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Abstract— One important issue that confronts network service
providers is the need to provide reliable multimedia data
service efficiently over cellular networks for a large num-
ber of subscribers under dynamic channel conditions. In long
term evolution (LTE) networks, multimedia broadcast multicast
service (MBMS) is a bandwidth efficient data service to simul-
taneously support multiple users at high bandwidth efficiency.
In this paper, instead of considering spectrum resource alloca-
tion, we investigate MBMS provisioning for each mobile user
based on the higher layer robust header compression (ROHC)
consideration in response to user channel quality to reduce packet
losses. We formulate a profit maximization problem for two
different MBMS channel models and further propose a new
MBMS assignment scheme for each user to be assigned a target
MBMS with optimal ROHC parameters. We further develop a
dynamic programming algorithm for user assignment and ROHC
parameters optimization to achieve maximal profit with high
spectrum resource utility. Our numerical results demonstrate
substantial profit gain achieved by the proposed method in LTE
systems.

Index Terms— Multimedia broadcast multicast service,
robust header compression, hidden Markov model, dynamic
programming.

I. INTRODUCTION

M
ANY of today’s cellular subscribers are smartphone

users with frequent access to multimedia contents.

Since the primary cost for a network service provider (NSP)

is its bandwidth usage, it is therefore natural for NSPs to

maximize their profit by providing multimedia services of

satisfactory quality to subscribers for achieving high spectral

efficiency. According to a large number of users and user

diversity, the allocation of insufficient bandwidth is always a

big challenge for the NSP to maintain a higher and stable

quality of wireless transmission due to the huge demand

of multimedia. In this work, we use the NSP profit as an

objective to investigate the tradeoff between bandwidth utility
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and multiple-user satisfaction of multimedia transmission in

cellular wireless networks.

To effectively deliver volumes of multimedia data service to

a large number of users at same time, Multimedia Broadcast

Multicast Service (MBMS) provides an efficient interface.

Instead of always relying on individual cellular links, MBMS

offers a highly efficient service which includes both point-

to-point (P-t-P) radio bearers and point-to-multipoint (P-t-M)

radio bearers in the 3rd Generation Partnership Project (3GPP)

Long Term Evolution (LTE) [1]. Traditional unicast (P-t-P)

assigns a dedicated radio bearer to every active user according

to the specific channel condition. Using one unicast (P-t-P)

bearer for each of many subscribers requires large service

bandwidth to satisfactorily deliver the media contents with

Quality of Service (QoS) required by the users. On the other

hand, one multicast (P-t-M) radio bearer can simultaneously

serve multiple subscribers interested in acquiring the same

popular data content, thereby significantly improving both

spectrum efficiency and transmit power efficiency [2]. Since

it is difficult to guarantee the QoS of all subscribers by

establishing only a single P-t-M radio bearer, Multiple MBMS

radio bearers can be set up to serve users of different channel

conditions. Thus, MBMS radio bearer provisioning between

P-t-P and P-t-M is an important decision for improving NSP

profit. The tradeoff between collecting higher revenue from

users, which is directly associated with user QoS, and reducing

the cost of bandwidth usage associated with the number of

MBMS bearers is an important design consideration to be

tackled in this work.

Currently, most existing works of radio bearer selection

for MBMS rely on some user counting mechanisms which

use either P-t-P or P-t-M exclusively but not both [3]. The

typical performance objectives are power efficiency, through-

put and transmission performance. The authors of [4]–[6]

studied how to improve the multicast performance in LTE

networks. The improvement of power efficiency by selecting

different transmission methods is studied in [7] and [8].

A new framework proposed by [9] attempted to maximize the

profit based on bandwidth allocation for the wireless video

broadcasting system. All these existing works assume using

either n P-t-P bearers or one single P-t-M bearer to serve n

subscribers. Such limitation apparently is not flexible enough

to achieve an optimal tradeoff between spectrum efficiency

and bandwidth usage when the subscribers have diverse chan-

nel conditions. Instead of limiting the NSP to either pure
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unicast (P-t-P) or pure multicast (P-t-M), we propose to study

the tradeoff between user QoS revenue and bandwidth usage

cost through adaptive user assignment to various MBMS

bearers, each of which serves a subset of subscribers whose

channel qualities support similar QoS requirements. A related

work [10] proposed a hybrid transmission approach to find

the optimum configuration which adjusts the system to either

streaming or file delivery service by considering MBMS Single

Frequency Network (MBSFN) area size and Evolved Multi-

media Broadcast Multicast Services (E-MBMS) data rate.

One less known yet indispensable mechanism that plays an

important role in many MBMS applications is RObust Header

Compression (ROHC). Located in the packet data convergence

protocol (PDCP) sub-layer of Layer 2 (L2) of the LTE protocol

stack [11], ROHC is a key interface between cellular and

Internet Protocol (IP) networks and can substantially improve

cellular network’s bandwidth efficiency by reducing typical IP

headers from as long as 40 bytes (e.g. IPv4/TCP) to as short

as 1 byte based on exploring the correlation between header

fields from the consecutive packets of the same stream. For

many applications such as Voice over Internet Protocol (VoIP),

interactive gaming and video streaming, etc., the size of

the payload in each packet can be comparable to or even

smaller than that of the headers if un-compressed, leading

to poor transmission efficiency. ROHC is responsible for the

header compression in wireless networks with poorer channel

conditions in order to achieve a trade-off between reliability

and efficiency [12]. Surprisingly, although ROHC has been

standardized and widely incorporated in many protocol stacks,

it has not been widely studied among traditional wireless

research publications and many questions remain unanswered.

There exist several works that mainly focus on the per-

formance analysis of ROHC itself in specific networks. The

compression efficiency of ROHC over mobile WiMAX is

studied in [13]. In [14], two ROHC implementations known

as ROHCv1 and ROHCv2 are evaluated in terms of potential

throughput gain and complexity for wireless IP networks in

multimedia delivery. Reference [15] presented an efficient

hardware architecture for accelerating ROHCv2 based on LTE

energy efficiency. In [16], the authors investigated the resource

consumption and potential performance gain of implementing

ROHC encoding and decoding functions and studied the archi-

tectural implications of ROHC in future networks. The authors

of [17] investigated the impact of a Window-based Least Sig-

nificant Bits (W-LSB) encoding on the performance of ROHC.

In [18], the video streaming file transmission over MBMS

studied the use of ROHC to generate a single RTP/UDP/IP

packet flow in Packet Data Convergence Protocol (PDCP).

However, existing works on ROHC have focused only on one

single packet-switched link. There is a lack of understanding

on the control of ROHC in MBMS provisioning, in which the

proper use of ROHC can improve transmission efficiency in

many MBMS applications.

There are two major challenges in optimizing the ROHC

settings for MBMS. Firstly, as with ROHC for an individual

wireless link, inappropriate settings of ROHC parameters may

cause frequent decompression failure by the ROHC decom-

pressor at the receiver end, thereby resulting in serious loss

of data packets even if they are correctly received. In our

initial work [19], we have investigated the problem of ROHC

parameter optimization for a single user and demonstrated

substantial improvement of transmission efficiency. We also

developed an adaptive ROHC scheme under limited radio

resources. Moreover, for MBMS (P-t-M), there is one single

ROHC entity to serve a group of users. We note that, when

establishing MBMS bearers, ROHC parameters must also be

optimized for each service group of users whose channel

conditions tend to differ. This design requirement becomes

even more challenging for our proposed novel MBMS schemes

with adaptive user assignment to various MBMS bearers. In

this new scenario, the NSP must jointly design the MBMS

user assignment when establishing MBMS service groups and

optimize the ROHC parameters for each individual group in

which users experience diverse channel qualities.

In this work, we study the problem of NSP profit maximiza-

tion in MBMS through dynamic user assignment and ROHC

optimization. We focus on optimizing MBMS user grouping in

accordance with each MBMS user’s ROHC control parameter

which can be optimized for maximum transmission efficiency.

We establish a new system based on a more practical channel

model beyond our preliminary works [20]. Based on this

more advanced and practical system model, we develop an

optimized MBMS service provisioning algorithm in response

to dynamic user channel conditions. Our major contributions

are as follows:

• We fully consider the diversity of channel qualities among

active users for MBMS packet services. Two channel

models are applied to characterize such diversity. In

the first model, the packet channel is derived from the

PHY fading channel into a Markov model for each

user. In the second model, the parameters of each user

channel are directly estimated from a sequence of packet

transmission which can be mapped into a hidden Markov

Model (HMM).

• We investigate the problem of NSP profit maximization

that enables a flexible tradeoff between the revenue that

depends on user QoS and the associated bandwidth cost.

The user QoS takes into consideration of the true payload

transmission instead of the PHY layer throughput, which

is greatly affected by the ROHC parameter optimization

per MBMS user group. We solve the problem of profit

maximization via joint group assignment and ROHC

parameter optimization with an efficient dynamic pro-

gramming (DP) algorithm.

The rest of this paper is structured as follows. Section II

introduces the preliminary background and the ROHC system

framework. In Section III, we develop a Markovian model for

each wireless link equipped with ROHC under both channel

models, which lays the foundation of the ROHC parameter

optimization. In section IV, we depict the NSP profit function

which reflects both the true QoS based on payload delivery

experienced by all our users as well as the bandwidth cost

of MBMS groups. We formulate the profit maximization

problem. To solve this problem efficiently, we develop a

DP-based algorithm in Section V. Numerical results are pro-

vided in Section VI to demonstrate the performance gain
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Fig. 1. LTE Protocol sublayer with IP packet transmission.

of our proposed MBMS scheme over conventional heuristic

designs.

II. ROHC SYSTEM MODEL

Let us first introduce the basic functions abilities of ROHC

and its key elements. Fig. 1 illustrates the protocol stack

of 3GPP LTE cellular services [21]. On top of Layer 2 of

the LTE protocol stack, the PDCP sublayer is responsible for

providing protocol interface between the cellular networks and

the infrastructural internet. Within the PDCP sublayer, ROHC

is responsible for converting the lengthy IP packet headers into

the efficient cellular PDCP headers.

The ROHC module typically has three modes of oper-

ation: Unidirectional mode (U-mode), Bi-directional Opti-

mistic mode (O-mode) and Bi-directional Reliable mode

(R-mode) [12]. The U-mode is always the initial mode for all

ROHC systems. ROHC can further transition into other two

advance modes if configured and necessary. The major differ-

ence among the three modes lies in how ROHC compressor

depends on the feedbacks from the decompressor to transi-

tions between its three different states corresponding to three

different types of headers. In U-mode, there is no feedback

channel and the compressor depends on its internal time-out

mechanism to change its state. All time-out parameters are

determined by the NSP for the specific network in use. For

both O-mode and R-mode, the compressor state transitions are

controlled by feedbacks. As mentioned in [3], no dedicated

feedback channel is used for ROHC in MBMS. Therefore,

only the U-mode of ROHC is executed. According to [22], U-

mode is less robust than R-mode and O-mode. However, it has

higher efficiency in terms of channel resource usage and also

does not suffer from feedback jitters. In this work, we study

the open problem to optimize ROHC U-mode parameters for

MBMS.

In ROHC, one of the most important objectives is header

compression efficiency. The header fields in an IP packet

can be generally classified into the static and the dynamic

parts. The static parts (e.g. source and destination addresses)

remain unchanged throughout the packet session and only

needs to be successfully transmitted once for the decompressor

to establish the context synchronization, while the dynamic

Fig. 2. Three states ROHC U-mode compressor. The upward state transitions
are based on optimistic setup of NSP such as after transmitting L packets,
the compressor goes to next state. The downward state transitions are based
the timeout timer.

Fig. 3. Our three states ROHC decompressor model. The upward state
transitions are based on the successful decompression. The downward state
transitions are based on the repeat failed decompression. To stay at Full
Context state, both successful decompression and less than W failed decom-
pression are satisfied.

parts (e.g. IP serial number) changes with correlations between

consecutive packets and therefore, can be compressed once the

decompressor and the compressor establishes context synchro-

nization. The ROHC compressor in the transmitter determines

whether to compress the static/dynamic parts of a header and

can be modeled into a finite-state machine (FSM) [12] with

three states (Figure 2), each corresponding to a header type of

different size.

The ROHC compressor always starts in the Initialization

and Refresh (IR) state, where an uncompressed header is

transmitted and both the static and dynamic context can

be (re)established if the transmission is successful. In the

First Order (FO) state, the compressor compresses the static

field of the header such that only the dynamic context can

be (re)established in a successful transmission. In the Second

Order (SO) state, both the static and the dynamic fields are

fully compressed [12].

Correspondingly, the ROHC [12] decompressor can also

be described as a FSM with three states (Figure 3). The

decompressor always starts with the No Context (NC) state,

in which it has established the context synchronization for

neither the static nor dynamic fields and can only decompress

IR packets. After the first IR packet from the compressor is

decompressed successfully, the decompressor establishes the

context synchronization and enters the Full Context (FC) state

where it can decompress IR, FO and SO headers. In case of

consecutive packet losses due to the poor channel condition,

the decompressor will lose the context synchronization with

the compressor and can no longer decompress SO headers,

thereby enters the Static Context (SC) state. From the SC state

only a successful decompression of an IR or a FO header can

re-establish full context synchronization for the decompressor.

In case of further decompression failures, the decompressor

will eventually transition downwards to the NC state.

An important header compression algorithm is Windowed

Least Significant Bits (W-LSB) algorithm [23], which is so
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designed in order to achieve a balance between compression

efficiency and robustness against packet losses. Different from

the conventional LSB, the compressor maintains a window of

W reference values and uses the least significant bits enough

to uniquely determine the field with any of the reference

values. As a result, W-LSB can tolerant up to W consecutive

transmission failures over the wireless channel. However, once

the number of successive transmission failures exceeds W ,

the decompressor will not be able to decompress the W-LSB

encoded and thus entering the SC state, from which only the

successful transmission of an IR or FO packet can re-establish

full context synchronization and drive the decompressor back

to the FC state.

In practice, the ROHC compressor needs to alternately

transmit the three types of headers in order to achieve a

high compression efficiency without introducing many extra

packet losses due to the context Out-of-Synchronization (OoS)

caused by insufficient context refreshment. In general, if the

compressor is confident that the decompressor has established

full context, it will transmit the shortest SO headers. Con-

versely, the compressor will transmit a few of the longer IR/FO

packets until it is confident enough that the decompressor

has (re)established context synchronization [12]. As mentioned

previously, in MBMS only U-mode ROHC is allowed since it

is difficult to coordinate feedbacks from multiple users [24].

The conventional approach to control the state transition of the

U-mode ROHC compressor is to use a timeout mechanism,

i.e. the compressor transmits a fixed number of packets with a

certain type of headers and then transit to another state [12].

If the user channel is generally good, optimizing timeout

parameters enable the compressor to remain in the SO state

for substantial portion of time, thereby achieving high packet

transmission efficiency in terms of both channel bandwidth

and transmission power, as discussed before.

We will investigate the timer parameter optimization of

the U-mode ROHC compressor, which has been shown by

the experimental results in [25]–[30] to be able to greatly

affect the efficiency. Consider the long-term behavior of an

ROHC compressor, the timer parameters are defined as the

average duration of consecutive transmission of IR, FO and

SO packets, denoted as Dir , D f o, and Dso, respectively. Note

that in MBMS applications, the parameter optimization must

take into account of the diversity of the users’ channels, which

we will introduce in the next section.

III. MARKOVIAN SYSTEM MODEL FOR AN ROHC LINK

In this section, we develop the analytical framework for an

ROHC link composed of a packet channel and a compressor/

decompressor pair.

A. ROHC Channel Model

At the PDCP sub-layer, the channel model should capture

the protocol level connection linking the compressor and

decompressor. In this work, we adopt two channel models

that facilitate analysis on the performance of ROHC. The

first channel model is a more idealized channel model with

a strong assumption that is easy to deal with. We then

investigate a more practical channel model to establish a more

comprehensive ROHC system model to provision optimized

MBMS service groups.

1) PM-Model: PDCP Channel Derived From PHY Chan-

nel [20]: Our first modeling approach derives the PDCP-layer

packet channel from the statistical Channel State Informa-

tion (CSI) of the PHY fading channel [31]. Consider the flat

fading PHY channel between the base station (BS) and n-th

user, n = 1, . . . , N

y = αnhn x + v, (1)

in which x is the transmission signal, v is the channel noise,

and the channel consists of a large scale fading factor αn and

a small-scale fading factor hn with the following assumptions:

• For each user n, αn is assumed to be stationary through-

out the entire ROHC session, whereas hn experiences

block fading across different ROHC packets. In our

simulation, we assume αn follows i.i.d log-normal dis-

tribution, whereas hn follows standard complex normal

distribution (Rayleigh fading) as in [31]. Nevertheless,

our analytical framework is compatible with other fading

distribution assumptions.

• All users experience i.i.d. additive white Gaussian noises

(AWGN), i.e. vn ∼ CN (0, σ 2).

Based on this PHY fading channel, the ROHC channel

model can be modeled as a finite state Markov chain with K

states [32], which is a generalization from the rather popular

2-state Gilbert-Elliot (GE) channel model [33]. Assuming that

all the users share the same maximum Doppler frequency fm

and the same packet period Tp and selecting the same K to

characterize the ROHC channels for all the users, a K -state

Markov channel model for user n can be derived as in [31].

The resulting Markov packet channel model can be fully

characterized with

• A K -by-K state transition matrix Tch , where Pi j �

{Tch}i j represents the state transition probability from

channel state i to state j as defined by [31, eqs. (10)

and (11)]. Note that Tch is the same for all the n users

since it is solely determined by fm and Tp .

• A K -by-1 vector ρn , where 1−ρnk represents the packet

error rate (PER) for user n under channel state k, k =

1, . . . , K . This can be derived from the symbol error

rate defined in [31, eq. (12)], which is then converted

to bit error rate (BER) for a given modulation scheme,

before mapping to the corresponding packet error rate

following [34].

Note that Tch is fixed given K , fm and Tp , while ρn is

a function of αn . We name this PDCP model as the PM

(PHY-mapping) channel model.

2) FK-Model: PDCP Channel Model Estimated From Feed-

backs: The other modeling approach is to assume that the

PDCP channel follows a Markov process whose parameters

can be directly estimated from a sequence of Automatic

Repeat-reQuest (ARQ) feedbacks. This channel model is

named as FK-model. The motivation of this approach is that,

in a practical LTE mobile network, the PDCP sublayer may not

know the fading characteristics of the PHY layer and the error

correction schemes in the MAC/PHY layer, or it is simply too

complicated to derive the PDCP layer channel from the PHY
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channel model considering the functionalities of the RLC layer

and MAC layer in between. With the FK-model, the ROHC

entity is able to estimate the PDCP packet channel directly

during the negotiation stage.

Similar to the PM-model, we assume that the PDCP channel

is a finite state Markov chain with K−states, character-

ized by the state transition matrix Tch and the transmission

probabilities ρk , k = 1, . . . , K . Since the ARQ feedbacks

can only indicate whether a packet transmission is success-

ful or not, the PDCP channel appears to be a Hidden Markov

Model (HMM) to the ROHC entity. Therefore, the estimation

of Tch and ρn from a sequence of ARQ feedbacks can be

implemented with the classic HMM learning techniques such

as Baum-Welch algorithm [35]. A more practical approach,

however, is to define a finite number of M Markov channel

models, i.e.

M = {(Tch1, ρ1), (Tch2 , ρ2), . . . , (TchM , ρM )} (2)

and perform a codebook selection based on the observation

sequence o with a maximum likelihood criterion.

B. ROHC System Model

Now we are in a good place to develop the system model for

a ROHC link, which consists of a compressor, a packet channel

and a decompressor. For the compressor, as discussed in [12],

the impact of FO state is rather limited. Thus, we consider a

simplified compressor transmitting only IR and SO headers.

Consequently, our timer-based compressor can be character-

ized with two parameters Dir and Dso. In order to facilitate

theoretical analysis and optimization, we approximate the

timer-controlled compressor with a two-state Markov chain

whose transition probabilities are optimized. The transition

probabilities of the surrogate Markov compressor are denoted

as Pis and Psi , which represent the transition probabilities

from state IR to state SO and from state SO to state IR, respec-

tively. In order to develop a one-to-one mapping between the

Markov compressor and the timer based compressor, we match

the expected duration of consecutive IR and SO states for the

Markov compressor to Dir and Dso, which leads to

Dir = P−1
is , Dso = P−1

si (3)

Therefore, the Markov compressor can be defined by the

transition matrix:

Tc =

[

1 − Pis Pis

Psi 1 − Psi

]

(4)

With this approximation, we imitate the deterministic/periodic

behavior of the timer-based compressor with the stochas-

tic/stationary behavior of the Markov compressor, which

greatly reduces the size of the state space and therefore

facilitates a simpler analytical framework. In the following

we will discuss about the optimization of Pis and Psi , which

will then be mapped to the optimal Dir and Dso.

Corresponding to our simplified compressor model,

the decompressor is also simplified to have only the NC and

FC states [33]. Since the compression of the dynamic fields

relies on W-LSB which can tolerate up to W consecutive

Fig. 4. Simplified ROHC System Model of Compressor only with IR and
SO states.

Fig. 5. Markov chain model for the ROHC U-mode decompressor with
the window size W . The ‘F’ means transmission is failed and the ‘S’ means
transmission is successful.

packets loss before losing context synchronization, the FSM

model of the decompressor is fully depicted in Fig. 5. In this

state-transition diagram, FCw denotes that the decompressor

is still in FC state but the last w packets have been lost.

The symbol ‘S’ and ‘F’ denote the successful and failed

packet transmission, respectively. From any of FCw state,

w ≤ W , once a packet with either an IR or a SO header

is transmitted successfully, the decompressor would be able

to update its context and return to the FC0 state. However,

as explained in Section II, if more than W packets are lost

in a roll, the decompressor will lose context and enters the

NC state, from which only the successful transmission of an

IR packet will enable the decompressor to re-establish context

synchronization and enters the FC0 state. We denote the set

of states for the decompressor as

Sd = {FC0, FC1, . . . , FCW , NC} (5)

To summarize, the ROHC link for the n-th user can be

modeled as a Markov chain which is composed of the Markov

channel Tch , the Markov compressor Tc, and the (W +2)-state

FSM model for the decompressor. This aggregated Markov

chain is defined with a 2(W + 2)K -by-2(W + 2)K state [19]

transition matrix:

Tsys =

[

(1 − Pis )Tir Pis Tir

Psi Tso (1 − Psi )Tso

]

(6)

in which

Tir =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ts,n T f,n 0 · · · 0

Ts,n 0 T f,n · · · 0
...

...
...

. . .
...

Ts,n 0 0 · · · T f,n

Ts,n 0 0 · · · T f,n

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(7)

Tso =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Ts,n T f,n 0 · · · 0

Ts,n 0 T f,n · · · 0
...

...
...

. . .
...

Ts,n 0 0 · · · T f,n

0 0 0 · · · Tch

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8)
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Note that Ts,n = Tchdiag(ρn) and T f,n = Tch − Ts,n. Tir

and Tso denotes the transition matrix of the decompressor and

the channel when an IR packet or a SO packet is transmitted,

respectively.

We define a ROHC performance measurement for each user

which can be evaluated with the stationary distribution of the

Markov model of the ROHC system. It is the transmission

efficiency which is defined as the ratio between the successful

decompressed payload bytes and the total transmitted bytes in

the long term:

η =
LpπFC0

LIRπ IR + LSOπSO
(9)

where Lp, LIR and LSO represent the payload length per

packet, the full packet length with an IR header, and the full

packet length with a SO header, respectively. πFC0 denotes the

marginal stationary probability for the decompressor to be in

the FC0 state, whereas π IR and πSO represent the stationary

probabilities for the Markov compressor to be in IR and SO

states, respectively. To maximize the efficiency η, we need to

evaluate the optimal ROHC compressor parameters Pis and Psi

under specific channel condition determined by Tch and ρ.

Recall that in our PM-model ρ depends on the large scale

fading factor αn and is hence different for all the users. In the

FK model, both Tch and ρn can be estimated from a sequence

of ARQ feedbacks during the ROHC negotiation process. The

objective function of our joint grouping and ROHC parameter

optimization problem to be discussed in the next section will

be closely related to η.

In the next section, we will consider a MBMS network

service entity which consists of multiple ROHC links clustered

into several multicast groups and formulate the joint grouping

and ROHC optimization problem.

IV. THE JOINT MBMS GROUPING AND

ROHC OPTIMIZATION SCHEME

As mentioned in Section I, the main design philosophy of

our joint MBMS grouping and ROHC optimization scheme is

to allow users with similar channel qualities to be clustered

into the one multicast group, and then discriminatively select

the parameters for the ROHC entity within each group in order

to maximize the NPS profit. This problem is formulated as

follows for the PM-channel model and the FK-channel model,

respectively.

A. PM Channel Model

First, we consider the PM channel model in which the PDCP

channel is derived from the PHY fading channel. The NSP

divides the N users into several P-t-M MBMS groups served

by individual P-t-M bearers. We assume that:

• The NSP allocates the same amount of bandwidth

resources for each MBMS group at the cost of a. Without

loss of generality, if users are divided into G groups,

the total cost is w(G) = aG. Note that our solution

approach is compatible with any choice of w(G) which

can be reasonably assumed to be a monotonically increas-

ing function of G.

• The NSP collects revenue from each user within a P-t-

M group based on the delivered packet QoS, defined as

the payload rate rg which can be adjusted by the MBMS

application for each individual P-t-M group. The payload

rate rg must be supported by the channels between the

BS and all users in group g. The revenue collected from

each user in group g is defined as f (rg), where f (·)

is a monotonically increasing function. Without loss of

generality, we consider the case of a linear function

f (rg) = crg , where c is the positive pricing factor.

• The statistical CSI of all the N users are known to

the NSP.

Specifically, denote U = {1, . . . , N} as the set of N users

and a G-partition of U as CG = {G1, . . . , GG } where Gg

represents group g. For user n, the ergodic capacity supported

by the channel is simply

rn = Ehn

[

log(1 + ‖αn‖2‖hn‖2)
]

� r(αn) (10)

which is based on the Gaussian input assumption with σ 2 = 1.

Also, a generalization to the more practical assumption of

finite-state alphabet input signal is readily available [36]. The

ROHC compressor for group g is modeled as a Markov chain

as explained in Section III.B, which is characterized by a

pair of parameters pg = [pis, psi ]. Although all the users in

one group share the ROHC compressor, the different channel

qualities represented by αn will lead to different ergodic

capacity and transmission efficiency experienced by different

users. The payload rate for MBMS group g must be adjusted

so that it is supported by all the users in the group, i.e.

rg ≤ rnη(αn, pg), ∀n ∈ Gg (11)

where η(αn, pg) denotes the PDCP transmission efficiency

function defined in Eq. (9) as a function of αn and pg .

Our design objective is to maximize the benefit of the NSP,

which equals to the difference between the total revenue and

total bandwidth cost, by choosing the optimal group number

G, user assignment CG and the ROHC parameter pg for each

group:

max
G,CG,{pg }|Gg=1

G
∑

g=1

f (rg)|Gg | − w(G)

s.t. rg ≤ rnη(αn, pg), ∀n ∈ Gg, g = 1, . . . , G (12)

B. FK-Model

For the FK-model of PDCP channel, the estimate of the

model parameters based on PDCP feedbacks will be available

for the NSP. Once the parameters Tch and ρ are estimated

for each user and the QoS requirement rn is given, the

joint grouping and ROHC optimization problem formulation

remains nearly identical to that of the PM-model. In the next

section, we will present an efficient DP-based solution for

Eq. (12) which applies to both PM-model and FK-model.

V. A DYNAMIC PROGRAMMING SOLUTION

In this section, we propose an efficient algorithm, based

on DP, to solve Eq. (12) with polynomial complexity.



JIANG et al.: LTE MBMS PROVISIONING BASED ON ROHC 1167

For now assume that the total number of MBMS radio bearers

(or groups) G is fixed. Note that both rn and η(αn, pg) given

a fixed pg are monotonically increasing with respect to αn .

Consequently, Eq. (12) with fixed G can be re-written into

the following un-constrained optimization problem

max
CG

G
∑

g=1

[

max
pmg

f (rmg , η(αmg , pmg ))|Gg |

]

(13)

where mg = arg minn∈Gg αn represents the user with the

poorest channel condition in group g. Eq. (13) is based on

the fact that the total revenue collected from a group depends

on the user with the worst channel (i.e. the smallest α), and

the ROHC parameter for the group should be optimized with

respect to this user since all other users will always support

a larger payload rate. Denote p̂n = arg maxpn η(αn, pn),

i.e. the ROHC parameter optimized for user n. Since the

revenue function f (·) is monotonically increasing w.r.t. the

payload rate which is in turn monotonically increasing w.r.t

the transmission efficiency η given rn as in [37], we define

qn � max
pn

f (rn, η(αn, pn))

= f (rn, η(αn, p̂n)) (14)

with which Eq. (13) can be rewritten as

max
CG

G
∑

g=1

qmg |Gg | (15)

Eq. (15) suggests that the optimization of ROHC parameters

and user grouping for different P-t-M bearers can be decoupled

by first optimizing the ROHC parameters for each user indi-

vidually, followed by an optimized grouping scheme. To solve

Eq. (15), we first present the following lemma which states that

an optimal grouping scheme can be achieved by ordering and

thresholding {αn}:

Lemma 1: Consider a user grouping denoted by CG =

{G1, . . . , GG }, in which there exists a Gi with |Gi | ≥ 2. If there

is a user v ∈ G j , such that αu > αv for some u ∈ Gi , i �= j

and αmi < αm j , then exchanging u and v between groups i

and j results in a larger or equal total profit.

proof: As αu > αv ≥ αmi < αm j ,

• If m j �= v, after the exchange we have m′
i = mi , m′

j =

m j , the total profit will not change.

• If m j = v, after the exchange we have m′
i = mi , m′

j = u.

Since αm′
j
= αu > αv = αm j , the revenue collected from

group j increases and the revenue collected from other

groups would remain the same. Consequently, the total

profit would increase from the exchange.

Without loss of generality, we assume that the users have

been ordered as α1 ≤ · · · ≤ αN . Lemma 1 suggests that an

optimal solution to Eq. (15) can now be found by solving

max
1<m2<...<mG≤N

G
∑

g=1

qmg (mg+1 − mg) − w(G) (16)

where m1 = 1, mG+1 = N + 1. Thus, the g-th group is

identified as Gg = {mg, mg +1, . . . , mg+1 −1}, g = 1, . . . , G.

For a fixed number G, Eq. (16) amounts to max
∑G

g=1

qmg (mg+1 − mg). Denote

R[n, g] = max
m2,...,mg∈{2,...,n}

g
∑

i=1

qmi (mi+1 − mi ) (17)

i.e. the maximum revenue collected by grouping users

{1, . . . , n} into g groups. Following Eq. (17), we can expand

R[n, g + 1] as:

R[n, g + 1]

= max
m2,...,mg+1

qm1n1 + · · · + qmg+1ng+1

= max
mg+1

max
m2,...,mg |mg+1

qm1n1 + · · · + qmg ng + qg+1ng+1

(18)

where ni = mi+1 − mi is the number of users in group i and

denote mg+2 = n + 1. Therefore, Eq. (18) can be re-defined

recursively as:

R[n, g + 1] = max
j :g≤ j≤n−1

R[ j, g] + q j+1(n − j) (19)

and the boundary conditions are:

R[g, g] =

g
∑

i=1

qi ; R[n, 1] = nq1 (20)

DP is used to solve our problem since it computes the exact

solution efficiently according to Lemma 1. It is noted that

R[N, G] is exactly the maximum revenue that can be collected

by grouping the N users into G groups. Consequently, Eq. (19)

and Eq. (20) together define a DP solution to Eq. (13).

At the same time, the indices {mg}|
G
g=1 representing an optimal

grouping scheme can be re-constructed via backtracking [38,

Ch.15]. This DP solution can be readily modified for Eq. (12),

where G = 1, . . . , N . In summary, our exact solution to

the joint grouping and ROHC parameter optimization prob-

lem in Eq. (12) is summarized in Algorithm 1, whose time

complexity is O(N3) and memory complexity is O(N2).

In comparison, to find the same exact solution, an exhaustive

search would have to go through of all possible grouping

schemes, which amounts to Bell number [39]. As an example,

we illustrate the time complexity tendency between DP-based

algorithm and exhaustive search in Fig. 6.

VI. SIMULATION AND NUMERICAL RESULTS

A. Test Setup

In this section, we present numerical results to evaluate

the performance of our joint MBMS grouping and ROHC

parameter optimization scheme for both the PM and FK

channel models.

Our joint MBMS grouping and ROHC parameter optimiza-

tion scheme is compared with the two conventional MBMS

schemes, namely using N individual unicast bearers (P-t-P)

and a single multicast bearer (P-t-M) to serve the N MBMS

users. We also compare our proposed MBMS scheme with

two heuristics MBMS grouping schemes, namely K -means

and uniform clustering. In first heuristic scheme, the N users

are clustered into K groups by applying the conventional
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Algorithm 1 Maximum-Profit Joint MBMS Grouping and

ROHC Parameter Optimization

1: Order the N users such that α1 ≤ . . . ≤ αN .

2: Optimize the ROHC parameter for each user with

p̂n = arg max
pn

η(αn, pn)

for n = 1, . . . , N , and evaluate the corresponding

maximum revenue with Eq. (14).

3: Initialize R[n, g] as per Eq. (20) and m[n, g] as

m[g, g] = g, m[n, 1] = 1

for n = 1, . . . , N , g = 1, . . . , n.

4: for g = 2 to N do

5: for n = g + 1 to N do

6: Evaluate

R[n, g + 1] = max
j :g≤j≤n−1

R[ j, g]+q j+1(n− j)

m[n, g + 1] = arg max
j :g≤j≤n−1

R[ j, g]+q j+1(n− j)

7: end for

8: end for

9: Ĝ = arg maxG R[N, G] − w(G).

10: Set mG+1 = N + 1, m1 = 1, n = N .

11: for g = Ĝ down to 1 do

12: mg = m[n, g], n = m[n, g] − 1.

13: end for

14: pg = p̂mg and assign user mg, . . . , mg+1 − 1 to group g,

for g = 1, . . . , Ĝ.

Fig. 6. The time complexity tendency between DP and exhaustive search.

K -means algorithm on αn, n = 1, . . . , N . In the second

heuristic scheme, each group has same number of users. The

total profits of different grouping schemes are compared under

different service cost a, number of users N , and channel

distribution. We further evaluate the robustness of our pro-

posed MBMS scheme by considering the effect of inaccurate

statistical channel information.

Unless otherwise noted, all simulation tests are based

on following parameter settings and evaluated over

Fig. 7. Total profit versus different cost per ROHC bearer for N = 100 users
achieved by the optimal DP scheme and pure unicast and one group multicast.
To maintain a positive total profit of P-t-P transmission, the highest cost is
set to a = 80 in this figure.

500 Monte Carlo random runs.

• {αn}|N
n=1 are randomly generated from i.i.d. log-normal

distribution of mean m = 10 and variance v = 100.

• The number of states for the Markov channel for all

users is set to K = 3. Also, we set the maxi-

mum Doppler frequency and one packet time period as

fm Tp = 0.0338 [31].

• The maximum allowable number of consecutive header

losses by WLSB is set to W = 4.

• The cost per MBMS bearer a = 80.

• The total number of users N = 100.

• The number of PDCP models in the channel codebook

of the FK channel model M = 5.

B. NSP Profit From P-t-M Assignment

First, we compare the performance of our proposed joint

MBMS grouping and ROHC parameter optimization scheme

with that of the two conventional MBMS configurations,

namely using one single P-t-M bearer or N P-t-P bearers.

The performances are measured as the total profit defined in

Eq. (12) versus varying a. As shown in the Fig.7, when the

cost per bearer is low, P-t-P solution is nearly optimum as our

DP solution. However, as the bandwidth cost grows with a,

P-t-P unicast will be increasingly costly such that the NSP

profit will decrease linearly. Although the profit from our

proposed DP-based grouping scheme also tends to drop,

the reduction is rather mild. When a pure P-t-M radio bearer

is set to serve all N users in the conventional MBMS service,

the service provider can hardly gain any profit since the user

with the poorest channel greatly limits the revenue of the entire

group.

To further justify the benefit of our DP-based grouping

scheme, it is compared against a number of heuristic meth-

ods. Our heuristic MBMS grouping methods are based on

K−means clustering. In our comparison, we use two versions

of the K−means clustering differed by the way to determine
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Fig. 8. Total profit versus different cost per ROHC bearer for N = 100 users
achieved by the optimal DP scheme and the two heuristic schemes.

TABLE I

GROUP SIZE FOR DIFFERENT COST a

the total number of groups G. In the first version, the num-

ber of clusters for the K−means method is chosen as the

optimal G determined by our DP algorithm. In the second

version of K−means, G is selected with an exhaustive search

to maximize the resulting total profit. We also propose a simple

heuristic scheme named uniform grouping, in which the users

are ordered and grouped into G groups, each of which has

the same number of users. Once again, we assume that G is

determined by our DP-based solution.

C. PM-Model

First, we consider the PM-model. Fig. 8 presents the com-

parison of different grouping schemes in NSP total profit

versus the cost per MBMS bearer a. When the cost a is

low, the DP algorithm shall allow more P-t-M bearers to

maximize total profit. As a increases, the number of groups for

DP-based algorithm would naturally decrease and the profits of

all schemes would drop as well. In these test results, the pro-

posed DP algorithm always outperforms the three heuristic

MBMS grouping schemes. Better insights can be obtained

when we provide the average number of groups determined by

both the DP algorithm and the exhaustive search K−means

algorithm in Table I for each point in Fig. 8. For each value

of a, the DP algorithm results in a higher profit by employing

a lower number of groups. Thus our proposed method has

a higher spectrum efficiency than the other heuristic MBMS

clustering schemes.

From [3], it is clear that the MBMS can provide service

to new users trying to join the MBMS that is already trans-

mitting in. Hence, a more practical problem is to see how

P-t-M performance would vary as the number of multimedia

Fig. 9. Total profit versus different number of users and fixed number of
groups G = 4.

Fig. 10. Total profit versus different user channel condition for N = 100
users achieved by the optimal DP scheme and the two heuristic schemes.

subscribers group. In Fig. 9, we evaluate the performances

in terms of total profit versus varying number of users for the

same four MBMS grouping schemes. Naturally, the total profit

of each scheme would increase with larger N . Nevertheless,

the advantage of our proposed DP algorithm becomes more

obvious as N grows.

In Fig. 10, the effect of different user channel condition

are evaluated. The total profit is tested for log-normal CSI

distributions with different parameters (mean and variance).

Since the channel conditions improve with increasing mean,

the overall profit grow for each P-t-M bearer assignment

schemes as all users’ channel condition become good and DP-

based algorithm always provides a higher profit than the rest

three heuristic schemes.

In both Fig. 9 and Fig. 10, the improvements between our

DP-based algorithm and other methods are less than 10%.

The reason is that the profit of our DP-based algorithm is

evaluated by considering the user QoS which is ignored by

other schemes such as exhaustive K -means. Although the gap

between them is small, the heuristic methods can not ensure

the user QoS and the DP-based algorithm still has a higher

profit.
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Fig. 11. The variance of within cluster packet loss rate caused by failed
decompress versus different variance of log-normal distribution for N = 100
users. The mean is fixed m = 10.

D. Transparency

In this section, we evaluate another performance measure-

ment named transparency [40], defined as the probability of

successful decompression conditioned on a successful trans-

mission, in order to gain some insight into the advantage of

the DP-based grouping scheme. Transparency is an indicator

of how well ROHC avoids introducing additional packet loss

due to the compression which is represented as:

PT =
π FC0

ρT π ch

(21)

where πch is the stationary probability of the channel state

transition matrix Tch . Fig. 11 illustrates the variance of the

transparency within each MBMS group. From the figure,

our proposed DP-based algorithm has a lower transparency

variance which means the successful decompressed probability

is higher for all users. This is because that DP-based algorithm

always provides an optimal grouping scheme based on the user

channel condition which can lead a lower out of synchro-

nization probability between compressor and decompressor.

In other heuristic methods, they may have similar profits at

some points in the previous figures, however, they can not

satisfy all users when the channel conditions are variable. The

test shows that the DP-based algorithm always leads to the

smallest variance of transparency for users within each P-t-M

(MBMS bearer) or user cluster. Thus, for users assigned to

the same MBMS bearer, our DP algorithm delivers the most

consistent performance.

E. Channel Uncertainty

Next, we consider a practical issue involving the practical

problem of inaccurate channel information available to the

transmitter. In practice, the large scale fading factors αn are

not likely to be perfectly known by the BS of the NSP.

Often, only inaccurate CSI are available to the BS. In this

simulation, we model the channel uncertainty as:

α̃n (dB) = αn (dB) + �αn (dB) (22)

Fig. 12. Total profit versus different cost per ROHC bearer achieved with
exact/estimated channel information for ε = 0.5dB, 1dB, 1.5dB, 2dB from top
to bottom.

where �αn represents the channel estimation error. Assume

that the estimation error is bounded by |�αn | ≤ ε as in [41].

We generalize our proposed joint grouping and optimization

scheme in Eq. (12) into the following max-min criterion:

max
G,CG ,{pg}|Gg=1

G
∑

g=1

f (rg)|Gg| − w(G)

s.t. rg ≤ rnη(αn − ε, pg), ∀n ∈ Gg, g = 1, . . . , G

(23)

which aims at maximizing the worst-case total profit. This

robust version of the joint grouping and ROHC optimization

can be solved by simply adopting our DP-based algorithm

on {α̃n − ε}|N
n=1 instead of {αn}|

N
n=1. To evaluate its perfor-

mance, we randomly generate �αn from a uniform distribution

U(−ε, ε). In Fig. 12, we compare the maximum total profit

achieved by the DP-algorithm relying the true {αn}|N
n=1, and

the DP-algorithm relying on estimated {α̃n}|N
n=1 based on the

different values of ε. When the service cost is low, the DP-

based algorithm can provide more profit for separating users

to more groups. Therefore, there is no big gap between the

estimated CSI and exact CSI at point a = 20 and a = 40.

Also, the DP-based algorithm can adjust the grouping scheme

to handle small error when the service cost is extremely large,

such as a = 200. The simulation results suggest that our DP-

based algorithm is quite robust against CSI uncertainty.

F. FK-Model

We next test our algorithm under the FK-models of PDCP

channels. First, we evaluate the total profit according to

variable cost a to test our proposed DP-based algorithm. Fig.13

shows the almost same result as the PM-model.

Considering the FK model, a specific problem is the effect

of the number of Markovian channel template in the chan-

nel codebook on the MBMS performance, which is shown

in Fig. 14. In our simulation, basic sample templates are

uniformly selected based on the user distribution from the

NSP. It seems that 4 or 5 PDCP templates are sufficient to
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Fig. 13. Total profit versus different cost per ROHC bearer for N = 100
users achieved by the optimal DP scheme, K−means and the two heuristic
schemes.

Fig. 14. Total profit versus different number of PDCP models for N = 100
users achieved by the optimal DP scheme, K−means, exhaustive K−means
and uniform.

Fig. 15. The total profit versus different cost of two different channel model
for N = 40, 60, 80, 100 users from the bottom up.

characterize the channels of 100 users in all four grouping

schemes. Using more than 5 PDCP templates does not appear

to improve the total profit.

Finally, we compare the performance of the two different

channel models (PM-model vs. FK-model). As explained in

Section III.A, the PM-model relies on the raw user CSI

from the PHY layer, whereas the FK-model estimates its

channel parameters by mapping the CSI from the PHY

channels. To illustrate the performance gap of the practi-

cal FK-model versus the ideal -PM-model, we construct a

PM-model with our default simulation settings, then randomly

generate sequences of 1000 ARQ feedbacks, from which

the PDCP-layer channel is estimated as in the FK-model.

The exact and the estimated channel parameters are then

used as input to Algorithm 1, respectively, and the grouping

and ROHC parameter optimization results from two chan-

nel models are evaluated and compared with the same true

channel model. The results are shown in Fig 15. From these

Monte Carlo tests, we can see that the performance of the

FK model does not degrade significantly with the in-exact

estimated channel parameters as long as there are sufficient

ARQ feedbacks.

VII. CONCLUSION

This work investigates the service provision of MBMS

in 4G-LTE cellular networks to achieve high MBMS trans-

mission rate and spectrum efficiency. We formulated a joint

optimization problem of MBMS user assignment and ROHC

parameters optimization to maximize the profit of network

NSP under two different channel models. We developed a

Markov model for each ROHC-enabled link in the MBMS

network. Our design objective is to achieve the tradeoff

between bandwidth usage cost and user QoS. We further derive

an efficient dynamic programming algorithm to solve the

optimization problem with demonstrated superior performance

in simulations.
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