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Abstract This paper presents an approach for answer-
ing fill-in-the-blank multiple choice questions from the

Visual Madlibs dataset. Instead of generic and com-
monly used representations trained on the ImageNet
classification task, our approach employs a combina-

tion of networks trained for specialized tasks such as

scene recognition, person activity classification, and at-

tribute prediction. We also present a method for localiz-

ing phrases from candidate answers in order to provide

spatial support for feature extraction. We map each
of these features, together with candidate answers, to
a joint embedding space through normalized canoni-

cal correlation analysis (nCCA). Finally, we solve an

optimization problem to learn to combine scores from

nCCAmodels trained on multiple cues to select the best

answer. Extensive experimental results show a signifi-

cant improvement over the previous state of the art and

confirm that answering questions from a wide range of

types benefits from examining a variety of image cues

and carefully choosing the spatial support for feature

extraction.
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1 Introduction

For any artificially intelligent agent that can live in the

physical world, interacting with the world and com-

municating with humans are essential abilities. To ac-

quire these abilities, we need to train agents on open-

ended tasks that involve visual analysis and language

understanding. Visual Question Answering (VQA) (An-

tol et al, 2015) has recently been proposed as such a

task. In VQA, language understanding is necessary to

determine the intent of a question and generate or eval-
uate multiple putative answers, while visual analysis fo-
cuses on learning to extract useful information from the
images. Even when the question has a pre-determined

form, the answer strongly depends on the visual infor-

mation which might be derived from either the whole

image or from some specific image region. Moreover,

specialized knowledge beyond the available image pixel
content might be necessary. For instance, consider a
simple question about the position of an object: the
answer could involve the overall scene (e.g., it is in the

kitchen), other reference objects (e.g., it is on the ta-

ble), their appearance (e.g., it is against the blue wall),
details about people (e.g., it is in the girl’s hand), activ-

ities (e.g., it is floating in water) or even understanding
of time and causality (e.g., it is falling and about to

land on the ground).

To date, a number of diverse solutions for VQA have

been proposed, as surveyed in Section 2. An essential

component of these methods consists of extracting fea-

tures from images and questions, which are then com-
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Note that the need to attend specific image regions is

because certain question types provide ground truth

bounding boxes of interest with the question, or be-

cause for other questions without provided boxes, the

putative answers mention persons and objects. As an

example, consider the Interestingness question in Fig-

ure 1 (question type 3). Two of the candidate answers

for the most interesting aspect of this image are the

girl and firefighters. In order to score these answers, we

need to determine whether they actually exist in the

image and localize the corresponding entities, if pos-

sible. To this end, we utilize an automatic bounding

box selection scheme which starts with candidate boxes

produced by state of the art person and object detec-

tors (Liu et al, 2015; Ren et al, 2015b) and scores them

using a region-phrase model trained on the Flickr30K

Entities dataset (Plummer et al, 2017). The highest-

scoring region for a phrase contained in an answer pro-

vides spatial support for feature extraction, and the

region-phrase scores are also used as a component of

the overall answer score. On the other hand, if persons

or objects appear in the image but they are neither

localized by the question nor named in any of the an-

swers (see question type 1 and 2) we simply consider

the image as a whole.

Each classification model used by us for feature ex-

traction is able to predict a large vocabulary of seman-

tically meaningful terms from an image: close to 200

scene categories, 1000 actions and person-object inter-

actions, 300 person attribute terms, and 11 colors. Fig-
ure 2 shows four question types from Figure 1 and the
answer predicted by our system, as well as the inter-
mediate predictions of our scene, action, attribute, and

color feature networks. The outputs of these networks

are semantically interpretable and can help to under-

stand why our system succeeds or fails on particular

questions. We can observe that in the Scene question
example of Figure 2, the top scene label predictions
from our Places network (train-station-platform, train-

railway, railroad-track) are very similar to the correct

answer (train station). For the Person’s Activity ques-

tion, our action network cannot predict the correct ac-
tivity (carrying a chair) even though it corresponds to

an existing class; nevertheless, it is able to predict a
sufficiently close class (carry-suitcases) and enable our

image-text embedding method to select the correct an-

swer.

To compute the compatibility between each of our

network outputs and a candidate answer sentence or

phrase, we train a normalized Canonical Correlation

Analysis (nCCA) (Gong et al, 2014) model which maps

the visual and textual features to a joint embedding

space, such that matching input pairs are mapped close

together. More specifically, we train one nCCA model

per cue, and in order to linearly combine scores from
different nCCA models we solve an optimization prob-
lem that learns the best set of cue-specific weights.

Our high-level approach is described in Section 3.

All the information about the used cues are provided in
Section 4, while the automatic bounding box selection
scheme for localized feature extraction is explained in

Section 5. The details of our score combination scheme

is in Section 6. Section 7 presents our experimental re-

sults, which show that using multiple features helps to

improve accuracy on all the considered question types.

Our results are state of the art, outperforming the orig-

inal Madlibs baseline (Yu et al, 2015), as well as a con-

current method (Mokarian et al, 2016).

A preliminary version of this work has appeared in
BMVC (Tommasi et al, 2016). The journal version in-

cludes (1) a more detailed description of the different

cues used for each question type, (2) a statistical anal-

ysis of the coverage our cues provide for different types

of Visual Madlibs questions (Section 7.1) (3) a princi-

pled scheme to learn an optimal weighted combination

of multiple features, (4) extensive qualitative examples
to better illustrate each part of the proposed approach,
(5) a study on learning across tasks: we investigate the
effect of training embedding models over multiple joint

question types (Sections 7.5) and of training the model

on one question type but testing it on a different one

(Sections 7.4).

The Visual Madlibs dataset project webpage

has been updated with the validation set cre-

ated for our experiments: http://tamaraberg.

com/visualmadlibs/. The deep network models

used to predict various features are available at

http://vision.cs.illinois.edu/go/madlibs_

models.html.

2 Related Work

Visual Question Answering. In the task of Visual

Question Answering (VQA), natural-language ques-

tions about an image are posed to a system, and the sys-

tem is expected to reply with a short text answer. This

task extends standard detection, classification, and im-

age captioning, requiring techniques for multi-modal

and knowledge-based reasoning for visual understand-
ing. Initially proposed as a “Visual Turing Test” (Ge-
man et al, 2015), the VQA format has been enthusias-

tically embraced as the basis for a number of tailored

datasets and benchmarks. The DAQUAR dataset (Ma-

linowski and Fritz, 2014) is restricted to indoor scenes,

while a number of more general datasets are based on
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MSCOCO images (Lin et al, 2014), including COCO-

QA (Ren et al, 2015a), Baidu-FM-IQA (Gao et al,

2015), VQA (Antol et al, 2015), Visual7W (Zhu et al,

2016) and Visual Madlibs (Yu et al, 2015). Question-

answer pairs can be generated automatically by NLP

tools (Ren et al, 2015a), or created by human workers

(Gao et al, 2015; Antol et al, 2015; Zhu et al, 2016; Yu

et al, 2015).

Assessing the quality of automatically generated

free-form answers is not straightforward and in most of
the cases, it reduces to evaluating the predicted proba-
bility distribution on a fixed output space made by the

1000 most common answers of the used dataset (Fukui

et al, 2016; Andreas et al, 2016b; Yang et al, 2016; Saito

et al, 2017; Wang et al, 2017b). Alternatively, several

VQA benchmarks are provided with a multiple-choice
setting where performance can be easily measured as
the percentage of correctly answered questions.

Among automatic methods for VQA, many com-

bine CNNs and Long Short-Term Memory (LSTM) net-

works to encode the questions and output the answer

(Gao et al, 2015; Malinowski et al, 2015; Andreas et al,

2016a). Recent approaches also emphasize the need for

attention mechanisms for text-guided analysis of im-

ages. Such attention mechanisms can be learned, or
hard-coded. Attention can be learned by using networks
that predict which regions of the image are useful (Xu

and Saenko, 2015; Yang et al, 2016; Shih et al, 2016)

and then extracting features from those regions. Hard-

coded mechanisms take as input the image regions that

need to be attended (Zhu et al, 2016; Ilievski et al,

2016). Some works also use co-attention models that ex-
ploit image regions together with word, phrase, and sen-
tences (Wang et al, 2017b) or high-level concepts (Yu

et al, 2017). In contrast to these works, our method first

ranks which regions of the image are useful to the ques-

tion at hand using a retrieval model, and then passes on

features extracted from the useful regions to the nCCA

embedding models, which select the most correct an-

swer.

Fill-In-The-Blank Questions. Instead of asking ex-

plicit questions, e.g., starting with who, what, where,

when, why, which (Zhu et al, 2016), we can ask sys-

tems to fill in incomplete phrases within declarative

sentences. This is the strategy behind Visual Madlibs.

As stated in the Introduction and shown in Figure 1,
Visual Madlibs questions come in twelve distinct types,
some with provided regions of interest. The fact that

each question has a well-defined type and structure that

is known a priori makes the Visual Madlibs a more con-

trolled task than general VQA, enabling us to reason up

front about the types of features and processing needed

to answer a given question. At the same time, due to the

broad coverage and diversity of these question types, we

can expect the cues that are useful for solving Visual
Madlibs to also be useful for general VQA.

Visual Madlibs consists of 360,001 targeted natu-

ral language descriptions for 10,738 MSCOCO images,
and fill-in-the-blank multiple choice questions are auto-

matically derived from these descriptions. For each de-
scription type, the number of questions ranges between
4,600 and 7,500 and the descriptions contain more than

3 words on average. This makes Visual Madlibs notably

different from VQA (Antol et al, 2015) and COCO-

QA (Ren et al, 2015a) datasets, which still have a multi-

choice answer setting but the majority of the answers

contain a single word (see Zhu et al (2016), Table 1). An

additional unique characteristic of Visual Madlibs is in

the choice of the distractor (incorrect) answers, which

have two levels of difficulty: Easy and Hard. In the Easy

case, the distractors are chosen randomly, while for the

Hard case, they are selected from the descriptions of

images containing the same objects as the test image,
with similar number of words as the correct answer, but
not sharing with it any non-stop words.

Existing methods for answering Madlibs questions
(Mallya and Lazebnik, 2016; Mokarian et al, 2016; Yu

et al, 2015) have mainly used Canonical Correlation
Analysis (CCA) (Hardoon et al, 2004; Hotelling, 1936)
and normalized CCA (nCCA) (Gong et al, 2014) to cre-

ate a multi-modal embedding where the compatibility

of each putative answer with the image is evaluated.

Mokarian et al (2016) have proposed CNN+LSTM

models trained on Visual Madlibs, but these were not

as accurate as CCA. The same authors have also shown
that the fill-in-the-blank task benefits from a rich im-
age representation obtained by detecting several over-

lapping image regions, potentially containing different

objects, and then average-pooling the CNN features ex-

tracted from them. This representation is able to cover

the abundance of image details better than standard

whole-image features, but it uses the same kind of de-

scriptor at all image locations. In Section 7.3, we will

demonstrate that our approach of using multiple spe-

cialized descriptors outperforms (Mokarian et al, 2016).

Integrating External Knowledge Sources. Under-

standing images and answering visual questions often
requires heterogeneous prior information that can range

from common-sense to encyclopedic knowledge. To

cover this need, some works integrate different knowl-

edge sources either by leveraging training data with a

rich set of different labels, or by exploiting textual or

semantic resources such as DBpedia (Auer et al, 2007),

ConceptNet (Liu and Singh, 2004) and WebChild (Tan-

don et al, 2014).
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The approach adopted by Zhu et al (2015) learns a

Markov Random Field model on scene categories, at-
tributes, and affordance labels over images from the
SUN database (Xiao et al, 2010). While this approach

is quite powerful on the image side, the lack of natural

language integration limits the set of possible questions

that may be asked.

The method of Wu et al (2016a) starts from multiple
labels predicted from images and uses them to query

DBpedia. The obtained textual paragraphs are then

coded as a feature through Doc2Vec (Le and Mikolov,

2014) and used to generate answers through an LSTM.

A more sophisticated technique is proposed by Wang

et al (2017a) for an image question task that involves

only answers about common-sense knowledge: the in-
formation extracted from images and knowledge-based
resources is stored as a graph of inter-linked RDF triples
(Lassila and Swick, 1999) and an LSTM is used to map

the free-form text questions to queries that can be used

to search the knowledge base. The answer is then pro-

vided directly as the result of this search, avoiding any

limitations on the vocabulary that would otherwise be
constrained by the words in the training set. Though
quite interesting, both these approaches still rely on

ImageNet-trained features, missing the variety of vi-

sual cues that can be obtained from networks tuned on

tasks other than object classification.

As explained in the Introduction, our own approach

to integrating external knowledge relies on training “ex-

pert” networks on specialized datasets for scenes, ac-

tions and attributes. As one of the components of our

approach, we use the CNN action models developed in

our ECCV 2016 paper (Mallya and Lazebnik, 2016),

where we applied these models to Person Activity and

Person-Object Relationship questions (types 7 and 9)

only.

3 Overview of the Approach

To tackle multiple-choice fill-in-the-blank question an-

swering, we need a model that is able to evalu-

ate the compatibility of each available answer choice

(a1, . . . , aN ) with the image and question pair (I, q).

This necessitates a cross-modal similarity function that

can produce a score s(I, q, a) taking into consideration

global (whole image to whole answer) and local (image

region to phrase) correspondences, as well as multiple

visual cues. Our model has three main components: the

image representation, the text representation, and a for-

mulation for the cross-modal joint space and scoring

function.

Representing the images. We introduce several fea-

ture types that depend on the question q and possi-
bly on the specific answer choice a. This dependence

is made explicit by choosing how to localize the fea-

ture extraction (where to compute the features) and

which features to extract. Broadly speaking, we have

the following four types of features, each represented
by networks described detail in Section 4.

– Global image cues: For all question types, we ex-

tract features from the whole image using our VGG
ImageNet and Places networks (see Section 4 for

details).

– Cues from automatically selected boxes:

Question types 3-5 (Interestingness, Past, and Fu-

ture) do not come with any ground truth person or

object boxes, but people and objects are often men-
tioned in candidate answers (see examples in Figure
1 and statistics in Section 7.1). We parse the can-
didate answers for mentioned entities and attempt

to localize them using the procedure described in

Section 5. Having found the best matching image

region(s) for each mentioned entity, we extract spe-

cific features depending on the nature of the entity.
In particular, for people, we extract bounding box
ImageNet features as well as action and attribute
features, and for objects, we extract bounding box

ImageNet features only.

– Cues from provided person boxes: When deal-
ing with person-centric questions (Types 6-9), we

extract features from the person bounding box pro-

vided with the question. These include generic Im-

ageNet features as well as features from our action

and attribute networks

– Cues from provided object boxes: For object-

centric questions (Types 9-12), we extract features

from the object bounding box provided with the

question using our ImageNet and color networks.

As is clear from the above, question types 6-12, by

construction of the Madlibs dataset, come with tar-
get object and person bounding boxes. For these ques-

tion types, we did not compare performance of auto-

matically detected vs. provided ground truth bound-

ing boxes. Such an experiment was performed in (Yu

et al, 2015) using boxes detected by RCNN and did not

show any significant difference in the performance for
multiple-choice question answering. Their result indi-
cates that detectors such as RCNN or improved meth-

ods (Ren et al, 2015b; Liu et al, 2015) give good enough

object localizations for the purposes of our end task. A

small change in the region from which features are ex-

tracted does not have a significant impact on the final
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question answering accuracy. On the other hand, ques-

tion types 3-5 represent a more challenging case in that

no target bounding boxes are provided and we will ad-

dress this case at length in Section 5.

Representing the answers. Compared to our visual

representation, our text representation is quite elemen-
tary. We employ the 300-dimensional word2vec embed-
ding trained on the Google News dataset (Mikolov et al,

2013). Candidate answers are represented as the aver-

age of word2vec vectors over all the words. We represent

out-of-vocabulary words using the null vector, and do

not encode question prompts as they are identical for all

questions of the same type (e.g., “the place is...”). Even

in the cases where the prompt contain image-specific

words (i.e. objects in Person-Object Relationship and

Object’s Affordance questions), adding them to the an-

swers’ representation do not introduce discriminative

information, on the contrary, preliminary experiments

indicated that they contribute to make the answers

more similar to each other reducing the correct answer

selection performance.

Cross-modal embedding and scoring function.
To learn a mapping from image and text features into a

joint embedding space, we adopt normalized Canonical
Correlation Analysis (nCCA) (Gong et al, 2014). For
each question type, we obtain one or more nCCA scores
for one or more cues corresponding to that type, and

then form the final score as a linear combination of the

individual scores with learned weights. Our cue combi-

nation and weight learning approaches are described in

Section 6. Note that in the rest of the paper, any ref-
erences to CCA models refers to nCCA models, unless
otherwise specified.

4 Cue-Specific Models

This section provides details of our cue-specific net-

works. For a complete summary of which networks are
used for which question types, refer back to Figure 1.

ImageNet network. For all question types, we use the

output of the VGG-16 network (Simonyan and Zisser-
man, 2014) trained on 1000 ImageNet categories as our

baseline global feature. We obtain a 4096-dimensional
feature vector by averaging fc7 activations over 10 crops
from the whole image. The same network is also used
to extract features from image regions: in this case we

indicate that it is a local cue, by specifying in the follow-

ing tables and figures that it originates from a Person

or Object bounding box.

Places network. We also use a global scene feature

for each question type, derived from the Places VGG-

16 network (Zhou et al, 2014). The MIT Places dataset

contains about 2.5 million images belonging to 205 dif-

ferent scene categories. As with the baseline network,
the Places network gives us 4096-dimensional fc7 fea-
tures averaged over 10 crops.

HICO/MPII Person action networks. To repre-
sent person boxes for question types 3-9, we start

by passing the boxes resized to 224 × 224 px as in-

put to the generic ImageNet network. In order to ob-

tain a more specialized and informative representa-

tion, we also use action prediction networks trained

on two of the largest currently available human ac-
tion image datasets: HICO (Chao et al, 2015) and the
MPII (Pishchulin et al, 2014). HICO has 600 labels for

different human-object interactions, e.g. ride-bicycle or

repair-bicycle; the objects involved in the actions be-

long to the 80 annotated categories of the MSCOCO

dataset (Lin et al, 2014). The MPII dataset has 393
categories, which include interactions with objects as
well as solo human activities such as walking and run-
ning.

We employ the CNN architecture introduced in our

previous work (Mallya and Lazebnik, 2016), which cur-
rently holds state of the art classification accuracy on

both the action datasets. This architecture is based on
VGG-16 and it fuses information from a person bound-
ing box and from the whole image. At training time it
uses multiple instance learning to account for lack of

per-person labels on the HICO dataset and a weighted

loss to deal with unbalanced class distributions on both

HICO and MPII. The model uses a weighted logis-

tic loss in which mistakes on positive examples are
weighted ten times more than the mistakes on nega-
tive examples, in order to offset the lack of balance in

the dataset.

At test time, the network of Mallya and Lazebnik

(2016) needs a person bounding box to provide a region
of interest for feature extraction. For question types 6-9,

these boxes are given in the ground truth. For question
types 3-5, no boxes are given, so we use the automatic
bounding box selection procedure that will be described

in Section 5. In case of multiple people in an image,

we run the network independently on each person and

then average-pool the features. In case no person boxes

are detected, we use the whole image as the region of

interest.
Figure 3 presents some examples of class predic-

tions of the action networks. For various versions of

our cue combination strategies, as described in Section

6, we will use either the fc7 activations of this network

or the class prediction logits (inputs to the final sig-

moid/softmax layer).

Person attribute network. For question types 3-

9, alongside generic ImageNet features and activity
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(e.g. woman, girl, lady, etc.), and the overall class distri-

bution is highly unbalanced (i.e., there are a few labels
with many examples and many classes with just a few
examples each).

We train a Fast-RCNN VGG-16 network (Girshick,
2015) to predict our 302 attribute labels based on per-

son bounding boxes (in case of group attributes, the

ground truth boxes contain multiple people). To com-

pensate for unbalanced training samples, just as for the

action networks, we use a weighted logistic loss that

penalizes mistakes on positive examples ten times more
than on negative examples. Unlike our action predic-
tion network, our attribute network does not use global

image context (we found that attribute predictions are

much more highly localized and tend to be confused by

outside context) and it predicts group attributes given

a box with multiple people (such boxes naturally exist
in the Flickr30K Entities annotations). As our labels
are derived from natural language phrases, we manu-
ally grouped and ignored predictions on labels which

could be simultaneously true but are not annotated in

the dataset. For example, if a bounding box is referred

to as he, man in blue shirt, older man, or bald man,

related labels such as {man, gentleman, guy, man in

hard hat, asian man} might also be true. Essentially,

the presence of a label such as he does not conclusively

indicate the absence of all other labels, such as guy,

however it does indicate the absence of she, or woman.

We manually created four such label groups represent-

ing man, woman, boy, and girl. If a label belongs to a

given group, labels from all other groups can be safely
considered as negatives, while labels within a group can
be ignored while computing the training loss.

To give a quantitative idea of the accuracy of our
person attribute prediction, the mAP of our network on
the phrases of the Flickr30k test set that occur at least

50 (resp. 10) times is 21.98% (resp. 17.04%). We ob-

serve the following APs for some frequent phrases: man

- 53.8%, woman - 51.3%, couple - 35.4%, crowd - 36.1%.

It should be noted that these numbers likely underes-

timate the accuracy of our model. For one, they are

based on exact matches and do not take synonyms into

account. Moreover, there is a significant sparsity prob-
lem in the annotations, as numerous attribute phrases
may be applicable to any person box but only a few
are mentioned in captions. Qualitatively, the attribute

labels output by our network are typically very appro-

priate, as can be seen from example predictions in Fig-

ure 3.

At test time, to obtain person bounding boxes from

which to extract attribute features, we follow the same

procedure as for the action networks described above.

In case of multiple people boxes, the outputs of the at-

tribute network are average-pooled. As with the action

models, either the inputs to the final sigmoid/softmax
layer or the fc7 activations can be used for the down-
stream question answering task (refer to Sections 6 and
7 for details).

Color network. As described in Section 3, we extract

object-specific cues for automatically detected boxes on
question types 3-5 (Interestingness, Past, Future), as
well as for provided focus boxes for question types 9-

12. For all of those object boxes, just as for person boxes

in question types 3-9, we extract generic ImageNet fea-

tures from the bounding boxes. To complement these,

we would also like to have a representation of object at-

tributes analogous to our representation of person attri-
butes. However, it is much harder to obtain training ex-
amples for a large vocabulary of predictable attributes

for non-human entities. Therefore, we restrict ourselves

to color, which is visually salient and frequently men-

tioned in Visual Madlibs descriptions, and is not cap-

tured well by networks trained for category-level recog-

nition (Plummer et al, 2017). We follow Plummer et al

(2017) and fine-tune a Fast-RCNN VGG-16 network to

predict one of 11 colors that occur at least 1,000 times

in the Flickr30K Entities training set: black, red, blue,

white, green, yellow, brown, orange, pink, gray, pur-

ple. This network is trained with a one-vs-all softmax

loss. The training is performed on non-person phrases
to prevent confusion with color terms that refer to race.
For our color feature representation we use the 4096-
dimensional fc7 activation values extracted from the

object bounding box.

Quantitative evaluation of a color network similar to

ours can be found in Plummer et al (2017). The exam-

ples in Figure 4 provide a qualitative illustration of the

color network outputs and indicate how color predic-

tions may be helpful for answering Object’s Attribute

Visual Madlibs questions.

Note that we extract color features only from pro-

vided object boxes for questions 9-12. For questions 3-5,

color is mentioned far more rarely in candidate answers;

furthermore, automatically detected object boxes are

much more noisy than person boxes making the color

cues correspondingly unreliable.

5 Image Region Selection

Madlibs questions on Interestingness, Past, and Future

do not provide a target image region. Consider the Fu-

ture example in Figure 2, where each of the four candi-

date answers mentions a person and an object: she put

down the cat, the bride dropped the bouquet, and so on.

In order to pick the right choice, we need to select the
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phrases as appropriate. For example, for phrases such

as {man, boy, guy, male, young boy, young man, little
boy}, we added training samples in which these phrases

are replaced by he (and the same for she). Similarly,

additional examples were created by replacing {people,

crowd, crowd of people, group of people, group of men,
group of women, group of children}, etc., with they, and

{two men, two women, two people} with couple.

Given the trained Person CCA model, we compute
the score for each person phrase from the candidate

answer and each candidate person box from the im-

age, and select the single highest-scoring box. A few

example selections are shown in Figure 5. In case no

words referring to people are found in a choice, all per-

son boxes are selected.1 The selected box provides spa-

tial support for extracting person action and attribute
cues introduced in Section 4; in turn, these features,

together with entire candidate answers (as opposed to

just the person phrases), are used to train cue-specific

CCA models as will be explained in the next section.

The score of the Person CCA model for the selected

box will also be used in a trained combination with the
cue-specific CCA scores.

Object Box. We localize objects using the Single Shot

MultiBox Detector (SSD) (Liu et al, 2015) that has

been trained on the 80 MSCOCO object categories.

SSD is currently the state of the art for detection in

speed and accuracy. For each Visual Madlibs image, we

consider the top 200 detections as object candidates and

use the Object CCA model created for the phrase

localization approach of (Plummer et al, 2017) to se-

lect the boxes corresponding to objects named in the

sentences. This model is trained on the Flickr30k Enti-

ties dataset over Fast-RCNN fc7 features and average

of word2vec features. We use the simplest model from

that work, not including size or color terms. The top-
scoring box from the image is used to extract object
VGG features as will be explained in Section 6.

Figure 6 shows a few examples of object selection

in action. As can be seen from the failure cases in the
bottom row, object boxes selected by our method are
less reliable than selected people boxes, since detection

accuracies for general objects are much lower than for

people and object boxes tend to be smaller. Therefore,

instead of defining an object selection score based on

the single highest-scoring region-phrase combination, as

in the case of people above, we define a collective object

score that will be used in the cue combination method

of Section 6. Inspired by a kernel for matching sets of

local features (Lyu, 2005), we take all of the N = 200

1 Note that the images of the Visual Madlibs dataset are
sampled from the MSCOCO dataset (Lin et al, 2014) to con-
tain at least one person.

object boxes from the image and the M object phrases

from the answer and then combine their CCA matching
scores as follows:

K(image, answer) =

1

N

1

M

N∑

i=1

M∑

j=1

{cos similarity(boxi, phrasej)}
r ,

(1)

where the parameter r assigns more relative weight to

box-phrase pairs with higher similarity. We use r = 5

in our implementation.

6 Cue Combination

As described in Section 4, we extract several types of

features from the images, aiming to capture multiple vi-
sual aspects relevant for different question types. How
can we combine all these cues to obtain a single score

s(I, q, a) for each question, image and candidate an-

swer?

The simplest combination technique is to concate-

nate 4096-dimensional fc7 features produced by each of

our networks. In practice, due to the dimensionality of

the resulting representation, we can only do this for a

pair of networks, obtaining 8192-dimensional features.

In our system, we mainly use this technique when we

want to combine our baseline global ImageNet network

with one other cue.

To combine more than two features, we can stack

lower-dimensional class prediction vectors (logits, or

values before the final sigmoid/softmax layer). In par-

ticular, to characterize people, we concatenate the class
predictions of HICO, MPII, and attribute networks,
producing a compact feature vector of 1295 dimensions.

To enable even more complex cue integration, we

learn CCA models on small subsets of cues and linearly
combine their scores with learned weights. The follow-
ing is a complete list of the individual CCA models used

for our full ensemble approach:

– Baseline + Places: CCA trained on concatenated

fc7 features from global ImageNet- and Places-

trained networks. This is used for all question types.

– Baseline + Person Box ImageNet: CCA
trained on concatenated fc7 features from ImageNet

network applied to the whole image and person box.
This cue is used for question types 3-5 (on auto-
matically selected boxes) and 6-9 (on ground truth

boxes). The reason for concatenating the global and

person box features is to make sure that the result-

ing model is at least as strong as the baseline. The

same reasoning applies to the other person-specific

and object-specific models below.
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Distractor Question Type
Full Image Person Box Object Box

Type
Baseline B. + B. + B. + B. + B. + B. + B. +
ImageNet Places ImageNet HICO MPII Attr. ImageNet Color

Easy

(A)

1) Scene 87.73 89.04 – – – – – –
2) Emotion 48.32 49.53 – – – – – –
3) Interesting 78.11 78.74 79.59 79.47 78.55 79.31 78.86 –
4) Past 79.30 80.34 80.60 81.54 80.28 81.68 80.36 –
5) Future 79.52 80.10 80.76 82.29 80.42 81.30 80.61 –

(B)

6) Person’s Attribute 53.32 54.10 59.00 54.10 55.60 64.50 – –
7) Person’s Activity 83.89 84.30 85.51 87.46 85.16 84.71 – –
8) Person’s Location 84.59 85.70 84.50 85.29 84.51 84.33 – –
9) Person-Object Relation 71.36 72.07 72.80 75.77 73.84 71.10 74.39 71.55

(C)
10) Object’s Attribute 50.15 50.47 – – – – 57.85 59.50

11) Object’s Affordance 80.56 82.76 – – – – 87.20 82.32
12) Object’s Position 67.79 69.41 – – – – 68.18 67.98

Hard

(A)

1) Scene 70.94 73.22 – – – – – –
2) Emotion 35.50 35.77 – – – – – –
3) Interesting 54.36 54.66 54.60 54.92 54.95 56.02 54.33 –
4) Past 53.89 53.95 55.37 55.09 54.11 55.90 53.78 –
5) Future 55.19 55.47 56.25 56.76 55.19 57.58 57.02 –

(B)

6) Person’s Attribute 42.55 43.11 48.85 43.06 45.77 54.64 – –
7) Person’s Activity 67.56 68.10 69.47 71.02 70.03 68.68 – –
8) Person’s Location 64.57 66.66 65.46 64.97 64.76 64.71 – –
9) Person-Object Relation 54.46 54.65 56.84 58.72 56.84 54.48 55.85 54.58

(C)
10) Object’s Attribute 44.99 45.62 – – – – 53.63 54.73

11) Object’s Affordance 64.26 64.50 – – – – 67.65 63.99
12) Object’s Position 56.46 57.56 – – – – 57.34 56.43

Table 1 Accuracy on Madlibs questions with fc7 features. The Baseline ImageNet column gives performance for 4096-d fc7
outputs of the baseline network trained on ImageNet classification. For the columns labeled “B. + X”, the baseline fc7 features
are concatenated with fc7 features of different specialized networks, yielding 8192-d representations.

image (types 1-5, A), person-specific (types 6-9, B) and

object-specific (types 10-12, C). The leftmost column

shows the accuracy obtained with the baseline whole-

image ImageNet fc7 feature. The subsequent columns

show the performance obtained by concatenating this
feature with the fc7 feature of each of our individual
cue-specific network (as explained in Section 6, the rea-

son for always combining individual cues with the base-

line is to make sure they never get worse performance).

Whole-Image Questions. As shown in Table 1(A),

using the Places features for Scene questions helps to
improve performance over the ImageNet baseline. Emo-

tion questions are rather difficult to answer but we can
observe some improvement by adding Place features as
well. We did not attempt to use person- or object-based

features for the Scene and Emotion questions since the

analysis of Section 7.1 indicated a negligible frequency

of person- and object-related words in the respective

answers.

On the other hand, for Future, Past, and Interest-
ingness questions, people and objects play an important

role, hence we attempt to detect them in images as de-

scribed in Section 5. From the selected person boxes we

extract fc7 features from four different networks: the

generic ImageNet network, the HICO and MPII Ac-

tion networks, and the Attribute network trained on

Flickr30K Entities. All of them give an improvement

over the whole-image baseline, with the Attribute fea-

tures showing the best performance in most cases. From

the object regions we extract localized ImageNet fea-

tures which also produce some improvement over the
whole-image baseline in four out of six cases. Since, ac-
cording to Figure 7, color is mentioned in only a tiny

fraction of answers to the whole-image questions, we do

not include it here.

Person Questions. For questions about specified peo-

ple, Table 1(B) reports results with features extracted

from the provided ground truth person box. Not sur-

prisingly, Attribute features give the biggest improve-

ment for Attribute questions, and HICO Action fea-

tures give the biggest improvement for Person’s Ac-
tivity and Person-Object Relationship questions (recall
that HICO classes correspond to interactions between
people and MSCOCO objects). For the latter question

type, the ground truth object region is also provided;

by extracting the ImageNet and Color features from

the object box we obtain accuracy lower than that of

the HICO representation but still higher than that of
the whole-image baseline. Finally, for Person Location
questions, the global Places features work the best. This
question asks about the place where the person is, i.e.

the environment around him/her. Thus, visual informa-
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Distractor Question Type
fc7 Combination Label Combination CCA Score Combination

Type
Baseline Baseline + HICO HICO + MPII + Person + Object CCA Ensemble
ImageNet Single Best Cue + MPII + Attr. Score Score L2 L1

Easy

(A)
3) Interesting 78.11 HICO 79.47 79.25 79.94 80.59 80.88 82.92 82.34
4) Past 79.30 Attr. 81.68 82.17 84.09 84.17 84.97 85.89 85.91

5) Future 79.52 HICO. 82.29 82.89 84.97 84.97 85.47 86.75 86.63

(B)

6) Person’s Attribute 53.32 Attr. 64.50 59.37 68.43 – – 68.59 68.68

7) Person’s Activity 83.89 HICO 87.46 87.23 87.26 – – 88.11 88.43

8) Person’s Location 84.59 Places 85.70 84.56 84.51 – – 86.52 86.28
9) Person-Object Relation 71.36 HICO 75.77 75.42 75.66 – – 77.77 77.08

(C)
10) Object’s Attribute 50.15 Color 59.50 – – – – 59.48 59.62

11) Object’s Affordance 80.56 Obj. VGG 87.20 – – – – 85.74 87.21

12) Object’s Position 67.79 Places 69.41 – – – – 69.44 69.71

Average 72.86 77.30 – – – – 79.12 79.19

Hard

(A)
3) Interesting 54.36 Attr. 56.02 54.11 55.37 56.25 56.31 58.37 57.92
4) Past 53.89 Attr. 55.90 55.23 58.17 58.29 59.60 61.37 61.33
5) Future 55.19 Attr. 57.58 56.87 59.98 60.05 61.91 62.82 62.73

(B)

6) Person’s Attribute 42.55 Attr. 54.64 46.61 56.17 – – 56.47 56.38
7) Person’s Activity 67.56 HICO 71.02 71.35 71.42 – – 71.00 71.68

8) Person’s Location 64.57 Places 66.66 62.82 62.46 – – 66.50 66.66

9) Person-Object Relation 54.46 HICO 58.72 56.68 56.88 – – 57.80 57.92

(C)
10) Object’s Attribute 44.99 Color 54.73 – – – – 54.75 54.73
11) Object’s Affordance 64.26 Obj. VGG 67.65 – – – – 67.69 67.69

12) Object’s Position 56.46 Places 57.34 – – – – 58.22 58.16
Average 55.83 60.03 – – – – 61.50 61.52

Table 2 Results of combining multiple cues. Columns marked “fc7 Combination” give key results from Table 1 for reference.
Columns marked “Label Combination” show results with combining the class activation vectors from the respective networks.
Columns marked “+ Person Score” and “+ Obj. Score” show the results of a learned combination of the HICO + MPII +
Attr. CCA with the region selection scores of Section 5. The CCA Ensemble columns shows the results of combining all CCA
scores appropriate for each question type with weights learned using either the L2 or the L1 regularization. The obtained
average results are slightly better in the L1 case and the weights obtained in this way provide good interpretability (see Table
3).

tion from the image part outside the person bounding

box is more helpful than the localized information in-

side the person box which capture more the person ap-

pearance rather than the appearance of the surrounding

location.

Object Questions. For questions about specified ob-

jects, Table 1(C) reports results with features extracted
from the provided ground truth object box. We can see
that Color features work best for Object’s Attribute

questions, ImageNet features work best for Object’s Af-

fordance questions, and Places features work best for

Object’s Location questions.

7.3 Multi-Cue Results

Table 2 shows the results obtained by integrating mul-

tiple cues in a variety of ways. We exclude Scene and

Emotion questions from the subsequent analysis: based

on Figure 7, very few of their answers involve persons

and objects, thus, our final cue combination for these

question types is simply the concatenation of ImageNet

and Places as shown in Table 1.

For ease of comparison, the first and second columns

of Table 2 repeat the baseline and highest results from

Table 1. The subsequent columns show performance ob-

tained with other cue combinations. The Label Com-

bination columns of Table 2 show the results of con-

catenating the class prediction vectors from the HICO

and MPII networks, and from all three person-centric

networks (HICO+MPII+Attribute). For HICO+MPII,

we observe a small drop in performance over the sin-

gle best cue on whole-image questions (i.e., in Inter-
esting, Past, Future rows) and location-related ques-

tions (Person’s Location and Person-Object Relation),

probably owing to the reduced feature dimension and

loss of global contextual information as compared to

the 8192-dimensional fc7 combination feature. On the

other hand, HICO+MPII produces results compara-

ble with the best fc7 cue for the Person’s Activ-
ity question while being much more compact (993
vs. 8192 dimensions). By adding the attribute labels
(HICO+MPII+Attribute column), we further improve

performance, particularly on the Person’s Attribute

question.

Recall from Section 5 that for Interestingness, Past,

and Future questions, we perform focus region selec-

tion and compute Person and Object scores measur-

ing the compatibility of person and object mentions

in answers with the selected regions. These scores also
provide some useful signal for choosing the correct an-
swer, so we use the procedure of Section 6 to learn
to combine each of them with the scores from the

HICO+MPII+Attribute CCAmodel. For these two-cue
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Distractor
Question Type

Full Image Person Box Object Box

B. + B. +
HICO +
MPII

Person B. + B. + Object

Type Places ImageNet + Attr. Score ImageNet Color Score

Easy

(A)
3) Interesting 0.00 0.00 0.64 0.00 0.36 – 0.00
4) Past 0.01 0.02 0.63 0.05 0.29 – 0.00
5) Future 0.03 0.01 0.68 0.04 0.24 – 0.00

(B)

6) Person’s Attribute 0.00 0.21 0.79 – – – –
7) Person’s Activity 0.08 0.07 0.85 – – – –
8) Person Location 0.67 0.00 0.34 – – – –
9) Person-Object Relation 0.11 0.17 0.42 – 0.23 0.07 –

(C)
10) Object’s Attribute 0.00 – – – 0.18 0.82 –
11) Object’s Affordance 0.20 – – – 0.80 0.00 –
12) Object’s Position 0.84 – – – 0.16 0.00 –

Hard

(A)
3) Interesting 0.09 0.15 0.41 0.11 0.23 – 0.01
4) Past 0.04 0.05 0.48 0.16 0.17 – 0.09
5) Future 0.05 0.19 0.31 0.14 0.09 – 0.22

(B)

6) Person’s Attribute 0.03 0.35 0.62 – – – –
7) Person’s Activity 0.00 0.48 0.52 – – – –
8) Person’s Location 1.00 0.00 0.00 – – – –
9) Person-Object Relation 0.03 0.39 0.13 – 0.44 0.01 –

(C)
10) Object’s Attribute 0.00 – – – 0.20 0.80 –
11) Object’s Affordance 0.29 – – – 0.71 0.00 –
12) Object’s Position 0.77 – – – 0.23 0.00 –

Table 3 Weights assigned by the CCA score combination (Ensemble L1) method to each cue. Questions related to location
(types 8, 12) heavily rely on scene predictions, while action and attribute cues (HICO+MPII+Attr. column) are useful for a
large variety of question types.

problems, the learning procedure assigns a high weight
to the combined action and attribute representation

(wHICO+MPII+Attribute ≥ 0.9) and a small one to the
Person and Object scores (wPerson/Obj. Selection ≤ 0.1).

The resulting accuracies are reported in columns la-

beled “+ Person Score” and “+ Object Score” of Ta-

ble 2, and they show small but consistent accuracy

improvements over the HICO+MPII+Attribute model,

particularly for the hard questions.

The last column of Table 2 gives the performance of

the full ensemble score using all the CCA models ap-

plicable to a given question type (refer back to Section

6 for the list of models). We report both the results

obtained using the L1 regularized weights according

to Eq. (3) and its variant based on L2 regularization.

The accuracies are similar in both cases, with the L1

case marginally better on average. Using L1 however

allows for better understanding the role of each cue:

the per-cue weights for each question type are shown

in Table 3. Generally, the most informative cues for

each question type get assigned higher weights (e.g.

HICO+MPII+Attribute features get high weights for

Person’s Activity and Person’s Attribute questions, but

not for Person’s Location questions). From the “Aver-
age” row of Table 2, we can observe an improvement of
about 1.5% in accuracy with respect to the single best

cue and about 6% with respect to the baseline for both

the Easy and Hard cases.

To date, the strongest competing system on Visual

Madlibs is that of Mokarian et al (2016). We benchmark

our CCA Ensemble method against their results in Ta-

ble 4 and show that we outperform their approach with

Distr. Question CCA [Mokarian
Type Type Ensemble et al (2016)]

Easy

(A)
3) Interesting 82.34 78.20
4) Past 85.91 80.80
5) Future 86.63 81.10

(B)

6) Person’s Attribute 68.68 56.00
7) Person’s Activity 88.43 83.00
8) Person’s Location 86.28 84.30
9) Person-Object Relation 77.08 75.30

(C)

10) Object’s Attribute 59.62 62.40

11) Object’s Affordance 87.21 83.30
12) Object’s Position 69.71 77.50

Average 79.19 76.19

Hard

(A)
3) Interesting 57.92 54.20
4) Past 61.33 54.60
5) Future 62.73 56.10

(B)

6) Person’s Attribute 56.38 44.20
7) Person’s Activity 71.68 65.50
8) Person’s Location 66.66 65.20
9) Person-Object Relation 57.92 55.70

(C)

10) Object’s Attribute 54.73 45.70
11) Object’s Affordance 67.69 63.60
12) Object’s Position 58.16 56.30

Average 61.52 56.11

Table 4 Comparison of our CCA Ensemble multi cue
method against Mokarian et al (2016).

an average accuracy improvement of 3 and 5 percent-

age points on the easy and hard distractor cases, respec-

tively. Our CCA Ensemble results are superior to theirs

on every question type except for easy Object Attribute

and Object Location questions. For both these ques-

tions, we exploit the ground truth object boxes while

the method in (Mokarian et al, 2016) pool features

over multiple regions. It is also relevant to note that

in our experiments, we set aside a portion of the train-
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Fig. 8 Examples of answers selected using each individual cue as well as the full ensemble method. The first ImageNet column
corresponds to the baseline feature (B.), while the following columns correspond to “B. + X” features following the same order
as in Table 1. Check marks specify that the correct answer has been selected when using the corresponding column feature for
multi-choice answering. The crosses indicate instead a wrong selected answer.

Fig. 9 Failure cases for four multi-choice question types from the Hard question-answering setting. Examples in the left column
involve relatively rare concepts like “unusual outfit” and “arranging the pizza,” while examples on the right are visually subtle
or ambiguous. The crosses indicate a wrong selected answer.
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ing data for validation while the method in (Mokarian

et al, 2016) exploits nCCA models learned on the entire

Visual Madlibs training samples.

Finally, Figure 8 shows answer choices selected with

individual cues for the same questions that were orig-

inally shown in Figure 1, while Figure 9 shows a few

failure cases.

7.4 Learning Shared Embedding Spaces

In all the experiments considered so far, we learned a
CCA embedding space per question type and per cue.

However, the questions can be easily grouped on the
basis of their main visual focus (whole image, persons,
and objects) and it is worthwhile to evaluate the perfor-

mance on the multi-choice question answering task us-

ing shared embedding spaces obtained from each group.

This setting allows us to increase the amount of avail-

able training data for each model while making them

more robust to question variability.

For each cue, we grouped the training data of ques-

tion types 1-5 on whole image to define a joint embed-

ding space for group (A), types 6-9 on persons to define

a joint embedding space for group (B) and types 10-12

on objects to define a joint embedding space for group

(C). At test time, these models were used to assess the

suitability of putative answers by obtaining one set of

scores for each cue. Finally the cue combination proce-

dure is applied in two ways: either by exploiting the new

embedding spaces instead of the original ones (group)

or by adding the score produced by the new embed-

ding spaces to the original ones (combined). In this last

case, we actually deal with a doubled number of cues.

The final CCA Ensemble results are collected in Ta-

ble 5, where the first column also reports as reference
the final results of Table 2 obtained with embedding
spaces learned on separate question types. From the

accuracy values, we can conclude that learning shared

models is beneficial when the question types are quite

similar (as in group A) but it is less helpful in case of

higher variability among the question types (group B

and C). In particular, among the question types 10-12,
Object’s Affordance and Object’s Position appear to be
the most specific question types that do not derive any

benefit from sharing information amongst each other

and with the Object’s Attribute question. The overall

effect of question variability becomes less evident when

separate and group model are combined together in the

CCA Ensemble.

Distr.
Question Type

CCA Ensemble
Type separate group combined

Easy

(A)
3) Interesting 82.34 82.85 83.40

4) Past 85.91 86.70 86.36

5) Future 86.63 87.42 87.68

(B)

6) Per. Attribute 68.68 51.38 68.46
7) Per. Activity 88.43 87.83 88.85

8) Per. Location 86.28 84.47 86.76

9) Per.-Obj. Relation 77.08 77.91 77.97

(C)
10) Object’s Attribute 59.62 54.91 59.67

11) Obj. Affordance 87.21 86.65 85.84
12) Obj. Position 69.71 64.46 64.31

Average 79.19 76.46 79.93

Hard

(A)
3) Interesting 57.92 58.90 58.17

4) Past 61.33 58.60 61.86

5) Future 62.73 62.47 63.42

(B)

6) Per. Attribute 56.38 35.96 56.43

7) Per. Activity 71.68 70.87 72.02

8) Per. Location 66.66 60.55 66.78

9) Per.-Obj. Relation 57.92 56.33 57.97

(C)
10) Obj. Attribute 54.73 50.82 54.73

11) Obj. Affordance 67.69 47.05 52.12
12) Obj. Position 58.16 53.46 53.55

Average 61.52 55.50 59.71

Table 5 Results of multiple cue combination obtained with
CCA Ensemble when the CCA models are either trained on
separate questions or trained on the combination of several
question types. The first column, separate, reports results
from Table 2. The score produced by the shared CCA mod-
els can be substituted (group) or added (combined) together
with those obtained from separate questions. Here, we indi-
cate with bold font all the results that are equal or higher
than the corresponding reference from separate questions.

7.5 Transferring Learned Embedding Spaces

A further test on the robustness of the learned CCA

embedding spaces for multiple-choice question answer-

ing can be done by evaluating how transferable they are

across several question types without additional train-

ing. This can be analyzed by testing a CCA model on

a different question type with respect to that on which
it was originally learned. We ran extensive experiments
on this setting by using the cues that produced the best
result on the data of each training question and using it

on all the other questions as test. As expected, the accu-

racy in this cross-task setting decreases with respect to

the standard case with training and testing data from

the same question type, and the performance drop de-
pends on the question similarity. This effect is clearly
visible in Table 6 where we provide examples for this

setting which involve whole image questions and on lo-

cation related question: despite the drop, the cross-task

recognition rate is still much better than random, in-

dicating a good robustness of the models. Surprisingly,

a model trained on Person Location (type 8) performs
better than the standard model on Scene (type 1) ques-
tions, probably because the trained embedding space

learns for a slightly harder task and is more discrimi-

native.
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Distr. Question Test
Type Type 3) Interesting 4) Past 5) Future

Train

Easy
3) Interesting 79.94 77.67 77.39
4) Past 79.23 84.09 82.78
5) Future 78.19 83.38 84.97

Hard
3) Interesting 55.37 52.68 52.38
4) Past 54.50 58.17 56.46
5) Future 54.23 57.03 59.98

Distr. Question Test
Type Type 1) Scene 8) Per. Loc. 12) Obj. Pos.

Train

Easy
1) Scene 89.04 83.68 52.39
8) Per. Loc 90.14 85.70 56.61
12) Obj. Pos. 82.76 79.92 69.41

Hard
1) Scene 73.22 63.16 38.25
8) Per. Loc. 72.71 66.66 43.03
12) Obj. Pos 59.27 55.46 69.41

Table 6 Transfer Learning results obtained by training and
testing CCA models on different question types. For the
experiments in the top table we used the combined cue
HICO+MPII+Attr., while for the bottom table we used
B+Places. Note that when training on the Person Location
question and testing on the Scene question, the obtained per-
formance is higher than training and testing on Scene for the
Easy distractor case.

8 Conclusions

We have shown that features representing different

types of image content are helpful for answering mul-

tiple choice questions, confirming that external knowl-

edge can be successfully transferred to the this task

through the use of deep networks trained on special-
ized datasets. Further, through the use of an ensemble
of CCAmodels, we have created a system that beats the
previous state of the art on the Visual Madlibs dataset.

A detailed analysis of our approach has shown where

further work would be beneficial. Person and object lo-
calization may be improved by a better interpretation
of the sentences that does not focus only on separate

entities, but understands their relationships and trans-

lates them into spatial constraints to guide region se-

lection and feature extraction. And, of course, training

joint image-text models that can better deal with rare

and unusual inputs remains an important open prob-

lem, as exemplified by the questions in the left column

of Figure 9.

In the future, besides testing our approach on other

interesting question types currently not covered by the

Madlibs dataset (e.g. Persons’ Emotion, Person-Person

Relation), we are also interested in extending the study

of multi-cue integration strategies to more open-ended

and general VQA tasks that do not rely on pre-specified

question templates. As done here, we can start from

simple feature concatenation to merge visual represen-

tations for different cues before model learning. A re-

lated idea has been recently exploited in (Saito et al,

2017) where the concatenated features are obtained

from networks characterized by different architectures

but all trained on ImageNet. This approach can be eas-

ily adjusted to use our various domain expert network
features and extend existing VQA methods like those
in (Wu et al, 2016b; Wang et al, 2017b).
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Zhu Y, Zhang C, Ré C, Fei-Fei L (2015) Building

a large-scale multimodal knowledge base for visual

question answering. arXiv preprint abs/1507.05670

Zhu Y, Groth O, Bernstein M, Fei-Fei L (2016) Vi-
sual7W: Grounded Question Answering in Images.

In: IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR)


	1 Introduction
	2 Related Work
	3 Overview of the Approach
	4 Cue-Specific Models
	5 Image Region Selection
	6 Cue Combination
	7 Experiments
	8 Conclusions

