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Abstract. Obfuscation is an important technique to protect software
from adversary analysis. Control flow obfuscation effectively prevents
attackers from understanding the program structure, hence impeding
a broad set of reverse engineering efforts. In this paper, we propose a
novel control flow obfuscation method which employs Turing machines
to simulate the computation of branch conditions. By weaving the orig-
inal program with Turing machine components, program control flow
graph and call graph can become much more complicated. In addition,
due to the runtime computation complexity of a Turing machine, pro-
gram execution flow would be highly obfuscated and become resilient
to advanced reverse engineering approaches via symbolic execution and
concolic testing.

We have implemented a prototype tool for Turing obfuscation. Compar-
ing with previous work, our control flow obfuscation technique delivers
three distinct advantages. 1). Complexity: the complicated structure of a
Turing machine makes it difficult for attackers to understand the program
control flow. 2). Universality: Turing machines can encode any compu-
tation and hence applicable to obfuscate any program component. 3).
Resiliency: Turing machine brings in complex execution model, which is
shown to withstand automated reverse engineering efforts. Our evalua-
tion obfuscates control flow predicates of two widely-used applications,
and the experimental results show that the proposed technique can ob-
fuscate programs in stealth with good performance and robustness.

Key words: Software security, control flow obfuscation, reverse engi-
neering, Turing machine

1 Introduction

Most software exploitation and hijacking attacks start by identifying program
vulnerable points (e.g., buffer overflow). To launch attacks directly towards exe-
cutable files, attackers usually need to first perform reverse engineering activities
and recover the control flow structures of the victim programs. Moreover, we also
notice that automated software analyzers can leverage advanced symbolic and
concolic testing techniques to explore execution paths and hence revealing hidden
vulnerabilities in binary code [6, 20, 12]. Typical concolic engines [11, 5] could
yield inputs which lead to new execution paths by solving branch conditions as
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constraints, and such technique has been proved as very effect in understanding
program structures [19].

A lot of software security research has focused on preventing reverse engi-
neering activities on program control structures and execution paths [29, 21, 18,
26, 27]. Control flow obfuscation is one of these cutting-edge techniques to com-
bat both static and dynamic reverse engineering tools. Control flow obfuscation
largely changes the program control flow structures, and it has been shown as
effective to hide path conditions and complicate the execution flow of a pro-
gram. By rewriting or adding extra control flow components, the program path
conditions become difficult or even impossible to analyze.

In this paper, we propose a novel control flow obfuscation method which
leverages Turing machine to compute path conditions. The Church-Turing the-
sis [9] states that the power of Turing machines and A-calculus is the same as
algorithms, or the informal notion of effectively calculable functions. Formally,
Turing computable, A-computable, and general recursive functions are shown to
be equivalent, and informally, the thesis states that they all capture the power of
algorithms or effectively calculable functions. This means any functional compo-
nent of software can be re-implemented as or transformed into a Turing machine;
the replaced code component and its corresponding semantic equivalent Turing
machine is called Turing FEquivalent.

Our method is to simulate important branch condition statements in a pro-
gram with semantic equivalent Turing machines. A Turing machine behaves as
a state machine which brings in extra control flow transfers and basic blocks
to the overall program control flow graph. Moreover, a typical Turing machine
leverages transition tables to guide the computation, and such transition table-
based execution would introduce complicated execution model and make the
program execution much more challenging to analyze. We envision the proposed
technique would largely complicate the protected program, and also bring in
new challenges for reverse engineering analyzers. In addition, since Turing ma-
chine can represent the semantics of any program computation, our method is
fundamentally capable of obfuscating any functional component.

To obfuscate a program through the proposed Turing obfuscator, we first
translate the original program source code into a compiler intermediate represen-
tation. Our Turing machine obfuscator then selects branch condition statements
(i.e., branch predicates) for transformation; the transformed statements will in-
voke its corresponding Turing machine component, which is semantic equivalent
to the original branch conditions. After finishing the execution in the Turing ma-
chine “black box”, the execution flow returns back to the original program point,
with a return value to determine the branch selection. Consistent with existing
work [8], we evaluate our obfuscator regarding five aspects, namely function-
ality correctness, potency, resilience, cost, and stealth. Results show that the
proposed Turing obfuscator can effectively obfuscate commonly-used software
systems with acceptable cost, and impede reverse engineering activities through
an advanced symbolic execution analyzer (i.e., KLEE [5]).
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The rest of this paper is organized as follows. Section 2 discusses related works
on obfuscation, especially control flow obfuscation. Section 3 presents the overall
design of Turing machine obfuscator. Obfuscator implementation is discussed in
Section 4. Section 5 presents the evaluation result of our proposed technique.
We further give discussions in Section 6, and conclude the paper in Section 7.

2 Related Work

In general, reverse engineering techniques can be categorized into static and
dynamic approaches. To impede static reverse engineering, researchers essen-
tially focus on hardening disassembling and decompiling process. To combat the
dynamic reverse engineering techniques such as concolic testing, sensitive con-
ditional transfer logic is proposed to be hidden from adversaries. Control flow
obfuscation has been proved effective in this scenario.

Sharif et al. [21] propose a technique to rewrite certain branch conditions and
encrypt code components that are guarded by such conditions. Branch condi-
tions that are dependent on the input are selected and branch condition outputs
are transformed with a hash function. Moreover, the code component which is
dependent on a transformed condition would be encrypted; the encryption key
is derived from the input which satisfies the branch condition. In general, their
technique focus on selectively translate branch conditions that are dependent on
the input, which could leave many branch conditions unprotected. Also, since the
branch condition statement itself is mostly untouched (only the boolean output
is hashed), the original branch condition code is still in the obfuscated program,
which could be leveraged to reveal the original semantics.

Popov et al. [18] propose to replace unconditional control transfer instruc-
tions such as jmp and call with “signals”. Their work is used to impede binary
disassembling, the starting point of most reverse engineering tasks. Moreover,
dummy control transfers and junk instructions are also inserted after the replaced
control transfers. This method is effective in fooling disassemblers in analyzing
unconditional transfers but it could become mal-functional when the conditional
transfers need to be protected as well. Another related work proposes to protect
control flow branches leveraging a remote trusted third party environment [26].
In general, their technique mostly introduces notable network overhead and also
relies on trusted network accessibility which may not be feasible in practice.

Ma et al. [16, 15] propose to use neural network to replace certain branch
condition statements; the propose technique is evaluated to conceal conditional
instructions and impede typical reverse engineering analysis such as concolic
testing. While the experimental results indicate the effectiveness to certain de-
gree, in general neural network-based approach may not be suitable for security
applications. To the best of our knowledge, neural network works like a black
box; it lacks a rigorous theoretical foundation to show a correct result can always
to generated given an input. In other words, neural networks may yield results
which lead to an incorrect branch selection. We also notice some recent work
proposing to translate program components implemented in imperial language
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(C/C++) into languages of other computation paradigms. It is argued that by
mixing languages of different execution model and paradigms, the complexity of
software systems grows and reverse engineering becomes more difficult. Wang et
al. [23] presents a general framework to translate C statements into a logic state-
ments written in Prolog. Lan et al. [13] proposes to obfuscate program control
flow predicates with functional programming language statements.

3 Turing Obfuscation

3.1 Design Overview

In a program, a branch condition statement compares two operands and se-
lects a branch for control transfer based on the comparison result. As aforemen-
tioned, Turing machine has been proved to be able to simulate the semantics
of any functional component of a program. Hence, any program branch condi-
tion statement can be modeled by a Turing machine. Taking advantage of its
powerful computation ability as well as execution complexity, we propose to
employ Turing machine to obfuscate branch condition statements (the branch
condition statement is referred as “branch predicate” later in this paper since its
output is usually a boolean value) in a program. A Turing machine obfuscated
branch condition statement is shown in Fig. 1. Instead of directly computing a
boolean value through a comparison instruction, we feed a Turing machine with
the inputs (the value of operands) and let the Turing machine to simulate the
comparison semantics.

operands operands

f ) FALSE —
compare instruction

Turing Machine

Pathl Path2 Pathl Path2

Fig. 1: Obfuscate a branch condition statement through a Turing machine.

3.2 Turing Machine

As shown in Fig. 2, a typical Turing machine consists of four components:

— An infinite-long tape which contains a sequence of cells. Each cell holds a
symbol defined in the tape alphabet (the alphabet is introduced shortly). In
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this work, our proposed Turing machine obfuscator would dynamically allocate
new tape cells to construct an infinite tape to store intermediate results.

— A tape head which could perform read, write, move left and move right
operations over the tape.

— A state register used to record the state of the Turing machine. Turing machine
states are finite and defined in the transition table.

— A transition table that consists of all the transition rules defining how a Turing
machine transfers from one state to another.

Although simple, a Turing machine model resembles a modern computer in
several ways. The head is I/O device. The infinite tape acts like the memory.
The transition table defines the functionality of this Turing machine which is
comparable to the application code.

Infinite Tape

* . . . . . * . * *
State Register Transition Table
S1 Transition Rule 1

Transition Rule 2

Transition Rule 3

Fig. 2: Turing machine components.

Transition Table A transition rule could be represented by a five-element tuple
(Se, Tt, Sn, Ty, D) where:

— S, is the current Turing machine state.

— T, is the current tape cell symbol read by the head.

— S, is the new Turing machine state.

— T, is the symbol head writes to the current tape cell.

D is the direction towards which the head should move (i.e., “left” or “right”).

In general, every five-element tuple represents a transition table rule shown
in Fig. 2.

Turing Machine Encoding Initially, Turing machine is at the “start” (Sp)
state and tape records the Turing machine input. Consistent with existing Turing
machine simulator project [22], blank symbol is denoted as “*” on the tape,
while the length of “” is used to encode an operand. For instance, integer 5 is
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“n

represented as five continuous on the tape. Note that a Turing machine could
be encoded with various of ways, and our prototype represents only one of them.
Turing machine with different encoding strategies operates with totally distinct
execution patterns. This also makes Turing machine obfuscation difficult to be
analyzed.

In general, our Turing machine tape alphabet includes two symbols, i.e.,
{*,*}. The tape in Fig. 2 shows an initial state of a Turing machine. The head
of the Turing machine is placed on the leftmost cell. Different operands are
separated by a blank symbol “*”. Operands encoded on the tape in Fig. 2 are
five and one. When Turing machine starts to run, the head reads the current
tape cell, combines with the current state register to locate a transition rule in
the transition table, and then moves to the next state, accordingly.

Turing Machine Execution The Turing machine keeps running step by step
directed by the transition table until it reaches a Halt state. Nevertheless, Turing
machine may also keep running forever since the process of solving some problems
cannot terminate. In our research, we implement a Turing machine to simulate
branch predicates so it should always reach a Halt state. When reaching the Halt
state, the machine stops running and the computation result is shown on the
tape. Table 1 shows a transition table example, which guides a Turing machine
for the addition (i.e., add) operation in our implementation.

Current State|Current Symbol|New State|New Symbol|Direction
So * So * Right
So . Sy . Right
S1 * Sa . Right
S1 . S1 . Right
Sa * Ss3 * Left
So . So . Right
Ss * Sg * Left
S3 . Sy * Left
Sa * Halt * -
Sa . Sa . Left

Table 1: Transition table of the add operation in a Turing machine.

Addition Turing Machine In this section, we elaborate on the design of
the addition Turing machine; this machine simulates the semantics of the add
operation. Other Turing machines (e.g., subtraction and multiplication Turing
machines) used in this research are designed in a similar way. Fig. 2 presents a
sample initial stage of a tape, and the corresponding addition transition rules are
shown in Table 1 (this table will be explained shortly). After a sequence of read
and write operations based on the transition table, left operand (integer value
5) and right operand (integer value 1) that are separated by a blank symbol “*”
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are merged into a long series of “” cells on the tape. The length of the output
dot cells is 6, which represents the integer value 6 as shown in Fig. 3.

Fig. 3: Execution result of the add Turing machine.

Interpreting a transition table could be difficult for a human being. To repre-
sent an understandable description on how the addition transition table works,
we summarize the transition table rules in an algorithm description. Algorithm 1
describes the transition table of the addition operation; it states a method to
combine two sequences of dot cells on the tape into a longer sequence of cells.
Following this algorithm, the isolator cell (i.e., the blank symbol) is written to
“” when Turing machine terminates at the “Halt” state.

Algorithm 1 Description of the add transition table.

1: procedure

2: head < the blank cell before the left operand starting cell

while head != the blank cell after the right operand do move right
move left

the last dot cell of the right operand < blank symbol

while head != the blank cell within these two operands do move left
the blank cell < dot

while head != the blank cell before the left operand do move left

Halt;

Turing Machine of Other Operations Besides the aforementioned addition
operation, we also implement transition tables of other arithmetic operations. In
particular, we construct three more transition tables for subtraction, multiplica-
tion and division operations. Their transition tables are relatively more complex
than Table 1. Actually in our implementation, we build transition tables of 16,
34 and 80 transition rules for subtraction, multiplication and division Turing ma-
chines, respectively. Comparison operations in a branch predicate (e.g, <, >, #)
is built on the basis of the subtraction Turing machine, and all the arithmetic
operations are used to simulate “dependences” of the comparison operations on
the IR level (details are given in §4.3). In sum, we construct 4 transition tables,
with overall 140 transition table rules in total.
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Tape

Turing \/Iachir)e Encoding Inputs Qutput

Transition Table

Scanned Symbol Transition rule 1
Transition rule 2
Current State

Transition rule 3

Fig. 4: Universal Turing machine.

3.3 Universal Turing Machine

While a Turing machine could perform powerful algorithm simulation, its com-
putation ability is bounded by its initial tape state and embedded transition
table. For instance, a Turing machine capable of doing addition operation could
only simulate the add operation since other operations would have very different
transition rules. That means, an add Turing machine could not represent the
subtract operations. Also, since the initial state needs to be encoded on the
tape before the computation, a Turing machine encoded with 2 + 3 could not
conduct represent 5+ 6.

In non-trivial programs, branch predicate could include various arithmetic
and comparison operations, and many of these expressions would lead to differ-
ent Turing machines. Hence, we need a unified translator to represent arbitrary
computations. Universal Turing machine is designed to simulate arbitrary com-
putations. As shown in Fig. 4, the typical design of a Universal Turing machine
stores all the transition tables and one table is selected each time according to
the semantics of the upcoming computation (e.g., add). To maintain the input
data, Universal Turing machine dynamically allocates memory cells to initialize
one tape before computation. Hence, all the information needed for arbitrary
computations exists in the Universal Turing machine.

Universal Turing machine bears the essence of the modern computer which is
being programmable. Through storing different transition tables and inputs on
the tape, a universal Turing machine can actually perform semantic equivalent
computation to represent arbitrary programs; as aforementioned, such Univer-
sal Turing Machine and the replaced expression are Turing Equivalent. In our
Turing machine obfuscator design, all the branch predicates invoke a unified in-
terface towards a Universal Turing machine, where a transition table is selected
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according to the opcode of the obfuscated instruction, and a tape is constructed
to represent the input value.

4 Implementation

Our proposed obfuscator consists several components including a universal Tur-
ing machine model and several transformation passes based on the LLVM com-
piler suite [14]; As shown in Fig. 5, our Turing obfuscator performs a three-phase
process to generate the obfuscated output. The first step translates both target
program and the universal Turing machine source code into the LLVM intermedi-
ate representation (IR). The obfuscator then iterates IR instructions to identify
obfuscation candidates (the second phase). After that, we then perform the ob-
fuscation transformation towards all the candidates or a randomly-select portion
(the third phase). The instrumented IR code is further compiled into the final
obfuscated product. We implement the universal Turing machine model with in
total 580 lines of C code and LLVM passes with 341 lines of C++ code.! We
now elaborate on each phase in details.

Phase One - LLVM Front End Phase Two — Analysis and Select Candidates Phase Three — Transformation and LLVM Backend

c

Universal Turing | <" | R
machine | | | Analysis

G P
c IR ‘IR 0BJ Binary

S

Subject Program ‘ |

Fig. 5: Workflow of the Turing machine obfuscator.

4.1 Phase One: Translate Source Code to IR

As aforementioned, we first compile the target source program into LLVM IR;
the obfuscation transformation is performed on the IR level. Considering a broad
set of front end compilers provided by LLVM which can turn programs written by
various programming languages into its IR, this IR-based implementation could
broaden the application scope of our tool comparing with previous work [16, 26,
15]. Since we employ C programs for the evaluation, Clang (version 5.0) is used
as the front end compiler in this paper.

4.2 Phase Two: Collect Transformation Candidate

The LLVM Pass framework is a core module of the LLVM compiler suite to
conduct analysis, transformation and optimization during the compile time [14].

! Please refer to an extended version of this paper for more implementation details [25].
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In this step, we build a pass within this framework to iterate and analyze every
IR instruction in each module of the input program. During the analysis pass,
our Turing machine obfuscator locates all the transformation candidates on the
IR instruction level.

Locate Candidate Predicates While the proposed technique is fundamen-
tally capable of obfuscating any program component, the implementation cur-
rently focuses on branch predicates since control-flow obfuscation is effective to
defeat many reverse engineering activities (§1). In general, the transformation
candidate set includes 10 kinds of branch predicate instructions as: equal, not
equal, unsigned less than, unsigned greater than, unsigned less or equal, unsigned
greater or equal, signed less than, signed greater than, signed less or equal, signed
greater or equal.

4.3 Phase Three: Obfuscation Transformation

The second phase provides all the eligible transformation candidates. In this
step, We build another transformation pass within the LLVM Pass framework
to perform the obfuscation transformation. As shown in Fig. 6, predicate instruc-
tions are obfuscated; we rewrite instructions into function calls to the universal
Turing machine. The computation of the branch predicate is launched inside the
Turing machine, and the computation result is passed to a register which directs
the associated path selection. Our technique is able to obfuscate all the branch
predicates in a program or only transform a subset of (security sensitive) candi-
dates. Such partial obfuscation is denoted as “obfuscation level”, which will be
discussed shortly.

Subject Program UTM Model

%79 = call i1 (132, 132, 132, ...) @UTMIT
%77,i32 %78)

%77 =load i32, 32* %14, align 4 T’ define zeroext i1 @UTM(i32, i32, 32, i8*, i8*) #0 {

Use-def %78 = load i32, 132° %17, align 4
Chain

9%6 = alloca i1, align 1

%79 = add nsw 132 %77, %78 - %7 = alloca i32, align 4

%80 = load i32, i32* %9, align 4

%81 = icmp st i32 %79, %80 %9 = alloca i32, align 4

1

l

1

1

: %8 = alloca i32, align 4
l

1

1

1

%10 = alloca i8*, align 8
%81 = call i1 (132, 132, 32, ..) @UTM[132 39,
32 %79, 132 %80)

bri1%81, label %82, label %318

Fig. 6: Obfuscation transformation for an icmp instruction. “UTM” standards for uni-
versal Turing machine.

For an obfuscated predicate, our current “transform to function call” imple-
mentation utilizes a boolean return value to select a branch to transfer. On the
other hand, we notice existing work (e.g., [16, 15]) leverages a cross-procedure
jump at this step; an indirect jump from the black box of the obfuscation compo-
nent to a selected branch. We present further discussion on both control transfer
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strategies in §6.

Operand Type In general, a branch predicate instruction can have either
pointer or numerical data types (i.g., integer or float types). While the proposed
technique is generally capable of translating branch predicate of any operand
type, considering processing operands of pointer (and float) type would bring in
additional complexity, our current prototype is designed to only handle operands
of integer type. Actually our tentative study shows that most of the branch pred-
icate instructions would have operands of integer type, hence, our implementa-
tion choice is indeed capable of handling most of the real-world cases. On the
other hand, we emphasize extending our technique to handle other cases is only
a matter of engineering effort. We leave it as one future work to provide such
functionalities.

Def-use Chain Analysis Since our analysis is performed on IR expressions
of the three-address form, one branch predicate in the original program shall
be translated into a sequence of IR instructions. Hence, to perform a faithful
obfuscation of one branch predicate, we need to first identify a “region” of IR
instructions that is translated from one branch predicate.

As shown in Fig.6, we perform def-use analysis to recover such “region” in-
formation. In particular, given a comparison IR instruction (which indicates one
branch predicate and the end of the corresponding “region”), we calculate the
use-def chains of its two operands, respectively. The identified instructions which
provide the “definition” information of these two operands will be included in
the “region”. After the def-use analysis, we translate arithmetic instructions in
the “region” into function calls to the Turing obfuscator.

Obfuscation Level Obfuscation level is an indicator which weighs how much
of a program is transformed by the obfuscation pass. Consistent with previous
work [23], the obfuscation level is defined as the ratio between the obfuscated
instructions and the total candidates:

O = M/N

M is the number of instructions transformed by the obfuscation pass. N
is the number of all the transformable instructions (i.e., the branch predicate
instructions identified in § 4.2).

5 Evaluation

Inspired by previous research [8, 16, 15|, we evaluate our Turing machine ob-
fuscator based on four metrics which are potency, resilience, stealth and cost,
respectively. Potency weighs the complexity of the obfuscated programs, while
resilience measures how well an obfuscated program can withstand automated
deobfuscation techniques. Stealth is evaluated to show whether the obfuscated
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programs are distinguishable regarding its origins, and cost is naturally employed
to measure the execution overhead of the obfuscation products. In addition, we
also evaluate the functionality correctness of the obfuscated binaries.

Two widely-used open source programs are employed in our evaluation: com-
pression tool BzIP2 (version 1.0.6) [1] and regular expression engine REGEXP
(version 1.3) [4]. As aforementioned, obfuscation level is an index which stands
for the ratio of obfuscated instructions regarding all the candidates. In our ex-
periments, the ratio is set as 50% unless noted otherwise which means half
candidates are randomly selected and obfuscated.

5.1 Functionality Correctness

Both programs evaluated in our research (BzIP2 [1] and REGEXP [4]) are shipped
with test cases to verify the functionality of the compilation outputs. In partic-
ular, the BzIP2 test cases deliver 3 compression samples and 3 decompression
samples, while the REGEXP test cases contain 149 samples of various regular ex-
pression patterns. We leverage those shipped test cases to verify the functionality
correctness of our obfuscated programs. For all the evaluated obfuscation levels
(i.e., 30%, 50%, 80% and 100%), we report all the obfuscated programs can pass
all the test cases, hence preserving the original semantics after obfuscation.

5.2 Potency

Control flow graph (CFG) and call graph represent the general structure of a
program and they are the foundation for most static software analysis. With the
help of IDA Pro [2], a well-known commercial binary analysis tool, we recover
CFG and call graph information from both original and obfuscated binaries.
By traversing those graphs, we calculate the number of basic blocks, number
of call graph and control graph edges. We use these information to measure the
complexity of a (obfuscated) program, which is aligned with previous research [7].
Analysis results are shown in Table 2. Comparing the original and obfuscated
programs, it can be observed that program complexity is increased in terms of
each metric.

Table 2: Potency evaluation in terms of program structure-level information.

Program # of CFG Edges|# of Basic Blocks|# of Function
BZIP2 3942 2647 78
obfuscated Bzip2 4195 2828 134
REGEXP 906 619 25
obfuscated REGEXP 1122 e 43

We further quantify the Turing machine obfuscated programs in terms of the
cyclomatic number and knot number (these two metrics are introduced in [17,
28]). Cyclomatic metric is defined as
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Cyclomatic=FE — N + 2

where E and N represent the number of edges and the number of nodes in a CFG,
respectively. Knot number shows the number of edge crossings in a CFG. These
two metrics intuitively measure how complicated a program is in terms of logic
diversion number. Results in Table 3 shows that knot and cyclomatic number
notably increase for both cases after Turing machine obfuscation. Overall, we
interpret Table 2 and Table 3 as promising results to show programs become
much more complicated after obfuscation.

Table 3: Potency evaluation in terms of knot and cyclomatic numbers.

Program # of Cyclomatic|# of Knot
BZIP2 1297 5596
obfuscated Bzip2 1369 5720
REGEXP 289 478
obfuscated REGEXP 351 1068

Besides picking 50% as the obfuscation level in this evaluation, we also con-
duct experiments with obfuscation levels as 30%, 80% and 100%. Fig. 7 presents
the number of call graph edges with the increase of obfuscation levels. Observa-
tion shows that with a higher obfuscation level, the number of call graph edges
increases. Naturally, obfuscated programs can become more complicated with
the growing of obfuscation levels.

5.3 Resilience

In addition to complicate program structures, a good obfuscation technique
should be designed to impede automated deobfuscation tools as well. As afore-
mentioned, symbolic and concolic testing tools are leveraged in automated soft-
ware analysis to explore the program paths and reveal hidden vulnerabilities.
Hence in this evaluation, we adopt a cutting-edge symbolic engine (KLEE [5])
to test the resilience of the obfuscated programs. Ideally program obfuscation
brings in new challenges in reasoning path conditions, and hence would impede
symbolic tools from finding new paths. In this evaluation, we use KLEE sample
code [3] as the test case (the sample code is shown in Fig. 8).

KLEE could detect three paths in the original test case as expected. Actually
based on different value of x, this program may traverse branches in which x
equals 0, x is less than 0 or x is greater than 0, respectively. In contrast, we report
KLEE could only reason one path condition for the obfuscated program. Due
to limited information released by KLEE, we could not reveal the underlying
reason that leads to the failure of the other two path conditions. Nevertheless,
since Turing machine obfuscator makes the branch predicates more complicated,
we envision that the internal constraint solver employed by KLEE is unable to
yield a proper symbolic input which could “drill” into the branches protected
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Fig. 7: Number of call graph edges in terms of different obfuscation levels.

1 int get_sign(int x) {
2 if (x == 0)

3 return 0;

4

5 if (x < 0)

6 return —1;

7 else

8 return 1;

9

10

11 int main() {

12 int a;

13 klee_make_symbolic(&a, sizeof(a), "a");
14 return get_sign(a);
15 1

Fig. 8: KLEE sample code used in our evaluation. All the path conditions are obfus-
cated.

by our tool. In sum, we interpret that Turing machine obfuscator can impede
automated program analyzers from exploring the program paths.

5.4 Stealth

To evaluate the stealth of the obfuscated programs, existing work [23] propose to
compare the instruction distributions of the original and obfuscated programs.
If instruction distribution of the obfuscated program is distinguishable from its
origin (e.g., call or jmp instruction proportions are abnormally high), it would
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be an indicator that the program is manipulated. In this evaluation, we adopt
this metric to measure the stealth of our Turing obfuscator.
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| obfuscated bzip2
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w
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Fig. 9: BzIP2 instruction distribution comparison.

Consistent with previous research [23], we put assembly instructions into 27
different categories. Fig. 9 and Fig. 10 present the instruction distribution of the
original and obfuscated programs (BziP2 and REGEXP). Experimental results
indicate that the instruction distribution after obfuscation is very close to the
origin distribution. In sum, small instruction distribution variation is a promising
result to show the proposed technique would obfuscate programs in a stealthy

way.

5.5 Cost

Performance penalty is another critical factor to evaluate an obfuscation tech-
nique. In most obfuscation research work, execution cost is inevitably increased
because obfuscation would bring in extra instructions. Measuring the execution
time is a convincing way to evaluate the cost.

In our evaluation, both original and obfuscated programs are executed on a
server with 2 Intel(R) Xeon(R) E5-2690 2.90GHz processors and 128GB system
memory. BZIP2 is used to compress three different sample files and regular ex-
pression engine REGEXP runs 149 samples provided in its shipped test cases. We
run each program three times and calculate the average execution cost.

Fig. 11 presents the execution overhead results. For both cases, the execu-
tion time slowly grows with the increase of the obfuscation levels. As expected,
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Fig. 11: Execution overhead in terms of different obfuscation levels.
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program takes more time to execute when more instructions are obfuscated.
Nevertheless, we interpret the overall execution overhead is still confined to a
reasonable level. We also notice that there exists a difference between slopes
of the two curves. Some further study on the source code shows that REGEXP
employs more recursive calls than BziP2, thus may lead to more invocations of
the Turing machine component and contribute to the performance penalty.

6 Discussion

In this section we present the discussion of the proposed Turing machine obfus-
cation technique.

6.1 Complexity

In general, Turing machine model is a powerful but complex calculator that is
capable of solving any algorithm problem. Note that even a simple operation
(e.g., “add”) may lead to the change of Turing machine states for hundreds of
times. Hence, it is hard—if possible at all—for adversaries with manual reverse
engineering efforts to follow the calculation logic without understanding the tran-
sition table rules and state variables. In addition, automated binary analyzers
(e.g., KLEE) can also be impeded due to the runtime complexity of a Turing
machine. As shown in our resilience evaluation (§5.3), the constraint solver of
KLEE failed to yield proper inputs to cover two of three execution paths.

To further improve the complexity, a promising direction is to perform “re-
cursive” obfuscation towards the input program. That is, we employ the Turing
obfuscator for the first round obfuscation, and further re-apply Turing obfusca-
tor to obfuscate the Turing machine inserted in the first round. Existing work
has pointed out that such “recursive” obfuscation approaches can usually im-
prove the program complexity, while may also bring in non-negligible execution
overhead [24]. We leave it as one future work to study practical strategies to
recursively apply our technique for obfuscation.

6.2 Application Scope

Previous obfuscation work [21] usually targets one or several specific kinds of
predicate expressions. Also, most of them performs source code level transfor-
mations for specific kind of program languages [23]. Turing obfuscator broadens
the application scope to any kind of conditional expression. In addition, it works
for programs written in any language as long as they could be transformed into
the LLVM IR. Considering a large portion of programming languages have been
supported by LLVM, we envision Turning machine obfuscator would serve to
harden software implemented with various kinds of programming languages.



18 Wang et al.
6.3 Branch Selection Techniques

As previously presented, our current implementation rewrites path condition in-
structions to invoke the Turing machine component. While it is mostly impossible
for attackers to reason the semantics of the Turing machine code, return value of
the obfuscator is indeed observable (since obfuscated branches are rewritten into
function calls to the Turing obfuscator). Certain amount of information leakage
may become feasible at this point.

We notice that existing work ([16, 15]) proposes a different approach at this
step; control flow is directly guided (via goto) to the selected branch from their
obfuscator. While this approach seems to hide the explicit return value, we argue
such technique is not fundamentally more secure since the hidden return value
can be inferred by observing the execution flow. Another solution that may be
employed to protect the predicate computation result is to use matrix branch
logic [10]. Suppose we model a branch predicate with a Turing machine function,
the general idea is to further transform Turing machine into a matrix function,
and then randomize the matrix branching function. The involved matrix branch
logic and randomness shall provide additional security guarantees at this step.
Overall, we argue the current implementation is reasonable, and we leave it as
one future work to present quantitative analysis of the potential information
leakage and countermeasures at this step.

6.4 Execution Overhead

During the Turing machine computation, frequent state change would indicate
lots of read and write operations. Also, since tape is infinite in Turing machine
model, it needs to allocate enough memory to accommodate complex computa-
tions. In general, the complexity of Turing machine may serve as a double-edge
sword; it impedes adversaries and potentially increases execution overhead as
well. As reported in the cost evaluation (Fig. 11), we observed non-negligible
performance penalty for both cases. One countermeasure here is to perform se-
lective obfuscation; users can annotate sensitive program components for obfus-
cation. Such strategy would improve the overall execution speed without losing
the major security guarantees.

7 Conclusion

In this paper, we propose a novel obfuscation technique using Turing machines.
We have implemented a research prototype, Turing machine obfuscator, on the
LLVM platform and evaluated on open source software with respect to func-
tionality correctness, potency, resilience, stealth, and cost. The results indicate
effectiveness and robustness of Turing machine obfuscation. We believe Turing
machine obfuscation could be a promising and practical obfuscation tool to im-
pede adversary analysis.
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