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Abstract This paper presents an approach for answer-
ing fill-in-the-blank multiple choice questions from the
Visual Madlibs dataset. Instead of generic and com-
monly used representations trained on the ImageNet
classification task, our approach employs a combina-
tion of networks trained for specialized tasks such as
scene recognition, person activity classification, and at-
tribute prediction. We also present a method for localiz-
ing phrases from candidate answers in order to provide
spatial support for feature extraction. We map each
of these features, together with candidate answers, to
a joint embedding space through normalized canoni-
cal correlation analysis (nCCA). Finally, we solve an
optimization problem to learn to combine scores from
nCCA models trained on multiple cues to select the best
answer. Extensive experimental results show a signifi-
cant improvement over the previous state of the art and
confirm that answering questions from a wide range of
types benefits from examining a variety of image cues
and carefully choosing the spatial support for feature
extraction.
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1 Introduction

For any artificially intelligent agent that can live in the
physical world, interacting with the world and com-
municating with humans are essential abilities. To ac-
quire these abilities, we need to train agents on open-
ended tasks that involve visual analysis and language
understanding. Visual Question Answering (VQA) (An-
tol et al, 2015) has recently been proposed as such a
task. In VQA, language understanding is necessary to
determine the intent of a question and generate or eval-
uate multiple putative answers, while visual analysis fo-
cuses on learning to extract useful information from the
images. Even when the question has a pre-determined
form, the answer strongly depends on the visual infor-
mation which might be derived from either the whole
image or from some specific image region. Moreover,
specialized knowledge beyond the available image pixel
content might be necessary. For instance, consider a
simple question about the position of an object: the
answer could involve the overall scene (e.g., it is in the
kitchen), other reference objects (e.g., it is on the ta-
ble), their appearance (e.g., it is against the blue wall),
details about people (e.g., it is in the girl’s hand), activ-
ities (e.g., it is floating in water) or even understanding
of time and causality (e.g., it is falling and about to
land on the ground).

To date, a number of diverse solutions for VQA have
been proposed, as surveyed in Section 2. An essential
component of these methods consists of extracting fea-
tures from images and questions, which are then com-
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Fig. 1 The Visual Madlibs dataset consists of 12 types of questions with fixed prompts, each concerned with the entire image
(types 1-5), a specified person (types 6-9), or a specified object (types 9-12). For types 6-12, ground truth boxes of specified
entities are provided as part of the question and are shown in yellow. Each question comes with four candidate answers, and
only one (colored green, with a tick) is considered to be correct. To answer these varied questions, we use features computed
on the whole image (ImageNet, Places), on person boxes (ImageNet, HICO/MPII Action, Attribute) and on object boxes
(ImageNet, Color). Details of the individual cues are given in Section 4. For each question type, circles mark the cues that
are used by our final combination method. White circles indicate that the respective cues were computed on automatically
selected person and object boxes, as no ground truth boxes were provided as part of the question. All the examples here come

from the Hard question-answering setting (see Section 2).

bined by different algorithms to produce or select the
correct answer. A majority of the work has focused on
improving such algorithms, while the effect of input fea-
tures has been ignored: all the existing approaches use
a single image representation computed by a deep Con-
volutional Neural Network (CNN), e.g. VGG-Net (Si-
monyan and Zisserman, 2014), GoogLeNet (Szegedy

et al, 2015) or ResNet (He et al, 2016) trained on
the ImageNet dataset (Russakovsky et al, 2015). While
these are with no doubt powerful representations for a
plethora of tasks, it is hard to believe that a generic fea-
ture trained on a limited number of object classes can
have sufficiently broad coverage and fine-grained dis-
criminative power needed to answer a wide variety of
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Fig. 2 Examples of four questions correctly answered by our system, along with intermediate predictions from our cue-specific
deep networks. For each question, three top-scoring labels from the relevant networks are shown along the bottom. For the
Future question, our method automatically selects the person and phone bounding boxes (shown with dashed lines), while for

the Person’s Activity and Object’s Attribute questions, bounding boxes are provided (solid yellow).

visual questions. We believe that to truly understand
an image and answer questions about it, it is neces-
sary to leverage a rich set of visual cues from different
sources, and to consider both global and local informa-
tion. Driven by this belief, in this paper, we propose
methods to represent the images with multiple pre-
dicted cues and introduce a learning approach to com-
bine them for solving multiple-choice fill-in-the-blank
style questions from the Visual Madlibs dataset (Yu
et al, 2015).

The Visual Madlibs dataset consists of twelve differ-
ent types of targeted image descriptions that have been
collected by using fill-in-the-blank templates. For every
description type, a multiple choice answering task has
been defined where the sentence prompt takes on the
role of a question, while four possible sentence comple-
tions are provided as answer options with only one con-
sidered to be correct (or most appropriate). Examples
are shown in Figure 1. Types 1-5 are based on high-
level content of the whole image, namely predicting the
scene, the emotion evoked by the image, likely past and
future events, and the most interesting aspects of the
image. Types 6-8 are based on characteristics of a spec-
ified human subject, 9 is based on the interaction of a
specified human and a specified object, while 10-12 are

based on characteristics of a specified object. The per-
son or object boxes that question types 6-12 focus on
are provided as part of the question. By choosing this
setting for VQA, we simplify the overall problem as we
do not have to infer the question type from provided
text and we can thus focus on measuring the relevance
of different visual cues for answering various types of
questions.

As baseline features, we consider the generic fc7 fea-
tures from a VGG-16 trained for object classification
on ImageNet and extracted from the whole image. To
improve upon this representation, we learn other clas-
sification models on specialized datasets and then use
them to extract “domain expert” features from differ-
ent image regions as well as from the whole images.
More specifically, we employ a scene prediction net-
work trained on the MIT Places dataset (Zhou et al,
2014), person action networks trained on the Human
Pose MPII (Pishchulin et al, 2014) and Humans In-
teracting with Common Objects (HICO) (Chao et al,
2015) datasets, a person attribute network and an ob-
ject color network trained on the Flickr30K Entities
dataset (Plummer et al, 2017).

Together with the question types, Figure 1 also
shows which combination of cues is used in each case.
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Note that the need to attend specific image regions is
because certain question types provide ground truth
bounding boxes of interest with the question, or be-
cause for other questions without provided boxes, the
putative answers mention persons and objects. As an
example, consider the Interestingness question in Fig-
ure 1 (question type 3). Two of the candidate answers
for the most interesting aspect of this image are the
girl and firefighters. In order to score these answers, we
need to determine whether they actually exist in the
image and localize the corresponding entities, if pos-
sible. To this end, we utilize an automatic bounding
box selection scheme which starts with candidate boxes
produced by state of the art person and object detec-
tors (Liu et al, 2015; Ren et al, 2015b) and scores them
using a region-phrase model trained on the Flickr30K
Entities dataset (Plummer et al, 2017). The highest-
scoring region for a phrase contained in an answer pro-
vides spatial support for feature extraction, and the
region-phrase scores are also used as a component of
the overall answer score. On the other hand, if persons
or objects appear in the image but they are neither
localized by the question nor named in any of the an-
swers (see question type 1 and 2) we simply consider
the image as a whole.

Each classification model used by us for feature ex-
traction is able to predict a large vocabulary of seman-
tically meaningful terms from an image: close to 200
scene categories, 1000 actions and person-object inter-
actions, 300 person attribute terms, and 11 colors. Fig-
ure 2 shows four question types from Figure 1 and the
answer predicted by our system, as well as the inter-
mediate predictions of our scene, action, attribute, and
color feature networks. The outputs of these networks
are semantically interpretable and can help to under-
stand why our system succeeds or fails on particular
questions. We can observe that in the Scene question
example of Figure 2, the top scene label predictions
from our Places network (train-station-platform, train-
railway, railroad-track) are very similar to the correct
answer (train station). For the Person’s Activity ques-
tion, our action network cannot predict the correct ac-
tivity (carrying a chair) even though it corresponds to
an existing class; nevertheless, it is able to predict a
sufficiently close class (carry-suitcases) and enable our
image-text embedding method to select the correct an-
swer.

To compute the compatibility between each of our
network outputs and a candidate answer sentence or
phrase, we train a normalized Canonical Correlation
Analysis (nCCA) (Gong et al, 2014) model which maps
the visual and textual features to a joint embedding
space, such that matching input pairs are mapped close

together. More specifically, we train one nCCA model
per cue, and in order to linearly combine scores from
different nCCA models we solve an optimization prob-
lem that learns the best set of cue-specific weights.

Our high-level approach is described in Section 3.
All the information about the used cues are provided in
Section 4, while the automatic bounding box selection
scheme for localized feature extraction is explained in
Section 5. The details of our score combination scheme
is in Section 6. Section 7 presents our experimental re-
sults, which show that using multiple features helps to
improve accuracy on all the considered question types.
Our results are state of the art, outperforming the orig-
inal Madlibs baseline (Yu et al, 2015), as well as a con-
current method (Mokarian et al, 2016).

A preliminary version of this work has appeared in
BMVC (Tommasi et al, 2016). The journal version in-
cludes (1) a more detailed description of the different
cues used for each question type, (2) a statistical anal-
ysis of the coverage our cues provide for different types
of Visual Madlibs questions (Section 7.1) (3) a princi-
pled scheme to learn an optimal weighted combination
of multiple features, (4) extensive qualitative examples
to better illustrate each part of the proposed approach,
(5) a study on learning across tasks: we investigate the
effect of training embedding models over multiple joint
question types (Sections 7.5) and of training the model
on one question type but testing it on a different one
(Sections 7.4).

The Visual Madlibs dataset project webpage
has been wupdated with the validation set cre-
ated for our experiments: http://tamaraberg.
com/visualmadlibs/. The deep network models
used to predict various features are available at
http://vision.cs.illinois.edu/go/madlibs_
models.html.

2 Related Work

Visual Question Answering. In the task of Visual
Question Answering (VQA), natural-language ques-
tions about an image are posed to a system, and the sys-
tem is expected to reply with a short text answer. This
task extends standard detection, classification, and im-
age captioning, requiring techniques for multi-modal
and knowledge-based reasoning for visual understand-
ing. Initially proposed as a “Visual Turing Test” (Ge-
man et al, 2015), the VQA format has been enthusias-
tically embraced as the basis for a number of tailored
datasets and benchmarks. The DAQUAR dataset (Ma-
linowski and Fritz, 2014) is restricted to indoor scenes,
while a number of more general datasets are based on
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MSCOCO images (Lin et al, 2014), including COCO-
QA (Ren et al, 2015a), Baidu-FM-IQA (Gao et al,
2015), VQA (Antol et al, 2015), Visual7W (Zhu et al,
2016) and Visual Madlibs (Yu et al, 2015). Question-
answer pairs can be generated automatically by NLP
tools (Ren et al, 2015a), or created by human workers
(Gao et al, 2015; Antol et al, 2015; Zhu et al, 2016; Yu
et al, 2015).

Assessing the quality of automatically generated
free-form answers is not straightforward and in most of
the cases, it reduces to evaluating the predicted proba-
bility distribution on a fixed output space made by the
1000 most common answers of the used dataset (Fukui
et al, 2016; Andreas et al, 2016b; Yang et al, 2016; Saito
et al, 2017; Wang et al, 2017b). Alternatively, several
VQA benchmarks are provided with a multiple-choice
setting where performance can be easily measured as
the percentage of correctly answered questions.

Among automatic methods for VQA, many com-
bine CNNs and Long Short-Term Memory (LSTM) net-
works to encode the questions and output the answer
(Gao et al, 2015; Malinowski et al, 2015; Andreas et al,
2016a). Recent approaches also emphasize the need for
attention mechanisms for text-guided analysis of im-
ages. Such attention mechanisms can be learned, or
hard-coded. Attention can be learned by using networks
that predict which regions of the image are useful (Xu
and Saenko, 2015; Yang et al, 2016; Shih et al, 2016)
and then extracting features from those regions. Hard-
coded mechanisms take as input the image regions that
need to be attended (Zhu et al, 2016; Ilievski et al,
2016). Some works also use co-attention models that ex-
ploit image regions together with word, phrase, and sen-
tences (Wang et al, 2017b) or high-level concepts (Yu
et al, 2017). In contrast to these works, our method first
ranks which regions of the image are useful to the ques-
tion at hand using a retrieval model, and then passes on
features extracted from the useful regions to the nCCA
embedding models, which select the most correct an-
swer.

Fill-In-The-Blank Questions. Instead of asking ex-
plicit questions, e.g., starting with who, what, where,
when, why, which (Zhu et al, 2016), we can ask sys-
tems to fill in incomplete phrases within declarative
sentences. This is the strategy behind Visual Madlibs.
As stated in the Introduction and shown in Figure 1,
Visual Madlibs questions come in twelve distinct types,
some with provided regions of interest. The fact that
each question has a well-defined type and structure that
is known a priori makes the Visual Madlibs a more con-
trolled task than general VQA, enabling us to reason up
front about the types of features and processing needed
to answer a given question. At the same time, due to the

broad coverage and diversity of these question types, we
can expect the cues that are useful for solving Visual
Madlibs to also be useful for general VQA.

Visual Madlibs consists of 360,001 targeted natu-
ral language descriptions for 10,738 MSCOCO images,
and fill-in-the-blank multiple choice questions are auto-
matically derived from these descriptions. For each de-
scription type, the number of questions ranges between
4,600 and 7,500 and the descriptions contain more than
3 words on average. This makes Visual Madlibs notably
different from VQA (Antol et al, 2015) and COCO-
QA (Ren et al, 2015a) datasets, which still have a multi-
choice answer setting but the majority of the answers
contain a single word (see Zhu et al (2016), Table 1). An
additional unique characteristic of Visual Madlibs is in
the choice of the distractor (incorrect) answers, which
have two levels of difficulty: Easy and Hard. In the Easy
case, the distractors are chosen randomly, while for the
Hard case, they are selected from the descriptions of
images containing the same objects as the test image,
with similar number of words as the correct answer, but
not sharing with it any non-stop words.

Existing methods for answering Madlibs questions
(Mallya and Lazebnik, 2016; Mokarian et al, 2016; Yu
et al, 2015) have mainly used Canonical Correlation
Analysis (CCA) (Hardoon et al, 2004; Hotelling, 1936)
and normalized CCA (nCCA) (Gong et al, 2014) to cre-
ate a multi-modal embedding where the compatibility
of each putative answer with the image is evaluated.
Mokarian et al (2016) have proposed CNN+LSTM
models trained on Visual Madlibs, but these were not
as accurate as CCA. The same authors have also shown
that the fill-in-the-blank task benefits from a rich im-
age representation obtained by detecting several over-
lapping image regions, potentially containing different
objects, and then average-pooling the CNN features ex-
tracted from them. This representation is able to cover
the abundance of image details better than standard
whole-image features, but it uses the same kind of de-
scriptor at all image locations. In Section 7.3, we will
demonstrate that our approach of using multiple spe-
cialized descriptors outperforms (Mokarian et al, 2016).

Integrating External Knowledge Sources. Under-
standing images and answering visual questions often
requires heterogeneous prior information that can range
from common-sense to encyclopedic knowledge. To
cover this need, some works integrate different knowl-
edge sources either by leveraging training data with a
rich set of different labels, or by exploiting textual or
semantic resources such as DBpedia (Auer et al, 2007),
ConceptNet (Liu and Singh, 2004) and WebChild (Tan-
don et al, 2014).
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The approach adopted by Zhu et al (2015) learns a
Markov Random Field model on scene categories, at-
tributes, and affordance labels over images from the
SUN database (Xiao et al, 2010). While this approach
is quite powerful on the image side, the lack of natural
language integration limits the set of possible questions
that may be asked.

The method of Wu et al (2016a) starts from multiple
labels predicted from images and uses them to query
DBpedia. The obtained textual paragraphs are then
coded as a feature through Doc2Vec (Le and Mikolov,
2014) and used to generate answers through an LSTM.
A more sophisticated technique is proposed by Wang
et al (2017a) for an image question task that involves
only answers about common-sense knowledge: the in-
formation extracted from images and knowledge-based
resources is stored as a graph of inter-linked RDF triples
(Lassila and Swick, 1999) and an LSTM is used to map
the free-form text questions to queries that can be used
to search the knowledge base. The answer is then pro-
vided directly as the result of this search, avoiding any
limitations on the vocabulary that would otherwise be
constrained by the words in the training set. Though
quite interesting, both these approaches still rely on
ImageNet-trained features, missing the variety of vi-
sual cues that can be obtained from networks tuned on
tasks other than object classification.

As explained in the Introduction, our own approach
to integrating external knowledge relies on training “ex-
pert” networks on specialized datasets for scenes, ac-
tions and attributes. As one of the components of our
approach, we use the CNN action models developed in
our ECCV 2016 paper (Mallya and Lazebnik, 2016),
where we applied these models to Person Activity and
Person-Object Relationship questions (types 7 and 9)
only.

3 Overview of the Approach

To tackle multiple-choice fill-in-the-blank question an-
swering, we need a model that is able to evalu-
ate the compatibility of each available answer choice
(a1,...,an) with the image and question pair (I, q).
This necessitates a cross-modal similarity function that
can produce a score s(I,q,a) taking into consideration
global (whole image to whole answer) and local (image
region to phrase) correspondences, as well as multiple
visual cues. Our model has three main components: the
image representation, the text representation, and a for-
mulation for the cross-modal joint space and scoring
function.

Representing the images. We introduce several fea-
ture types that depend on the question ¢ and possi-
bly on the specific answer choice a. This dependence
is made explicit by choosing how to localize the fea-
ture extraction (where to compute the features) and
which features to extract. Broadly speaking, we have
the following four types of features, each represented
by networks described detail in Section 4.

— Global image cues: For all question types, we ex-
tract features from the whole image using our VGG
ImageNet and Places networks (see Section 4 for
details).

— Cues from automatically selected boxes:
Question types 3-5 (Interestingness, Past, and Fu-
ture) do not come with any ground truth person or
object boxes, but people and objects are often men-
tioned in candidate answers (see examples in Figure
1 and statistics in Section 7.1). We parse the can-
didate answers for mentioned entities and attempt
to localize them using the procedure described in
Section 5. Having found the best matching image
region(s) for each mentioned entity, we extract spe-
cific features depending on the nature of the entity.
In particular, for people, we extract bounding box
ImageNet features as well as action and attribute
features, and for objects, we extract bounding box
ImageNet features only.

— Cues from provided person boxes: When deal-
ing with person-centric questions (Types 6-9), we
extract features from the person bounding box pro-
vided with the question. These include generic Im-
ageNet features as well as features from our action
and attribute networks

— Cues from provided object boxes: For object-
centric questions (Types 9-12), we extract features
from the object bounding box provided with the
question using our ImageNet and color networks.

As is clear from the above, question types 6-12, by
construction of the Madlibs dataset, come with tar-
get object and person bounding boxes. For these ques-
tion types, we did not compare performance of auto-
matically detected vs. provided ground truth bound-
ing boxes. Such an experiment was performed in (Yu
et al, 2015) using boxes detected by RCNN and did not
show any significant difference in the performance for
multiple-choice question answering. Their result indi-
cates that detectors such as RCNN or improved meth-
ods (Ren et al, 2015b; Liu et al, 2015) give good enough
object localizations for the purposes of our end task. A
small change in the region from which features are ex-
tracted does not have a significant impact on the final
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question answering accuracy. On the other hand, ques-
tion types 3-5 represent a more challenging case in that
no target bounding boxes are provided and we will ad-
dress this case at length in Section 5.

Representing the answers. Compared to our visual
representation, our text representation is quite elemen-
tary. We employ the 300-dimensional word2vec embed-
ding trained on the Google News dataset (Mikolov et al,
2013). Candidate answers are represented as the aver-
age of word2vec vectors over all the words. We represent
out-of-vocabulary words using the null vector, and do
not encode question prompts as they are identical for all
questions of the same type (e.g., “the place is...”). Even
in the cases where the prompt contain image-specific
words (i.e. objects in Person-Object Relationship and
Object’s Affordance questions), adding them to the an-
swers’ representation do not introduce discriminative
information, on the contrary, preliminary experiments
indicated that they contribute to make the answers
more similar to each other reducing the correct answer
selection performance.

Cross-modal embedding and scoring function.
To learn a mapping from image and text features into a
joint embedding space, we adopt normalized Canonical
Correlation Analysis (nCCA) (Gong et al, 2014). For
each question type, we obtain one or more nCCA scores
for one or more cues corresponding to that type, and
then form the final score as a linear combination of the
individual scores with learned weights. Our cue combi-
nation and weight learning approaches are described in
Section 6. Note that in the rest of the paper, any ref-
erences to CCA models refers to nCCA models, unless
otherwise specified.

4 Cue-Specific Models

This section provides details of our cue-specific net-
works. For a complete summary of which networks are
used for which question types, refer back to Figure 1.

ImageNet network. For all question types, we use the
output of the VGG-16 network (Simonyan and Zisser-
man, 2014) trained on 1000 ImageNet categories as our
baseline global feature. We obtain a 4096-dimensional
feature vector by averaging fc7 activations over 10 crops
from the whole image. The same network is also used
to extract features from image regions: in this case we
indicate that it is a local cue, by specifying in the follow-
ing tables and figures that it originates from a Person
or Object bounding box.

Places network. We also use a global scene feature
for each question type, derived from the Places VGG-
16 network (Zhou et al, 2014). The MIT Places dataset

contains about 2.5 million images belonging to 205 dif-
ferent scene categories. As with the baseline network,
the Places network gives us 4096-dimensional fc7 fea-
tures averaged over 10 crops.

HICO/MPII Person action networks. To repre-
sent person boxes for question types 3-9, we start
by passing the boxes resized to 224 x 224 px as in-
put to the generic ImageNet network. In order to ob-
tain a more specialized and informative representa-
tion, we also use action prediction networks trained
on two of the largest currently available human ac-
tion image datasets: HICO (Chao et al, 2015) and the
MPII (Pishchulin et al, 2014). HICO has 600 labels for
different human-object interactions, e.g. ride-bicycle or
repair-bicycle; the objects involved in the actions be-
long to the 80 annotated categories of the MSCOCO
dataset (Lin et al, 2014). The MPII dataset has 393
categories, which include interactions with objects as
well as solo human activities such as walking and run-
ning.

We employ the CNN architecture introduced in our
previous work (Mallya and Lazebnik, 2016), which cur-
rently holds state of the art classification accuracy on
both the action datasets. This architecture is based on
VGG-16 and it fuses information from a person bound-
ing box and from the whole image. At training time it
uses multiple instance learning to account for lack of
per-person labels on the HICO dataset and a weighted
loss to deal with unbalanced class distributions on both
HICO and MPII. The model uses a weighted logis-
tic loss in which mistakes on positive examples are
weighted ten times more than the mistakes on nega-
tive examples, in order to offset the lack of balance in
the dataset.

At test time, the network of Mallya and Lazebnik
(2016) needs a person bounding box to provide a region
of interest for feature extraction. For question types 6-9,
these boxes are given in the ground truth. For question
types 3-5, no boxes are given, so we use the automatic
bounding box selection procedure that will be described
in Section 5. In case of multiple people in an image,
we run the network independently on each person and
then average-pool the features. In case no person boxes
are detected, we use the whole image as the region of
interest.

Figure 3 presents some examples of class predic-
tions of the action networks. For various versions of
our cue combination strategies, as described in Section
6, we will use either the fc7 activations of this network
or the class prediction logits (inputs to the final sig-
moid/softmax layer).

Person attribute network. For question types 3-
9, alongside generic ImageNet features and activity
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Act. : ride, stand-on-surfboard, surfing Act.
Attr. : man, young-man, man-in-red-shirt

: carry, hold-tennis-racket, hold-bat
Attr. : man, man-in-white-shirt, man-in-

Act. : eat-at, sit-at-dining-table, lift-fork
r. : little-girl, young-girl, girl

white-hat

Act. : sit-on, lie-on-chair, read-book
Attr. : woman, girl, young-girl

Act. : ride, stand-on-surfboard, surfing
Attr. : man, young-man, man-in-red-

Act. Both Boxes: sit-at, eat-at-dining-
table, hold-pizza
Attr. Box : man, young-man, guy
woman, girl, lady
Attr. Image: people, group-of-people,
four-people

A

Act. : brush-with-toothbrush, talking-
on-cellphone, hold-cellphone
shirt Attr. : little-boy, young-boy

Act. Both Boxes: run, ride, straddle-
horse
Attr. Box: jockey, man, rider
iockey, man, rider
Attr. Image: three-men, two-men, two
people

Act. : wield, hold-baseball-bat,
hold-tennis-racket
ttr. : baseball-player, man, boy

Fig. 3 Top three predicted person actions (Act.) and attributes (Attr.) for a few sample images. In the case of multiple people
in an image, we specify the actions and attributes for specific boxes (underlined with the color of the box) as well as attributes
for the whole image (Attr. Image). In the last row of images we show cases where action and attribute recognition fails.

features described above, we also extract high-level
features based on a rich vocabulary of describable
person attributes. To create such a vocabulary, we
mine the Flickr30K Entities dataset (Plummer et al,
2017) for noun phrases that refer to people and oc-
cur at least 50 times in the training est. This results
in 302 phrases that cover references to gender (man,
woman), age (baby, elderly man), clothing (man in blue

shirt, woman in black dress), appearance (Asian man,
brunette woman), multiple people (two men, group of
people), and more. An important advantage of our per-
son attribute vocabulary is that it is an order of mag-
nitude larger than those of other existing datasets (Su-
dowe et al, 2015; Bourdev et al, 2011). On the down
side, attributes referring to males (e.g. man, boy, guy,
etc.) occur twice as often as those referring to females
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(e.g. woman, girl, lady, etc.), and the overall class distri-
bution is highly unbalanced (i.e., there are a few labels
with many examples and many classes with just a few
examples each).

We train a Fast-RCNN VGG-16 network (Girshick,
2015) to predict our 302 attribute labels based on per-
son bounding boxes (in case of group attributes, the
ground truth boxes contain multiple people). To com-
pensate for unbalanced training samples, just as for the
action networks, we use a weighted logistic loss that
penalizes mistakes on positive examples ten times more
than on negative examples. Unlike our action predic-
tion network, our attribute network does not use global
image context (we found that attribute predictions are
much more highly localized and tend to be confused by
outside context) and it predicts group attributes given
a box with multiple people (such boxes naturally exist
in the Flickr30K Entities annotations). As our labels
are derived from natural language phrases, we manu-
ally grouped and ignored predictions on labels which
could be simultaneously true but are not annotated in
the dataset. For example, if a bounding box is referred
to as he, man in blue shirt, older man, or bald man,
related labels such as {man, gentleman, guy, man in
hard hat, asian man} might also be true. Essentially,
the presence of a label such as he does not conclusively
indicate the absence of all other labels, such as guy,
however it does indicate the absence of she, or woman.
We manually created four such label groups represent-
ing man, woman, boy, and girl. If a label belongs to a
given group, labels from all other groups can be safely
considered as negatives, while labels within a group can
be ignored while computing the training loss.

To give a quantitative idea of the accuracy of our
person attribute prediction, the mAP of our network on
the phrases of the Flickr30k test set that occur at least
50 (resp. 10) times is 21.98% (resp. 17.04%). We ob-
serve the following APs for some frequent phrases: man
- 53.8%, woman - 51.3%, couple - 35.4%, crowd - 36.1%.
It should be noted that these numbers likely underes-
timate the accuracy of our model. For one, they are
based on exact matches and do not take synonyms into
account. Moreover, there is a significant sparsity prob-
lem in the annotations, as numerous attribute phrases
may be applicable to any person box but only a few
are mentioned in captions. Qualitatively, the attribute
labels output by our network are typically very appro-
priate, as can be seen from example predictions in Fig-
ure 3.

At test time, to obtain person bounding boxes from
which to extract attribute features, we follow the same
procedure as for the action networks described above.
In case of multiple people boxes, the outputs of the at-

tribute network are average-pooled. As with the action
models, either the inputs to the final sigmoid/softmax
layer or the fc7 activations can be used for the down-
stream question answering task (refer to Sections 6 and
7 for details).

Color network. As described in Section 3, we extract
object-specific cues for automatically detected boxes on
question types 3-5 (Interestingness, Past, Future), as
well as for provided focus boxes for question types 9-
12. For all of those object boxes, just as for person boxes
in question types 3-9, we extract generic ImageNet fea-
tures from the bounding boxes. To complement these,
we would also like to have a representation of object at-
tributes analogous to our representation of person attri-
butes. However, it is much harder to obtain training ex-
amples for a large vocabulary of predictable attributes
for non-human entities. Therefore, we restrict ourselves
to color, which is visually salient and frequently men-
tioned in Visual Madlibs descriptions, and is not cap-
tured well by networks trained for category-level recog-
nition (Plummer et al, 2017). We follow Plummer et al
(2017) and fine-tune a Fast-RCNN VGG-16 network to
predict one of 11 colors that occur at least 1,000 times
in the Flickr30K Entities training set: black, red, blue,
white, green, yellow, brown, orange, pink, gray, pur-
ple. This network is trained with a one-vs-all softmax
loss. The training is performed on non-person phrases
to prevent confusion with color terms that refer to race.
For our color feature representation we use the 4096-
dimensional fc7 activation values extracted from the
object bounding box.

Quantitative evaluation of a color network similar to
ours can be found in Plummer et al (2017). The exam-
ples in Figure 4 provide a qualitative illustration of the
color network outputs and indicate how color predic-
tions may be helpful for answering Object’s Attribute
Visual Madlibs questions.

Note that we extract color features only from pro-
vided object boxes for questions 9-12. For questions 3-5,
color is mentioned far more rarely in candidate answers;
furthermore, automatically detected object boxes are
much more noisy than person boxes making the color
cues correspondingly unreliable.

5 Image Region Selection

Madlibs questions on Interestingness, Past, and Future
do not provide a target image region. Consider the Fu-
ture example in Figure 2, where each of the four candi-
date answers mentions a person and an object: she put
down the cat, the bride dropped the bouquet, and so on.
In order to pick the right choice, we need to select the
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The boat is The umbrellas are The bears are
* white * varying shades of blue v/ * brown

* green v/ * black on the inside + yellow

* blue * black and somewhat small o black ¢

* dirty * pink patterned with whales + gray

Top Color Prediction : green

The motorcycle is

Top Color Prediction : blue

The cell phone is

Top Color Prediction : black

The umbrella is

* racing * silver v/ * green ¥
* chrome ¢ white * open

* golden v/ ¢ black * yellow
* small * compact * blue

Top Color Prediction : yellow

Top Color Prediction : gray

Top Color Prediction : green

Fig. 4 Examples of Object’s Attribute questions with the top prediction of our Color network underneath. Even if the color
mentioned in the answer is not among the ones predicted by our model, it can still be relevant (second row, first two images).
The bottom right image is a failure case where the predicted color leads to the wrong answer.

best supporting regions for each of the entity mentions
(she, cat, bride, bouquet) and use the respective match-
ing scores as well as the features extracted from the
selected regions as part of our overall image-to-answer
scoring function.

We first parse all answers with the Stanford parser
(Socher et al, 2013) and use pre-defined vocabularies to
identify noun phrase (NP) chunks referring to a person
or to an object. Then we apply the following region
selection mechanisms for mentioned people and objects,
respectively.

Person Box. We first detect people in an image using
the Faster-RCNN detector (Ren et al, 2015b) with the
default confidence threshold of 0.8. We discard all de-

tected boxes with height or width less than 50 pixels
since we find experimentally that these mainly contain
noise and fragments. We also consider the smallest box
containing all detected people, to account for cues orig-
inating from multiple people. Given the image and an
answer, we attempt to select the box that best corre-
sponds to the person mention in the answer. To this
end, we train a Person CCA model on the val+test
set of Flickr30k Entities using person phrases (repre-
sented by average of word2vec) and person box fea-
tures (302-dimensional vectors of predictions from our
person attribute network of Section 4). As a lot of an-
swer choices in the Madlibs dataset refer to people by
pronouns or collective nouns such as he, she, they, cou-
ple, we augmented the training set by replacing person
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phrases as appropriate. For example, for phrases such
as {man, boy, guy, male, young boy, young man, little
boy}, we added training samples in which these phrases
are replaced by he (and the same for she). Similarly,
additional examples were created by replacing {people,
crowd, crowd of people, group of people, group of men,
group of women, group of children}, etc., with they, and
{two men, two women, two people} with couple.

Given the trained Person CCA model, we compute
the score for each person phrase from the candidate
answer and each candidate person box from the im-
age, and select the single highest-scoring box. A few
example selections are shown in Figure 5. In case no
words referring to people are found in a choice, all per-
son boxes are selected.! The selected box provides spa-
tial support for extracting person action and attribute
cues introduced in Section 4; in turn, these features,
together with entire candidate answers (as opposed to
just the person phrases), are used to train cue-specific
CCA models as will be explained in the next section.
The score of the Person CCA model for the selected
box will also be used in a trained combination with the
cue-specific CCA scores.

Object Box. We localize objects using the Single Shot
MultiBox Detector (SSD) (Liu et al, 2015) that has
been trained on the 80 MSCOCO object categories.
SSD is currently the state of the art for detection in
speed and accuracy. For each Visual Madlibs image, we
consider the top 200 detections as object candidates and
use the Object CCA model created for the phrase
localization approach of (Plummer et al, 2017) to se-
lect the boxes corresponding to objects named in the
sentences. This model is trained on the Flickr30k Enti-
ties dataset over Fast-RCNN fc7 features and average
of word2vec features. We use the simplest model from
that work, not including size or color terms. The top-
scoring box from the image is used to extract object
VGG features as will be explained in Section 6.

Figure 6 shows a few examples of object selection
in action. As can be seen from the failure cases in the
bottom row, object boxes selected by our method are
less reliable than selected people boxes, since detection
accuracies for general objects are much lower than for
people and object boxes tend to be smaller. Therefore,
instead of defining an object selection score based on
the single highest-scoring region-phrase combination, as
in the case of people above, we define a collective object
score that will be used in the cue combination method
of Section 6. Inspired by a kernel for matching sets of
local features (Lyu, 2005), we take all of the N = 200

1 Note that the images of the Visual Madlibs dataset are
sampled from the MSCOCO dataset (Lin et al, 2014) to con-
tain at least one person.

object boxes from the image and the M object phrases
from the answer and then combine their CCA matching
scores as follows:

K (image, answer) =

N M
11
N Z Z{cos,similarity(boxi,phrasej)}r ,
i=1 j=1
(1)
where the parameter r assigns more relative weight to
box-phrase pairs with higher similarity. We use r = 5
in our implementation.

6 Cue Combination

As described in Section 4, we extract several types of
features from the images, aiming to capture multiple vi-
sual aspects relevant for different question types. How
can we combine all these cues to obtain a single score
s(I,q,a) for each question, image and candidate an-
swer?

The simplest combination technique is to concate-
nate 4096-dimensional fc7 features produced by each of
our networks. In practice, due to the dimensionality of
the resulting representation, we can only do this for a
pair of networks, obtaining 8192-dimensional features.
In our system, we mainly use this technique when we
want to combine our baseline global ImageNet network
with one other cue.

To combine more than two features, we can stack
lower-dimensional class prediction vectors (logits, or
values before the final sigmoid/softmax layer). In par-
ticular, to characterize people, we concatenate the class
predictions of HICO, MPII, and attribute networks,
producing a compact feature vector of 1295 dimensions.

To enable even more complex cue integration, we
learn CCA models on small subsets of cues and linearly
combine their scores with learned weights. The follow-
ing is a complete list of the individual CCA models used
for our full ensemble approach:

— Baseline + Places: CCA trained on concatenated
fc7 features from global ImageNet- and Places-
trained networks. This is used for all question types.

— Baseline + Person Box ImageNet: CCA
trained on concatenated fc7 features from ImageNet
network applied to the whole image and person box.
This cue is used for question types 3-5 (on auto-
matically selected boxes) and 6-9 (on ground truth
boxes). The reason for concatenating the global and
person box features is to make sure that the result-
ing model is at least as strong as the baseline. The
same reasoning applies to the other person-specific
and object-specific models below.
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—

The bride and groom cut
their wedding cake

The girl left

They kept talking A woman finishes eating a donut

The girl stood waiting for
the return ball

A man purchases fruit
from a fruit stand

Fig. 5 Examples of selected person boxes based on person phrases. The person phrases are highlighted in red font and the
corresponding selected boxes are also colored red. The yellow boxes are discarded either because they do not match the person
mentioned in the phrase or because they are below the size threshold. In the third example from the left in the top row,
CCA selects the overall box, thus all the person-specific boxes are colored red with the exception of the top right one which
is discarded as it is below the size threshold. The last two images in the second row are failure cases.

— HICO + MPII + Person Attribute: CCA
trained on concatenated logit scores from HICO,
MPII, and Attribute networks. Used for question
types 3-9.

— Person selection score: Person box selection
score from the Person CCA model of Section 5. Used
for question types 3-5.

— Object selection score: Scores from the Object
CCA model of Section 5 combined using eq. (1).
Used for question types 3-5.

— Baseline + Object Box ImageNet: CCA
trained on concatenated fc7 features from the Im-
ageNet network applied to the whole image and
object box. Used for question types 3-5 (on auto-
matically selected boxes) and 9-12 (on ground truth
boxes).

— Baseline + Object Box Color: CCA trained on
concatenated fc7 features from the ImageNet net-
work applied to the whole image and color network
applied to the object box. Used for question types
9-12.

To learn the combination weights, we divide the Vi-
sual Madlibs training set into an 80% training subset
and a 20% validation subset. From the training subset,

we learn the individual CCA models above using respec-
tive features and text descriptions?. For the validation
set, we create three Easy and three Hard distractors
for each correct description by following the same rules
originally applied to create the test set (Yu et al, 2015).

For a particular question type, let s? indicate the
CCA score obtained on the validation sample (I, q, a)
when using the jth model. We can then combine scores
from all CCA models applicable to this question type
as S =5 j wls. Let S; denote the combined score for
each candidate answer a; for the considered sample,
and ¢* the index of the correct choice. We define the
following convex loss:

L(S) = max{l — S;= + I&a§{5’i}, 0} . (2)

This formulation assigns zero penalty when the score of
the correct answer is larger by at least 1 than the scores
of all the wrong choices. Otherwise, the loss is linearly
proportional to the difference between the score of the
correct answer and the maximum among the scores of
the other choices. Over all the k = 1,..., K validation

2 The Madlibs training set contains only the correct image
descriptions, not the incorrect distractor choices.



Combining Multiple Cues for Visual Madlibs Question Answering 13

They ate the cake She lifted the spoon

- NL/f L rn
the boy blew out the candles

She dropped the bottle

Fig. 6 Examples of selected object boxes based on object phrases (in red font). The red boxes are the top-scoring ones
according to the object CCA model, while all the yellow boxes have lower scores. The top row presents correctly detected

objects, while the bottom row shows failure cases.

samples, we solve
K
minZL(S)k subject to |w|1 <1, w’ >0, (3)
S

where the constraints specify that the weights for each
feature should be positive, and the L1-norm condition
can be seen as a form of regularization which induces
a sparse solution and allows an easy interpretation of
the role of each cue. Alternatively, we tried using the
L2-norm and obtained slightly lower final performance.
One large advantage of using the L1 norm is that the
assigned weights provide good interpretability of the
relevance of cues, as will be seen in Table 3. We imple-
mented the optimization process by using the algorithm
of Duchi et al (2008).

For a test question of a given type, we compute
all the applicable CCA scores, combine them with the
learned weights for that question type, and choose the
answer with the highest combined score:

a; = argmax{S;} = argmax E wis! b . 4)
i i .
j

7 Experiments

In Section 7.1, to motivate our selection of cues for dif-
ferent questions, we examine the frequencies of cue-
specific words in answers for each question type. In
Section 7.2, we proceed to a detailed analysis of the
multiple-choice answer task when using each cue sep-
arately. Finally, in Section 7.3 we evaluate the perfor-
mance of the combined system. A further analysis of our
approach in cross-tasks settings is presented in Section
7.4 and 7.5 where we discuss the effect of learning CCA
embeddings over multiple joint question types and of
testing the embedding on a different question type with
respect to that used in training.

7.1 Cue-Specific Category Statistics

Given the lists of 205 Places scene categories, 600
HICO action categories, 302 attribute categories, 80
MSCOCO object categories, and 11 color categories,
we can compute the following statistics for ground truth
correct answers from the training set (i.e., accurate de-
scriptions) of each Visual Madlibs question type:

— Madlibs coverage = (number of answers that
mention at least one of the categories) / (total num-
ber of answers);
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PLACES HICO (Action) ATTRIBUTE MSCOCO (Object) COLOR
SCENE k = - == ———1 SCENE
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Fig. 7 Madlibs coverage (blue): indicates which percentage of the Visual Madlibs sentences mentions at least one of the
Places (205 classes), action (HICO, 600 classes), attribute (302 classes), MSCOCO object (80 classes) and color (11 classes)
categories. Category list coverage (red): indicates which percentage of the category list is named at least once in the
Visual Madlibs sentences. Both the coverage evaluations are performed by starting from the ground truth correct answers of

the Visual Madlibs training set.

— Category list coverage = (number of categories
named at least once in the answers) / (total number
of categories).

When counting the occurrences of the HICO actions, we
consider past tense, continuous (-ing) and third person
(-s) forms of the verbs. We also augment the MSCOCO
object vocabulary with several word variants (e.g. bi-
cycle, bike etc.) and singular/plural forms for all the
objects.

Figure 7 shows the resulting statistics. Not surpris-
ingly, Places categories have the best coverage on Scene
questions: about 37% of the Visual Madlibs Scene an-
swers mention one out of 50% of the Places categories.
Beyond that, about 25% of Person’s Location answers
mention one of 40% of the Places categories, and about
5% of Object’s Location answers mention one of 30%
of these categories.

HICO action categories give the best coverage for
Person-Object Relationship, Object’s Affordance, and
Person’s Activity questions. Attribute classes play an
important role for Interestingness, Past, Future, Per-
son’s Attribute, and Person’s Activity questions. How-
ever, no more than about 50% (resp. 60%) of HICO
Action (resp. Attribute) categories are mentioned in an-
swers of any single given type.

By contrast, more than 70% of the MSCOCO ob-
jects appear in all the question types and 100% of the
Object related answers (question types 9-12) mention
one of the MSCOCO categories. This is not surprising,
since the Visual Madlibs dataset was created on top of
MSCOCO images. Objects are also often mentioned by
Interestingness, Past, Future and Person’s Action an-
swers, but are rare in all the remaining cases.

Finally, Color categories play the most important
role for Object’s Attribute questions: over 50% of an-
swers for that question type mention a color, and 100%
of the color names are mentioned. While a majority
of the color names are also mentioned in all the other
question types except for Person-Object Relationship
and Object’s Affordance, the percentage of answers that
actually mention a color is negligible.

This analysis support a preliminary selection of the
cues to use in each case. Since actions, attributes, ob-
jects and their colors are not named in the answers
of the Scene and Emotion question types, the visual
appearance of a person/object instance in the images
would not have any matching textual information. Sim-
ilarly, the sparse presence of person attribute mentioned
in the Object related question (types 10-12) indicate
that people are rarely pointed out in the answers. With-
out a phrase that explicitly refers to an object/person
instance we do not have a reasonable spatial support to
extract local features, thus we decided to avoid them.
Finally object colors provide only a limited amount of
information due to their low coverage and to avoid fur-
ther noise introduced by the object localization it makes
sense to include them only when the object bounding
box is provided with the question (types 9-12).

7.2 Single-Cue Results

This section analyzes the performance of our individ-
ual cues listed in Section 6. The results are presented in
Table 1: each question type is considered separately in
the experiments but to ease the discussion we organized
the questions on the basis of their visual focus: whole
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. . Full Image Person Box Object Box
Distractor Question Type Baselme | B.+ | B.+ [ B.+ [B.¥[B.+ | B+ |B+
ype ImageNet | Places | ImageNet | HICO | MPII | Attr. | ImageNet | Color
1) Scene 87.73 89.04 - -
2) Emotion 48.32 49.53 - - - - - -
(A) 3) Interesting 78.11 78.74 79.59 79.47 | 78.55 | 79.31 78.86 -
4) Past 79.30 80.34 80.60 81.54 | 80.28 | 81.68 80.36 -
5) Future 79.52 80.10 80.76 82.29 | 80.42 | 81.30 80.61 -
Easy 6) Person’s Attribute 53.32 54.10 59.00 54.10 | 55.60 | 64.50 - —
(B) 7) Person’s Activity 83.89 84.30 85.51 87.46 | 85.16 | 84.71 - -
8) Person’s Location 84.59 85.70 84.50 85.29 | 84.51 | 84.33 - -
9) Person-Object Relation 71.36 72.07 72.80 75.77 | 73.84 | 71.10 74.39 71.55
10) Object’s Attribute 50.15 50.47 — - — - 57.85 59.50
(C) 11) Object’s Affordance 80.56 82.76 - - - 87.20 82.32
12) Object’s Position 67.79 69.41 — - - 68.18 67.98
1) Scene 70.94 73.22 - - -
2) Emotion 35.50 35.77 - - - - -
(A) 3) Interesting 54.36 54.66 54.60 54.92 | 54.95 | 56.02 54.33 -
4) Past 53.89 53.95 55.37 55.09 | 54.11 | 55.90 53.78 -
5) Future 55.19 55.47 56.25 56.76 | 55.19 | 57.58 57.02 —
Hard 6) Person’s Attribute 42.55 43.11 48.85 43.06 | 45.77 | 54.64 - -
(B) 7) Person’s Activity 67.56 68.10 69.47 71.02 | 70.03 | 68.68 - -
8) Person’s Location 64.57 66.66 65.46 64.97 | 64.76 | 64.71 - -
9) Person-Object Relation 54.46 54.65 56.84 58.72 | 56.84 | 54.48 55.85 54.58
10) Object’s Attribute 44.99 45.62 — - - 53.63 54.73
(C) 11) Object’s Affordance 64.26 64.50 - - - - 67.65 63.99
12) Object’s Position 56.46 57.56 — — — 57.34 56.43

Table 1 Accuracy on Madlibs questions with fc7 features. The Baseline ImageNet column gives performance for 4096-d fc7
outputs of the baseline network trained on ImageNet classification. For the columns labeled “B. 4+ X”, the baseline fc7 features

are concatenated with fc7 features of different specialized networks, yielding 8192-d representations.

image (types 1-5, A), person-specific (types 6-9, B) and
object-specific (types 10-12, C). The leftmost column
shows the accuracy obtained with the baseline whole-
image ImageNet fc7 feature. The subsequent columns
show the performance obtained by concatenating this
feature with the fc7 feature of each of our individual
cue-specific network (as explained in Section 6, the rea-
son for always combining individual cues with the base-
line is to make sure they never get worse performance).

Whole-Image Questions. As shown in Table 1(A),
using the Places features for Scene questions helps to
improve performance over the ImageNet baseline. Emo-
tion questions are rather difficult to answer but we can
observe some improvement by adding Place features as
well. We did not attempt to use person- or object-based
features for the Scene and Emotion questions since the
analysis of Section 7.1 indicated a negligible frequency
of person- and object-related words in the respective
answers.

On the other hand, for Future, Past, and Interest-
ingness questions, people and objects play an important
role, hence we attempt to detect them in images as de-
scribed in Section 5. From the selected person boxes we
extract fc7 features from four different networks: the
generic ImageNet network, the HICO and MPII Ac-
tion networks, and the Attribute network trained on

Flickr30K Entities. All of them give an improvement
over the whole-image baseline, with the Attribute fea-
tures showing the best performance in most cases. From
the object regions we extract localized ImageNet fea-
tures which also produce some improvement over the
whole-image baseline in four out of six cases. Since, ac-
cording to Figure 7, color is mentioned in only a tiny
fraction of answers to the whole-image questions, we do
not include it here.

Person Questions. For questions about specified peo-
ple, Table 1(B) reports results with features extracted
from the provided ground truth person box. Not sur-
prisingly, Attribute features give the biggest improve-
ment for Attribute questions, and HICO Action fea-
tures give the biggest improvement for Person’s Ac-
tivity and Person-Object Relationship questions (recall
that HICO classes correspond to interactions between
people and MSCOCO objects). For the latter question
type, the ground truth object region is also provided;
by extracting the ImageNet and Color features from
the object box we obtain accuracy lower than that of
the HICO representation but still higher than that of
the whole-image baseline. Finally, for Person Location
questions, the global Places features work the best. This
question asks about the place where the person is, i.e.
the environment around him/her. Thus, visual informa-
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Distractor Question Type fc7 Combination Label Combination CCA Score Combination
T Baseline Baseline + HICO [HICO + MPII||+ Person|+ Object| CCA Ensemble
ype ImageNet| Single Best Cue ||+ MPII + Attr. Score Score L2 L1

3) Interesting 78.11 HICO | 79.47 || 79.25 79.94 80.59 80.88 |82.92| 82.34

(A) 4) Past 79.30 Attr. 81.68 || 82.17 84.09 84.17 84.97 |85.89| 85.91

5) Future 79.52 HICO. |82.29]| 82.89 84.97 84.97 85.47 |86.75| 86.63

6) Person’s Attribute 53.32 Attr. 64.50 || 59.37 68.43 - - 68.59 | 68.68

Easy |(B) 7) Person’s Activity 83.89 HICO |87.46 || 87.23 87.26 - - 88.11 | 88.43
8) Person’s Location 84.59 Places | 85.70 || 84.56 84.51 - - 86.52| 86.28

9) Person-Object Relation|| 71.36 HICO | 75.77 || 75.42 75.66 — - 77.77| 77.08

10) Object’s Attribute 50.15 Color 59.50 - - - - 59.48 | 59.62

(C) 11) Object’s Affordance 80.56 |Obj. VGG | 87.20 - - - - 85.74 | 87.21

12) Object’s Position 67.79 Places |69.41 - — - - 69.44 | 69.71

Average 72.86 77.30 — — — — 79.12 | 79.19

3) Interesting 54.36 Attr. 56.02 || 54.11 55.37 56.25 56.31 |58.37| 57.92

(A) 4) Past 53.89 Attr. 55.90 || 55.23 58.17 58.29 59.60 |61.37| 61.33

5) Future 55.19 Attr. 57.58 || 56.87 59.98 60.05 61.91 |62.82| 62.73

6) Person’s Attribute 42.55 Attr. 54.64 || 46.61 56.17 — - 56.47| 56.38

Hard |(B) 7) Person’s Activity 67.56 HICO |71.02]| 71.35 71.42 - - 71.00 | 71.68
8) Person’s Location 64.57 Places |66.66|| 62.82 62.46 - - 66.50 | 66.66

9) Person-Object Relation|| 54.46 HICO |[58.72|| 56.68 56.88 — — 57.80 | 57.92

10) Object’s Attribute 44.99 Color |[54.73 — - - - 54.75| 54.73

(C) 11) Object’s Affordance 64.26 |Obj. VGG| 67.65 - - - - 67.69| 67.69

12) Object’s Position 56.46 Places | 57.34 - - - - 58.22| 58.16

Average 55.83 60.03 - — - - 61.50 | 61.52

Table 2 Results of combining multiple cues. Columns marked “fc7 Combination” give key results from Table 1 for reference.
Columns marked “Label Combination” show results with combining the class activation vectors from the respective networks.
Columns marked “+ Person Score” and “+ Obj. Score” show the results of a learned combination of the HICO + MPII +
Attr. CCA with the region selection scores of Section 5. The CCA Ensemble columns shows the results of combining all CCA
scores appropriate for each question type with weights learned using either the L2 or the L1 regularization. The obtained
average results are slightly better in the L1 case and the weights obtained in this way provide good interpretability (see Table

3).

tion from the image part outside the person bounding
box is more helpful than the localized information in-
side the person box which capture more the person ap-
pearance rather than the appearance of the surrounding
location.

Object Questions. For questions about specified ob-
jects, Table 1(C) reports results with features extracted
from the provided ground truth object box. We can see
that Color features work best for Object’s Attribute
questions, ImageNet features work best for Object’s Af-
fordance questions, and Places features work best for
Object’s Location questions.

7.3 Multi-Cue Results

Table 2 shows the results obtained by integrating mul-
tiple cues in a variety of ways. We exclude Scene and
Emotion questions from the subsequent analysis: based
on Figure 7, very few of their answers involve persons
and objects, thus, our final cue combination for these
question types is simply the concatenation of ImageNet
and Places as shown in Table 1.

For ease of comparison, the first and second columns
of Table 2 repeat the baseline and highest results from
Table 1. The subsequent columns show performance ob-
tained with other cue combinations. The Label Com-

bination columns of Table 2 show the results of con-
catenating the class prediction vectors from the HICO
and MPII networks, and from all three person-centric
networks (HICO+MPII+Attribute). For HICO+MPII,
we observe a small drop in performance over the sin-
gle best cue on whole-image questions (i.e., in Inter-
esting, Past, Future rows) and location-related ques-
tions (Person’s Location and Person-Object Relation),
probably owing to the reduced feature dimension and
loss of global contextual information as compared to
the 8192-dimensional fc7 combination feature. On the
other hand, HICO+MPII produces results compara-
ble with the best fc7 cue for the Person’s Activ-
ity question while being much more compact (993
vs. 8192 dimensions). By adding the attribute labels
(HICO+MPII+Attribute column), we further improve
performance, particularly on the Person’s Attribute
question.

Recall from Section 5 that for Interestingness, Past,
and Future questions, we perform focus region selec-
tion and compute Person and Object scores measur-
ing the compatibility of person and object mentions
in answers with the selected regions. These scores also
provide some useful signal for choosing the correct an-
swer, so we use the procedure of Section 6 to learn
to combine each of them with the scores from the
HICO+MPII+Attribute CCA model. For these two-cue
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. Full Image Person Box Object Box
Distractor Question Type HICO +
B. + B. + MPII Person B. + B. + Object
Type Places ImageNet + Attr. Score ImageNet Color Score
3) Interesting 0.00 0.00 0.00 0.36 - 0.00
(A) 4) Past 0.01 0.02 0.05 0.29 - 0.00
5) Future 0.03 0.01 0.04 0.24 - 0.00
6) Person’s Attribute 0.00 0.21 — — — —
7) Person’s Activity 0.08 0.07 - - - -
Basy (B) 8) Person Location | 067 | 0.00 - - - -
9) Person-Object Relation 0.11 0.17 0.42 — 0.23 0.07 -
10) Object’s Attribute 0.00 - - — 0.18 —
(C) 11) Object’s Affordance 0.20 - - - | o080 0.00 -
12) Object’s Position | 084 | - - - 0.16 0.00 -
3) Interesting 0.09 0.15 0.41 0.11 0.23 - 0.01
(A) 4) Past 0.04 0.05 0.48 0.16 0.17 - 0.09
5) Future 0.05 0.19 0.31 0.14 0.09 - 0.22
6) Person’s Attribute 0.03 0.35 — - - - -
7) Person’s Activity 0.00 0.48 0.52 - - - -
Hard (B) 8) Person’s Location | 100 | 0.00 0.00 - - - -
9) Person-Object Relation 0.03 0.39 0.13 - 0.44 0.01 -
10) Object’s Attribute 0.00 - - - 0.20 -
(C) 11) Object’s Affordance 0.29 - - - 0.00 -
12) Object’s Position | omr | - - - 0.23 0.00 -

Table 3 Weights assigned by the CCA score combination (Ensemble L1) method to each cue. Questions related to location
(types 8, 12) heavily rely on scene predictions, while action and attribute cues (HICO+MPII+Attr. column) are useful for a

large variety of question types.

problems, the learning procedure assigns a high weight
to the combined action and attribute representation
(wHICO+MPII+Attribute > () 9) and a small one to the
Person and Object scores (wPe”‘m/Obj' Selection < 0.1).
The resulting accuracies are reported in columns la-
beled “4 Person Score” and “+ Object Score” of Ta-
ble 2, and they show small but consistent accuracy
improvements over the HICO+MPII+4Attribute model,
particularly for the hard questions.

The last column of Table 2 gives the performance of
the full ensemble score using all the CCA models ap-
plicable to a given question type (refer back to Section
6 for the list of models). We report both the results
obtained using the L1 regularized weights according
to Eq. (3) and its variant based on L2 regularization.
The accuracies are similar in both cases, with the L1
case marginally better on average. Using L.1 however
allows for better understanding the role of each cue:
the per-cue weights for each question type are shown
in Table 3. Generally, the most informative cues for
each question type get assigned higher weights (e.g.
HICO+MPII+Attribute features get high weights for
Person’s Activity and Person’s Attribute questions, but
not for Person’s Location questions). From the “Aver-
age” row of Table 2, we can observe an improvement of
about 1.5% in accuracy with respect to the single best
cue and about 6% with respect to the baseline for both
the Easy and Hard cases.

To date, the strongest competing system on Visual
Madlibs is that of Mokarian et al (2016). We benchmark
our CCA Ensemble method against their results in Ta-
ble 4 and show that we outperform their approach with

Distr. Question CCA [Mokarian
Type Type Ensemble | et al (2016)]

3) Interesting 82.34 78.20

(A)4) Past 85.91 80.80

5) Future 86.63 81.10

6) Person’s Attribute 68.68 56.00

(B)7) Person’s Activity 88.43 83.00

Easy 8) Person’s Location 86.28 84.30

9) Person-Object Relation | 77.08 75.30

10) Object’s Attribute 59.62 62.40

(C)ll) Object’s Affordance 87.21 83.30

12) Object’s Position 69.71 77.50

Average 79.19 76.19

3) Interesting 57.92 54.20

(A)4) Past 61.33 54.60

5) Future 62.73 56.10

6) Person’s Attribute 56.38 44.20

(B)7) Person’s Activity 71.68 65.50

Hard 8) Person’s Location 66.66 65.20

9) Person-Object Relation | 57.92 55.70

10) Object’s Attribute 54.73 45.70

(C)H) Object’s Affordance 67.69 63.60

12) Object’s Position 58.16 56.30

Average 61.52 56.11

Table 4 Comparison of our CCA
method against Mokarian et al (2016).

Ensemble multi cue

an average accuracy improvement of 3 and 5 percent-
age points on the easy and hard distractor cases, respec-
tively. Our CCA Ensemble results are superior to theirs
on every question type except for easy Object Attribute
and Object Location questions. For both these ques-
tions, we exploit the ground truth object boxes while
the method in (Mokarian et al, 2016) pool features
over multiple regions. It is also relevant to note that
in our experiments, we set aside a portion of the train-
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Full  Person Object Full  Person Object
Image  Box Box @ Image  Box Box @
s 5 & &
x~
foi58d &
X g s &
FFFELFS s
SIEITTESS

1) Image’s Scene
R When I look at this picture

The placeis ___ Ifeel __
* train stationv/ * excited
* grassy hillside * tickle
* sidewalk bench * sad v viv
* ski trail * happy
3) Image’s Interestingness 4) Image’s Past

| The most interesting aspect
of this picture is _

One or two seconds before
this picture was taken ___

* the rusty water * lady walks behind the bench x| x| x x

S - firefighters x| x| x x * they were standing v/ viv v
* the girl v/ v v * she got up on the table
* people in the street x * little one smiles pretty

One or two seconds after this
picture was taken ___

The personis ___
* she put down the cat

* dressed in same shirts

* the bride dropped the bouquet * avery young blonde boy ¢ (4 (4
* she’s gonna take a selfie x| x| x x * agirl in blue shorts X|x|x
* the man closed the phone v/ viv v * barefoot and wearing a sundress | X

7) Person’s Activity 8) Person’s Location

The personis __ ’ N . The personis ___

* relaxing ' * ina house
* hosting a party * inavehicle v/ v v
* carrying a chair ¢/ v v | * ina bed ] x [ x]x

x
X
x
x

* maintaining his skateboard * inaroom

9) Person -Object Relationship 10) Object’s Attribute

The personis ___ the dog
* surfboarding with

The surfboard is ___
* yellow and flat v/

* riding with the dog x (x| % s ) ; ~4 * longand red x| v v
* taking a photo with ¢/ v v = * blue and white x [x
* playing with | x u * white and gray

12) Object’s Position

People could __ the bench The appleis __

* place their luggage on x x * inabox

* siton v/ v v * on astick ¢/ v/ v
* take in the view x * in a basket % x| x

* relax on * on the table

Fig. 8 Examples of answers selected using each individual cue as well as the full ensemble method. The first ImageNet column
corresponds to the baseline feature (B.), while the following columns correspond to “B. + X” features following the same order
as in Table 1. Check marks specify that the correct answer has been selected when using the corresponding column feature for
multi-choice answering. The crosses indicate instead a wrong selected answer.

Full  Person Object Full  Person Object
Image  Box Box @ Image  Box Box @
S & $ &
. .
7 S g5« COLANS L S
PSIFCEFES § FSEOTFS §
STEITETE SIEITTESE
3) Image’s Interestingness n’s Attribute
The mostinterestingaspect A The personis
of this pictureis ___ —
+ the pouring rain * older black woman v/
* the woman with an umbrella * bald man X & £
* the umbrella hats x|[x]|x|[x]|x|x x * dressed warmly
\ * unusual outfit that the man is wearing v/ * dressed casually x X [x
Rl
9) Pair’s Relationship
The personis___ the pizza The bowlis ___
* arrangingv’ * red x| x x 5
. eatiqg x| x x|x|x|[x]x * glass x
o C°°k.’"g x * red and round
holding * white with ridges ¢/

Fig. 9 Failure cases for four multi-choice question types from the Hard question-answering setting. Examples in the left column
involve relatively rare concepts like “unusual outfit” and “arranging the pizza,” while examples on the right are visually subtle
or ambiguous. The crosses indicate a wrong selected answer.
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ing data for validation while the method in (Mokarian
et al, 2016) exploits nCCA models learned on the entire
Visual Madlibs training samples.

Finally, Figure 8 shows answer choices selected with
individual cues for the same questions that were orig-
inally shown in Figure 1, while Figure 9 shows a few
failure cases.

7.4 Learning Shared Embedding Spaces

In all the experiments considered so far, we learned a
CCA embedding space per question type and per cue.
However, the questions can be easily grouped on the
basis of their main visual focus (whole image, persons,
and objects) and it is worthwhile to evaluate the perfor-
mance on the multi-choice question answering task us-
ing shared embedding spaces obtained from each group.
This setting allows us to increase the amount of avail-
able training data for each model while making them
more robust to question variability.

For each cue, we grouped the training data of ques-
tion types 1-5 on whole image to define a joint embed-
ding space for group (A), types 6-9 on persons to define
a joint embedding space for group (B) and types 10-12
on objects to define a joint embedding space for group
(C). At test time, these models were used to assess the
suitability of putative answers by obtaining one set of
scores for each cue. Finally the cue combination proce-
dure is applied in two ways: either by exploiting the new
embedding spaces instead of the original ones (group)
or by adding the score produced by the new embed-
ding spaces to the original ones (combined). In this last
case, we actually deal with a doubled number of cues.
The final CCA Ensemble results are collected in Ta-
ble 5, where the first column also reports as reference
the final results of Table 2 obtained with embedding
spaces learned on separate question types. From the
accuracy values, we can conclude that learning shared
models is beneficial when the question types are quite
similar (as in group A) but it is less helpful in case of
higher variability among the question types (group B
and C). In particular, among the question types 10-12,
Object’s Affordance and Object’s Position appear to be
the most specific question types that do not derive any
benefit from sharing information amongst each other
and with the Object’s Attribute question. The overall
effect of question variability becomes less evident when
separate and group model are combined together in the
CCA Ensemble.

Distr. . CCA Ensemble

Type Question Type separate group |combined

3) Interesting 82.34 | 82.85 | 83.40

(A) 4) Past 85.91 | 86.70 | 86.36

5) Future 86.63 | 87.42 | 87.68

6) Per. Attribute 68.68 | 51.38 68.46

Easy |(B) 7) Per. Activity 88.43 | 87.83 88.85

8) Per. Location 86.28 | 84.47 | 86.76

9) Per.-Obj. Relation 77.08 | 7791 | 77.97

10) Object’s Attribute || 59.62 | 54.91 59.67

(C) 11) Obj. Affordance 87.21 | 86.65 85.84

12) Obj. Position 69.71 | 64.46 64.31

Average 79.19 | 76.46 | 79.93

3) Interesting 57.92 | 58.90 | 58.17

(A) 4) Past 61.33 | 58.60 | 61.86

5) Future 62.73 | 62.47 | 63.42

6) Per. Attribute 56.38 | 35.96 | 56.43

7) Per. Activity 71.68 | 70.87 | 72.02

Hard (B) 8% Per. Location 66.66 | 60.55 | 66.78

9) Per.-Obj. Relation 57.92 | 56.33 | 57.97

10) Obj. Attribute 54.73 | 50.82 | 54.73

(C) 11) Obj. Affordance || 67.69 | 47.05 | 52.12

12) Obj. Position 58.16 | 53.46 53.55

Average 61.52 | 55.50 59.71

Table 5 Results of multiple cue combination obtained with
CCA Ensemble when the CCA models are either trained on
separate questions or trained on the combination of several
question types. The first column, separate, reports results
from Table 2. The score produced by the shared CCA mod-
els can be substituted (group) or added (combined) together
with those obtained from separate questions. Here, we indi-
cate with bold font all the results that are equal or higher
than the corresponding reference from separate questions.

7.5 Transferring Learned Embedding Spaces

A further test on the robustness of the learned CCA
embedding spaces for multiple-choice question answer-
ing can be done by evaluating how transferable they are
across several question types without additional train-
ing. This can be analyzed by testing a CCA model on
a different question type with respect to that on which
it was originally learned. We ran extensive experiments
on this setting by using the cues that produced the best
result on the data of each training question and using it
on all the other questions as test. As expected, the accu-
racy in this cross-task setting decreases with respect to
the standard case with training and testing data from
the same question type, and the performance drop de-
pends on the question similarity. This effect is clearly
visible in Table 6 where we provide examples for this
setting which involve whole image questions and on lo-
cation related question: despite the drop, the cross-task
recognition rate is still much better than random, in-
dicating a good robustness of the models. Surprisingly,
a model trained on Person Location (type 8) performs
better than the standard model on Scene (type 1) ques-
tions, probably because the trained embedding space
learns for a slightly harder task and is more discrimi-
native.
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1%;?;2‘ Q‘%e;:eo“ 3} Ttoresting ge;ta% 5 Future but all trained on ImageNet. This approach can be eas-
3) Interesting] 79.94 767 77.39 ily adjusted to use our various domain expert network
Easy| 4) Past 79.23 84.09 82.78 features and extend existing VQA methods like those
Teain 5) Future 78.19 83.38 84.97 . _
) 3) Tnteresting _ 55.37 52.63 52.38 in (Wu et al, 2016b; Wang et al, 2017b).
Hard 4513 gaft gi-gg 5;337 553-‘;68 Acknowledgments. This material is based upon work
uture . . .
supported by the National Science Foundation under
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Easy| 8) Per. Loc 90.14 85.70 56.61 ulty Fellowship, and the Sloan Foundation Fellowship.
Teai 12) Obj. Pos. 82.76 79.92 69.41
raim 1) Scene 73.22 63.16 38.25
Hard| 8) Per. Loc. 72.71 66.66 43.03
12) Obj. Pos 59.27 55.46 69.41

Table 6 Transfer Learning results obtained by training and
testing CCA models on different question types. For the
experiments in the top table we used the combined cue
HICO+MPII+Attr., while for the bottom table we used
B+Places. Note that when training on the Person Location
question and testing on the Scene question, the obtained per-
formance is higher than training and testing on Scene for the
Easy distractor case.

8 Conclusions

We have shown that features representing different
types of image content are helpful for answering mul-
tiple choice questions, confirming that external knowl-
edge can be successfully transferred to the this task
through the use of deep networks trained on special-
ized datasets. Further, through the use of an ensemble
of CCA models, we have created a system that beats the
previous state of the art on the Visual Madlibs dataset.

A detailed analysis of our approach has shown where
further work would be beneficial. Person and object lo-
calization may be improved by a better interpretation
of the sentences that does not focus only on separate
entities, but understands their relationships and trans-
lates them into spatial constraints to guide region se-
lection and feature extraction. And, of course, training
joint image-text models that can better deal with rare
and unusual inputs remains an important open prob-
lem, as exemplified by the questions in the left column
of Figure 9.

In the future, besides testing our approach on other
interesting question types currently not covered by the
Madlibs dataset (e.g. Persons’” Emotion, Person-Person
Relation), we are also interested in extending the study
of multi-cue integration strategies to more open-ended
and general VQA tasks that do not rely on pre-specified
question templates. As done here, we can start from
simple feature concatenation to merge visual represen-
tations for different cues before model learning. A re-
lated idea has been recently exploited in (Saito et al,
2017) where the concatenated features are obtained
from networks characterized by different architectures
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