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Abstract The key challenge of software reverse engi-
neering is that the source code of the program under in-
vestigation is typically not available. Identifying differ-
ences between two executable binaries (binary diffing)
can reveal valuable information in the absence of source
code, such as vulnerability patches, software plagiarism
evidence, and malware variant relations. Recently, a
new binary diffing method based on symbolic execution
and constraint solving has been proposed to look for the
code pairs with the same semantics, even though they
are ostensibly different in syntactics. Such semantics-
based method captures intrinsic differences/similarities
of binary code, making it a compelling choice to analyze
highly-obfuscated malicious programs. However, due to
the nature of symbolic execution, semantics-based bi-
nary diffing suffers from significant performance slow-
down, hindering it from analyzing large numbers of
malware samples. In this paper, we attempt to miti-
gate the high overhead of semantics-based binary diff-
ing with application to malware lineage inference. We
first study the key obstacles that contribute to the per-
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formance bottleneck. Then we propose normalized basic
block memoization to speed up semantics-based binary
diffing. We introduce an union-find set structure that
records semantically equivalent basic blocks. Manag-
ing the union-find structure during successive compar-
isons allows direct reuse of previously computed results.
Moreover, we utilize a set of enhanced optimization
methods to further cut down the invocation numbers
of constraint solver. We have implemented our tech-
nique, called MalwareHunt, on top of a trace-oriented
binary diffing tool and evaluated it on 15 polymorphic
and metamorphic malware families. We perform intra-
family comparisons for the purpose of malware lineage
inference. Our experimental results show that Malware-
Huntcan accelerate symbolic execution from 2.8X to
5.3X (with an average 4.1X), and reduce constraint
solver invocation by a factor of 3.0X to 6.0X (with an
average 4.5X).

Keywords: binary diffing, semantics, symbolic ex-
ecution, malware lineage inference, normalized basic
block memoization

1 Introduction

In many tasks of software security, the source code of
the program under examination is typically absent. In-
stead, the executable binary itself is the only available
resource to analyze. Therefore, determining the real dif-
ferences between two executable binaries has a wide va-
riety of applications, such as latent vulnerabilities ex-
ploration [26], automatic “I1-day” exploit generation [2]
and software plagiarism detection [22]. Conventional
approaches can quickly locate syntactical differences by
measuring instruction sequences [34], byte N-grams [18]
or fingerprint hashing [28]. However, such syntax-based
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comparison can be easily evaded by various obfusca-
tion techniques, such as instruction substitution [15],
binary packing [33], and self-modifying code [3]. The
latest binary diffing approaches [14,23,22,27] simulate
semantics of a snippet of binary code (e.g., basic block)
by symbolic execution and represent the input-output
relations as a set of symbolic formulas. Because of var-
ious code obfuscation methods, the generated formu-
las could be quite complicated to analyze. However, by
submitting the two formulas to a state-of-the-art con-
straint solver, we can verify whether they are equiv-
alent. Such obfuscation-resilient comparison captures
the intrinsic semantics differences/similarities with low
false-positive and false-negative rates.

As the underground industry of malware prospers,
malware authors frequently update their malicious code
to circumvent security countermeasures. According to
the latest annual report of Panda Security labs [30], in
2013 alone, there are about 30 million malware samples
in circulation and only 20% of them are newly created.
Obviously, most of such malware samples are simple
update (e.g., apply a new packer) to their previous ver-
sions. Therefore, hunting malware similarities is of great
necessity. The nature of being resilient to instruction
obfuscation makes semantics-based binary diffing an
appealing choice to analyze highly obfuscated malware
as well. Unfortunately, the significant overhead imposed
by the state-of-the-art approach has restricted its appli-
cation in large scale analysis, such as malware lineage
inference [16], which typically requires pairwise compar-
ison to identify relationships among malware variants.
Therefore, an efficient semantics-based malware diffing
approach is of great necessity.

In this paper, we first diagnose the two key obsta-
cles leading to the performance bottleneck, namely high
invocations of constraint solver and slow symbolic ex-
ecution. To address these issues, we propose normal-
ized basic block memoization to accelerate equivalent
basic block matching by reusing previously compared
results. When performing malware lineage inference, we
observe that malware variants are likely to share com-
mon code [20]. A new version may only adopt a different
packer or incremental updates. As a result, we exploit
code similarity by applying union-find set [8], an effi-
cient tree-based data structure, to record semantically
equivalent basic blocks which have already been identi-
fied. When comparing two basic blocks, we first perform
code normalization to reverse some obfuscation effects
that could split a single basic block into multiple ones,
such as instruction reordering and opaque predicate.
Then the matched basic blocks are stored in a union-
find set. Maintaining the union-find structure during
successive comparisons allows direct reuse of previous

results, without the need for re-comparing them. In ad-
dition, to further cut down the high invocation num-
bers of constraint solver, we also utilize concretizing
symbolic formulas and caching equivalence queries.

We have implemented our approach, named Mal-
wareHunt, on top of iBinHunt [23], a trace-oriented bi-
nary diffing tool. We evaluate MalwareHunt in the task
of malware lineage inference on 15 malware families, in-
cluding both polymorphic and metamorphic malware.
Our experimental results show that our methods can
speed up malware lineage inference, symbolic execu-
tion and constraint solver by a factor of 4.4X, 4.1X and
4.5X, respectively. Our proposed solution focuses on ac-
celerating basic blocks matching and can be seamlessly
woven into other binary diffing approaches based on
equivalent basic blocks. Furthermore, the semantically
equivalent basic blocks collected by MalwareHunt can
facilitate designing a mutation insensitive anti-malware
solution. In summary, the contributions of this paper
are as follows.

1. We look into the high overhead problem of semantics-
based binary diffing and identify cruxes leading to
the performance bottleneck.

2. We propose normalized basic block memoization to
enable more efficient binary comparison, including
maintaining a union-find set structure, concretizing
symbolic formulas and caching equivalence queries.

3. We extends the advanced semantics-based binary
diffing techniques to analyze obfuscated malware in-
stances and ameliorate the performance bottleneck

The rest of the paper is organized as follows. Sec-
tion 2 provides the background information. Section 3
studies the performance bottleneck of semantics-based
binary diffing. Section 4 describes our optimization meth-
ods in detail. MalwareHunt’s implementation and eval-
uation details are presented in Section 5. Related work
are introduced in Section 6. At last, we conclude the
paper in Section 7.

2 Background

In this section, we introduce the background informa-
tion of semantics-based binary diffing. Previous binary
diffing tools can quickly identify syntactical differences
such as instruction sequences [34], byte N-grams [18]
and fingerprint hashing [28]. However, they can be eas-
ily defeated by various obfuscation methods. For ex-
ample, Fig. 1 shows two counterexamples of metamor-
phism transformations. Metamorphic malware mutates
its code during infection so that each variant reveals
different instructions in syntax. As shown in Fig. 1,
Lexotan32 [29] mutates its code by inserting junk code
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loc_0000:
xor exp, 0x21

lea ecx, [esi+0x06EF] Before After
mov edx, eb_x push eax
mov ecx, es| mov aI [esi]
jmp loc_0031 . L
movsb inc esi
start: mov [edi], al
push ebp push ebp inc edi
mov ebp, esp mov ebp, esp pop eax
jmp loc_0000
xor exp, 0x21 i
loc_0017: stosb mov edi, [al]
h ACAB — ’ i i
push 0x0AC pop eax inc edi
pop eax mov ecx, esi
add eax, 0x1234 mov edx, ebx push ecx
P ’ mov ecx, eax
pop ebp add eax, 0x1234 mov [ebx+8], eax ’
ret cmp edx, 0XxAD463 mov [ebx+8], ecx
pop ebp pop ecx
mov di, 0x0A8C h
ret jmp eax push eax
mov di, 0x1F24 ret
loc_0031: xor eax, -1 not eax
push OxOACAB
sbb ecx, [esi+0x077F] and eax, 0 mov eax, 0
adc bh, 0x71
mov di, OXOEEC4 add eax. 1 not eax
jmp loc_0017 ’ neg eax

(a) Lexotan32 [29]

Fig. 1 Example: metamorphism transformation.

(the instructions are in italics) and reordering instruc-
tion (Fig. 1(a)); MetaPHOR [10] substitutes one in-
struction with a set of semantics-persevering instruc-
tions (Fig. 1(b)). Note that after mutation, the original
single basic block in Fig. 1(a) has been divided into mul-
tiple basic blocks. The core method of semantics-based
binary diffing [14,23,22,27] is to identify semantically
equivalent basic block pairs. A Basic block is a straight-
line code with only one entry point and only one exit
point, which makes the basic block an ideal fit for sym-
bolic execution (e.g., without conjunction of path con-
ditions). Fig. 2 presents a motivating example to illus-
trate how the semantics of a basic block is simulated by
symbolic execution. The two basic blocks in Fig. 2 are
semantically equivalent, even though they have differ-
ent x86 instructions (labeled as bold). In practice, sym-
bolic execution is performed on an RISC-like interme-
diate language (IL), which represents complicated x86
instructions as simple single static assignment (SSA)
style statements. In Fig. 2, the registers have been rep-
resented as SSA style (e.g., ecx_0, edx_1).

We take the inputs to the basic block as symbols and
simulate the effect of each instruction by updated the
corresponding symbolic formula. The output of sym-
bolic execution is a set of formulas that represent input-
output relations of the basic block. Now determining

(b) MetaPHOR [10]

whether two basic blocks are equivalent in semantics
boils down to find an equivalent mapping between out-
put formulas. Note that due to obfuscation such as reg-
ister renaming, basic blocks could use different registers
or variables to provide the same functionality. As a re-
sult, current approaches exhaustively try all possible
pairs to find if there exists a bijective mapping between
output formulas. Fig. 3 shows such formulas mapping
attempt for the output formulas shown in Fig. 2. The
variables shown in the leftmost column are from ba-
sic block 1 in Fig. 2; while the variables in the upmost
row are from basic block 2. The “true” or “false” indi-
cates the result of equivalence checking, such as whether
edr_1 = eazx_3. After 10 times comparisons, we identify
a perfect matched permutation and therefore conclude
that these two basic blocks are truly equivalent.

Based on the matched basic blocks, BinHunt [14]
computes the similarity of control flow graphs of two bi-
naries by graph isomorphism. The follow-up work, iBin-
Hunt [23], finds semantic differences between execution
traces and utilizes multi-tag taint analysis to reduce the
number of basic block matches. Luo et al. [22] detect
software plagiarism by matching the longest common
subsequence of semantically equivalent basic blocks.



Jiang Ming et al.

Symbolic inputs to basic block 1:
ecx_0=i1;eax 0=i2

Basic block 1

I*mov edx, ecx*/
edx_0=-ecx 0;

I*mov ebx, 0x000A*/
ebx 0 = 0xA,

I*add edx, ebx*/
edx 1 =edx 0+ 0xA;

I*mov ebx, ecx*/
ebx 1 =ecx 0;

I*sub ecx, eax*/
ecx_ 1=ecx 0 - eax O;

I*mov eax, ecx*/
eax_1=ecx 1;

I*dec eax*/
eax 2=eax_1-1;

I*and ecx, 0*/
ecx_2 = 0x0;

Ijmp 0x401922%/

\
Outputs
v

eax 2=i1-i2-1;
ebx_1=1i1;

ecx_2 = 0x0;
edx_1=1i1+ OxA;

Semantically

Symbolic inputs to basic block 2:
ebx 0=j1;ecx 0=j2

Basic block 2 (obfuscated)

I*lea eax, [ebx]*/
eax_0=-ebx 0;

I*mov edx, 0x000A*/
edx_0 = 0xA,;

I*nop*/
I*nop*/

I*add eax, edx*/
eax_1=eax 0+ OxA;

equivalent

I*xchg eax, eax*/

I*not ecx*/
ecx_1=-ecx 0-0x1;

I*add ecx, ebx*/
ecx 2=ecx 1+ ebx 0;

I*lea edx, [ebx]*/
edx 1=ebx 0;

I*xor ebx, ebx*/
ebx_1 = 0x0;

jmp 0x401A22%/

\
Outputs

v
ecx_2=j1-j2-1;
edx_1=j1;
ebx_1 = 0x0;
eax_3 =j1 + OxA,

Fig. 2 Example: basic block symbolic execution. The symbolic execution is performed based on IL (for brevity, we do not

show the modification to the EFLAGS bits).

Query result eax_3 ebx_1 ecx 2 edx_1
eax 2 false true false
ebx_1 false false true
ecx_2 constant (0)
edx_1 true false false

Fig. 3 Output formulas equivalence query results.

3 Performance Bottleneck

We look into the overhead imposed by semantics-based
binary diffing and find that there are two factors dom-
inating the cost. The first is the high number of in-
vocations of constraint solver. Recall that current ap-
proaches check all possible permutations of output for-
mulas mapping. The constraint solver will be invoked
every time when verifying the equivalence of formulas.
For example, two basic blocks in Fig. 2 have three sym-
bolic formulas and one constant value respectively. As
shown in Fig. 3, We have to employ constraint solver at
most nine times to find an equivalent mapping between
the three output formulas. Too frequently calling con-
straint solver incurs a significant performance penalty.

The second is the slow processing speed of symbolic
execution. Typically symbolic execution is much slower
than native execution, because it simulates each x86 in-
struction by interpreting a sequence of IL statements.

To quantitatively study such performance bottle-
neck, we select 5 malware families from our evaluation
dataset (see Section 5.2): four families have a large num-
ber of samples (StartPage, Delf, Mimail and NGVCK),
and one family (Ping) has the maximal code size. We
apply iBinHunt [23] to perform pairwise comparison
within each family. The constraint solver we used is
STP [13]. As shown in Fig. 4, we divide the overall
processing time into three parts: constraint solver solv-
ing time (“STP” bar), symbolic execution time (“SE”
bar), and other operations (“Others” bar). Apparently,
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[ Others

Ratio of processing time (%)

Delf Mimail NGVCK

StartPage

Ping

Fig. 4 Ratio of processing time of iBinHunt.

STP’s processing time accounts for most of running
time of iBinHunt (more than 50%). Note that the exper-
iments on EXE [6] and KLEE [5] report similar results,
in which running time is dominated by the constraint
solving. Besides, the symbolic execution also takes up
to about 23% running time. Thus, an immediate opti-
mization goal is to mitigate too frequent invocations of
constraint solver and slow symbolic execution.

4 MalwareHunt Design

When we compare malware variants to identify their
relationships (a.k.a, lineage inference [16]), our key ob-
servation is that similar malware variants are likely to
share common code [20]. For example, all of the Email-
Worm.Win32.NetSky samples in our dataset search for
email addresses on the infected computer and use SMTP
to send themselves as attachments to these addresses.
The net result is we have to re-compare a large num-
ber of basic blocks that have been previously analyzed.
Therefore, our key method is to utilize memoization op-
timization to reuse previous computed results. To this
end, we first normalize basic blocks to reverse some
obfuscation effects. Then, MD5 value of the byte se-
quence of each basic block is calculated. After that,
we dynamically maintain a set of union-find subsets
to record semantically equivalent basic blocks, which
are represented by their MD5 value. The basic blocks
within the same subset are all semantically equivalent
to each other. Besides, we also concretize symbolic for-
mulas and cache equivalence queries to further cut down
the invocation numbers of constraint solver. Next we
will discuss each step in detail.

4.1 Normalization

The comparison unit of most semantics-based binary
diffing work is basic block [14,23,22]. However, sev-
eral obfuscation methods can split a single basic block
into multiple ones. As a result, too much extra basic
block comparisons will take up computing resources.
We first perform normalization to reverse such obfusca-
tion effects. Currently, we consider two major obfusca-
tion methods: instruction reordering and opaque predi-
cate obfuscation. The example of instruction reordering
is shown in Fig. 1(a), in which the new basic blocks are
connected through direct jump (e.g., jump loc_0031).
Reversing instruction reordering is straightforward. We
merge all the basic blocks that have only one predeces-
sor and one successor. For example, the new generated
basic blocks in Fig. 1(a) will be merged into a single
basic block again.

An opaque predicate means its value is known to
the obfuscator at obfuscation time, but it is difficult for
an attacker to figure it out afterwards. For example,
predicate (z3 — 2 =0 (mod 3)) in Fig. 6 is true for all
integers x. Opaque predicates have been widely used to
introduce redundant branches for the purpose of con-
trol flow obfuscation [24]. To handle opaque predicates,
we rely on recent work on logic-oriented opaque predi-
cate detection [24]. We submit a branch condition to a
constraint solver to verify whether it is always true or
false. If yes, we conclude that the branch condition is
an opaque predicate. After that, as shown in Fig. 6, the
unreachable paths and redundant predicates will be dis-
carded; the basic blocks split by the opaque predicate
will be merged together.

In addition, we also normalize basic blocks to ig-
nore offsets that may change due to code relocation and
some nop instructions. Binary compiled from the same
source code often have different address value caused by
memory relocation during compilation. What’s more,
malware authors may intentionally insert some instruc-
tion idioms like nop and xchg eax, eax to mislead
calculation of hash value. The purpose of normaliza-
tion is to ignore such effects and make the hash value
more general. We preform the normalization on the
intermediate language (IL). The RISC-like intermedi-
ate language and static single assignment (SSA) format
of IL are convenient for our processing, and also rep-
resent many functionally equivalent instructions (e.g.,
xor eax, eaxandand eax, 0)inthesame way. Taken
the basic block 2 in Fig. 2 as an example, Fig. 5 shows
that we normalize the basic block by replacing address
values with zeros and remove all nop statements. Then
we calculate the MD5 value of the basic block’s byte
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Basic block 2 (obfuscated)

lea eax, [ebx]

mov edx, 0x000A

nop lea eax, [ebx]

nop mov edx, 0x000A

add eax, edx ad;:l eax, edx

xchg eax, eax —Normalization—»{ "0+ € » MD5 value
add ecx, ebx

not ecx I g >

add ecx, ebx xeoar zb;((’ fb;]

lea edx, [ebx] ) )

xor ebx, ebx jmp 0x000000

jmp 0x401A22

Fig. 5 Basic block normalization. The normalization is performed on the intermediate language. Here we only show assembly

code for the sake of brevity.

I;
PY

I2; junk code

always true

Fig. 6 Deobfuscate opaque predicate.

sequence, which will be used in the union-find set op-
erations.

4.2 Union-Find Set of Equivalent Basic Blocks

Our first optimization is to utilize union-find set [§],
an efficient tree-based data structure, to reuse previous
matched equivalent basic blocks. We define the three
major operations of union-find set as follows.

1. MakeSet: Create an initial subset structure contain-
ing one element, which is represented by a basic
block’s MD5 value. Each element’s parent points to
itself and has 0 depth.

2. Find: Determine which subset a basic block belongs
to. Find operation is used to find two basic blocks
are equivalent if both of them are within the same
subset.

3. Union: Unite two subsets into a new single subset.
The depth of new set will be updated accordingly.

The elements within a subset build up a tree struc-
ture. Find operation will always recursively traverse the
tree structure. However, the tree structure might de-
grade to a long list of nodes, which incurs O(n) time in

Algorithm 1 MakeSet, Find and Union

1: function MAKESET(a)
a.parent < a
a.depth <+ 0

end function

function FIND(a) // path compression
if a.parent # a then

a.parent <+ Find(a.parent)
end if
return a.parent

: end function

: function UNION(a,b)

aRoot + Find(a)

bRoot <+ Find(b)
if aRoot = bRoot then
return

end if

if aRoot.depth < bRoot.depth then
aRoot.parent < bRoot

// a represents a basic block

// weighted union

I e e N el v W S S S

else

if aRoot.depth > bRoot.depth then
21: bRoot.parent <— aRoot
22: else
23: bRoot.parent <— aRoot
24: aRoot.depth < aRoot.depth + 1
25: end if
26: end if

27: end function

the worst case for Find operation. To avoid highly un-
balanced searching tree, an improved path compression
and weighted union algorithm are applied to speed up
Find operation. Algorithm 1 shows the pseudo-code of
MakeSet, Find and Union. MakeSet creates an initial
set containing only one basic block. Path compression
is a way to flatten the structure of the tree when Find
recursively explores on it. As a result, each node’s par-
ent points to the root Find returns (Line 7). Weighted
Union algorithm attaches the tree with smaller depth
to the root of taller tree (Line 17, Line 20), which only
increases depth when depths are equal (Line 24).

Fig. 7 shows an example of maintaining an union-
find set. Given previously matched basic block pairs
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cvs.d Union Subset 3

evs. f E
evs. g
9]

Subset 1 Subset 2

Matched c
basic block -
pairs:
avsp | Makeset&  [b] d]

Subset 4

2]
[b]lclld

Subset 3

if (b=c)»

Rapry

Fig. 7 Example of MakeSet-Union-Find operations.

(as shown in left most block), after initial MakeSet and
Union operations, we get three subsets, that is, {a, b},
{c,d} and {e, f,g}. Then assuming b and ¢, two ba-
sic blocks coming from different subsets (subset 1 and
2), have the same semantics, that means all of the ba-
sic blocks in these two subsets are in fact equivalent.
Therefore, we perform weighed union and path com-
pression to join the two subsets to a new subset (subset
4). The resulting tree is much flatter with a depth 1.
After the union, we can immediately determine that
b and d are equivalent, even if these two basic blocks
were not compared before. In addition to the union-find
set, we also maintain a DiffMap to record two subsets
that have been verified that they are not equivalent. As
shown in the lower right side of Fig. 7, if we find out
a and e are different, we can safely conclude that basic
blocks in subset 4 are not equivalent to the ones in sub-
set 3, without the need for comparing them pair-by-pair
anymore.

4.3 Concretize Symbolic Formulas and Cache
Equivalence Queries

Fig. 3 shows a drawback of semantics-based binary diff-
ing: without knowing the mapping of output formulas
for equivalence checking, current approaches have to ex-
haustively try all possible permutations. To ameliorate
this issue, we introduce a sound heuristic that if two
basic block output formulas are equivalent, they should
generate equal values when substituting symbols with the
same concrete value. Therefore, we give preference to
the symbolic formulas producing the same value after
concretization. Taken the output formulas in Fig. 2 as
an example, we substitute all the input symbols with
a single concrete value 1. In this way, we can quickly
identify the possible mapping pairs, and then we verify
them again with STP. As a result, we only invoke STP

if (ae) New query:

/ b=d? “

DiffMap(4, 3) =1 Yes

3 times, instead of 9 times as is previously done. Note
that using STP for double-checking is necessary, as two
symbolic formulas may happen to generate the same
value. For example, ¢« << 1 is equal to i % ¢ when ¢ = 2.

Besides, in order to further reduce the invocations
of STP when possible, we manage a QueryMap to cache
the result of equivalence queries, which is quite sim-
ilar to constraints caching adopted by EXE [6] and
KLEE [5]. The key of QueryMap is MD5 value of an
equivalence query, such as whether edx_1 = eax_3 in
Fig. 2; the value of QueryMap stores STP query result
(true or false). Before calling STP on a query, we first
check QueryMap to see whether it gets a hit. If not, we’ll
create a new (key, value) entry into QueryMap after
we verify this query with STP.

4.4 Basic Blocks Fast Matching

We merge all three optimization methods discussed above
together to comprise our basic blocks fast matching al-
gorithm (as listed in Algorithm 2). Our basic blocks
fast matching exploits syntactical information and pre-
vious result for early pruning. When comparing two
basic blocks, we first normalize the basic blocks and
compare their hash value (Line 4). This step quickly fil-
ters out basic blocks with quite similar instructions. If
two hash values are not equal, we will identify whether
they belong to the same union-find subset (Line 7).
Basic blocks within the same subset are semantically
equivalent to each other. If they are in the two differ-
ent subsets, we continue to check DiffMap to find out
whether these two subsets have been ensured not equiv-
alent (Line 10). At last, we have to resort to comparing
them with symbolic execution and STP, which is accu-
rate but computationally more expensive. At the same
time, we leverage heuristic of concretizing symbolic for-
mulas and QueryMap cache to reduce the invocations of
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Algorithm 2 Basic Block Fast Matching

a, b : two basic blocks to be compared
1: function FASTMATCHING(a, b)

2 a’ + Normalize(a)

3 b’ + Normalize(b)

4 if Hash(a’) = Hash(¥') then
5: return True

6: end if
74
8

9

0

if Find(a’) = Find(b’) then // within the same subset
return True
end if

—_

if DiffMap(Find(a’), Find(¥’'))=1 then // semanti-
cally different subsets
11: return False
12: else
13: Perform symbolic execution on a’ and b’
14: Check semantical equivalence of a’ and b’
15: if o/ ~ b’ then // da/, b are semantically equivalent
16: Union(a/, b')
17: Update DiffMap
18: return True
19: else // a’, b are not semantically equivalent
20: Set DiffMap(Find(a’), Find(b"))
21: return False
22: end if
23: end if

24: end function

STP. After that we update union-find set and DiffMap
accordingly (Line 15~22).

Although the attempt to find all the matched basic
blocks is equal to solving the halting problem [19], the
resulting union-find sets have interesting application on
the practical point of view. For example, a mutation
insensitive signature [32] can be generated to capture
possible metamorphic variants and malware finegrained
relationship information can even be recovered.

5 Experimental Evaluation

We perform our experiments with several objectives
in mind. First, we want to evaluate the effectiveness
of MalwareHunt in the task of malware lineage infer-
ence. Also, we are interested in the effect of our ba-
sic blocks fast matching over time. Second, we want
to study the effect of our approach to alleviating the
semantics-based binary diffing performance bottleneck.
At last, we present the detailed optimization break-
down.

5.1 Implementation

We have implemented the idea of MalwareHunt on top
of iBinHunt [23], a binary diffing tool to find semantic
differences between execution traces, with 1,820 OCaml
lines of code. Fig. 8 shows the architecture of Malware-
Hunt and the newly added components. We preform

the basic block normalization on the Vine IL [35], and
the theorem prover we used is STP [13]. The saving and
loading of union-find set and query hash map are de-
veloped using the Ocaml Marshal API, which encodes
arbitrary data structures as sequences of bytes and then
stores them in a disk file. Also, we write 500 lines of Perl
scripts to glue all components together to automate the
comparison process.

5.2 Experiment Setup

We collected malware samples from VX Heavens' and
leveraged an online malware scan service, VirusTotal?,
to classify the samples into an initial 15 families. These
malware samples range from metamorphic virus to con-
siderably large Trojan horse. The dataset statistics is
shown in Table 1. The experimental data are collected
during malware lineage inference within each family,
that is, we perform a pairwise comparison to deter-
mine relationships among malware variants. The forth
column of Table 1 lists the number of pairwise com-
parison of each family and the total number is 1, 664.
Our testbed consists of Intel Core i7-3770 processor
(Quad Core with 3.40GHz) and 8GB memory. The mal-
ware execution traces are collected when running in
Temu [39], a whole-system emulator. Since most of mal-
ware samples are packed, we employ a generic unpack-
ing plug-in [17] to monitor malware sample’s unpack-
ing and start to record trace only when the execution
reaches the original entry point (OEP) [21].

There are three kinds of metamorphic virus families:
Lexotan32, MetaPHOR, and NGVCK. Lexotan32 and
MetaPHOR are self-mutating malware; that is, they
embed the metamorphic engine within the virus body [36].
We select 20 copies of Cygwin® utility bzip2 as the
“goat” binaries to be infected by both Lexotan32 and
MetaPHOR. Since these self-mutating viruses do not
mutate their host code, choosing the same copies of
goat files can help us identify the morphing code. Dur-
ing our evaluation, the running goat executables will in-
fect themselves iteratively, and each infection will yield
a new generation variant. For NGVCK (next generation
virus creation kit) [37], its engine is separated from the
malicious body. We generate 24 NGVCK virus variants
in terms of assembly source code. Then, we use TASM
5.0 Assembler to compile the source code into binary.

1 http://vxheaven.org/src.php
2 https://www.virustotal.com/
3 https://www.cygwin.com
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Fig. 8 The architecture of MalwareHunt. The grey components are newly added on top of iBinHunt [23].

Table 1 Dataset statistics

Malware Family | Category | #Samples | #Comparison | Size(kb)/Std.Dev.
Dler Trojan 10 45 28/6
StartPage Trojan 21 210 10/1
Delf Trojan 24 276 17/4
Ping Backdoor 8 28 247/41
SpyBoter Backdoor 16 120 34/16
Progenic Backdoor 6 15 88/27
Bube Virus 10 45 12/7
Lexotan32 Virus 20 190 64/15
MetaPHOR Virus 20 190 65/20
NGVCK Virus 24 276 150/35
MyPics Worm 12 66 31/4
Bagle Worm 9 36 40/17
Mimail Worm 17 136 17/6
NetSky Worm 7 21 41/12
Sasser Worm 5 10 60/28

5.3 Malware Lineage Inference Performance

We first quantify the effects of the set of optimizations
we presented in our basic blocks fast matching algo-
rithm (Algorithm 2). Fig. 9 shows the speedup of mal-
ware lineage inference for each family when applying
the optimizations cumulatively on MalwareHunt. Our
baseline for this experiment is a conventional Malware-
Hunt without using any optimization we proposed. The
“O1” bar indicates the effect of normalization, which
can quickly identify basic block pairs with the same
byte sequences after our normalization. The effect of
normalization is remarkable on several families such as
Ping and Bube, in which instructions are quite sim-
ilar in syntax. Recall that our normalization reverses
the effect of instruction reordering and opaque predi-
cate, which are commonly used code mutation methods.
As a result, we also achieve a notable improvement on
comparing metamorphic malware variants (Lexotan32,
MetaPHOR, and NGVCK).

The “O2” bar captures the effect of the union-find
set and DiffMap, which record previously compared
results. The optimization O2 results in a significant
speedup from 1.4X to 2.9X on average. Especially for
some highly obfuscated malware families, such as Delf
and Bagle, O2 outperforms O1 by a factor of up to
3.1. The “O3” bar, denoting concretizing symbolic for-
mulas, introduces an improvement by 17% on average.
The optimization of QueryMap (0O4) offers an enhanced
performance improvement by average 30% and with a
peak value 46% for NetSky. Particularly, since Start-
Page samples adopt different implementation ways to
tamper with the startup page of IE browsers, we ob-
serve large similarity distances among StartPage vari-
ants. In spite of this, our approach still accelerates the
malware lineage inference greatly.

In addition, we study the effect of our basic blocks
fast matching over time as well. We choose Sasser to
test because the impact of the optimizations on Sasser
is close to the average value. As shown in Fig. 10, as
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Fig. 9 The impact of basic blocks fast matching on malware lineage inference: O1 (normalization), O2 (O1 + union-find set
and DiffMap), O3 (O2 + concretizing symbolic formulas), O4 (O3 + QueryMap).
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Fig. 10 The effect of our optimizations over time on Sasser
family.

the union-find set and QueryMap are enlarged, our ap-
proach becomes more effective over time. The number
of executed basic blocks is normalized so that data can
be collected across intra-family comparisons.

5.4 Alleviate Performance Bottleneck

In Section 3, we have identified two factors that domi-
nate the cost of semantics-based binary diffing: namely
symbolic execution and constraint solver. In this ex-

periment, we study the effect of our optimizations on
these two performance bottlenecks. The column 2~4 of
Table 2 lists the average symbolic execution time and
speedup before/after optimization when comparing two
malware variants in each family using MalwareHunt.
Similarly, the column 5~7 shows the effect to reduce the
number of STP invocations. In summary, our approach
outperforms conventional MalwareHunt in terms of less
symbolic execution time by a factor of 4.1x on average,
and fewer STP invocations by 4.5x on average.

5.5 Optimization Breakdown

Table 3 presents our optimization breakdown when per-
forming lineage inference for the five large malware fam-
ilies shown in Fig. 4. The first row shows the ratio
of matched basic block pairs with the same byte se-
quences after normalization (line 4 in Algorithm 2).
The relatively small ratio also indicates the necessity of
semantics-based binary diffing approach. The next two
rows list statistics of the union-find set, including the
number of union-find subsets and the maximum num-
ber of items in one subset. As the key property of meta-
morphic mutation is semantics-preserving, NGVCK has
the maximum number (16) of equivalent basic blocks.
The row 4 and 5 present the hit rate of union-find set
(line 7 in Algorithm 2) and DiffMap (line 10 in Al-
gorithm 2). The row 6 shows the time cost incurred by
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Table 2 Improvement to symbolic execution and STP invocations.

Malware Family SE Times (s) # STP Invocations
None | Optimization | Speedup | None | Optimization | Speedup
Dler 10.1 2.5 4.0 | 1,123 346 3.2
StartPage 13.5 3.3 4.1 | 1,350 314 4.3
Delf 8.8 2.0 4.4 | 1,685 324 5.2
Ping 32.2 10.7 3.0 | 6,740 1,926 3.5
SpyBoter 16.6 4.4 3.8 | 2,020 493 4.1
Progenic 20.2 6.3 3.2 | 2,566 856 3.0
Bube 5.1 1.8 2.8 8,47 250 3.4
Lexotan32 12.7 29 4.3 | 1,278 228 5.6
MetaPHOR 16.2 3.6 4.5 | 1,394 278 5.0
NGVCK 25.6 4.8 5.3 | 5,458 1,186 4.6
MyPics 114 2.5 4.6 | 1,235 257 4.8
Bagle 24.4 5.1 4.8 | 5,570 1,092 5.1
Mimail 9.0 1.7 5.3 | 2,901 484 6.0
NetSky 20.6 4.6 4.5 | 4,958 972 5.1
Sasser 24.2 6.2 3.9 | 5,616 1,338 4.2
Average 4.1 4.5
Table 3 Optimization breakdown.
Optimization breakdown StartPage | Delf | Mimail | Ping | NGVCK
1 Normalization ratio 9% | 12% 12% | 51% 34%
2 # union-find subsets 125 130 304 546 346
3 Max. # basic blocks in one subset 5 6 8 10 16
4 union-find hit rate 36% | 44% 37% | 41% 52%
5 DiffMap hit rate 47% | 53% 44% | 54% 38%
6 | Union-find set and DiffMap cost (s) 9.5 | 14.3 12.0 | 13.7 12.2
7 QueryMap hit rate 62% | 70% 65% | 75% 56%
8 QueryMap cost (s) 8.6 8.8 6.4 7.6 6.8
9 Concretizing saving 60% | 65% 55% | 52% 46%
10 Memory cost (MB) 10 12 28 45 36

building and managing the union-find set structure and
DiffMap. The following two rows lists hit rate and time
cost for QueryMap. The saving of concretizing sym-
bolic formulas is shown in row 9, in which we avoid
at least 46% output variables comparisons. At last, we
present the overall memory cost to maintain union-find
set, DiffMap and QueryMap. Reassuringly, compared
to the performance improvement, the overhead intro-
duced by our optimization is small.

6 Related Work

In this section, we first present previous work on bi-
nary diffing, which is the most related to MalwareHunt
in spirit. Then we introduce literature on symbolic ex-
ecution optimization, which inspires our approach to
basic block memoization.

6.1 Binary Diffing
Hunting differences between two binaries (a.k.a, binary

diffing) has a wide variety of applications in software
security area, such as exploits or bugs exploration [12,

1,31], reverse engineering [14,23,11] and code reuse de-
tection [27,22]. The recent work [9] defines a formal se-
mantic model for binary diffing. The previous work that
relies on control flow graph or instruction fingerprint
hashing to compare binaries [12,1,28] can be evaded by
sophisticated obfuscation methods. Our efforts attempt
to speed up semantics-based binary diffing, which can
find equivalent binary pairs that reveal syntactic dif-
ferences [14,22,23,27]. We have introduced the latest
work in this direction in Section 2. The most relevant
binary diffing method to MalwareHunt is iBinhunt [23].
We are all trace-oriented binary diffing tools to match
basic block pairs and also utilize multi-tag taint analy-
sis to reduce the number of possible matches. However,
MalwareHunt is designed to compare a large number of
obfuscated malware variants. Compared to iBinhunt,
MalwareHunt is augmented with better resilience to
various code obfuscation methods (e.g. opaque predi-
cate) and a set of memoization optimization methods.
As a result, MalwareHunt has a better accuracy and
performance.
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6.2 Symbolic Execution Optimization

A set of our memoization optimization methods to speed
up semantics-based binary diffing are inspired by sym-
bolic execution optimization work. Yang et al. [38] pro-
posed Memoise, a trie-based data structure to cache the
key elements of symbolic execution, so that successive
forward symbolic execution can reuse previously com-
puted results. Our union-find structure is like Memoise
in that we both maintain an efficient tree-based data
structure to avoid re-computation. However, our ap-
proach aims to accelerate basic blocks matching, and
our symbolic execution is limited in a basic block, which
is a straight-line code without path conditions. Our op-
timization of caching equivalence queries is inspired by
both EXE [6] and KLEE [5], which cache the result
of path constraint solutions to avoid redundant con-
straint solver calling. Different from the complicated
path conditions cached by EXE and KLEE, our equiv-
alence queries are simple and compact. As a result, our
QueryMap has a higher cache hit rate. Malware normal-
ization relies on ad-hoc rules to undo the obfuscations
applied by malware developers [4,7]. Our normalization
mainly focuses on the obfuscation methods that may
change the structure of a basic block, namely instruc-
tion reordering and opaque predicate. Besides, we also
eliminate the effect of memory relocation and instruc-
tion idioms.

7 Conclusion

The best way to reconcile the scalability issue of sym-
bolic execution and its applications is an active re-
search topic. The high-performance penalty introduced
by the state-of-the-art semantics-based binary diffing
approaches restricts their application from large scale
application such as analyzing a large number of mal-
ware samples. In this paper, we first study the cruxes
leading to the performance bottleneck and then pro-
posed normalized basic block memoization optimiza-
tion to speed up semantics-based binary diffing. Our
approach consists of basic block normalization, main-
taining a union-find set structure, concretizing symbolic
formulas and caching equivalence queries. The experi-
ment on malware lineage inference demonstrated the ef-
ficacy of our optimizations with only minimal overhead.
Although we evaluated our approach with the applica-
tion to malware analysis, our basic blocks fast match-
ing solution can be seamlessly weaved into other binary
diffing approaches based on equivalent basic blocks.
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