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Abstract - Heterogeneous Multicore Processors (HMPs) are
comprised of multiple core types (small vs. big core architectures)
with various performance and power characteristics which offer
the flexibility to assign each thread to a core that provides the
maximum energy-efficiency. Although this architecture provides
more flexibility for the running application to determine the
optimal run-time settings that maximize energy-efficiency, due to
the interdependence of various tuning parameters such as the
type of core, run-time voltage and frequency, and the number of
threads, the scheduling becomes more challenging. More
importantly, the impact of Power Conversion Efficiency (PCE) of
the On-Chip Voltage Regulators (OCVRs) is another important
parameter that makes it more challenging to schedule
multithreaded applications on HMPs. In this paper, the
importance of concurrent optimization and fine-tuning of the
circuit and architectural parameters for energy-efficient
scheduling on HMPs is addressed to harness the power of
heterogeneity. In addition, the scheduling challenges for
multithreaded applications are investigated for HMP
architectures that account for the impact of power conversion
efficiency. A highly accurate learning-based model is developed
for energy-efficiency prediction to guide the scheduling decision.
Using the predictive model, we further develop a PCE-aware
scheduling scheme is developed for effective mapping of
multithreaded applications onto an HMP. The results indicate
that the proposed learning-based scheme outperforms the state of
the art solution by 10% when there is no PCE gap between big
and little cores. The energy-efficiency improves up to 60% when
the PCE gap between big and little cores increases.

L INTRODUCTION

Heterogeneous multicore processors offer significant
advantages over homogeneous designs in terms of both
performance and power by executing workloads on the most
appropriate core type. By running multithreaded applications
on a heterogeneous architecture, each thread is able to run on a
core that matches required resources more closely than a one-
size-fits-all ~ solution  [11].  Commercially  available
heterogeneous architectures include Intel Quick IA [6], ARM’s
big.LITTLE [8], and the Nvidia Tegra 3 [7] that integrates a
high performance big core with a low power little core on a
single chip. Although heterogeneous architectures take
advantage of variation in the application characteristics at run-
time to improve energy-efficiency, they create unique
challenges in the effective mapping of threads to cores. The
effectiveness of heterogeneous architectures significantly
depends on the scheduling policy and how efficiently the
application is assigned to the most appropriate processing core
[1,3,4,9,11].

Previous studies have mainly examined the advantages of
using single threaded applications in HMPs [1,3,4,10,11,13].
However, running multithreaded applications on HMPs and
choosing the ideal processor architecture to optimize energy-
efficiency is a more challenging problem, that must consider
the possible number of cores and threads, type of core micro-
architecture, and the potential to combine multiple core types
[22,23]. In addition, prior work have ignored power conversion
efficiency as a critical optimization parameter. In fact, unlike a
homogeneous architecture, in an HMP, the maximum load on
cores varies significantly depending on the core type. For
instance, in an Exynos 5, the maximum power of big Al5 is
five times more than little A7 [12]. Therefore, there is a
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Fig.1. Tuning parameters influencing energy-efficiency in heterogeneous
architectures and prior work on scheduling using these tuning parameters.

difference in power conversion efficiency on big and little
cores for the same application that is critical for scheduling.
For instance, assume the same application executed on a big
core and little core dissipates 1W and 0.9 W of power,
respectively. Now consider a PCE of 90% and 70% for the big
and little cores, respectively. The execution of the application
now requires 1.1 W and 1.4W of power supplied to the big and
little cores, respectively, which implies a change in the most
efficient core type after accounting for PCE. Since power
conversion efficiency is dependent on the load (core type), it is
shown in this paper that it is critical to account for PCE when
making scheduling decisions. The experimental results
demonstrate that PCE directly affects the choice of the right
core type (big vs. little) optimize energy-efficiency. In this
work, an energy-efficient scheduling approach is proposed that
accounts for the interplay between various application and
micro-architectural tuning parameters with respect to the
impact of on-chip power delivery on the energy-efficiency of
the HMP executing multithreaded programs. To the best
knowledge of the authors, there has been no prior effort to
concurrently  fine-tune  the core  type,  operating
voltage/frequency, and application thread counts that also
considers the impact of the PCE of the voltage regulators on
the optimization of the energy-efficiency in an HMP.

The tuning parameters that influence scheduling decisions
in an HMP are shown in Fig. 1. In addition, recent prior work
as well as the contribution of this work is illustrated in Fig. 1.
Previous studies on mapping applications to multicore
architectures have focused primarily on 1) homogeneous
architectures, and 2) configuring individual or a subgroup of
tuning parameters at a time, such as application thread counts
[5,9,17,21], voltage/frequency [3,10], core type
[4,8,11,17,18,19] and have ignored the interplay among all
parameters. In addition, the recent studies in [22, 23] attempt to
examine the interplay among tuning parameters for an HMP
but have ignored the impact of PCE of voltage regulators. This
study indicates that tuning parameters individually, while
important, do not produce an optimized configuration that
achieves the best energy-efficiency on an HMP. The best
configuration for a multithreaded application is effectively
found, only when tuning parameters are jointly optimized.
Exploring the impact of on-chip voltage regulator PCE on the
energy-efficiency of an HMP running multithreaded
applications is an additional main contribution of this work.
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Fig. 2. An overview of the PCE-aware learning-based approach.

The key contributions of this work are summarized as follows:

e The interplay of  tuning parameters on
performance, power, and energy-efficiency is evaluated
for an HMP. The specific parameters at the micro-
architecture, system and application levels that are critical
to performance as well as power and energy-efficiency and
are studied in this work are core type, voltage/frequency
settings and the running thread counts.

e The impact of power conversion efficiency of on-chip
voltage regulators on the selection of tuning parameters is
investigated for maximizing the energy-efficiency.
Specifically, four different settings for PCE of VRs are
implemented to examine the effect of PCE on the energy-
efficiency of multithreaded applications running on the
HMP. The results indicate that the energy-efficiency of the
multithreaded applications running on an HMP
significantly depends on the power conversion efficiency
of the on-chip voltage regulators.

e A system level optimization technique is developed that is
aware of the PCE of the on-chip VRs. Based on conducted
workload characterization and analysis of the PCE, a
machine learning-based model is proposed for predicting
the energy-efficiency of various configurations to guide
scheduling of multithreaded applications.

1L OVERVIEW OF PCE-AWARE SCHEDULING

The primary objective of this paper is to analyze the
interplay of various tuning parameters, (core type,
voltage/frequency, number of threads), for running
multithreaded applications on HMPs and to highlight the
importance of accounting for the PCE of OCVRs for each core
type to assist in scheduling decisions. An overview of the
three-stage PCE-aware approach for predicting the right core
type and application configuration is depicted in Fig. 2. The
machine learning-based approach begins from extracting
micro-architectural data (referred as feature extraction) and the
power and performance (execution time) characteristics, to
characterize the multithreaded workload, prepare the dataset
for PCE analysis, and train the prediction model. The extracted
features include the hardware performance counter data, which
represent the application behavior at run-time.

Since PCE is dependent on voltage regulator design, the
architecture of the big and little cores, and the maximum load
gap between the two, in this work, no specific assumption is
made regarding the PCE of the big and little cores. Instead, all
possible scenarios representing various differences between the
PCE of the big and little cores are explored. Next, a
comprehensive PCE analysis is performed by implementing
various PCE models for both big and little cores and evaluating
the impact of power conversion efficiency on the energy-

TABLE 1. ARCHITECTURAL SPECIFICATION.

Fig. 3. The power-supply configurations for the experimental HMP.

efficiency of multithreaded applications. Furthermore, a

machine learning-based predictor (that is built off-line)

accordingly takes in feature data as well as the PCE of the

regulator and predicts the best system configuration for a given

application. Finally, the processors are configured and the

application is scheduled to run on the predicted configuration.
III. EXPERIMENTAL SETUP AND METHODOLOGY

In this section details of the experimental setup are
provided. Sniper [13] version 6.1, a parallel, high speed and
cycle-accurate x86 simulator for multicore systems is used for
simulation. McPAT is integrated with Sniper and is used to
obtain power consumption of the cores. The SPLASH-2 [14]
and PARSEC [2] multithreaded benchmark suites are
examined through simulation. For architectural simulation, a
big.LITTLE heterogeneous architecture is modeled. For the
little core architecture, a core similar to the Atom Silvermont
is modeled and the big core is configured with resources
similar to the Xeon Gainestown. The Uncore event set of
Silvermont and the Intelligent Performance Counter of
Gainestown are used to collect data for characterization and
drive the scheduling algorithm. The Energy Delay Product
(EDP) is used to characterize energy-efficiency, that aims to
balance performance and power consumption.

The micro-architectural configuration of the little and big
core of the described HMP is listed in Table I. The examined
HMP consists of 8 little and 4 big cores. It is important to
note that for benchmark simulation, the binding (one-thread-
per-core) model is applied with #threads = #cores to maximize
the performance of multithreaded applications [4, 5].

IV.  POWER CONVERSION EFFICIENCY ANALYSIS

In this section, the motivation to include the voltage
regulator efficiency as one of the tuning parameters influencing
the energy-efficiency of the HMP is described. For analyzing
the efficiency of on-chip voltage regulators, per-core voltage
regulation is considered as shown in Fig. 3. In the model, each
core has a dedicated OCVR, which is a flexible state of the art
VR configuration that enables the system to set the voltage and
frequency for each core individually to address core-to-core
process variation [15, 16]. In addition, since the power
management unit directly controls the OCVRs, turning them on
or off, a power gating circuit is not needed. The impact of
power conversion efficiency of the on-chip VRs on energy-
efficiency of multithreaded applications is demonstrated by
implementing the PCE scenarios listed in Table I1.

The first case listed in Table I represents Full Efficient
VRs. This is the ideal scenario in which the power conversion
efficiency of the little and big cores is assumed to be 100%.
The full efficiency case is used as a baseline for comparing the
other PCE models and evaluating the impact of OCVR

Microarch. Parameter Little Core Big Core

Dispatch Width 2 4

Kt’g‘;‘:fsclzhe 322 1§8 TABLE II. FOUR PCE SCENARIOS FOR LITTLE AND BIG CORE VRS.
n VRs PCE Models PCE_Little PCE_Big

L1 I-Cache/Acc. Time 32KB, 8-way/4-cyc 32KB, 4-way/2-cyc (Little Core vs. Big Core)

L1 D-Cache/Acc. Time 24KB, 6-way/4-cyc 32KB, 4-way/2cyc Full Efficiency 100% 100%

L2-Cache/Acc. Time 1024KB/16-way/12- cyc 256KB/8-way/8cyc Low gap 60% 80%

L2-Shared Cores 2 1 Medium gap 40% 80%

L3 Cache - 8MB/16-way Large gap 20% 80%
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Fig. 4. Energy-efficiency (in terms of EDP) of barnes for four different PCE gaps between little and big cores: a) full efficiency, b) low, ¢) medium, d) large.

efficiency on the EDP. For this purpose, three different PCE
sets are assigned to each OCVR with low, medium and large
gap between the little and big core. The values are chosen more
accurately than the baseline model represent the PCE of on-
chip VRs and to effectively determine the impact of PCE
variation on the energy-efficiency of HMP.

An example depicting the EDP of the barnes application
while considering different on-chip VR models with varying
PCE is shown in Fig. 4. The VR models are based on the 2-
phase and 4-phase dc-dc buck converter models in [15]. The
PCE of the VR models used for the big cores and little cores
are listed in Table II. In order to effectively present the impact
of voltage regulator PCE on the EDP in each case, in this
section, the EDP results for one of the studied frequencies (2.8
GHz) is chosen to examine the gap between the energy-
efficiency of the two cores for different per-core PCE values.
Note that changing the number of threads interestingly affects
the impact of the PCE on the energy-efficiency. As seen from
Fig. 4-(a) and 4-(b), when the number of running threads is low
(less than 3), the PCE significantly impacts the choice of
selecting the more energy-efficient core as compared to the
higher number of threads. The results shown in Fig 4-(a)
clearly indicate there is a large gap between the energy-
efficiency of little and big core when running the application
with lower number of threads. However, that is not the case
with higher thread counts. As the number of threads increases,
the difference between the EDP of the little and big core
reduces which makes the big core more competitive with the
little core in terms of energy-efficiency.

As shown in Fig. 4-(b), it is assumed that there is a low
gap between the PCE of the little and big cores. The assumed
Little PCE is 60% and the Big PCE is 80%. As can be seen,
even though the gap between the EDP of the little and big
cores is relatively smaller than the baseline case, where the
PCE for both core types is 100% (Fig. 4-a), as the number of
threads is changed accordingly, the little core still outperforms
the big core in terms of EDP delivering better energy-
efficiency. Therefore, when the gap between the PCE of the
little and big cores is relatively small, similar to the case when
the PCE for both core types is 100%, it is more energy-
efficient to migrate from the big core to the little core and run
the application to achieve a lower EDP.

The EDP results for the scenario in which the PCE gap of
the little and big core is increased to 40% (medium PCE gap) is

depicted in Fig. 4-c. As is seen, the EDP for the little core
increases and overlaps with the EDP of the big core, indicating
that the two cores are almost as energy-efficient for PCE gap of
40%. In the last scenario, the PCE gap between the little and
big core VRs is further increased. As shown, for large PCE
gap, the big core outperforms the little core in terms of EDP.
Therefore, as the PCE gap increases, the selection of the little
core is no longer optimal in terms of EDP for running
multithreaded applications.

The results of PCE analysis indicates that the most energy-
efficient choice varies depending on the PCE gap between the
big and little cores and the best choice changes compared to the
case when the PCE is ignored. Also, as shown in Fig. 4, the
number of threads along with the PCE gap determines the most
efficient core. It is, therefore, important to explore the impact
of the power conversion efficiency of the on-chip voltage
regulators in an HMP to determine the optimal core
configuration that achieves the optimized EDP.

V. ENERGY-EFFICIENT SCHEDULING FRAMEWORK
A. Joint analysis of (Core Type, Freqeuncy, Thread Counts)
with respect to various PCE models

In section, to understand the interplay among all tuning
parameters and determine the optimum configuration for
maximizing the energy-efficiency, the interplay among the
tuning parameters were comprehensively investigated with
respect to each selected voltage regulator PCE model. Due to
space limitations, the optimal configurations that yield the
optimal EDP for two corner cases are reported which are the
full efficiency and large PCE gap models listed in Table III.
The relative EDP variation is also calculated for each
benchmark, which indicates the relative difference between
energy-efficiency for the best configuration of parameters in
the little and big cores. The variation parameter (Var) is
described as follows:

Var = (Littlebesrj‘_EDP - Bigbest_EDP) % 100 %)
Littlepest gpp

The variation parameter indicates whether to run the
application on the little core or big core. For this purpose, a
variation threshold is defined that decides what type of core
architecture is best suited for executing the corresponding
multithreaded application more energy-efficiently. The user-
defined threshold is adjusted based on the architecture and
available resources as well as the cost of migration. Note that
migrating applications from the little core to the big core or,
vice versa, comes with power as well as delay overhead. In this

TABLE III. OPTIMAL CONFIGURATION WITH OPTIMIZATION TARGET OF EDP FOR FULL EFFICIENCY PCE AND LARGE GAP PCE MODEL.

Full Efficiency Large PCE Gap

Benchmark Best-Little Best-Big Var. Best-Little Best-Bi; Var.

Freq. (GHz) #Thread Freq. (GHz) #Thread (%) Freq. (GHz) #Thread Freq. (GHz) #Thread (%)
barnes 2.4 8 2.8 4 -444.8 24 8 2.8 4 -36.2
fmm 2.4 8 2.4 4 2.2 24 8 24 4 75.5
cholesky 2.4 8 2 4 28 24 8 2 4 77
radix 2.8 8 2.8 4 138.7 2.8 8 2.8 4 40.3
radiosity 2.4 8 1.6 4 102.8 24 8 1.6 4 49.3
raytrace 24 5 2 4 28.9 24 5 2 4 67.7
fft 2 4 2 2 36.3 2 4 2 2 79.1
lu.cont 24 8 2.8 4 27.2 24 8 2.8 4 98.7
blackscholes 2.8 4 2.4 4 83.85 2.8 4 24 4 195.3
bodytrack 2 3 2 3 41.23 2 3 2 3 112.6
ferret 2 6 2 6 2.4 2 6 2 6 132.6




work, a conservative implementation with a delay overhead of
10K cycles is assumed, which is much longer than the
overhead to flush the pipeline and copy the content of private
cache [3.4,18]. Moreover, a 20% variation threshold is
assumed to select the more energy-efficient core to run the
multithreaded application. As a result, if the percentage of
variation between the best-little and best-big architectures is
found to be less than 20%, we use the little core for scheduling
instead of the big core to avoid migration overhead.

An important observation from the optimal configurations
highlighted in Table III is that as the gap in PCE increases, the
optimal configurations corresponding to the best EDP show to
occur more on the big core. The percentage of applications
executed on each of the two core types for the four PCE
scenarios is shown in Fig. 5. As shown, for the full efficiency
model, the little core has a higher probability of being the
optimal configuration. However, as the PCE gap gradually
increases, the energy-efficient core is shifted from the little to
the big core. As a result, for the large PCE gap model, as
compared to the full efficient scheme, the possibility of the big
core being the more energy-efficient than the little core
increases by 45%. The reason is due to the significant increase
in the EDP of the little core as compared to the big core when
the PCE gap between the two cores increases. As shown in Fig.
5, close to 55% of the optimal configurations indicate that the
little core is more energy-efficient. The number of optimal
configurations reduces to less than 10% as the PCE gap
increases to 60%. Therefore, considering the PCE of the
OCVRs in scheduling decisions of multithreaded applications
on HMPs is critical. In order to perform a comprehensive EDP
characterization of the studied architectures, all possible
configurations (core types and number of threads) are
categorized into four classes. The first two are Fully-Little and
Fully-Big configurations that refer to cases in which the lowest
EDP is achieved with full utilization of either the little or big
core, respectively. In other words, the optimum number of
threads is equal to the maximum number of existing little/big
cores. On the other hand, Partially-Little and Partially-Big
configurations are utilized when the best number of threads is
lower than the maximum available cores.

The diversity of optimum configurations across various
applications and on-chip voltage regulator PCE scenarios
demonstrates that when running a given multithreaded
workload on an HMP, depending on the application and the
PCE of the OCVRs, different core configuration parameters
(core type, voltage/frequency, number of threads) lead to the
best energy-efficiency. The simulation results indicate that the
optimal configuration varies across the applications. The
dispersed pattern of optimum results implies that there is a
necessity of developing a prediction method to guide
scheduling decisions of unknown multithreaded applications in
order to improve the EDP of an HMP with respect to a given
PCE of the OCVRs.

B. Prediction Model for Energy-efficiency

1) Model selection: Recent studies have proposed ordinary
least squares regression (OLSR) modeling to estimate the
power [10] and performance [3, 11, 19] of a processor at run-
time. The results of this work indicate that OLSR is not the best
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Fig. 5. Optimal core type selection for different power conversion efficiencies.

suited algorithm for performance and power estimation as
outliers, particularly for heterogeneous architectures, mislead
the model. In fact, various applications experience different
phases with different behavior. In addition, superscalar
processors are complex, which makes it difficult to develop a
general model for estimation of power/performance. OLSR
models are highly sensitive to the outliers and potentially
produce misleading results as even a single point of data
substantially impacts the regression efficiency. Thus, in this
paper, based on a comprehensive characterization of various
applications, a more robust regression algorithm is evaluated in
addition to OLSR, referred as the Quantile Linear Regression
(QLR) model [20], to predict the energy-efficiency for various
configurations of the studied HMP. The primary advantage of
QLR as compared to OLSR is the robustness against outliers.
For the QLR model, a specific quantile of data is set instead of
the mean value. The quantile is set to 0.1, which results in
minimizing the median of the error values.

Although the use of non-linear regression or neural
network models potentially provides a more accurate
estimation of the energy-efficiency of an application, the
complexity of the design is increased, with a corresponding
increase in hardware complexity. The overhead in area, power
and performance of implementing a linear regression model in
hardware is minimal and shown to be easily integrated into a
core [11]. The QLR model achieves higher accuracy as
compared to OLSR. A comparison between the derived
coefficients of the two different predictors using ordinary
linear regression and quantile linear regression is shown in
Fig. 6. In the figure, the black dotted line is the slope
coefficient for the QLR and the red lines are the least squares
estimate for OLSR and the corresponding confidence interval.
The lower and upper quantiles are well beyond the least
squares estimate. The effects of L2 cache access and branch
miss prediction vary over quantiles, and the magnitude of the
effects at various quantiles differs considerably from the
OLSR coefficient, even in terms of the confidence intervals
around each coefficient (58% for the L2-access and 30% for
the branch miss predictor). Therefore, an ordinary least
squares regression is not an optimal solution to capture the
actual behavior of applications when predicting the energy-
efficiency.

2) QLR derivation and training: Training process involves
finding the best processor and application configuration and
extracting feature values for each training workload, reducing
the extracted features to the most vital performance counters,
and developing a learning model from the training data. Note
that the input variables in the developed classifiers are
extracted performance counter information from different
training applications as well as the PCE value for each on-chip
voltage regulator, while the output variable is the EDP for a
given set of tuning parameters. Therefore, a subset (less than
two third) of applications from the SPLASH2 and PARSEC
multithreaded benchmark suites is considered. The studied
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TABLE IV. HARDWARE PERFORMANCE DATA USED FOR THE REGRESSION MODEL.

Category Hardware performance counter
Memory L1 D-cache access, L1 D-cache miss, L1 I-cache access, L1 I-
subsystem cache miss, L2 cache access, L2 cache miss, I-TLB miss, D-

TLB miss
Integer instruction issue, Integer floating point issue

Instructions

Branch Branch instruction, Branch misprediction

applications represent diverse compute, memory and I/O
intensity behavior. For each benchmark, twelve pieces of
hardware performance counter data are collected on all
possible configurations of core types, voltage/frequency
operating points, and thread counts. The micro-architectural
parameters are listed in Table I'V.

Given the twelve hardware performance counters,
Principle Component Analysis (PCA) and correlation analysis
are used on the training set to monitor the critical micro-
architecture parameters and capture application characteristics.
By applying the attribute reduction method, the four most
related performance counters are determined which include
the L1 D-cache access, L2 cache-access, L2 cache-miss and
branch miss prediction. Since the primary purpose of the
prediction model is to predict energy-efficiency across various
application, system and micro-architectural parameters, the
primary tuning parameters in must be considered in the model
as well. Therefore, along with the identified key performance
counter parameters, three tuning parameters (core type,
frequency, #threads) are included as input variables to the
model to enable predicting the EDP for each configuration that
results when changing the core type, operating frequency,
and/or thread counts.

After identifying the four key hardware performance
parameters and considering the tuning parameters, the
proposed PCE-aware energy-efficiency prediction model is
formulated using quantile linear regression as follows:

4
QLRMpes = (ﬂO+ZﬂixPi>+ﬂ5xCT+ﬁ6><f @)
i=1

where S0 is the intercept, fi denotes the corresponding
coefficients of the regression model, Pi are extracted hardware
performance counters, and QLRMpcg is the estimated energy-
efficiency (in terms of EDP) given the PCE of the on-chip
voltage regulators. In addition, the core/thread configurations
are given by CT, and f represents the frequency on the
corresponding core architecture. The i coefficients can be
interpreted as the expected change in EDP per unit change in
L1 D-cache access, L2 cache-access, L2 cache-miss, branch
misprediction, core/thread and frequency setting. The model
predicts continuous values representing the energy delay
product as a function of performance counter inputs and
tuning parameters, which are then used to make the scheduling
decisions at run-time. During run-time, given an unknown
application, the QLRMpcg predict the EDP of all possible
configurations based on a single set of executing data. The
configuration corresponding to the lowest estimated EDP is
then selected for the run.
C. Energy-Efficient PCE-aware Scheduling Algorithm

An overview of the PCE-aware scheduling scheme using
the regression-based prediction model is provided in Fig. 7. As
illustrated, the scheduling algorithm is split between an offline
step and an online step. In offline analysis, the prediction
model is trained using quantile linear regression, as described
in section V-B. For the online tuning step, a multithreaded
application is run with the most aggressive configuration
settings, where all tuning parameters are set to maximum
(maximum number of threads, highest frequency, and the big
core). Next, date from the hardware performance counters is
extracted by profiling the multithreaded application, as it is
running with the maximum configuration settings. The

Performance Data Extraction

-]

| Clustering and Correlation Analysis

Pi CT, f, PCE%
QLR Model: Learning
QLRM
(Core/Thread & Operating
Frequency configurations)

QLR Model:
Prediction Phase

Offline Analysis ’ Application Behavior Analysis: I

Online Tuning

Application Behavior Analysis:
Per Data i

Power Conversion
Efficiency (PCE%)

QLRM(Pc,CT, f, PCE) EDP Prediction

-Tuning Parameters Setting (Core Type, Freq., #Thread )
- Run application using the optimal configuration that
corresponds to the predicted EDP

Fig. 7. Proposed PCE-aware scheduling scheme with energy-efficiency prediction.

profiling stage is used for run-time characterization and
resource utilization of the applications. The regression
classifier takes the key performance counter parameters and
configuration settings as inputs, and outputs the system
energy-efficiency for the given configuration and given PCE.
Note that the linear weights are estimated using the training
data set. Given the input configuration parameters during run-
time, the QLRMpce predicts the optimal energy-efficiency.
The output resulting in the optimal energy-efficiency and the
corresponding new configuration is then chosen as the current
operating point at run-time. The predictive model, by
observing the run-time behavior of a multithreaded application
running with a specific configuration, predicts the right
configuration of parameters that includes the number of
threads, operating voltage and frequency, and core type (big or
little) to achieve the maximum energy-efficiency for a given
PCE. It is important to note that the QLRMpcg can be trained
for other objectives such as ED?P optimization.
D. Evaluation Results

In order to evaluate the accuracy of the prediction model,

the value of the relative mean absolute error (RMAE) is
|estimated value—actual value| x

calculated which is defined as
(actual value)

100%. The RMAE metric indicates the relative difference
between the predicted and observed maximum energy-
efficiency. To validate the QLRMpcg model, we applied
percentage split method to divide the dataset into two sets,
using 60% (known applications) of the data to train the model
and 40% (unknown applications) to simulate and evaluate.

The average relative errors of the QLRMpck are listed in
Table V. As shown, all possible configurations of the 16
operating points consisting of various frequencies and
core/thread configurations are characterized. As shown, the
proposed prediction classifier is most accurate in estimating
the energy-efficiency of the Fully-Big and Fully-Little
architectures, both operating at 2 GHz. In addition, the
developed learning model achieves an average error of 6.85%
across all training data samples and possible configurations.
The proposed classifier assists the scheduling decisions of
multithreaded applications on an HMP that include choosing
the core type, setting the operating voltage and frequency, and
adapting the number of running threads. The performance
overhead of implementing the QLRMpcg in hardware and
calculating values at each interval is negligible. The power

TABLE V. AVERAGE RELATIVE ERROR OF QLRMpcE

Core/Thread Configurations
Freq. Full-Little Partial-Little Full-Big Partial-Big
2.8 GHz 10.5% 10.74% 11.69% 2.03%
2.4 GHz 22.49% 21.4% 4.67% 4.87%
2.0 GHz 1.9% 3.9% 1.74% 3.1%
1.6 GHz 3.35% 2.2% 3.6% 2.61%
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Fig. 8. Normalized energy-efficiency of applications on various scheduling
schemes relative to Oracle scheduling.

overhead of implementing the QLRMpcg is 5uW, which is
further reduced by gating idle units during each interval [11].
In order to evaluate the efficiency of the prediction model, the
following scheduling schemes are studied for comparison:
- Oracle: This model is based on the heterogeneous
architecture with an ideal energy-efficiency predictor, where
all future behavior of the application as well as the power and
performance for various configurations are known in advance.
Since the Oracle scheme provides the upper bound for energy-
efficiency, it is used to normalize and compare the other
schemes.
- OQLRMpcg: This scheme is based on the proposed PCE-aware
quantile linear regression model to estimate the EDP for
various core sizes, frequency/voltage points, and number of
threads for a given voltage regulator PCE.
- Elastic-Core [3]: This dynamic scheme proposed recently
uses a linear regression model to predict the power and
performance of single-threaded applications as a function of
core type and frequency settings. However, unlike the model
in this paper, the impact of PCE is not accounted for. In
addition, although Elastic-Core does not account for the
number of threads, the thread counts in this paper are set to
maximum values to better evaluate the model by fairly
comparing it against a recent dynamic scheduling solution.
- Performance Aggressive Scheduling (PAS): In this scheme,
all tuning parameters are set to maximum values to achieve
the maximum performance. Therefore, each application is
executed on big cores operating at 2.8 GHz and with 4 threads.
- Power Minimized Scheduling (PMS): This scheduling
scheme attempts to minimize power consumption. The
application is running on a little core and the frequency and
number of threads are set to minimum values.

The energy-efficiency of the studied applications
normalized to the Oracle model with a fully efficient VR is
shown in Fig. 8. The QLRMpcg on average achieves close to
95% efficiency as compared to the Oracle model. The
QLRMpcr has improved energy-efficiency as compared to the
Elastic-Core and PAS schemes by an average of respectively,
10% and 30% across all benchmarks, respectively. The
average energy-efficiency of different scheduling schemes
across various studied PCE gap models is shown in Fig. 9. By
increasing the PCE gap, the energy-efficiency of the Elastic-
Core, PAS, and PMS scheduling schemes diminishes. For the
largest PCE gap, the proposed QLRMpce outperforms a state
of the art solution, the Elastic-Core, in energy-efficiency by
60%. The results verify the efficacy of the proposed prediction
model and the effectiveness of the proposed scheduling
scheme to harness the power an HMP for enhanced energy-
efficiency.

VI. CONCLUSION

Emerging heterogeneous multicore architectures are
complex processors with various tuning optimization knobs
for improving performance and energy-efficiency. Scheduling
multithreaded applications in these architectures is a
challenging problem given the various optimization
parameters at the application (number of running threads),
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Fig. 9. Average energy-efficiency results of different
scheduling schemes with respect to various PCE models.

system (operating voltage and frequency), and architecture
(core type- big vs. little) levels. In addition, unlike
homogeneous architectures, the efficiency of on-chip voltage
regulators and the power conversion efficiency gap between
the big and little cores in these architectures are critical
parameters that must be accounted for. The interplay among
the tuning parameters and the influence each has on the
energy-efficiency, make the scheduling and tuning of the
application even more challenging. In this paper, a PCE-aware
scheduling and tuning solution is developed that highlights the
importance of accounting for the PCE of big and little core to
find the appropriate core type that optimizes the EDP. A
predictive model is developed for estimating the energy-
efficiency of multithreaded applications. Based on the
predictive model, a scheduling scheme is developed for
effective mapping of multithreaded applications to an HMP by
setting the tuning parameters to maximize the energy-
efficiency. The results indicate that the proposed scheduling
scheme achieves on average close to 95% efficiency as
compared to the Oracle scheduler.
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