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Abstract—Cloud computing infrastructures have become the
de-facto platform for data driven machine learning applications.
However, these centralized models of computing are unqualified
for dispersed high volume real-time edge data intensive appli-
cations such as real time object detection, where video streams
may be captured at multiple geographical locations. While many
recent advancements in object detection have been made using
Convolutional Neural Networks but these performance improve-
ments only focus on a single contiguous object detection model.
In this paper, we propose a distributed Edge-Cloud R-CNN by
splitting the model into components and dynamically distributing
these components in the cloud for optimal performance for real
time object detection. As a proof of concept, we evaluate the
performance of the proposed system on a distributed computing
platform encompasses cloud servers and edge embedded devices
for real-time object detection on video streams.

Index Terms—Machine learning, Object detection, CNN, R-
CNN, Region proposal, Edge Computing, Distributed computing.

I. INTRODUCTION & MOTIVATION

The current evolution of object detection using Convo-
lutional Neural Networks has progressed down a path of
combination-of-operations. This is to say, current architectures
try to reduce the number of distinct operations by sharing
and utilizing the same operations across multiple stages of the
object detection pipeline.

However, upon inspection of the R-CNN model, it’s archi-
tecture can be resolved into distinct components. This paper
serves as a proposal for the deployment of a distributed model
based on the components native to the R-CNN model. Some
preliminary results are also presented.

Another motivation for this model is the potential for
a GPU-less deployment. This would allow for reasonable
performance from an object detection model without the need
for expensive, dedicated GPU hardware.

As a comparison to the standard R-CNN object detection
model, a Faster R-CNN model using the inception v2 archi-
tecture will be deployed undistributedly. This will allow for
quantitative benchmark metrics to be compared between the
two models.

The rest of the paper progresses as follows. First, section
II provides a literature review of past and current R-CNN
architectures. Section III uses the concepts discussed in section
II to define a new, distributed R-CNN architecture. Section
IV discusses the progress made specifically with the region

proposal component of the distributed R-CNN model. Section
V describes the un-distributed model that is being used as
a benchmark for future work. Finally, section VI lays out
some future work for the implementation and testing of the
distributed R-CNN model.

II. R-CNN B ASED OBJECT DETECTION

Fig. 1. R-CNN - Girshik et al. [1]

Disjointed R-CNN. The first architecture to successfully
apply the region-proposal with CNN features idea was the R-
CNN object detection pipeline proposed by Girshik et al. in
[1]. It is termed disjointed because it takes distinct, previously
existing components and combines them into a unified object
detection pipeline.



The first stage consists of a region proposal algorithm that
takes an image as input and returns a number of bounding
boxes predicted to contain an object of interest. The original
R-CNN model used Selective Search [4] to generate approxi-
mately 2000 boxes per image.

The second stage is a Convolutional Neural Network [14,
17]. Bounding boxes from the region proposal algorithm are
used to crop the input image. These crops are then warped to
a fixed, square resolution in order to accommodate the CNN.
Feature maps are computed for each warped region. Keep in
mind, this is happening up to 2000x per image!

Finally, an SVM (Support Vector Machine) is used to
classify each region based on the features extracted by the
CNN.

This method for object detection was shown to have sig-
nificant accuracy improvements on the canonical PASCAL
VOC [8] dataset compared to previous methods using SIFT [9]
and HOG [10] features. Additionally, when compared to the
OverFeat [11] model, an architecture which did utilize CNN
features but implemented a sliding window detector [15, 16]
instead of a region proposal algorithm, R-CNN outperformed
by a significant margin on the ILSVCR [12, 13] dataset.

Fig. 2. Fast R-CNN - Girshik [2]

Less Convolutions. The next evolution in R-CNNs were
models like Fast R-CNN [2] and SPPnet [5] which, instead of
operating on each region proposal box individually, compute
a single convolutional feature map for an entire image. This
dramatically reduces the number of operations performed by

the CNN for a single image, allowing it room to grow in depth
(more layers) and, consequently, achieve higher accuracy.

After predicting bounding boxes and computing the image’s
feature map, the second stage maps bounding boxes to the
image’s feature map. The nomenclature in [2] refers to these
as Regions of Interest (RoI). Each of these regions are pooled
to form 1D feature vectors.

Finally, these feature vectors are fed to an SVM and
bounding-box regressors [18] for classification and localization
refinement respectively.

Fast R-CNN showed a 213x improvement in performance
over the original R-CNN model at run-time, and a 9x improve-
ment in training speed.

Fig. 3. Fast R-CNN - Ren et al. [3]

A Moving/Sharing of Operations. The final iteration of R-
CNN, Faster R-CNN [3], replaces the arbitrary region proposal
network present in R-CNN and Fast R-CNN with a unified
Region Proposal Network (RPN). This network generates
bounding boxes by performing convolution over the feature
maps produced by the CNN feature extractor of Fast R-CNN.
This is particularly impactful on performance because using
convolutions for the Region Proposal Network allows it to be
moved from the CPU to the GPU.



Fig. 4. Distributed R-CNN

Additional performance benefits were gained from sharing
convolution operations across the RPN and CNN stages of the
model.

Further developments in object detection have seen a de-
parture from the dedicated region proposal method. Models
such as SSD [7] and YOLO [6] replace the region proposal
algorithm to improve computational performance, but this
often sacrifices accuracy for detection speed.

III. DISTRIBUTED R-CNN

This paper’s contribution to literature is a dynamically
distributed R-CNN model based on Fast R-CNN. As noted in
other object detection architectures in literature [6, 7], the need
for a region proposal algorithm in the R-CNN model creates a
bottleneck for the overall detection speed of the model. Most,
if not all, approaches to mitigating this bottleneck have aimed
to refine a single, contiguous model by reducing and sharing
operations across the architecture. Other architectures take
unique approaches such as a cascade of more efficient, lighter
networks to improve accuracy while maintaining efficiency
[39].

However, the R-CNN architecture can be split into discrete
parts, parts that can be containerized and deployed [36, 37,
38] in the cloud to take advantage of the compute resources of
multiple devices. Distributing the computational requirements
for the model is expected to improve performance, especially
on limited hardware platforms such as those without a dedi-
cated GPU. This would serve to improve detection speed while
maintaining the accuracy benefits of R-CNN.

For the purposes of this distributed architecture, 3 primary
components are considered; a region proposal algorithm, a
CNN feature extractor, and then any additional layers used
for final classification and bounding box regression.

Figure 4 illustrates several possible distribution cases for
the R-CNN model. Each case has a set of potential advantages

and disadvantages. Case 1 takes advantage of the high CPU
compute power provided by a CPU bound cloud to accelerate
the region proposal algorithm, while simultaneously taking
advantage of the Nvidia Jetson TX2’s GPU for computing
feature maps. Case 2 is the most distributed case, but the Rasp-
berry Pi’s limited compute capabilities may pose a bottleneck
to the system. Case 3 attempts to move convolution to the
CPU bound server while doing region proposals on the Jetson
TX2. Further testing is needed to evaluate the most efficient
configuration.

A. Region Proposal

Several region proposal algorithm were considered for the
development of this distributed R-CNN model. In particular,
selective search, objectness, and EdgeBoxes. Hosang et al.’s
evaluation of current detection proposal methods [25] was
heavily utilized in deciding what method to use.

Selective Search [20, 21], as used in the original R-CNN
[1] model, uses the concept of superpixels to segment an image
at different levels of granularity, where superpixels are regions
of an image where the original pixels have been merged. No
model is trained to achieve this. Instead, specifically designed
features and score functions define which pixels get merged
into superpixels.

Objectness [22, 23] refers to how likely it is that a bounding
box contains an object. The algorithm to predict objectness
uses a variety of indicators such as edge density, saliency and
color contrast to generate bounding boxes.

EdgeBoxes [24] is a relatively newly proposed region
proposal method that makes bounding box predictions based
on an edge map generated by Structured Forests [26, 27].
Structured Forests uses a trained model to generate edges
from an input image, which is then fed to EdgeBoxes for
bounding box prediction. These predictions are made based



on how many contours are contained wholly within a region
of the edge map.

Comparison. Hosang et al. judged region proposal algo-
rithms on three criteria: repeatability, recall, and detection. In
addition, execution time of the algorithm was recorded.

Repeatability is defined as a region proposal algorithm’s
propensity to re-localize similar image content within a variety
of different images. That is, if an algorithm predicts the
location of something within an image, that same prediction
will be repeatable if fed a different image. This was tested in
[25] by adjusting an image’s brightness, saturation, crop, etc.
and checking for re-detection of objects. The 3 algorithms
under consideration scored as follows, from best to worst;
EdgeBoxes, selective search, then objectness.

Recall refers to how many ground truth detection annota-
tions an object detection algorithm ”hits” with its bounding
boxes. The value of recall was tested by Hosang et al. at
several Intersection over Union (IoU) values and with dif-
fering numbers of proposals. Objectness consistently scored
the worst compared to EdgeBoxes and selective search. When
considering a low IoU, EdgeBoxes consistently scores the best
of all methods. However, as IoU values increase to around 0.8,
selective search scores better.

Finally, the detection metric measures how well a region
proposal algorithm would work with a detection framework.
From best to worst, the 3 algorithms scored as follows;
EdgeBoxes, selective search, then objectness.

Conclusion. Edgeboxes and selective search are the most
attractive region proposal algorithms because of their high
recall. The deciding factor for a region proposal algorithm
choice comes down to computational performance; EdgeBoxes
is up to two orders of magnitude faster than selective search.
Although its predicted bounding boxes may have poor IoU
with objects in a scene, a well designed RoI pooling layer and
box regressors may be able to make up for its shortcomings.

B. CNN Feature Extractor

Since the hardware for deploying this system will be pri-
marily CPU bound, with the exception of the Jetson TX2’s
small onboard GPU, the CNN feature extractor should be
fittingly computationally (un)complex. Following suite after
tensorflow’s fastest faster r-cnn model in the object detection
API [28], the CNN feature extractor for this distributed R-
CNN will be modeled after Szegedy et al.’s inception v2
architecture.

C. Additional Layers

Additional layers such as the RoI pooling layer, classifying
layers, and box regressors will be deployed together since they
are the less computationally intense portions of the model.

IV. EDGE BOXES

A. Implementation

As a first step in implementing the distributed R-CNN
model, EdgeBoxes was used for region proposal on a video
of a parking lot.

Fig. 5. Edge Map Generation and Bounding Box Proposals

The EdgeBoxes region proposal algorithm consists of two
steps. First, an edge map and orientation map is generated for
an input image using a Structured Forests model. This can
be seen in figure 5, where the upper left image is the original
video feed and the upper right image is the edge map generated
by Structured Forests.

The second stage feeds the edge map and orientation map
into the EdgeBoxes algorithm for bounding box proposal. This
can be seen in the bottom image of figure 5. It should be noted
that, for visualization purposes, only 100 boxes were proposed
in figure 5, whereas the actual number of boxes proposed will
be an order of magnitude greater.

Implementation details for hardware and software parame-
ters are as follows:

• Desktop: workstation, quad-core Intel i7-4770 CPU
• RPi: Raspberry Pi 3 Model B, quad-core ARM CPU
• Jetson: NVIDIA Jetson TX2, dual-core Denver CPU +

quad-core ARM
• Structured Forests: OpenCV [34] implementation and

model from [35].
• EdgeBoxes: OpenCV implementation. Parameters: alpha

0.65, beta 0.75, minscore 0.03, + OpenCV defaults.

The primary efforts for this implementation were focused
on improving the computational performance of the region
proposal algorithm. Further testing and refining is needed to
evaluate accuracy.

B. Results

Initially, a consecutive execution approach was taken, where
Structured Forests would first generate an edge map and
orientation map, then EdgeBoxes would process these maps
for bounding box proposal. However, this method was un-
acceptably slow. It was observed that EdgeBoxes consistently
”waited” on Structured Forests to generate the necessary maps;
so, a method using multi-threaded edge map generation was
implemented. The premise here being that while EdgeBoxes



Fig. 6. EdgeBoxes Performance on Different Platforms

was generating proposals for the current frame, Structured
Forests would generate the next frame’s map to be read once
EdgeBoxes was done with the current frame. Further perfor-
mance gains were made by spawning multiple EdgeBoxes
threads in addition to the Structured Forest threads, effectively
creating multiple Structured Forests-Edgeboxes pipelines for
bounding box prediction.

Performance was tested by spawning different ratios of
Structured Forest threads to EdgeBoxes threads. Since Struc-
tured Forest threads serve to buffer for EdgeBoxes threads, a
number of EdgeBoxes threads were spawned, and then either
1, 2, or 3 Structured Forests threads were spawned for each
EdgeBoxes thread. ie. 1 Edgeboxes : 2 Structured Forests
threads.

Performance increases are shown in figure 6, measured in
frames per second (FPS). The horizontal axis is the number
of EdgeBoxes threads and Structured Forests threads spawned
(ie 2:6 - 2 EdgeBoxes:6 Structured Forests), where 0:0 rep-
resents consecutive execution. A steady increase in FPS can
be seen from consecutive execution to multiple threads on
the Desktop and Jetson TX2 platforms. The Jetson TX2
sees gradual improvement until its 6 core processor becomes
saturated with the number of threads. The Raspberry Pi sees
an improvement in performance from consecutive to multi-
threading, but these improvements taper off quite quickly due
to the Pi’s insufficient CPU overhead. A slight disparity can
be seen between the bare-metal performance of the desktop
vs a containerized deployment, but this disparity is reduced as
more threads are spawned. Further investigation is required to
explain this performance difference.

Regardless, these results suggest that region proposal using
EdgeBoxes would benefit from running on the CPU-bound
cloud.

V. UNDISTRIBUTED R-CNN

To test the efficacy of a distributed R-CNN model, an
undistributed model with similar architecture was trained. This
undistributed model will be used as a benchmark for future
work.

A. Pre-Trained Feature Extractor

Due to the fairly high cost of training, with regards to
both hardware and time requirements, a method using pre-
trained feature extractors is explored. These feature extractors
are provided by Google with the Object Detection API [28]
explicitly for the purposes of initializing models for quick
time-to-market detections. These models have been trained on
several different datasets using hardware inaccessible to the
general public.

Provided models vary in terms of size, speed, accuracy, and
the dataset trained on. The model used as a benchmark in this
paper is the faster rcnn inception v2 model trained on the coco
dataset [29].

B. Fine-Tuning Dataset

To ensure the model would be proficient at recognizing cars
from an elevated perspective (such as that of a camera over a
parking lot) for the test case (section VI), the model was fine-
tuned with a small set of images pulled from two datasets.

The first dataset was provided by [31] and was used in
the testing of their system. It consists of images from several
different parking areas and from multiple perspectives. The
second dataset was provided by [32] and consists of several
thousand images from three different cameras perspectives at
three different parking lots during various times throughout the
day. Both of these datasets came with annotations describing
the xy coordinates of bounding boxes for cars in the scene.
However, these annotations were particularly inaccurate in the
case of the second dataset because of the nature of the dataset
(to describe parking lot occupancy instead of car location).

After cleaning up the annotation values, the final dataset
used for fine-tune training and evaluation consists of 155
images, containing 5837 cars.

C. Performance/Results

The faster r-cnn inception v2 model was fine-tune trained
for 6.5 hours on the dataset described above, where the dataset
was split 4:1, training:evaluation (124 training. 31 evaluation).
Accuracy plateaued at around 80% on the evaluation dataset.

A similar approach to training the distributed R-CNN model
will be taken, where a large dataset with several classes will
be used for an initial training session. Then, the model will
be fine tuned to the parking lot dataset.

VI. FURTHER WORK

While some progress has been made in implementing a
region proposal network for the model, more work is needed
to further improve the performance and evaluate the accuracy
of EdgeBoxes. Additionally, the model requires design and
implementation of a CNN feature extractor, as well as other
remaining layers for pooling, classification, and bounding box
regression. The interaction between EdgeBoxes and RoI pool-
ing layers/bounding box regression needs to be investigated
for optimization of object localization by the model.

As containerization and deployment for the distributed R-
CNN model progresses, performance versus the undistributed



model will be evaluated. A method simulating the latency of
wirelessly connected edge devices will be used to evaluate
computational performance benefits of the distributed model.

As an ”in the wild” test case, a camera based infrastructure
using R-CNN models proposed in this paper will be used
to track cars in a parking lot. This data will be used to
monitor parking lot occupancy conditions in real-time. Both
the distributed and undistributed R-CNN models will be de-
ployed and tested on a series of metrics including latency and
accuracy.

VII. CONCLUSION

This paper proposes a theoretical architecture for a dis-
tributed R-CNN model. This model will be based on the
Fast R-CNN architecture [2] which is more efficient than
R-CNN [1], but, unlike Faster CNN’s [3] combined RPN-
CNN layers, still consists of the distinct, separable com-
ponents necessary in a distributed deployment model. The
region proposal algorithm component of the distributed R-
CNN model was investigated as a first step in developing
and deploying the distributed model. After review of current
object detection literature, EdgeBoxes [24] was chosen as the
region proposal algorithm of the distributed R-CNN model.
Performance increases were gained through multithreading
the different stages [26, 27] of EdgeBoxes. Finally, as a
benchmark for future work, an undistributed Faster R-CNN
model was trained on the parking lot test discussed in section
VI.
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