step 1. Sometimes, a268

third, re-ranking step is added. The distinguishing difference between the two types269

of approaches is that retrieval-based approaches must consult a memory bank of270

training instances during application, whereas generative approaches create models271

that abstract away from the individual instances seen during training, generalize272

over them, and are usually in some respect more effective and/or efficient than273

consulting training instances individually during application.274
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The above division is into two contrasting paradigms, broad-strokes outlines of275

general approach, which do not imply specific techniques to implement them. In276

the next section, we select a small number of reference papers, provide a detailed277

description of the methods presented in them, and describe a set of paradigmatically278

similar methods in relation to them. In Section 2.2.3, we briefly highlight some279

current trends in the field. Given that a very recent survey reviews a large cross-280

section of image description methods in detail (Bernardi et al. 2016), we do not aim281

to provide an exhaustive survey of image description papers here.282

2.2.1 Generative approaches283

As laid out in more detail above, generative methods start with some form of image284

analysis, mapping images to representations that encode information intended to be285

more useful or efficient for generating descriptions than the raw pixel-grid values.286

These may be readily interpretable by humans (symbolic representations of objects,287

attributes, relations, ‘stuff ’, etc.), or not (vectors of real numbers). For Step 1a, some288

systems identify labeled regions (Farhadi et al. 2010; Kulkarni et al. 2011; Yatskar,289

Vanderwende and Zettlemoyer 2014), others directly map images to words (Fang290

et al. 2015). Step 1b determines object attributes (Kulkarni et al. 2011; Yatskar et al.291

2014), spatial relationships (Yang et al. 2011; Elliott and Keller 2013; Muscat and292

Belz 2017), activities (Elliott and Keller 2013; Yatskar et al. 2014), etc. In Step 2,293

systems differ in linguistic knowledge brought to bear on the generation process.294

Some view the task as linearizing labels, relations, and attributes from Step 1 (Li295

et al. 2011; Fang et al. 2015); others slot them into templates (Kulkarni et al. 2011;296

Yang et al. 2011; Elliott and Keller 2013), yet others use grammar to construct297

descriptions (Mitchell et al. 2012; Kuznetsova et al. 2014). Some approaches (Fang298

et al. 2015; Wang, Schwing and Lazebnik 2017) add a final re-ranking step, e.g.299

the latter uses CIDEr (see Section 2.3.2) to calculate a ‘consensus evaluation score’300

between candidate captions and their nearest neighbors retrieved via a cross-modal301

embedding space.302

The standard architecture that has emerged for generative image description303

comprises an encoder, usually a CNN (convolutional neural network), which maps304

images to more efficient and/or more task-suitable representations of themselves,305

and a decoder, an RNN (recurrent neural network) or LSTM (an RNN with long306

short-term memory), which maps the new representations to descriptions. In a307

typical example of this approach, Lu et al. (2017) use the last convolutional layer308

of a ResNet with dimensionality 2, 048 × 7 × 7 to produce encodings, obtaining a309

global image feature vector as the normalized sum over the spatial CNN feature310

vectors at each of the k grid locations. The decoder is a single layer LSTM with311

hidden vector size 512, which takes as input the global image feature vector from312

the CNN stage concatenated with the current word embedding vector, and produces313

a prediction of the next word as output. During training CIDEr is used to assess314

progress.315

An increasingly common addition to this basic architecture is a visual attention316

mechanism, which typically produces a spatial map that identifies the specific image317
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region(s) most relevant to the current word prediction task (Karpathy and Fei-318

Fei 2015; Xu et al. 2015). Lu et al.’s (2017) contribution is a version that only319

switches on when needed, based on the insight that nonvisual words such as320

determiners, as well as other words in contexts where the predictive power of321

the preceding word(s) is particularly strong, do not benefit from visual attention.322

The key idea is that the model learns to extract a ‘visual sentinel’ vector from the323

decoder’s memory of visual and linguistic information; an adaptive context vector is324

modeled as a mixture of the spatially attended image features and the visual sentinel325

vector, the latter controlled by a weight called the ‘sentinel gate’. The diagrams326

below show the standard attention architecture (left) in comparison with Lu et al.’s327

adaptive extension (right), where V = [v1, . . . , vL] are the spatial image features at328

time t, at,1, . . . at,L the attention weights, ht the hidden state, st the visual sentinel329

vector, βt the sentinel gate, ct the context vector, and ĉt the new adaptive context330

vector:331

332

Karpathy and Fei-Fei (2015), in the image analysis step, detect objects with a333

Region CNN, pretrained on ImageNet and finetuned on the 200 ImageNet classes.334

They use the top 19 detected locations as well as the whole image, and compute335

representations (sets of vectors) based on the 19 bounding boxes (region-based336

embedding). They obtain a word-based embedding in the same space with a bi-337

RNN, and compute pairwise similarities between individual region and word vectors338

as their inner products. They then obtain an alignment that pairs multiple words to339

single regions with a Markov Random Field. The resulting single-region/multiword340

alignments are used in Step 2, which outputs a list of snippets for identified341

regions.342

Gan et al. (2017b) also use a standard CNN-LSTM set-up, but extend each weight343

matrix of the conventional LSTM to an ensemble of tag-specific weight matrices344

(blue triangles below). The degree to which each member of the ensemble is used to345

generate a caption is tied to the image-dependent probability of the corresponding346

tag. The following diagram presents the generation process in outline:347

348
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2.2.2 Retrieval-based approaches349

Gupta et al.’s (2012) description generator is an archetypal example of a retrieval-350

based approach, and comprises the following five steps:351

(1) Extract image features: RGB and HSV histograms for color; Gabor and Haar352

descriptors for texture; GIST for scene; SIFT for shape. Feature extraction353

is repeated (except GIST) for three vertical and three horizontal image slices.354

Finally, vectors are concatenated into a single feature vector for each feature355

type.356

(2) Retrieve k nearest images: compute distance between image feature vectors,357

using L1 distance for color vectors, L2 for texture and scene, χ2 for shape. Image358

distance is then the dot product of distance weights and feature vectors.359

(3) Parse the descriptions of the k most similar images, using the Stanford de-360

pendency parser; extract object 1-tuples (subjects and objects), attribute/object361

2-tuples (attribute + subject, attribute + object), action 2-tuples (e.g. verb +362

subject), and relation 3-tuples (e.g. verb + preposition + object) from the363

dependency parse.364

(4) Compute a probability score for each candidate tuple (any tuple derived from365

one of the k retrieved descriptions) on the basis of relative image similarity366

(compared to the other k−1 most similar images) and relative Google frequency367

(compared to the other candidate tuples). Tuples are ‘integrated’ by slotting them368

into a predefined tripartite syntactic template.369

(5) Score the resulting ‘triples’ with the joint probability of their component tuples.370

Depending on the dataset, the top-scoring triple or the syntactically aggregated371

top three triples are passed to SimpleNLG for surface realization.372

One of two seminal papers in the retrieval-based area, Ordonez et al. (2011) present373

a simpler method that uses GIST and tiny-image for Step 1, and the sum of GIST374

similarity and tiny-image color similarity for Step 2. Following re-ranking of the375

most similar images, Steps 3–5 are trivial as the description of the top image is376

simply transferred as the output description. Kulkarni et al. (2011) and Yang et al.377

(2011) use approaches similar to Gupta et al. for Step 3, but apply different syntactic378

templates in Step 4. Some techniques are familiar from generative approaches, e.g.379

Yagcioglu et al. (2015) use encodings produced by a CNN trained on ImageNet for380

Step 1. Mason and Charniak (2014) construe Step 4 as multidocument extractive381

summarization over the retrieved descriptions.382

The above methods do not involve representations in a shared visual-textual383

space. Other retrieval-based methods, in addition to image similarity, also assess the384

match between possible descriptions and the input image. For example, Farhadi et385

al. (2010), in the original retrieval-based method, map both images and descriptions386

to < object, action, scene > triples, using small multilabel Markov random fields.387

They consider the top k triples predicted for images and descriptions, and compute388

a rank-based similarity measure to select the description to be transferred.389

Hodosh et al. (2013) construe image description explicitly as a matter of ranking390

candidate descriptions, and the natural inverse of image retrieval, best implemented391

by a uniform approach. They focus on the problem of learning an appropriate392
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mapping between images and descriptions for which they use Kernel Canonical393

Correlation Analysis with a wide range of different image and text kernels. Learned394

projection weights map KCCA image and description vectors to an induced shared395

space in which images are expected to appear nearer sentences they are more strongly396

associated with (i.e. that describe them well). Candidate descriptions are ranked in397

order of their cosine similarity in this space with the new image to be described.398

2.2.3 Some recent trends399

Attention mechanisms have been garnering increasing interest as additions to400

encoder–decoder architectures for image description (Xu et al. 2015; You et al. 2016;401

Lu et al. 2017), with extensions to the basic mechanism emerging. For example, You402

et al. selectively attend to candidate semantic concepts, fusing them into hidden states403

and outputs. Lu et al. (see above) introduce a selective visual attention mechanism404

that switches off when not needed.405

Another trend is region-based image description (Karpathy and Fei-Fei 2015;406

Krishna et al. 2017b; Kinghorn, Zhang and Shao 2018). E.g. the latter use a regional407

object detector and RNN-based attribute prediction in addition to encoder–decoder408

language generation, e.g. performing well at cross-domain generalization.409

There is a growing interest in incorporating high-level concepts into neural410

architectures, rather than relying on lower-level image features alone. One approach411

trains a CNN classifier for each attribute (word) in the training descriptions (Wu412

et al. 2017); the resulting set of attribute likelihoods for an image is viewed as a413

high-level representation of its content. An RNN then generates captions on the414

basis of the attribute likelihoods. Similarly, Gan et al. (2017) compute tags (words)415

from images, and use the probability of each tag to compose the parameters in an416

LSTM (see Section 2.2.1).417

More generally, bringing linguistic knowledge into neural-based image description418

is being explored. One approach uses dependency trees to embed sentences for image419

retrieval (Socher et al. 2014); another (Venugopalan et al. 2016) integrates a neural420

LM and distributional semantics obtained from large text corpora into an LSTM for421

video description. The ACL 2018 Workshop on Relevance of Linguistic Structure422

in Neural Architectures for NLP is a sign of growing interest.423

Other recent developments are generating captions with creativity (Chen et al.424

2015a), sentiment (Mathews, Xie and He 2016), and humorous/romantic/plain styles425

(Gan et al. 2017a); unsupervised learning of image-to-text mappings (Hendricks et al.426

2016); and generating paragraph-long descriptions (Krause et al. 2017).427

2.3 Evaluation of image description methods428

A range of evaluation methods have been used in image description. Using the429

taxonomy developed in previous work (Belz and Hastie 2014), we distinguish the430

following method categories. Intrinsic measures assess properties of systems or431

components in their own right, for example comparing their outputs to model432

outputs in a corpus, whereas extrinsic measures assess the effect of a system on433
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something that is external to it, for example human performance at a given task434

or the value added to an application. One subcategory of intrinsic methods are435

output quality measures, which can be either automatically assessed or human-assessed.436

Subcategories of extrinsic measures are user task success measures, which assess437

impact on users’ ability to perform a given task, and system purpose success measures,438

which assess impact on a system’s achievement of (an aspect of) its stated purpose.439

By far the most common evaluation measures in image description are intrinsic440

assessments of output quality. Both automatic and human-assessed measures have441

been used, and we assess each of those in turn below (Sections 2.3.2 and 2.3.1). In442

Section 2.3.3, we briefly review the few extrinsic measures in the field.443

2.3.1 Intrinsic human-assessed output-quality measures444

Human assessment of the quality of generated outputs in image description tends to445

take the form of asking participants, mainly on crowdsourcing platforms, to answer446

questions about aspects of the texts, by selecting a score on a verbal descriptor447

scale of 1–3 or 1–5 where each number is accompanied by an explanatory bit448

of text. For example, Elliot and Keller crowdsourced five judgments each for 101449

image/description pairs, using three criteria assessed on scales of 1–5:450

(1) Grammaticality: give high scores if the description is correct English and doesn’t451

contain any grammatical mistakes.452

(2) Action: give high scores if the description correctly describes what people are453

doing in the image.454

(3) Scene: give high scores if the description correctly describes the rest of the image455

(background, other objects, etc).456

Gupta et al. (2012) collected human judgements on 100 and 500 images from the457

Pascal and IAPR TC-12 datasets, respectively, using rating criteria of Readability458

and Relevance, and scales from 1–3, adopted from Li et al. (2011).459

The Readability and Grammaticality criteria above seek to assess if a text is the460

kind of text a native speaker would produce (most commonly called ‘Grammatic-461

ality’); the other criteria address aspects of what is called Adequacy in MT, in this462

context the appropriateness of the text for the image. Grammaticality (e.g. Kulkarni463

et al. 2011; Li et al. 2011; Yang et al. 2011; Gupta et al. 2012; Kuznetsova et al.464

2012; Mitchell et al. 2012; Elliott and Keller 2013; Hodosh et al. 2013) and Adequacy465

(e.g. Li et al. 2011; Yang et al. 2011; Gupta et al. 2012; Kuznetsova et al. 2012;466

Mitchell et al. 2012; Elliott and Keller 2013) are the two most common criteria used467

in the field. Other criteria have been used, for example Creativity (Li et al. 2011),468

and Human-likeness (Mitchell et al. 2012).469

The 2015 COCO Image Captioning Challenge took a different approach. Here,470

texts generated by all 15 competing systems, plus human and random texts, were471

assessed on five criteria; scores were derived either from verbal descriptor scale472

judgments, or the assessors’ response was converted to a percentage, as follows:473

(1) Overall caption quality:474
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(a) Percentage of captions evaluated as better or equal to human caption.475

(b) Percentage of captions that pass the Turing test.476

(2) Correctness: Average correctness of the captions on a scale 1–5 (incorrect–477

correct).478

(3) Detailedness: Average detail of the captions from 1–5 (lacking details–very479

detailed).480

(4) Saliency: Percentage of captions that are similar to human description.481

Two criteria are assessed on verbal descriptor scales as above, with Correctness a482

form of Adequacy. However, with the other criteria the organizers made an attempt483

to reduce subjectivity and variability in judgments by making them comparative.484

Reporting of human-assessed evaluation experiments in noncompetition contexts485

in the field is frequently patchy, omitting crucial details such as how many evaluators486

were used, who they were, or reporting statistical significance assessments without487

giving the method used for the assessment. Human assessment is notoriously488

hard to reproduce and compare across experiments even where those involve489

the same data; an established standard framework of assessment criteria, exper-490

imental design, and contributor recruitment would go some way toward addressing491

this.492

2.3.2 Intrinsic automatic output-quality measures493

The main automatic metrics for assessing output quality that have been used494

in image description are BLEU and Meteor from machine translation, ROUGE495

from summarization, and CIDEr and SPICE that were specifically developed for496

evaluation of image descriptions. Table 2 presents an overview of metrics, the field497

they originated in, when they were introduced, and a sample of papers they have been498

used in. Below, we briefly summarize the metrics developed for image description499

(assuming the other three are well enough known).500

CIDEr (Vedantam, Zitnick and Parikh 2014) differs from other n-gram metrics501

such as BLEU mainly in that it assigns lower weights to n-grams that are common502

to reference image descriptions (using tf-idf).503

SPICE (Anderson et al. 2016) starts by dependency-parsing the generated sentence504

and the reference sentences, then maps the result to a ‘scene graph’ of objects,505

relations, and object attributes. It constructs the union of scene graphs for the506

reference sentences, then turns both the graph for the generated sentence, and507

the union-graph for the reference sentences into tuple sets comprising 1-tuples for508

objects, 2-tuples for attributes, and 3-tuples for relations. Finally, Recall, Precision,509

and F-score are computed on the two tuple sets.510

Most recently, Kilickaya et al. have proposed the use of the word mover distance511

(WMD) document similarity metric for image description (Kilickaya et al. 2017).512

WMD is similar in spirit to edit-distance metrics and computes the distance between513

generated text and reference text on the basis of the Euclidean distance between514

word2vec embeddings of words used as the cost of replacing one word with another.515

Other metrics have been used, e.g. where a system produces ranked outputs,516

model performance can be measured by the rank of the original image or caption517
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Table 2. Intrinsic output-quality metrics that have been used in image description

Metric Origin Examples of use

BLEU-n 2002, MT (Farhadi et al. 2010; Kulkarni et al. 2011; Yang et al. 2011; Li
et al. 2011; Ordonez et al. 2011; Gupta et al. 2012; Elliott and
Keller 2013; Hodosh et al. 2013; Karpathy et al. 2014;
Kuznetsova et al. 2014; Devlin et al. 2015; Huang et al. 2016;
Dai et al. 2017; Gan et al. 2017b; Lu et al. 2017; Wu et al.

2017; Kinghorn et al. 2018)
ROUGE 2004, Sum (Yang et al. 2011; Gupta et al. 2012; Hodosh et al. 2013; Fang

et al. 2015; Dai et al. 2017; Gan et al. 2017b; Wu et al. 2017;
Kinghorn et al. 2018)

Meteor 2005, MT (Yang et al. 2011; Karpathy et al. 2014; Kuznetsova et al. 2014;
Chen and Zitnick 2015; Devlin et al. 2015; Elliott and de Vries
2015; Fang et al. 2015; Jia et al. 2015; Karpathy and Fei-Fei
2015; Ortiz et al. 2015; Vinyals et al. 2015; Xu et al. 2015;
Yagcioglu et al. 2015; Huang et al. 2016; Gan et al. 2017b;
Dai et al. 2017; Wu et al. 2017; Kinghorn et al. 2018)

CIDEr 2014, ID (Vedantam et al. 2014; Karpathy et al. 2014; Chen and Zitnick
2015; Fang et al. 2015; Karpathy and Fei-Fei 2015; Vinyals
et al. 2015; Yagcioglu et al. 2015; Dai et al. 2017; Gan et al.

2017b; Lu et al. 2017; Wu et al. 2017)
SPICE 2016, ID (Anderson et al. 2016; Dai et al. 2017; Lu et al. 2017)
WMD 2017, ID (Kilickaya et al. 2017)

in the ranked list of outputs, e.g. R@k (Recall at k) is the percentage of queries for518

which the correct response was among the first k results; median rank of the correct519

response in the ranked list of results is also used (Hodosh et al. 2013).520

Some research has shown Meteor to correlate well with human judgments in this521

field (Huang et al. 2016). The paper that introduced CIDEr (Vedantam et al. 2014)522

found that the latter outperformed Meteor in most cases, but by a small margin.523

Evaluated on the 2015 COCO Challenge test data and human judgments for all five524

assessment criteria (see previous section for details), SPICE was shown (Anderson525

et al. 2016) to correlate far better with the human judgments than any of the other526

metrics discussed above in terms of Pearson’s r, with extremely high values for r527

except for detailedness, which it clearly is not suitable for. WMD has not been528

shown to clearly outperform SPICE (Kilickaya et al. 2017).529

The aim of meta-evaluation is often presented as determining which metric is best530

at predicting human judgment, not which metric is best at assessing a specific criterion531

(best = strongest correlation with human assessments of the same criterion). Clearly,532

the metrics in this section are not suitable for assessing how detailed a description533

is (only if a description is as detailed as the average human one); SPICE is not534

suitable for Fluency, BLEU is, etc. Which metric is best depends on the assessment535

criterion. The evidence currently is that SPICE, CIDEr, and Meteor, in this order,536

predict human Adequacy and Grammaticality assessments well.537
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2.3.3 Extrinsic evaluation measures538

An extrinsic form of evaluation for image description, more specifically a user-task-539

success measure, was proposed by Ordonez et al. (2011) who presented contributors540

on Mechanical Turk with two images and one caption, and asked them to assign541

the caption to the ‘more relevant’ image. One of the two images was a system-542

generated one, whereas the other was selected randomly from the dataset. One of543

the ‘systems’ evaluated was the set of original human descriptions. The evaluation544

involved hundred images and showed that contributors were able to identify the545

correct picture from an original human description 96% of the time. For the best546

system, contributors were able to select the correct image 66.7% of the time.547

Huang et al. (2016) used crowdsourcing to ask five contributors per story to rate548

how strongly they agreed with the statement If these were my photos, I would like549

using a story like this to share my experience with my friends (on a Likert-type scale550

of ‘strongly disagree’ to ‘strongly agree’). This measure can be seen as assessing551

system purpose success (see above), in terms of the likelihood that end users will552

actually use the image-series descriptions generated by systems. However, rather553

than evaluate actual use rates in a real-world context such as Flickr, contributors554

are asked to judge how likely they would be to use the texts in a real-world context.555

This is a surrogate measure reminiscent of the ‘pseudoextrinsic’ measure of Overall556

Responsiveness used in the TAC’08 summarization competition where the question557

was What would I pay for this summary of the answers to my questions?558

In many situations, real-world extrinsic evaluation is not feasible, simply because559

it is expensive and time-consuming to set up and run. However, extrinsic grounding,560

where an application task is explicitly defined, data is collected within the context561

of the application task, and evaluations can be carried out by comparing against562

extrinsically grounded reference data, should be feasible in many situations, and563

would help begin to address the vexed questions from Section 2.1.4.564

3 Referring expression generation and comprehension565

Much of everyday language and discourse concerns the visual world around us;566

this makes understanding the relationship between objects in the physical world567

and language describing the objects an important challenge for AI. While image568

description strives to construct broad descriptions of image content, referring569

expressions, REs, are a more focused form of language, used to identify a particular570

object or temporal event in an image or video. People use such expressions all571

the time, especially in dialogue to indicate a particular object or event to a co-572

observer, e.g. the woman in the blue shirt, or when she took a bite of the apple.573

Computational models that generate and comprehend such expressions have broad574

applicability to human–computer interaction, especially for agents such as robots,575

interacting with people in the real world. Successful models need to connect visual576

interpretations of objects in the world to natural language that describes an object577

or event.578

In the RE problem, there is a pragmatic interaction between agents that involves579

two main tasks: (a) a speaker task where one must generate a natural language580
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expression given a target and its surrounding world context; and (b) a listener task581

where one must interpret and comprehend the expression and map it to the correct582

target. We refer to these two tasks as REG and comprehension, respectively. In this583

section, we review work on REs, including datasets and methods for generation and584

comprehension in images and videos.585

3.1 Referring expression datasets586

Some initial datasets in REG used graphics engines to produce images of ob-587

jects (van Deemter, van der Sluis and Gatt 2006; Viethen and Dale 2008) with588

corresponding shared evaluation challenges (Gatt and Belz 2010). Recently more589

realistic datasets have been introduced, consisting of craft objects like pipecleaners,590

and ribbons (Mitchell, van Deemter and Reiter 2010), or everyday home and office591

objects such as staplers or combs (Mitchell, Reiter and van Deemter 2013a), arrayed592

on a simple background. These datasets helped move REG research into the domain593

of real world objects.594

In the past few years, datasets have become even larger and more realistic and595

expanded to include video REs. The ReferIt Dataset (Kazemzadeh et al. 2014)596

was perhaps the first large-scale RE dataset to be based on complex real world597

scenes. The images used to construct this dataset were originally sampled from598

the ImageCLEF IAPR image retrieval dataset (Grubinger et al. 2006b), a large599

collection of scene images with associated object segmentations. The ReferIt dataset600

was collected via a simple two-player online game (the ReferItGame) to crowdsource601

REs. In this game, Player 1 is shown an image with a highlighted target object and602

asked to write a natural language expression referring to the target. Player 2 is603

shown only the image and RE and asked to click on the corresponding object. If604

the players do their job correctly, they receive points and the expression is added to605

the dataset. This allows both data collection and verification within the game.606

Based on this game, Yu et al. (2016a) further collected the RefCOCO and607

RefCOCO+ datasets, building on the MS COCO image collection (Lin et al. 2014b).608

In the RefCOCO dataset, no restrictions are placed on the type of language used in609

the REs, while in the RefCOCO+ dataset players are stopped from using location610

words in their REs by adding ‘taboo’ words to the ReferItGame. Thus, RefCOCO+611

tends to focus more on appearance based descriptions. Another dataset based on612

MS COCO images has been collected, called the Google Refexp dataset (Mao et al.613

2016). During collection of this dataset, one set of workers on Mechanical Turk614

were asked to write REs for objects. Another set of workers were asked to click on615

the indicated object given an RE. In Table 3, we show the statistics of each of the616

above-mentioned four datasets. REs in RefCOCO and RefCOCO+ tend to contain617

fewer words than those in Refexp since the competitive and time-based nature of618

games encourages players to write only the amount of information necessary to619

convey the correct object to the other player. Refexp contains more caption-like620

REs with many details about each referred object since labelers were encouraged to621

do so. Figure 5 shows example images and expressions.622
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Table 3. Four referring expression datasets that use realistic images

Dataset #images #expressions Collection way Expression style

Referit 19.894 130,525 Referit game Free style
RefCOCO 19,994 142,210 Referit game Free style
RefCOCO+ 19,992 141,564 Referit game Abs. Loc forbidden
Google Refexp 104,560 26,711 Two rounds COCO-caption style

man in the middle in yellow

man in the middle

front middle yellow guy

RefCOCO

man with hand up

man with scarf holding bar

man with plaid scarf

RefCOCO+ Google Refexp

guy in grey shirt playing wii in 

dark jeans

man in grey shirt and jeans

man with hand up

man with scarf holding bar

man with plaid scarf

RefCOCO+

man in the middle in yellow

man in the middle

front ff middle yellow guy

RefCOCO Google Refexp

guy in grey shirt playing wii in

dark jeans

man in grey shirt and jeans

ReferIt

dude on right

man on the right

Fig. 4. Example images and referring expressions from RE datasets.

Text query :  The little girl jumps back up after falling.

Fig. 5. Example video and temporal RE in DiDeMo (Hendricks et al. 2017).

More recently, inspired by the two-player game GuessWhat, a task for localizing623

an unknown object by comprehending a sequence of questions and answers was624

introduced (De Vries et al. 2017). An example sequence is (‘Is it a vase?’, ‘Yes’), (‘Is625

it in the left corner?’, ‘No’), (‘Is it the purple one?’, ‘Yes’), etc.626

In addition to image-based RE datasets, in the past year several video-based627

RE datasets and related tasks have been proposed. One example is the task of628

RE-guided tracking where a natural language specification indicates what object629

to track in a video (Li et al. 2017). Other work (Hendricks et al. 2017) considers630

retrieving a specific temporal video segment (a moment rather than an object)631

given a natural language text description. They introduce a dataset called Distinct632

Describable Moments (DiDeMo) with language annotations of video segments. We633

show an example of a video-expression pair in Figure 4. The whole dataset consists634

of 40,000 pairs of localized video moments and corresponding expressions.635

3.2 Referring expressions for images636

Research on understanding how people generate REs has a long history, dating back637

to the 1970s (Winograd 1972). Early work in REG (Dale and Reiter 1995; Dale and638

Reiter 2000) explored research related to the Gricean maxims (Grice 1975) which639

provide principles for how people will behave in conversation, including quality, ,640
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Man in the middle 

wearing yellow

MLP

MLP

ConcatFC LSTM

Embedding 

Loss

Generation 

loss

Reward 

Loss

LSTM

Speaker

Listener

Sampling

Reinforcer

L2-Normalization

L2-Normalization

Fig. 6. Joint speaker–listener–reinforcer model for RE generation/comprehension
(Yu et al. 2017).

quantity, relevance, and manner. More recently, there has been progress examining641

other aspects of the RE problem such as types of attributes used (Mitchell et al.642

2013a), modeling variations between speakers (Viethen and Dale 2010; Van Deemter643

et al. 2012; Mitchell, van Deemter and Reiter 2013b; Viethen, Mitchell and Krahmer644

2013), incorporating visual classifiers (Mitchell, van Deemter and Reiter 2011),645

producing algorithms to refer to object sets (Ren, Van Deemter and Pan 2010;646

FitzGerald, Artzi and Zettlemoyer 2013), or examining impoverished perception647

REG (Fang et al. 2013). There have been REG shared-task competitions since 2007648

(Gatt and Belz 2010). Krahmer and van Deemter provide a good survey of work in649

this area (Krahmer and van Deemter 2012).650

In the past few years, deep learning techniques have been widely applied in RE651

research. In the following, we denote r as the RE and o as the target object. As652

described above, there are typically two tasks explored in the literature. The first653

task is referring expression comprehension, requiring a system to select the region654

described by a given RE. To address this problem, some work (Hu et al. 2016; Mao655

et al. 2016; Nagaraja, Morariu and Davis 2016; Yu et al. 2016a) models P (r|o),656

selecting the object o from the image that maximizes this probability. Alternatively,657

some works model P (o, r) directly (Rohrbach et al. 2016; Wang, Li and Lazebnik658

2016a; Liu et al. 2017; Wang et al. 2018; Yu et al. 2018), by learning an embedding659

that minimizes the distance between object-expression pairs. The second task is660

REG, which asks a system to compose a natural language expression for a specified661

object within an image, i.e. P (r|o). Many recent works (Mao et al. 2016; Yu et al.662

2016a; Liu et al. 2017) use CNN-LSTM structures to generate expressions.663

One current state-of-art model is the speaker–listener–reinforcer model (Yu et al.664

2017), a unified framework for comprehension and generation tasks (see Figure 6).665

The speaker module generates REs, the listener comprehends REs, and the reinforcer666

uses a reward function to guide sampling of more discriminative expressions. The667

speaker is modeled using a CNN-LSTM framework. VGGNet (Simonyan and668
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Zisserman 2015) is used to extract a visual representation for the target object669

and other visual context. Then, an LSTM (Hochreiter and Schmidhuber 1997) is670

used to generate the most likely expression given the visual representation. Given671

a target object oi, its VGG-fc7 feature vi is first extracted. Its global context gi, is672

modeled as features extracted from the VGG-fc7 layer for the entire image. Finally,673

its location/size is modeled as a five-dimensional vector, li, encoding the top-left674

and bottom-right corners of oi, as well as its relative size with respect to the image,675

i.e. li = [ xtl
W
, ytl
H
, xbr
W
, ybr
H
, w·h
W ·H ]. The speaker model also considers visual comparisons676

to produce expressions contrasting the target object from other related objects. The677

comparison features are composed of (a) appearance similarity δvi, and (b) location678

and size similarity δli. The final visual representation for the target object is a679

concatenation of the above features followed by a fully connected layer fusing them680

together, ri = Wm[vi, gi, li, δvi, δli] + bm. This joint feature is then fed into the LSTM681

for RE generation. During training the negative log-likelihood is minimized:682

Ls
1(θ) = −

∑

i

logP (ri|oi; θ)

= −
∑

i

∑

t

logP (rti |r
t−1
i , . . . , r1i , oi; θ)

(1)

A joint-embedding model is used for the listener which merges visual information683

from the target object and semantic information of the corresponding RE into a684

joint embedding space such that their embedded vectors are close to each other.685

An LSTM encodes the input RE and the same visual representation as the speaker686

is used to encode the target object. Visual representation and word-embedding are687

shared with the speaker so that speaker and listener are aware of each other’s688

behavior. In the embedding part, two MLPs and two L2 normalization layers are689

applied on top of each view. The inner product of the two normalized representations690

is computed as their similarity score S(r, o). In training, two contrastive triplets are691

sampled for enforcing a higher similarity between a positive match than the negative692

matches, which constructs a ranking loss:693

Ll(θ) =
∑

i

[λl1 max(0,M + S(ri, ok) − S(ri, oi))

+ λl2 max(0,M + S(rj , oi) − S(ri, oi))]

(2)

where the negative matches are randomly chosen from the other objects and694

expressions in the same image. The reinforcer guides the speaker to generate less695

ambiguous expressions. It is composed of a discriminative reward function and696

performs a nondifferentiable policy gradient update to the speaker. During training,697

the reinforcer takes the sampled expression w1:T from the speaker and feeds it to a698

pretrained reward function. The goal is to maximize the reward expectation F(w1:T )699

under the distribution of p(w1:T ; θ) parameterized by the speaker, i.e. J = Ep(w1:T )[F].700

This reward function is another listener trained with 1-d Logistic Regression loss to701

produce a score between 0 and 1. At inference time, the speaker output P (r|o) and702

listener output P (r, o) are used together for both the comprehension and generation703
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Fig. 7. Comprehension examples in Yu et al. (2017). Green box shows the ground-truth
region, blue box shows correct comprehension using the

proposed model.

RefCOCO TestA RefCOCO TestB RefCOCO+ TestA RefCOCO+ TestB RefCOCOg Validation

man in black on left

person in white jacket

kid in middle

person on right

top left bowl

bottom left bowl

top right broccoli

bottom right bowl

woman

man with tie

the monitor on the top left

a white computer monitor

black sheep

white sheep closest to us

dark brown sheep

Fig. 8. Generation examples in Yu et al. (2017). Each sentence shows the generated
expression for one of the depicted objects (color coded to indicate correspondence).

tasks. Figures 7 and 8 show example results on these two tasks using the joint704

speaker–listener–reinforcer model.705

3.3 Referring expressions for video706

To address the temporal localization task (Figure 4) the Moment Context Network707

(MCN) was proposed (Hendricks et al. 2017). Given input video frames v = vt708

where t ∈ 0, . . . , T − 1 indexes time, a proposed temporal interval τ̂ = τstart : τend,709

and an expression r, the goal is to find the moment described by r:710

τ̂ = argminτDθ(s, v, τ) (3)

where Dθ(r, v, τ) measures the distance between a temporal interval τ and RE r.711

The MCN network is shown in Figure 9. Video moments are encoded into visual712

temporal context features: video features reflecting what is occurring within each713

moment, global video features providing broader context for each moment, and714

temporal endpoint features indicating when a moment occurs within a longer video.715

To construct the local and global visual features, fc7 features are extracted for716

each frame using VGGNet. Then, the local features are constructed by temporally717

pooling features within each specific moment, and global features are constructed by718

averaging over all video frames. Temporal endpoint features indicate the start and719

endpoint of a candidate moment (normalized to the interval [0,1]). The concatenation720

of these features are fed into a MLP to get the final visual feature for a moment721

P V
θ . Additionally, the authors also incorporate optical flow (Wang et al. 2016b) as722

a motion feature for each moment P F
θ . The language encoding is similar to Yu723

et al. (2017), where an LSTM is used to encode the input expression and its last724

hidden state is fed into a MLP to yield the embedded feature PL
θ . Then, the distance725
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Fig. 9. Moment Context Network (MCN) used in Hendricks et al. (2017).

between a moment and an RE is computed as726

Dθ(r, v, t) = ∥P V
θ (v, τ) − PL

θ (r)∥ + η∥P F
θ (f, τ) − PL

θ (r)∥ (4)

where η is a tunable ‘late fusion’ scalar. A ranking loss similar to Eq. (2) is used727

for training. At inference time, each temporal segment is compared with the input728

expression, and the nearest one is selected as the referring moment (Eq. (3)).729

4 Visual question answering730

Another language and vision task that has received increasing attention recently is731

VQA. VQA systems take as input an image or video along with relevant natural732

language questions, and produce an answer to those questions. Questions can be733

open ended, requiring systems to produce a natural language answer, or a set of734

multiple choice answers is provided, requiring systems to select the best answer735

from a list. One driving factor for the introduction of VQA was that despite736

progress on image and video captioning, automatic evaluation of descriptions is still737

a challenging open research problem. Multiple choice VQA provides a task that is738

simple to evaluate automatically. Additionally, VQA provides a nice tool for more739

fine-grained evaluation of algorithms since different types of questions can be used740

to probe and evaluate various aspects of visual understanding, ranging from object741

identification, counting, or appearance, to more complex visual understanding of742

interactions, and inferences about why or how something is occurring in an image743

or video. In this section, we describe existing VQA datasets and review some efforts744

toward building VQA systems.745

4.1 VQA in images746

4.1.1 Image-based VQA datasets747

Several VQA datasets have recently been constructed. We review some of the748

prominent efforts here. Statistics about all of the datasets are presented in Table 4.749
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Table 4. Image VQA Dataset statistics, including: number of question–answer pairs
(#QA), number of images (#Images), question type (QType), average question length
(QLen), average answer length (ALen), and evaluation type (Eval)

Dataset #QA #Images QType QLen ALen Eval

DAQUAR 12,468 1,449 Human 11.5 1.2 WUPS
COCO-QA 117,684 69,172 Synthesized 8.7 1.0 Word matching
FM-IQA 316,193 158,392 Human 7.38 3.82 Turing test
Visual Madlibs 56,468 9,688 Human 4.9 2.8 Multiple-choice
VQA 614,163 204,721 Human 6.2 1.1 Open-ended
Visual7W 327,939 47,300 Human 6.9 2.0 Multiple-choice
CLEVER 100,000 999,968 Synthesized 18.0 1.0 Word matching

DAQUAR (Malinowski and Fritz 2014) was built on the NYU indoor scene750

RGB-D dataset (Silberman et al. 2012), a collection of indoor environments with751

associated RGB and depth camera images and annotated object class labels. To752

construct the dataset, the DAQUAR authors asked five in-house participants to753

provide questions and answers based on these images. Questions generally refer to754

everyday objects and relationships between objects, e.g. ‘Q: what is on the right755

side of the notebook on the desk in image4, A: plastic cup of coffee’. Answers are756

evaluated using the WUPS score to compute how close the produced answer from a757

system matches the ground truth answer. WUPS is a soft measure based on the Wu758

and Palmer score (Wu and Palmer 1994), which calculates the semantic relatedness759

of terms by considering the depths of their synsets in the WordNet taxonomy, along760

with the depth of the least common subsumer.761

COCO-QA (Ren, Kiros and Zemel 2015a) is built on the MS COCO dataset762

(Section 2.1.1). QA pairs are automatically generated from image descriptions using763

four question templates: Object Questions, Number Questions, Color Questions, and764

Location Questions. For example, a description reading ‘A man is riding a horse’ can765

be automatically transformed into the question ‘What is the man riding?’ Each an-766

swer consists of a single word, allowing models to treat the problem as a classification767

task without considering natural language generation, simplifying evaluation.768

FM-IQA (Gao et al. 2015) is also built on MS COCO (FM stands for Freestyle769

Multilingual). Annotators provide freestyle question–answer pairs in Chinese, then770

each question–answer pair is translated into English. Arguing that automatic metrics771

like WUPS, BLEU, METEOR, or CIDEr cannot accurately evaluate model capacity,772

the authors conduct a Visual Turing Test (Turing 1950) instead, where answers are773

mixed between humans and model, then human judges are asked to distinguish774

models from humans, and provide a score indicating the answer quality.775

Visual Madlibs (Yu et al. 2015) is again built on MS COCO. Questions are designed776

with twelve fill-in-the-blank templates, to collect targeted descriptions about: people777

and objects, their appearance, activities, and interactions, as well as inferences about778

the general scene or its broader context. Collected descriptions are used for two779

tasks: (a) fill-in-the-blank description generation (similar to image captioning, but780

more focused on a particular image aspect), and (b) multiple-choice fill-in-the-blank781

question answering. In the latter, given an image and a partial description such as782

‘The person is [blank] the frisbee’, the task is to select the correct choice from four783
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answers. This provides an multiple-choice test for evaluation; varying the selection784

of negative answers can make questions for model testing easier or harder.785

VQA (Antol et al. 2015) is built on top of MS COCO. The questions in VQA are786

free-form and open-ended and the answers are also free-form, both of which were787

written by humans. For each question, there are ten answers gathered from humans.788

Similar to Visual Madlibs, there are also two tasks in VQA: open-ended answering789

and multiple-choice. For evaluation of the open-ended task, a predicted answer790

is deemed accurate if at least three humans provided that exact answer. As most791

answers (89.32%) are single word, there is no high-order n-gram matching issue.792

For the multiple-choice task, each question is associated with eighteen candidate793

answers. Most recent research works on the first open-ended task.794

VQA v2 (Goyal et al. 2017) is a second, more balanced version of the VQA795

dataset, created to address the visual priming bias problem in the original VQA. For796

example, people tend to raise the question ‘Is there a clock tower in the picture?’797

only on images that contain clock towers. This makes blindly answering ‘Yes’ to798

‘Do you see...?’ and ‘Is there ...?’ an easy way to achieve high model accuracy. In799

order to ease this bias issue, the authors collected complementary images for biased800

questions so that each question has two complementary images that look similar but801

have different answers. This balanced dataset was constructed to encourage VQA802

models to focus more on visual understanding than learning dataset biases.803

Visual7W (Zhu et al. 2016) is part of the Visual Genome project (Krishna et al.804

2017a) and similar to Visual Madlibs. Arguing that many relevant image question805

pairs relate to local image regions rather than to the entire image, the authors806

establish a link between text descriptions and regions through object grounding807

to construct region based visual questions. There are in total six W question types808

(what, where, when, who, why, and how), and a seventh which question category. Each809

question is associated with four answers, only one of which is correct. In addition, for810

each question, the object-level grounding (object being mentioned by the QA pairs)811

is provided, resolving the co-reference ambiguity between images and questions. At812

test time, this provides a way to analyze the behavior of attention-based models.813

CLEVR (Johnson et al. 2017a) is somewhat different from the above datasets.814

Arguing that existing VQA datasets have strong biases that models can exploit to815

correctly answer questions without reasoning, the authors propose CLEVR, which is816

specifically designed for visual reasoning. Images in CLEVR are computer generated817

using Blender. Each scene contains three to ten objects with random shapes, sizes,818

materials, colors, and positions. The questions are also generated and each question819

is associated with a functional program that can be executed on an image’s scene820

graph, with its answer also known. One example question is ‘What color is the cube821

to the right of the yellow sphere?’. Answering this question requires a model to822

locate the ‘yellow sphere’, then find the ‘right cube’, and finally infer its color.823

4.1.2 Image-QA models824

Image-QA models take as input an image, I , and question Q = {qt|t = 1, . . . , T },825

made up of T words. Usually they then compute image features V using visual826
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CNN

Fig. 10. Image-based VQA Baseline model used in (Zhou et al. 2015).

recognition algorithms to answer Q. For an open-ended question-answering task,827

the QA system could be formulated as a generation model A = G(V ,Q), producing828

a natural language sentence answer, or as a classification task A = C(V ,Q) to select829

the most likely answer from a (sometimes large) predefined set of answers. For830

multiple-choice QAs, candidate answers, C , are provided to the system along with831

I and Q as input. In these tasks, C are often fed into the model and the candidate832

with highest probability C∗ = argmaxciP (ci|V ,Q), ci ∈ C is selected.833

Baseline: Given the rapid development and advances in CNNs, almost all834

recent VQA papers use CNNs for their underlying visual feature representation;835

popular architectures include AlexNet (Krizhevsky, Sutskever and Hinton 2012),836

VGGNet (Simonyan and Zisserman 2015), GoogLeNet (Szegedy et al. 2015),837

ResNet (He et al. 2016), InceptionNet (Szegedy et al. 2017), etc.838

One well-known baseline (Zhou et al. 2015) proposed a simple model for VQA on839

the VQA v1 dataset. This model, illustrated in Figure 10, uses a visual representation840

produced by the last fully-connected/average-pooling output of a CNN, i.e., V ∈841

Rd×1, and bag-of-words as the question representation. These image and language842

representations are then concatenated and the combined feature is sent to a softmax843

layer to predict the answer class. Note that in this model both the open-ended and844

multiple-choice tasks are formulated as classification tasks. While simple, the model845

achieved comparable performance to several more complicated approaches at that846

time. Improvements over this baseline used RNN (Antol et al. 2015; Malinowski,847

Rohrbach and Fritz 2015; Ren et al. 2015a) or a language CNN (Ma, Lu and Li848

2016) to model the question (and answer).849

Attention Models: Since then, most research has focused on modeling the interac-850

tion between image content and question for improving performance, as well as on851

model interpretability. In many cases, an answer only relates to a small portion of852

the image, e.g. the answer to the question What is the color of the boy’s shirt? given853

an image containing a boy and a cat, only relates to the boy. Thus, using global854

image features to predict the correct answer usually leads to suboptimal results due855

to noisy information introduced by the irrelevant image regions.856

To address this issue, recent models (Yang et al. 2016; Xiong, Merity and Socher857

2016; Xu and Saenko 2016; Shih, Singh and Hoiem 2016; Chen et al. 2015b; Das858

et al. 2017; Selvaraju et al. 2017) examine different spatial regions within the image859

and compare their contents (and locations) to help in answering visual questions.860
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Q: how many snowboarders in

formation in the snow, four is

sitting? A: 5

how many snowboarders in

formation in the snow , four is

sitting ?

how many snowboarders in

formation in the snow , four is

sitting ?

how many snowboarders in

formation in the snow , four is

sitting ?

Fig. 11. Visualization of image and question co-attention maps in (Lu et al. 2016). From
left to right: original image and question pairs, word-level co-attention maps, phrase-level
co-attention maps, question-level co-attention maps. The attentions are scaled from red:high
to blue:low.

Rather than extracting a single feature for the whole image, these models compute861

visual representations consisting of the last convolutional output V ∈ Rd×G, where d862

is the feature dimension and G is the number of spatial grids. These are fed through863

a single layer neural network and then a softmax function generates an attention864

distribution over image regions:865

q = LSTM(Q)

Hv = tanh(WvV + Wqq)

av = softmax(wT
h,vHv)

(5)

where Wv ∈ Rk×d and wh,v ∈ R1×k are the transformation matrices. Then, the866

weighted sum of visual representations ṽ guided by the question is computed as867

ṽ =
∑G

i=1 a
v
i vi868

In addition to modeling ‘where to look’ through visual attention, it can also be869

useful to model ‘what words to listen to’ (Nam, Ha and Kim 2017; Lu et al. 2016).870

A co-attention model has been proposed (Lu et al. 2016) that jointly reasons about871

question-guided visual attention and image-guided question attention. This model co-872

attends to the image and question in a hierarchical structure over word-level, phrase-873

level, and question-level embeddings. Given the embedding E = {et|t = 1, . . . , T }874

for the input question words Q and the question-guided visual representation ṽ, the875

image-guided question representation is computed as876

Hq = tanh(WeE + Wv ṽ)

aq = softmax(wT
h,qHq)

q̃w =

T∑

t=1

a
q
t et

(6)

where Ww ∈ Rk×d and wh,w ∈ R1×k are the transformation matrices. Lu et al. (2016)877

recursively encode the attention features for word, phrase, and question. Figure 11878

shows an example, where we can see that the model jointly co-attends to interpretable879

regions of images and questions to predict the answer.880

While most of the above work used concatenations, element-wise products or881

sums for interactions between the visual and textual representations, Multimodel882

Compact Bilinear pooling (MCB) (Fukui et al. 2016) is an alternative solution883

for cross-modality interaction. MCB pooling projects an outer product to a lower884
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Fig. 12. Model proposed by (Anderson et al. 2017).

dimensional space and avoids computing the outer product directly. Fukui et al.’s885

model uses MCB twice, once to predict spatial attention and once to predict the886

answer, achieving state-of-art results in 2016.887

Most recently, the winning model of the 2017 VQA Challenge was a bottom-up888

and top-down attention model (Anderson et al. 2017). The authors argued that a889

uniform grid of equally sized and shaped receptive fields—irrespective of the content890

of the image—as usually used in attention models, is suboptimal. Instead, their891

bottom-up mechanism proposes a set of detected image regions for consideration,892

with each region represented by a pooled convolutional feature vector. These bottom-893

up regions are detected by Faster R-CNN (Ren et al. 2015b); a top-down mechanism894

then uses task-specific context to predict an attention distribution over the proposed895

image regions. The full VQA model is shown in Figure 12.896

Modular Networks: The first module network for question answering was proposed897

in 2016 (Andreas et al. 2016a) and later extended to VQA (Andreas et al. 2016b).898

Neural module networks (NMN) approach the VQA task by dynamically composing899

networks of independent neural modules, jointly trained. Modules are selected based900

on a parse of the question to utilize only modules that are relevant to the particular901

question content. Specifically, the authors define the following modules: [COMP:902

Please insert bracket around display list item, that is, 1., 2.... should be changed to903

(1), (2)...]904

1. Attention module attend[c] performs Image → Attention to spatially905

select mentioned objects c.906

2. Re-attention module re-attend[c] takes an attention heatmap and maps it907

to another attention, i.e. Attention → Attention.908

3. Combination module combined[c] merges two attentions into a single atten-909

tion, i.e. Attention × Attention → Attention.910

4. Classification module classify[c] takes an attention and image then maps911

them to a distribution over labels, i.e. Image × Attention → Label.912

5. Measurement module measure[c] takes an attention and maps it to a913

distribution over labels, i.e. Attention → Label.914

Given a question, modules are selected based on a language parser (De Marneffe915

et al. 2006), and are then mapped to a network structure assembling the relevant916

modules (see Figure 13 for an example). Given the question ‘What color is his917

tie?’, NMN generates its composition of classify[color](attend[tie]), the918

answer coming from the final classification module for color labels. This strategy919
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Fig. 13. NMN for answering ‘What color is his tie?’ by
Andreas et al. (2016b).

takes advantage of the inherently compositional property of language, and inspired920

further work on visual reasoning (Johnson et al. 2017b; Hu et al. 2017).921

4.2 VQA in video922

4.2.1 Video-based QA datasets923

TGIF-QA (Jang et al. 2017) This dataset consists of QA pairs on animated GIFs,924

collected using predefined templates. The QA pairs include three tasks: (1) counting925

the number of repetitions of a given action, (2) detecting a repeated action926

given its count, and (3) identifying state transitions, i.e. what happened before927

or after a specified action state. For example, ‘Q: What does the duck do 3928

times?, A: Shake head’. In addition, the authors also generate Frame-QAs for929

object/number/color/location questions that are answered by one of the frames.930

LSMDC-QA (Maharaj et al. 2017) is built on LSMDC (Rohrbach et al. 2015), a931

dataset for movie description. To construct this dataset, the authors recast the video932

description problem as a fill-in-the-blank question-answering task. Given a video933

and its description with one word blanked-out, the goal is to predict the missing934

word, e.g. ‘Q: She opens the [blank]. A: door’. The blanked words cover entities,935

actions and attributes, requiring models to understand the visual content of videos.936

Since each fill-in the blank answer is a single word evaluation is simple.937

VideoQA (Zhu et al. 2015) The videos used in this dataset are from TACoS938

Multilevel (Regneri et al. 2013) cooking dataset, MPII-MD (Rohrbach et al. 2015)939

movie description dataset, and TRECVID MEDTest (Over et al. 2014) web videos.940

The authors generate three types of QA pairs from their associated descriptions:941

Inferring the past, Describing the present, and Predicting the future. For each942

description, some phrase or words are blanked out, which are used to answer the943

three types of questions, e.g. ‘Q: Predict the future. He [blank] cucumber on plate.944

A: places’. There are four candidate fill-in-the-blank answers, where only one is945

correct, a simple multiple-choice evaluation.946

MovieQA (Tapaswi et al. 2016) This dataset contains more diverse sources of947

information compared with the other video-based VQA datasets, including plot948

synopses, videos, subtitles, DVS, and scripts. Here, the authors use plot synopses to949

collect questions about movies. During data collection, each annotator is shown a950
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Table 5. Video question answering datasets information including number of
question–answer pairs, number of videos, average video length and source domain

Dataset #QA #videos Avg. video length Domain

TGIF-QA 165,165 71,741 3.1 s Social media GIFs
LSMDC-QA 348,998 111,744 4.8 s Movie
VideoQA 390,744 109,895 - Cooking/Movie/Web
MovieQA 6,462 6,771 200 s Movie
PororoQA 8,913 16,066 ∼1 s Cartoon
MarioQA 187,757 187,757 <6 s Game

paragraph from a plot synopsis then asked to provide questions and answers related951

to the provided plot. This often results in complex high-level questions that require952

a great deal of understanding to answer. For, example, ‘Why does Cypher betray953

Morpheus?’ in the Matrix movie. Multiple-choice is used for evaluation. The whole954

dataset contains 408 movies and 14,944 QAs, but only 140 videos have video to plot955

alignment, resulting in 16,066 video clips (Table 5).956

PororoQA (Kim et al. 2017) Different from above, the media domain of PororoQA957

is cartoons, sampled from the popular children’s series ‘Pororo’. This show has a958

simple, clear, and coherent story structure and a small environment compared to959

dramas or movies. Each of the 16,066 video clips contain dialogs and each clip is960

short (thirty-four frames). All questions and answers were written by people and961

evaluation is multiple-choice question answering, where each question is coupled962

with five possible answers (one correct and four incorrect). This dataset allows for963

reasoning about characters that carry over the whole dataset, e.g. ‘Q: What does964

Pororo think when he hides behind the tree? A: Pororo thinks Loopy can’t find him’.965

MarioQA (Mun et al. 2017) MarioQA is a synthetic video QA dataset, constructed966

on Super Mario Bros gameplay videos. Questions are synthesized using templates,967

asking about event-centric questions, counting questions, and state questions, e.g.968

‘Q: What enemy did Mario kill by stomping?, A: Para Goomba’. These questions969

are split into different levels of reasoning complexity: questions without temporal970

relationships (NT), questions with easy temporal relationships (ET), and questions971

with hard temporal relationships (HT). These event-centric questions are especially972

suited to evaluate the temporal reasoning capability of algorithms.973

4.2.2 Video-QA models974

Frame representation: Each video is composed of a set of frames F = {F1, F2, ..., FN}.975

Similar to image-based VQA models, CNNs are typically used for extracting visual976

representations. We denote each frame feature as Fn = {fn,i|i = 1, . . . , G}, where n977

denotes the nth frame and G is the number of regions. Note, the frame feature here978

is not restricted to CNN features on RGB images. Some recent works also consider979

using optical flow or spatial-temporal features via C3D (Hendricks et al. 2017; Jang980

et al. 2017; Jang et al. 2017).981

The simplest way to abstract the representation of each Fn is via mean pooling.982

Additionally, spatial attention models can be used to learn which regions of Fn to983
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attend to for a given question Q. The spatial attention score for each region can be984

computed as (Yu et al. 2016b; Jang et al. 2017; Zhao et al. 2017):985

sni = wtanh(Wqsq + Wfsfni + bs) (7)

where Wqs and Wfs are transformation matrices and bs is a bias term. For each region986

fni, the normalized attention is computed as αni =
exp(sni)∑
i exp(sni)

, where q = LSTM(Q) is987

the question feature as in Eq. (5). Then, the spatially attended visual representation988

for each frame is computed as vn =
∑

i αnifni.989

Video representation: Given frame features (with or without attention), the next990

step is to encode the whole video. One method uses mean-pooling, fn (Venugopalan991

et al. 2015) ṽ = 1
N

∑
n fn, as the final video representation, but this weights the992

importance of each frame equally ignoring information about what portion of993

the video the question focuses on. Some authors (Yu et al. 2016b; Zhao et al.994

2017; Jang et al. 2017) model video as a temporal sequence and use an RNN995

to encode its information. For example, if we use an LSTM to encode the996

video, then a corresponding sequence of hidden states ṽ = hN can be computed997

as (Yu et al. 2016b): hn = LSTM(vn, hn−1). The final output is then the final video998

representation ṽ.999

In addition to spatial attention, temporal attention can also play an important1000

role for localizing what portion of the video content is useful for answering1001

a given question. Zhao et al. (2017) and Jang et al. (2017) consider applying1002

a temporal attention model, computing the relevance scores over each hidden1003

state hn:1004

s(t)n = w(t)tanh(Wqtq + Whtht + bt) (8)

The attention score for each frame (hidden state) is thus1005

βn =
exp(s(t)n )

∑
n exp(s(t)n )

(9)

The attentional pooled feature ṽ =
∑

n βnhn is regarded as a question-driven video1006

representation.1007

Question answering: Similar to image-based QA, the inference model depends1008

on the type of question–answer pairs. As in image-based VQA, for the open-ended1009

question-answering task the model is formulated as a generation/classification model1010

producing a sentence answer, while for multiple-choice QAs a classification model1011

is typically used. Taking the classification model as an example, given the video1012

representation ṽ and question representation q, one approach is to first fuse the1013

video and question modalities (Jang et al. 2017): ṽq = tanh(Wv ṽ) ⊕ q, where ⊕ is1014

an element-wise sum and Wv is a transformation matrix to make the dimensions1015

of the two modalities equal. A linear classifier can be defined that takes as input1016

the video-question vector ṽq , computing the confidence score for the cth answer as1017

sc = softmax(Wcṽq + bc), where Wc and bc are model parameters. At inference time,1018

the solution is simply selected as c∗ = argmaxc∈Csc.1019
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5 Conclusion1020

We have reviewed recent work in language and vision tasks, including datasets and1021

methods for producing general natural language descriptions of images (Section 2),1022

referring expression generation and comprehension (Section 3), and VQA (Section 4).1023

There has been a great deal of progress on each of these tasks, largely due to the1024

growing availability of large labeled datasets and neural learning based methods.1025

Moving forward, we foresee vision and language tasks moving into the real world1026

where intelligent agents collaborate and communicate with people. This implies a1027

need for algorithms that can produce not just static language about fixed physical1028

objects and scenes, but also adaptively interact with people through dialog and1029

exploration. As a result, there will be new data and evaluation challenges that will1030

be exciting to investigate.1031
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