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Abstract— One important issue that confronts network service
providers is the need to provide reliable multimedia data
service efficiently over cellular networks for a large num-
ber of subscribers under dynamic channel conditions. In long
term evolution (LTE) networks, multimedia broadcast multicast
service (MBMS) is a bandwidth efficient data service to simul-
taneously support multiple users at high bandwidth efficiency.
In this paper, instead of considering spectrum resource alloca-
tion, we investigate MBMS provisioning for each mobile user
based on the higher layer robust header compression (ROHC)
consideration in response to user channel quality to reduce packet
losses. We formulate a profit maximization problem for two
different MBMS channel models and further propose a new
MBMS assignment scheme for each user to be assigned a target
MBMS with optimal ROHC parameters. We further develop a
dynamic programming algorithm for user assignment and ROHC
parameters optimization to achieve maximal profit with high
spectrum resource utility. Our numerical results demonstrate
substantial profit gain achieved by the proposed method in LTE
systems.

Index Terms—Multimedia broadcast multicast service,
robust header compression, hidden Markov model, dynamic
programming.

I. INTRODUCTION

ANY of today’s cellular subscribers are smartphone

users with frequent access to multimedia contents.
Since the primary cost for a network service provider (NSP)
is its bandwidth usage, it is therefore natural for NSPs to
maximize their profit by providing multimedia services of
satisfactory quality to subscribers for achieving high spectral
efficiency. According to a large number of users and user
diversity, the allocation of insufficient bandwidth is always a
big challenge for the NSP to maintain a higher and stable
quality of wireless transmission due to the huge demand
of multimedia. In this work, we use the NSP profit as an
objective to investigate the tradeoff between bandwidth utility
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and multiple-user satisfaction of multimedia transmission in
cellular wireless networks.

To effectively deliver volumes of multimedia data service to
a large number of users at same time, Multimedia Broadcast
Multicast Service (MBMS) provides an efficient interface.
Instead of always relying on individual cellular links, MBMS
offers a highly efficient service which includes both point-
to-point (P-t-P) radio bearers and point-to-multipoint (P-t-M)
radio bearers in the 3rd Generation Partnership Project (3GPP)
Long Term Evolution (LTE) [1]. Traditional unicast (P-t-P)
assigns a dedicated radio bearer to every active user according
to the specific channel condition. Using one unicast (P-t-P)
bearer for each of many subscribers requires large service
bandwidth to satisfactorily deliver the media contents with
Quality of Service (QoS) required by the users. On the other
hand, one multicast (P-t-M) radio bearer can simultaneously
serve multiple subscribers interested in acquiring the same
popular data content, thereby significantly improving both
spectrum efficiency and transmit power efficiency [2]. Since
it is difficult to guarantee the QoS of all subscribers by
establishing only a single P-t-M radio bearer, Multiple MBMS
radio bearers can be set up to serve users of different channel
conditions. Thus, MBMS radio bearer provisioning between
P-t-P and P-t-M is an important decision for improving NSP
profit. The tradeoff between collecting higher revenue from
users, which is directly associated with user QoS, and reducing
the cost of bandwidth usage associated with the number of
MBMS bearers is an important design consideration to be
tackled in this work.

Currently, most existing works of radio bearer selection
for MBMS rely on some user counting mechanisms which
use either P-t-P or P-t-M exclusively but not both [3]. The
typical performance objectives are power efficiency, through-
put and transmission performance. The authors of [4]-[6]
studied how to improve the multicast performance in LTE
networks. The improvement of power efficiency by selecting
different transmission methods is studied in [7] and [8].
A new framework proposed by [9] attempted to maximize the
profit based on bandwidth allocation for the wireless video
broadcasting system. All these existing works assume using
either n P-t-P bearers or one single P-t-M bearer to serve n
subscribers. Such limitation apparently is not flexible enough
to achieve an optimal tradeoff between spectrum efficiency
and bandwidth usage when the subscribers have diverse chan-
nel conditions. Instead of limiting the NSP to either pure
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unicast (P-t-P) or pure multicast (P-t-M), we propose to study
the tradeoff between user QoS revenue and bandwidth usage
cost through adaptive user assignment to various MBMS
bearers, each of which serves a subset of subscribers whose
channel qualities support similar QoS requirements. A related
work [10] proposed a hybrid transmission approach to find
the optimum configuration which adjusts the system to either
streaming or file delivery service by considering MBMS Single
Frequency Network (MBSFN) area size and Evolved Multi-
media Broadcast Multicast Services (E-MBMS) data rate.

One less known yet indispensable mechanism that plays an
important role in many MBMS applications is RObust Header
Compression (ROHC). Located in the packet data convergence
protocol (PDCP) sub-layer of Layer 2 (L2) of the LTE protocol
stack [11], ROHC is a key interface between cellular and
Internet Protocol (IP) networks and can substantially improve
cellular network’s bandwidth efficiency by reducing typical IP
headers from as long as 40 bytes (e.g. IPv4/TCP) to as short
as 1 byte based on exploring the correlation between header
fields from the consecutive packets of the same stream. For
many applications such as Voice over Internet Protocol (VoIP),
interactive gaming and video streaming, etc., the size of
the payload in each packet can be comparable to or even
smaller than that of the headers if un-compressed, leading
to poor transmission efficiency. ROHC is responsible for the
header compression in wireless networks with poorer channel
conditions in order to achieve a trade-off between reliability
and efficiency [12]. Surprisingly, although ROHC has been
standardized and widely incorporated in many protocol stacks,
it has not been widely studied among traditional wireless
research publications and many questions remain unanswered.

There exist several works that mainly focus on the per-
formance analysis of ROHC itself in specific networks. The
compression efficiency of ROHC over mobile WiMAX is
studied in [13]. In [14], two ROHC implementations known
as ROHCv1 and ROHCV2 are evaluated in terms of potential
throughput gain and complexity for wireless IP networks in
multimedia delivery. Reference [15] presented an efficient
hardware architecture for accelerating ROHCv2 based on LTE
energy efficiency. In [16], the authors investigated the resource
consumption and potential performance gain of implementing
ROHC encoding and decoding functions and studied the archi-
tectural implications of ROHC in future networks. The authors
of [17] investigated the impact of a Window-based Least Sig-
nificant Bits (W-LSB) encoding on the performance of ROHC.
In [18], the video streaming file transmission over MBMS
studied the use of ROHC to generate a single RTP/UDP/IP
packet flow in Packet Data Convergence Protocol (PDCP).
However, existing works on ROHC have focused only on one
single packet-switched link. There is a lack of understanding
on the control of ROHC in MBMS provisioning, in which the
proper use of ROHC can improve transmission efficiency in
many MBMS applications.

There are two major challenges in optimizing the ROHC
settings for MBMS. Firstly, as with ROHC for an individual
wireless link, inappropriate settings of ROHC parameters may
cause frequent decompression failure by the ROHC decom-
pressor at the receiver end, thereby resulting in serious loss
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of data packets even if they are correctly received. In our
initial work [19], we have investigated the problem of ROHC
parameter optimization for a single user and demonstrated
substantial improvement of transmission efficiency. We also
developed an adaptive ROHC scheme under limited radio
resources. Moreover, for MBMS (P-t-M), there is one single
ROHC entity to serve a group of users. We note that, when
establishing MBMS bearers, ROHC parameters must also be
optimized for each service group of users whose channel
conditions tend to differ. This design requirement becomes
even more challenging for our proposed novel MBMS schemes
with adaptive user assignment to various MBMS bearers. In
this new scenario, the NSP must jointly design the MBMS
user assignment when establishing MBMS service groups and
optimize the ROHC parameters for each individual group in
which users experience diverse channel qualities.

In this work, we study the problem of NSP profit maximiza-
tion in MBMS through dynamic user assignment and ROHC
optimization. We focus on optimizing MBMS user grouping in
accordance with each MBMS user’s ROHC control parameter
which can be optimized for maximum transmission efficiency.
We establish a new system based on a more practical channel
model beyond our preliminary works [20]. Based on this
more advanced and practical system model, we develop an
optimized MBMS service provisioning algorithm in response
to dynamic user channel conditions. Our major contributions
are as follows:

o We fully consider the diversity of channel qualities among
active users for MBMS packet services. Two channel
models are applied to characterize such diversity. In
the first model, the packet channel is derived from the
PHY fading channel into a Markov model for each
user. In the second model, the parameters of each user
channel are directly estimated from a sequence of packet
transmission which can be mapped into a hidden Markov
Model (HMM).

o We investigate the problem of NSP profit maximization
that enables a flexible tradeoff between the revenue that
depends on user QoS and the associated bandwidth cost.
The user QoS takes into consideration of the true payload
transmission instead of the PHY layer throughput, which
is greatly affected by the ROHC parameter optimization
per MBMS user group. We solve the problem of profit
maximization via joint group assignment and ROHC
parameter optimization with an efficient dynamic pro-
gramming (DP) algorithm.

The rest of this paper is structured as follows. Section II
introduces the preliminary background and the ROHC system
framework. In Section III, we develop a Markovian model for
each wireless link equipped with ROHC under both channel
models, which lays the foundation of the ROHC parameter
optimization. In section IV, we depict the NSP profit function
which reflects both the true QoS based on payload delivery
experienced by all our users as well as the bandwidth cost
of MBMS groups. We formulate the profit maximization
problem. To solve this problem efficiently, we develop a
DP-based algorithm in Section V. Numerical results are pro-
vided in Section VI to demonstrate the performance gain
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Fig. 1. LTE Protocol sublayer with IP packet transmission.

of our proposed MBMS scheme over conventional heuristic
designs.

II. ROHC SYSTEM MODEL

Let us first introduce the basic functions abilities of ROHC
and its key elements. Fig. 1 illustrates the protocol stack
of 3GPP LTE cellular services [21]. On top of Layer 2 of
the LTE protocol stack, the PDCP sublayer is responsible for
providing protocol interface between the cellular networks and
the infrastructural internet. Within the PDCP sublayer, ROHC
is responsible for converting the lengthy IP packet headers into
the efficient cellular PDCP headers.

The ROHC module typically has three modes of oper-
ation: Unidirectional mode (U-mode), Bi-directional Opti-
mistic mode (O-mode) and Bi-directional Reliable mode
(R-mode) [12]. The U-mode is always the initial mode for all
ROHC systems. ROHC can further transition into other two
advance modes if configured and necessary. The major differ-
ence among the three modes lies in how ROHC compressor
depends on the feedbacks from the decompressor to transi-
tions between its three different states corresponding to three
different types of headers. In U-mode, there is no feedback
channel and the compressor depends on its internal time-out
mechanism to change its state. All time-out parameters are
determined by the NSP for the specific network in use. For
both O-mode and R-mode, the compressor state transitions are
controlled by feedbacks. As mentioned in [3], no dedicated
feedback channel is used for ROHC in MBMS. Therefore,
only the U-mode of ROHC is executed. According to [22], U-
mode is less robust than R-mode and O-mode. However, it has
higher efficiency in terms of channel resource usage and also
does not suffer from feedback jitters. In this work, we study
the open problem to optimize ROHC U-mode parameters for
MBMS.

In ROHC, one of the most important objectives is header
compression efficiency. The header fields in an IP packet
can be generally classified into the static and the dynamic
parts. The static parts (e.g. source and destination addresses)
remain unchanged throughout the packet session and only
needs to be successfully transmitted once for the decompressor
to establish the context synchronization, while the dynamic
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pression are satisfied.

parts (e.g. IP serial number) changes with correlations between
consecutive packets and therefore, can be compressed once the
decompressor and the compressor establishes context synchro-
nization. The ROHC compressor in the transmitter determines
whether to compress the static/dynamic parts of a header and
can be modeled into a finite-state machine (FSM) [12] with
three states (Figure 2), each corresponding to a header type of
different size.

The ROHC compressor always starts in the Initialization
and Refresh (IR) state, where an uncompressed header is
transmitted and both the static and dynamic context can
be (re)established if the transmission is successful. In the
First Order (FO) state, the compressor compresses the static
field of the header such that only the dynamic context can
be (re)established in a successful transmission. In the Second
Order (SO) state, both the static and the dynamic fields are
fully compressed [12].

Correspondingly, the ROHC [12] decompressor can also
be described as a FSM with three states (Figure 3). The
decompressor always starts with the No Context (NC) state,
in which it has established the context synchronization for
neither the static nor dynamic fields and can only decompress
IR packets. After the first IR packet from the compressor is
decompressed successfully, the decompressor establishes the
context synchronization and enters the Full Context (FC) state
where it can decompress IR, FO and SO headers. In case of
consecutive packet losses due to the poor channel condition,
the decompressor will lose the context synchronization with
the compressor and can no longer decompress SO headers,
thereby enters the Static Context (SC) state. From the SC state
only a successful decompression of an IR or a FO header can
re-establish full context synchronization for the decompressor.
In case of further decompression failures, the decompressor
will eventually transition downwards to the NC state.

An important header compression algorithm is Windowed
Least Significant Bits (W-LSB) algorithm [23], which is so
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designed in order to achieve a balance between compression
efficiency and robustness against packet losses. Different from
the conventional LSB, the compressor maintains a window of
W reference values and uses the least significant bits enough
to uniquely determine the field with any of the reference
values. As a result, W-LSB can tolerant up to W consecutive
transmission failures over the wireless channel. However, once
the number of successive transmission failures exceeds W,
the decompressor will not be able to decompress the W-LSB
encoded and thus entering the SC state, from which only the
successful transmission of an IR or FO packet can re-establish
full context synchronization and drive the decompressor back
to the FC state.

In practice, the ROHC compressor needs to alternately
transmit the three types of headers in order to achieve a
high compression efficiency without introducing many extra
packet losses due to the context Out-of-Synchronization (OoS)
caused by insufficient context refreshment. In general, if the
compressor is confident that the decompressor has established
full context, it will transmit the shortest SO headers. Con-
versely, the compressor will transmit a few of the longer IR/FO
packets until it is confident enough that the decompressor
has (re)established context synchronization [12]. As mentioned
previously, in MBMS only U-mode ROHC is allowed since it
is difficult to coordinate feedbacks from multiple users [24].
The conventional approach to control the state transition of the
U-mode ROHC compressor is to use a timeout mechanism,
i.e. the compressor transmits a fixed number of packets with a
certain type of headers and then transit to another state [12].
If the user channel is generally good, optimizing timeout
parameters enable the compressor to remain in the SO state
for substantial portion of time, thereby achieving high packet
transmission efficiency in terms of both channel bandwidth
and transmission power, as discussed before.

We will investigate the timer parameter optimization of
the U-mode ROHC compressor, which has been shown by
the experimental results in [25]-[30] to be able to greatly
affect the efficiency. Consider the long-term behavior of an
ROHC compressor, the timer parameters are defined as the
average duration of consecutive transmission of IR, FO and
SO packets, denoted as D;,, Do, and Ds,, respectively. Note
that in MBMS applications, the parameter optimization must
take into account of the diversity of the users’ channels, which
we will introduce in the next section.

III. MARKOVIAN SYSTEM MODEL FOR AN ROHC LINK

In this section, we develop the analytical framework for an
ROHC link composed of a packet channel and a compressor/
decompressor pair.

A. ROHC Channel Model

At the PDCP sub-layer, the channel model should capture
the protocol level connection linking the compressor and
decompressor. In this work, we adopt two channel models
that facilitate analysis on the performance of ROHC. The
first channel model is a more idealized channel model with
a strong assumption that is easy to deal with. We then
investigate a more practical channel model to establish a more
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comprehensive ROHC system model to provision optimized
MBMS service groups.

1) PM-Model: PDCP Channel Derived From PHY Chan-
nel [20]: Our first modeling approach derives the PDCP-layer
packet channel from the statistical Channel State Informa-
tion (CSI) of the PHY fading channel [31]. Consider the flat
fading PHY channel between the base station (BS) and n-th
user,n=1,..., N

y = ophpx + 0, (1)

in which x is the transmission signal, v is the channel noise,
and the channel consists of a large scale fading factor a, and
a small-scale fading factor 4, with the following assumptions:
o For each user n, a, is assumed to be stationary through-
out the entire ROHC session, whereas h, experiences
block fading across different ROHC packets. In our
simulation, we assume «a, follows i.i.d log-normal dis-
tribution, whereas 4, follows standard complex normal
distribution (Rayleigh fading) as in [31]. Nevertheless,
our analytical framework is compatible with other fading
distribution assumptions.
o All users experience i.i.d. additive white Gaussian noises
(AWGN), i.e. v, ~ CN(0, o).

Based on this PHY fading channel, the ROHC channel
model can be modeled as a finite state Markov chain with K
states [32], which is a generalization from the rather popular
2-state Gilbert-Elliot (GE) channel model [33]. Assuming that
all the users share the same maximum Doppler frequency f,
and the same packet period 7, and selecting the same K to
characterize the ROHC channels for all the users, a K-state
Markov channel model for user n can be derived as in [31].
The resulting Markov packet channel model can be fully
characterized with

o A K-by-K state transition matrix Tc;, where P; =

{Tcn}ij represents the state transition probability from
channel state i to state j as defined by [31, egs. (10)
and (11)]. Note that T, is the same for all the n users
since it is solely determined by f, and T),.
¢ A K-by-1 vector p,,, where 1 — p, represents the packet

error rate (PER) for user n under channel state k, k =
1,..., K. This can be derived from the symbol error
rate defined in [31, eq. (12)], which is then converted
to bit error rate (BER) for a given modulation scheme,
before mapping to the corresponding packet error rate
following [34].

Note that T¢, is fixed given K, f, and T,, while p, is

a function of a,. We name this PDCP model as the PM

(PHY-mapping) channel model.

2) FK-Model: PDCP Channel Model Estimated From Feed-
backs: The other modeling approach is to assume that the
PDCP channel follows a Markov process whose parameters
can be directly estimated from a sequence of Automatic
Repeat-reQuest (ARQ) feedbacks. This channel model is
named as FK-model. The motivation of this approach is that,
in a practical LTE mobile network, the PDCP sublayer may not
know the fading characteristics of the PHY layer and the error
correction schemes in the MAC/PHY layer, or it is simply too
complicated to derive the PDCP layer channel from the PHY
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channel model considering the functionalities of the RLC layer
and MAC layer in between. With the FK-model, the ROHC
entity is able to estimate the PDCP packet channel directly
during the negotiation stage.

Similar to the PM-model, we assume that the PDCP channel
is a finite state Markov chain with K —states, character-
ized by the state transition matrix T, and the transmission
probabilities px, k = 1,..., K. Since the ARQ feedbacks
can only indicate whether a packet transmission is success-
ful or not, the PDCP channel appears to be a Hidden Markov
Model (HMM) to the ROHC entity. Therefore, the estimation
of Ts, and p, from a sequence of ARQ feedbacks can be
implemented with the classic HMM learning techniques such
as Baum-Welch algorithm [35]. A more practical approach,
however, is to define a finite number of M Markov channel
models, i.e.

M = {(Tchppl),(Tchza p2)a~-~,(TchMa M)} 2)

and perform a codebook selection based on the observation
sequence o with a maximum likelihood criterion.

B. ROHC System Model

Now we are in a good place to develop the system model for
a ROHC link, which consists of a compressor, a packet channel
and a decompressor. For the compressor, as discussed in [12],
the impact of FO state is rather limited. Thus, we consider a
simplified compressor transmitting only IR and SO headers.
Consequently, our timer-based compressor can be character-
ized with two parameters D;. and Dy,. In order to facilitate
theoretical analysis and optimization, we approximate the
timer-controlled compressor with a two-state Markov chain
whose transition probabilities are optimized. The transition
probabilities of the surrogate Markov compressor are denoted
as P;; and Pg;, which represent the transition probabilities
from state IR to state SO and from state SO to state IR, respec-
tively. In order to develop a one-to-one mapping between the
Markov compressor and the timer based compressor, we match
the expected duration of consecutive IR and SO states for the
Markov compressor to D;, and Ds,, which leads to
Di = P;', Dy, = P} 3)

A

Therefore, the Markov compressor can be defined by the
transition matrix:

[1-p P
TC_I: Py 1_Psii| @

With this approximation, we imitate the deterministic/periodic
behavior of the timer-based compressor with the stochas-
tic/stationary behavior of the Markov compressor, which
greatly reduces the size of the state space and therefore
facilitates a simpler analytical framework. In the following
we will discuss about the optimization of P;; and Py;, which
will then be mapped to the optimal D;, and Dy,.
Corresponding to our simplified compressor model,
the decompressor is also simplified to have only the NC and
FC states [33]. Since the compression of the dynamic fields
relies on W-LSB which can tolerate up to W consecutive

1165

L packets

IR timer
Fig. 4. Simplified ROHC System Model of Compressor only with IR and
SO states.

Rt

S (IR packet)

Fig. 5. Markov chain model for the ROHC U-mode decompressor with
the window size W. The ‘F’ means transmission is failed and the ‘S’ means
transmission is successful.

packets loss before losing context synchronization, the FSM
model of the decompressor is fully depicted in Fig. 5. In this
state-transition diagram, FC,, denotes that the decompressor
is still in FC state but the last w packets have been lost.
The symbol ‘S’ and ‘F’ denote the successful and failed
packet transmission, respectively. From any of FC, state,
w < W, once a packet with either an IR or a SO header
is transmitted successfully, the decompressor would be able
to update its context and return to the FCq state. However,
as explained in Section II, if more than W packets are lost
in a roll, the decompressor will lose context and enters the
NC state, from which only the successful transmission of an
IR packet will enable the decompressor to re-establish context
synchronization and enters the FCy state. We denote the set
of states for the decompressor as
Sa ={FCo, FCq, ..., FCy, NC} 5)
To summarize, the ROHC link for the n-th user can be
modeled as a Markov chain which is composed of the Markov
channel T,;,, the Markov compressor T,, and the (W 42)-state
FSM model for the decompressor. This aggregated Markov
chain is defined with a 2(W 4 2)K-by-2(W + 2)K state [19]
transition matrix:

_ (1 - Pis)Tir Pis Ty
Tsys N [ PsiTso (1 — Psi)Tso ©
in which
[ Tsn Trn 0 0 ]
T, 0 Tqy - 0
Te=| © 1 )
Tsn 0 0 T,
| Ts.n 0 0 Tyrn |
[Ty, Trn 0 0
Ty, 0 Tfjn 0
To=| @ & i ®)
T, 0 0 T,
L 0 0 Ten |
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Note that Ty, = Tcdiag(p,) and Tyr, = Tep — Ts . T
and Ty, denotes the transition matrix of the decompressor and
the channel when an IR packet or a SO packet is transmitted,
respectively.

We define a ROHC performance measurement for each user
which can be evaluated with the stationary distribution of the
Markov model of the ROHC system. It is the transmission
efficiency which is defined as the ratio between the successful
decompressed payload bytes and the total transmitted bytes in
the long term:

Lpmrc,

n= ©)

Lirmir + Lsomso

where Lp, Lir and Lso represent the payload length per
packet, the full packet length with an IR header, and the full
packet length with a SO header, respectively. mrc, denotes the
marginal stationary probability for the decompressor to be in
the FCy state, whereas mr and mwso represent the stationary
probabilities for the Markov compressor to be in IR and SO
states, respectively. To maximize the efficiency #, we need to
evaluate the optimal ROHC compressor parameters P;s and Ps;
under specific channel condition determined by T.; and p.
Recall that in our PM-model p depends on the large scale
fading factor a,, and is hence different for all the users. In the
FK model, both T, and p,, can be estimated from a sequence
of ARQ feedbacks during the ROHC negotiation process. The
objective function of our joint grouping and ROHC parameter
optimization problem to be discussed in the next section will
be closely related to 7.

In the next section, we will consider a MBMS network
service entity which consists of multiple ROHC links clustered
into several multicast groups and formulate the joint grouping
and ROHC optimization problem.

IV. THE JOINT MBMS GROUPING AND
ROHC OPTIMIZATION SCHEME

As mentioned in Section I, the main design philosophy of
our joint MBMS grouping and ROHC optimization scheme is
to allow users with similar channel qualities to be clustered
into the one multicast group, and then discriminatively select
the parameters for the ROHC entity within each group in order
to maximize the NPS profit. This problem is formulated as
follows for the PM-channel model and the FK-channel model,
respectively.

A. PM Channel Model

First, we consider the PM channel model in which the PDCP
channel is derived from the PHY fading channel. The NSP
divides the N users into several P-t-M MBMS groups served
by individual P-t-M bearers. We assume that:

o« The NSP allocates the same amount of bandwidth
resources for each MBMS group at the cost of a. Without
loss of generality, if users are divided into G groups,
the total cost is w(G) = aG. Note that our solution
approach is compatible with any choice of w(G) which
can be reasonably assumed to be a monotonically increas-
ing function of G.
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o The NSP collects revenue from each user within a P-t-
M group based on the delivered packet QoS, defined as
the payload rate r, which can be adjusted by the MBMS
application for each individual P-t-M group. The payload
rate g must be supported by the channels between the
BS and all users in group g. The revenue collected from
each user in group g is defined as f(ry), where f(-)
is a monotonically increasing function. Without loss of
generality, we consider the case of a linear function
f(rg) = cry, where c is the positive pricing factor.

o The statistical CSI of all the N users are known to
the NSP.

Specifically, denote U = {1, ..., N} as the set of N users
and a G-partition of U as G = {G1,..., Gc} where G
represents group g. For user n, the ergodic capacity supported
by the channel is simply

ru =B, [log(l + o210, P)] £ r@) — 10)

which is based on the Gaussian input assumption with o2 = 1.
Also, a generalization to the more practical assumption of
finite-state alphabet input signal is readily available [36]. The
ROHC compressor for group g is modeled as a Markov chain
as explained in Section III.B, which is characterized by a
pair of parameters pg = [pis, psi]. Although all the users in
one group share the ROHC compressor, the different channel
qualities represented by a, will lead to different ergodic
capacity and transmission efficiency experienced by different
users. The payload rate for MBMS group g must be adjusted
so that it is supported by all the users in the group, i.e.

Vi € G, (11)

where #5(a,, py) denotes the PDCP transmission efficiency
function defined in Eq. (9) as a function of «, and pyg.

Our design objective is to maximize the benefit of the NSP,
which equals to the difference between the total revenue and
total bandwidth cost, by choosing the optimal group number
G, user assignment (g and the ROHC parameter p, for each

group:

rg < run (o, Pg),

G
max > f(ry)lGel — w(G)

G,CG,{PgHg:l g=1

st. rg <run(an,pg), YnegGg, g=1,...,G (12)

B. FK-Model

For the FK-model of PDCP channel, the estimate of the
model parameters based on PDCP feedbacks will be available
for the NSP. Once the parameters T.;, and p are estimated
for each user and the QoS requirement r, is given, the
joint grouping and ROHC optimization problem formulation
remains nearly identical to that of the PM-model. In the next
section, we will present an efficient DP-based solution for
Eq. (12) which applies to both PM-model and FK-model.

V. A DYNAMIC PROGRAMMING SOLUTION

In this section, we propose an efficient algorithm, based
on DP, to solve Eq. (12) with polynomial complexity.
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For now assume that the total number of MBMS radio bearers
(or groups) G is fixed. Note that both r,, and #(a,, pg) given
a fixed p, are monotonically increasing with respect to ay.
Consequently, Eq. (12) with fixed G can be re-written into
the following un-constrained optimization problem

max Z [rgax S Urmgs n(amg, Pmy))| Gl } 13)
)71g
where my, = argminnegg o, represents the user with the

poorest channel condition in group g. Eq. (13) is based on
the fact that the total revenue collected from a group depends
on the user with the worst channel (i.e. the smallest ), and
the ROHC parameter for the group should be optimized with
respect to this user since all other users will always support
a larger payload rate. Denote P, = argmaxp, 7(cty, Pn),
i.e. the ROHC parameter optimized for user n. Since the
revenue function f(-) is monotonically increasing w.r.t. the
payload rate which is in turn monotonically increasing w.r.t
the transmission efficiency # given r, as in [37], we define

qn £ Hll)ax S rns n(an, pn))

- f(rn, W(an, f’n)) (14)
with which Eq. (13) can be rewritten as
maqumg|gg (15)
g=1

Eq. (15) suggests that the optimization of ROHC parameters
and user grouping for different P-t-M bearers can be decoupled
by first optimizing the ROHC parameters for each user indi-
vidually, followed by an optimized grouping scheme. To solve
Eq. (15), we first present the following lemma which states that
an optimal grouping scheme can be achieved by ordering and
thresholding {a,}:

Lemma 1: Consider a user grouping denoted by Cg =
{G1, ..., G}, in which there exists a G; with |G;| > 2. If there
is a user v € Gj, such that a, > a, for some u € G;, i # j
and om; < am;, then exchanging u and v between groups i
and j results in a larger or equal total profit.

proof: As oy > Gy = Om; < O,

o If m; # v, after the exchange we have m = m;, m’j =
m j, the total profit will not change.

o If m; = v, after the exchange we have m; = m;, m/j =u.
Since a,,; = oy > 0y = Omj» the revenue collected from
group j increases and the revenue collected from other
groups would remain the same. Consequently, the total
profit would increase from the exchange.

Without loss of generality, we assume that the users have
been ordered as a1 < --- < ay. Lemma 1 suggests that an
optimal solution to Eq. (15) can now be found by solving

G
qug (mg41
g=1

where m; = 1, mg4+1 = N + 1. Thus, the g-th group is
identified as G = {mg, mg+1,...,mgr1—1},g=1,...,G.

max (16)

l<mo<...<mg<N

—mg) — w(G)
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For a fixed number G, Eq. (16) amounts to max Zgzl
Gm, (mgy1 —myg). Denote

qu, (mig1 —mi) — (17)

R[n, gl =
[n g] my,. gE{Z
i.e. the maximum revenue collected by grouping users
{1,...,n} into g groups. Following Eq. (17), we can expand
R[n, g + 1] as:

R[n, g +1]
= max n+---+ n
Msomsig 41 qmn1 ngH g+1
= max max qgmni +---+ dmgNg + gg+1ng+1

Mg41my,..., mg‘mg-H

(18)

where n; = m;41 — m; is the number of users in group i and
denote mgy> = n + 1. Therefore, Eq. (18) can be re-defined
recursively as:

Rln,g+1]1= PR R[j, gl+qjr1i(n—j) (19)
and the boundary conditions are:
8
RIg.gl= D qii RIn,11=nq (20)

i=1

DP is used to solve our problem since it computes the exact
solution efficiently according to Lemma 1. It is noted that
R[N, G] is exactly the maximum revenue that can be collected
by grouping the N users into G groups. Consequently, Eq. (19)
and Eq. (20) together define a DP solution to Eq. (13).
At the same time, the indices {m g}| _| representing an optimal
grouping scheme can be re- constructed via backtracking [38,
Ch.15]. This DP solution can be readily modified for Eq. (12),
where G = 1,..., N. In summary, our exact solution to
the joint grouping and ROHC parameter optimization prob-
lem in Eq. (12) is summarized in Algorithm 1, whose time
complexity is O(N?) and memory complexity is O(N?).
In comparison, to find the same exact solution, an exhaustive
search would have to go through of all possible grouping
schemes, which amounts to Bell number [39]. As an example,
we illustrate the time complexity tendency between DP-based
algorithm and exhaustive search in Fig. 6.

VI. SIMULATION AND NUMERICAL RESULTS
A. Test Setup

In this section, we present numerical results to evaluate
the performance of our joint MBMS grouping and ROHC
parameter optimization scheme for both the PM and FK
channel models.

Our joint MBMS grouping and ROHC parameter optimiza-
tion scheme is compared with the two conventional MBMS
schemes, namely using N individual unicast bearers (P-t-P)
and a single multicast bearer (P-t-M) to serve the N MBMS
users. We also compare our proposed MBMS scheme with
two heuristics MBMS grouping schemes, namely K-means
and uniform clustering. In first heuristic scheme, the N users
are clustered into K groups by applying the conventional
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Algorithm 1 Maximum-Profit Joint MBMS Grouping and
ROHC Parameter Optimization

1: Order the N users such that a; < ... < ay.

2: Optimize the ROHC parameter for each user with

P = arg nll)ax n(an, pn)

for n = 1,...,N, and evaluate the corresponding
maximum revenue with Eq. (14).
3: Initialize R[n, g] as per Eq. (20) and m[n, g] as

mlg, gl =g, mn, 1] =1
forn=1,...,N,g=1,...,n.

4: for g =2 to N do
5:. forn=g+1to N do
6: Evaluate
R[n,g+1]1= max R[], gl+qj1(n—j)
Jig<j=n—1
mn, g+ 1] =arg max R[], gl+qj(n—j)
Jjig<j=n1
7. end for
8: end for

9: G = argmaxg R[N, G] — w(G).

10: Set mg1 =N+1,m =1,n=N.
11: for g = G down to 1 do

122 mg=mln,gl,n=mln, gl — 1.

13: end for
14: pg = Pm, and assign user mg, ..., Mg+ — 1 to group g,
forg=1,...,G.
10"

—¥— Exhaustive search
---------- Dynamic Programming

1010

30 40 50 60 70 80 90 100
Number of users

Fig. 6. The time complexity tendency between DP and exhaustive search.
K-means algorithm on a,,n = 1,...,N. In the second
heuristic scheme, each group has same number of users. The
total profits of different grouping schemes are compared under
different service cost a, number of users N, and channel
distribution. We further evaluate the robustness of our pro-
posed MBMS scheme by considering the effect of inaccurate
statistical channel information.

Unless otherwise noted, all simulation tests are based
on following parameter settings and evaluated over

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 2, FEBRUARY 2018

8000 ; ‘ ; ; : :
7000 M
8000F o, —*—0p

......... ] @ PP
5000 - o - % — Pt-M

S 4000 T, 1

s

g s00f

S Q...

2000 "o, 1
1000 - o, 1
oar-———ak—-——x———*-——*———-*--—ak-—'l"T
1000 ‘ ‘ ‘ ‘ ‘ ‘
10 20 30 40 50 60 70 80

Service cost (a)

Fig. 7. Total profit versus different cost per ROHC bearer for N = 100 users
achieved by the optimal DP scheme and pure unicast and one group multicast.
To maintain a positive total profit of P-t-P transmission, the highest cost is
set to a = 80 in this figure.

500 Monte Carlo random runs.

. {oz,,}|£l\7:1 are randomly generated from i.i.d. log-normal
distribution of mean m = 10 and variance v = 100.

e The number of states for the Markov channel for all
users is set to K = 3. Also, we set the maxi-
mum Doppler frequency and one packet time period as
SfmTp = 0.0338 [31].

e The maximum allowable number of consecutive header
losses by WLSB is set to W = 4.

o The cost per MBMS bearer a = 80.

o The total number of users N = 100.

e The number of PDCP models in the channel codebook
of the FK channel model M = 5.

B. NSP Profit From P-t-M Assignment

First, we compare the performance of our proposed joint
MBMS grouping and ROHC parameter optimization scheme
with that of the two conventional MBMS configurations,
namely using one single P-t-M bearer or N P-t-P bearers.
The performances are measured as the total profit defined in
Eq. (12) versus varying a. As shown in the Fig.7, when the
cost per bearer is low, P-t-P solution is nearly optimum as our
DP solution. However, as the bandwidth cost grows with a,
P-t-P unicast will be increasingly costly such that the NSP
profit will decrease linearly. Although the profit from our
proposed DP-based grouping scheme also tends to drop,
the reduction is rather mild. When a pure P-t-M radio bearer
is set to serve all N users in the conventional MBMS service,
the service provider can hardly gain any profit since the user
with the poorest channel greatly limits the revenue of the entire
group.

To further justify the benefit of our DP-based grouping
scheme, it is compared against a number of heuristic meth-
ods. Our heuristic MBMS grouping methods are based on
K —means clustering. In our comparison, we use two versions
of the K —means clustering differed by the way to determine
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7000

achieved by the optimal DP scheme and the two heuristic schemes.
TABLE I
GROUP SIZE FOR DIFFERENT COST a

a 20 40 60 80 100
DP 17.366 | 12.584 | 10.220 | 8.876 7.986
K—means | 22.062 | 16.638 | 13.984 | 12.226 | 10.832

a 120 140 160 180 200
DP 7.330 6.840 6.472 6.106 5.892
K—means | 9.992 9.254 8.750 8.192 7.640

the total number of groups G. In the first version, the num-
ber of clusters for the K—means method is chosen as the
optimal G determined by our DP algorithm. In the second
version of K —means, G is selected with an exhaustive search
to maximize the resulting total profit. We also propose a simple
heuristic scheme named uniform grouping, in which the users
are ordered and grouped into G groups, each of which has
the same number of users. Once again, we assume that G is
determined by our DP-based solution.

C. PM-Model

First, we consider the PM-model. Fig. 8 presents the com-
parison of different grouping schemes in NSP total profit
versus the cost per MBMS bearer a. When the cost a is
low, the DP algorithm shall allow more P-t-M bearers to
maximize total profit. As a increases, the number of groups for
DP-based algorithm would naturally decrease and the profits of
all schemes would drop as well. In these test results, the pro-
posed DP algorithm always outperforms the three heuristic
MBMS grouping schemes. Better insights can be obtained
when we provide the average number of groups determined by
both the DP algorithm and the exhaustive search K —means
algorithm in Table I for each point in Fig. 8. For each value
of a, the DP algorithm results in a higher profit by employing
a lower number of groups. Thus our proposed method has
a higher spectrum efficiency than the other heuristic MBMS
clustering schemes.

From [3], it is clear that the MBMS can provide service
to new users trying to join the MBMS that is already trans-
mitting in. Hence, a more practical problem is to see how
P-t-M performance would vary as the number of multimedia

6000 Y
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s
<
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10 20 30 40 50 60 70 80 90 100
Number of users
Fig. 9. Total profit versus different number of users and fixed number of
groups G = 4.
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Fig. 10.  Total profit versus different user channel condition for N = 100

users achieved by the optimal DP scheme and the two heuristic schemes.

subscribers group. In Fig. 9, we evaluate the performances
in terms of total profit versus varying number of users for the
same four MBMS grouping schemes. Naturally, the total profit
of each scheme would increase with larger N. Nevertheless,
the advantage of our proposed DP algorithm becomes more
obvious as N grows.

In Fig. 10, the effect of different user channel condition
are evaluated. The total profit is tested for log-normal CSI
distributions with different parameters (mean and variance).
Since the channel conditions improve with increasing mean,
the overall profit grow for each P-t-M bearer assignment
schemes as all users’ channel condition become good and DP-
based algorithm always provides a higher profit than the rest
three heuristic schemes.

In both Fig. 9 and Fig. 10, the improvements between our
DP-based algorithm and other methods are less than 10%.
The reason is that the profit of our DP-based algorithm is
evaluated by considering the user QoS which is ignored by
other schemes such as exhaustive K-means. Although the gap
between them is small, the heuristic methods can not ensure
the user QoS and the DP-based algorithm still has a higher
profit.
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D. Transparency

In this section, we evaluate another performance measure-
ment named transparency [40], defined as the probability of
successful decompression conditioned on a successful trans-
mission, in order to gain some insight into the advantage of
the DP-based grouping scheme. Transparency is an indicator
of how well ROHC avoids introducing additional packet loss
due to the compression which is represented as:
T FCy
an ch
where m ., is the stationary probability of the channel state
transition matrix T.,. Fig. 11 illustrates the variance of the
transparency within each MBMS group. From the figure,
our proposed DP-based algorithm has a lower transparency
variance which means the successful decompressed probability
is higher for all users. This is because that DP-based algorithm
always provides an optimal grouping scheme based on the user
channel condition which can lead a lower out of synchro-
nization probability between compressor and decompressor.
In other heuristic methods, they may have similar profits at
some points in the previous figures, however, they can not
satisfy all users when the channel conditions are variable. The
test shows that the DP-based algorithm always leads to the
smallest variance of transparency for users within each P-t-M
(MBMS bearer) or user cluster. Thus, for users assigned to
the same MBMS bearer, our DP algorithm delivers the most
consistent performance.

Pr = 20

E. Channel Uncertainty

Next, we consider a practical issue involving the practical
problem of inaccurate channel information available to the
transmitter. In practice, the large scale fading factors a, are
not likely to be perfectly known by the BS of the NSP.
Often, only inaccurate CSI are available to the BS. In this
simulation, we model the channel uncertainty as:

Gy (dB) = ay, (dB) + Aa, (dB) (22)
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where Aa, represents the channel estimation error. Assume
that the estimation error is bounded by |Aa,| < € as in [41].
We generalize our proposed joint grouping and optimization
scheme in Eq. (12) into the following max-min criterion:

G

> Fr)IGl — w(G)
g=1

st. rg < rpna, —

max
G,Co.{pgllgs

f,pg)a Vnegg, g=1,,G

(23)

which aims at maximizing the worst-case total profit. This
robust version of the joint grouping and ROHC optimization
can be solved by simply adopting our DP-based algorithm
on {a, — e}l,ﬁv=1 instead of {an}|fl\'=1. To evaluate its perfor-
mance, we randomly generate Aa,, from a uniform distribution
U(—¢,€). In Fig. 12, we compare the maximum total profit
achieved by the DP-algorithm relying the true {a,}| ,Ilv:l, and
the DP-algorithm relying on estimated {a,,}| rllvzl based on the
different values of €. When the service cost is low, the DP-
based algorithm can provide more profit for separating users
to more groups. Therefore, there is no big gap between the
estimated CSI and exact CSI at point a = 20 and a = 40.
Also, the DP-based algorithm can adjust the grouping scheme
to handle small error when the service cost is extremely large,
such as a = 200. The simulation results suggest that our DP-
based algorithm is quite robust against CSI uncertainty.

F. FK-Model

We next test our algorithm under the FK-models of PDCP
channels. First, we evaluate the total profit according to
variable cost a to test our proposed DP-based algorithm. Fig.13
shows the almost same result as the PM-model.

Considering the FK model, a specific problem is the effect
of the number of Markovian channel template in the chan-
nel codebook on the MBMS performance, which is shown
in Fig. 14. In our simulation, basic sample templates are
uniformly selected based on the user distribution from the
NSP. It seems that 4 or 5 PDCP templates are sufficient to
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characterize the channels of 100 users in all four grouping
schemes. Using more than 5 PDCP templates does not appear
to improve the total profit.
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Finally, we compare the performance of the two different
channel models (PM-model vs. FK-model). As explained in
Section III.A, the PM-model relies on the raw user CSI
from the PHY layer, whereas the FK-model estimates its
channel parameters by mapping the CSI from the PHY
channels. To illustrate the performance gap of the practi-
cal FK-model versus the ideal -PM-model, we construct a
PM-model with our default simulation settings, then randomly
generate sequences of 1000 ARQ feedbacks, from which
the PDCP-layer channel is estimated as in the FK-model.
The exact and the estimated channel parameters are then
used as input to Algorithm 1, respectively, and the grouping
and ROHC parameter optimization results from two chan-
nel models are evaluated and compared with the same true
channel model. The results are shown in Fig 15. From these
Monte Carlo tests, we can see that the performance of the
FK model does not degrade significantly with the in-exact
estimated channel parameters as long as there are sufficient
ARQ feedbacks.

VII. CONCLUSION

This work investigates the service provision of MBMS
in 4G-LTE cellular networks to achieve high MBMS trans-
mission rate and spectrum efficiency. We formulated a joint
optimization problem of MBMS user assignment and ROHC
parameters optimization to maximize the profit of network
NSP under two different channel models. We developed a
Markov model for each ROHC-enabled link in the MBMS
network. Our design objective is to achieve the tradeoff
between bandwidth usage cost and user QoS. We further derive
an efficient dynamic programming algorithm to solve the
optimization problem with demonstrated superior performance
in simulations.
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