Femtocell Scheduling as a Restless Multiarmed
Bandit Problem Using Partial Channel State
Observation

Hesham M. Elmaghraby*, Keqin Liuf and Zhi Ding*
*Dept. of Electrical and Computer Engineering, University of California, Davis, California, 95616
TKLA-Tencor, Milpitas, California, 95035

Abstract—'" In this paper, we address the problem of channel
allocation for femtocells that share the use of regular macrocell
spectrum. The femto basestation (FBS) scheduling problem is
formulated in the form of restless multiarmed bandit (RMAB)
framework. Our goal is to choose the arms/channels that maxi-
mize the total expected discounted reward over infinite horizon
while minimizing the induced interference due to channel sharing
with macrocell. Without direct observation of true channel state,
we use the available macrocell user feedback known as channel
quality indicator (CQI). In general, the RMAB problem is P-
SPACE hard. We propose a heuristic low complexity indexing
policy referred as approximated Whittle index to rank available
channels for FBS. Although finding a closed form channel
ranking solution typically involve dynamic programming, we
show that based on the partial channel information within CQI,
there exists a closed form for the channel index. Moreover, we
demonstrate the performance advantage of the proposed indexing
policy over a myopic policy.

Index Terms—Femtocell; restless multiarmed bandit (RMAB);
resource allocation; Whittle index, myopic policy.

I. INTRODUCTION

Multiarmed bandit (MAB) is a classical mathematical prob-
lem that provides basic framework for dynamic resource allo-
cation problems. In its classical form, a player needs to choose
one arm out of N to play and accordingly gains its reward.
Each arm has certain state that determines its reward such that
state transition can only occur for the active (chosen) arm. The
player objective is to maximize its reward over infinite horizon
through following a certain arm selection policy. Originally,
MAB was first introduced in [1], and remained partially open
since then. In [2] and [3], Gittins provided an essential insight
to resolve the dimensionality problem in MAB by reducing
the complexity from N-dimension problem into N-problems
with 1-dimension for each.

A generalized form of the classical MAB formulation called
the restless multiarmed bandit (RMAB) problem was studied
by Whittle in [4]. In RMAB, the selection of K arms out
of the available N arms is allowed (1 < K < N) instead
of the previous one arm selection constraint, moreover the
passive arms are allowed to change their state unlike the
classical formulation where the state of any passive arm was
unchanged. Whittle applied the Lagrangian relaxation to derive
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an indexing policy generalizing Gittins policy but for a much
broader type of problems. Whittle index policy attached an
index to each arm (referred as Whittle index), such that the
player will choose the arms with the highest indices. The
optimality of Whittle index policy was achieved by the nature
of Lagrangian relaxation under a relaxed constraint on the
mean number of chosen arms (E[K (t)] = K), instead of strict
constraint K (t) = K.

Many real life applications can be viewed and modeled
using the RMAB formulation. Despite the vast categories and
types of problems, each problem has its own requirements
and special considerations. Many existing works have linked
the general channel allocation problem to the classical RMAB
formulation. On the other hand, relatively fewer have applied
this formulation on heterogeneous networks (HetNets) [5]-
[8]. In this work, we employ the RMAB framework to model
the femto basestation (FBS) resource allocation problem in
HetNets where we take into account the existing feedback
information. Our main motivation is to develop a practical
and low complexity solution for the femtocell scheduling
problem. In order to do so, we will need to provide practical
considerations beyond the literature through using the RMAB
formulation in scheduling the femtocell resources.

Femtocell resource scheduling is a typical problem that
has been studied in many existing works [9]-[12]. It has
been previously shown that the scheduling problem can be
considered as a RMAB problem [5]—[7]. The ability to directly
observe the channel state is one of the common assumptions
made before which no longer applies in HetNet without
direct and continuous coordination between macro basestation
(MBS) and FBSs. Such coordination will require additional
processing and will consume more bandwidth [6]. Unlike
previous works, we did not assume that FBS can access the
instantaneous channel state information. Instead, the proposed
method utilizes the practical channel quality indicator (CQI)
report as partial observation of the channel state. In HetNets,
using cognitive capabilities, FBSs can observe the CQI based
on which the channel state is estimated [13].

In this work, we aim to formulate the femtocell channel
allocation problem in heterogeneous networks as a RMAB
problem using practically available feedback information. We
propose a low complexity solution by using an index policy for
the FBS scheduling problem in which we utilize the overheard
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CQI feedback information. Further, we derive a closed form
index for the given problem using an approximated belief
value. Our performance gain is shown by comparing the
proposed policy, and myopic policy.

Our manuscript is organized as follows, Section II intro-
duces the system model and assumptions used throughout this
work. In Section III, we present the RMAB problem formula-
tion based on the received CQI observation. We provide our
index derivation as well as its closed form in Section IV.
Section V provides comparisons between the performance of
the proposed indexing policy versus a myopic policy. Lastly,
we conclude our work in Section VL.

II. SYSTEM MODEL

Our network model consists of a central MBS, owned by
the service provider, and number of FBSs processed by the
femto holders as shown in Fig. 1. Each FBS shares a number
of assigned channels with the MBS such that the co-tier
interference with other FBSs is avoided. This can be achieved
by orthogonal channel assignments for adjacent femtocells.
Further, we assume cognitive capabilities in each FBS in
order to assist in overhearing the CQI report. Furthermore,
femtocells operate in closed access mode and the physical
layer follows the LTE-A time division duplex (TDD) frame
structure. Owing to channel reciprocity, the channel gains
between the FBS and the users (femto or macro users) are
considered to be known, as well as the channel connecting
the MBS and the femto users (FUEs). On the other hand, the
channel connecting the MBS and the macro users (MUES) is
considered as unknown channel for the FBS. Moreover, we
require no periodic direct information transfer between FBS
and MBS to finish the scheduling process.

We assume that the channel model describing unknown
channels follow the famous 2-state Markov model (Gilbert-
Elliott model) shown in Fig. 1. Each channel has its transition
probabilities Py,, P;; and the probability of being in the
good/bad state Py, P.

According to our system model, each FBS is assigned a
group of orthogonal channels, such that FBSs can obtain their
observation through overhearing the CQI report (¢(t)) for
the assigned channels. The observed CQI report includes the
MUEs signal to interference and noise ratio (SINR) informa-
tion. However, full observation is obtained by monitoring the
CQI for the chosen subset of channels, in order to measure
the impact of channel sharing on the primary users (MUEs)
received signal quality such that the instantaneous observed
CQI for a certain channel at time ¢ is denoted as ¢(t). The
number of available CQI levels will be referred as N, such
that 1 < ¢(t) < Nj.

III. PROBLEM FORMULATION

We will provide a generalization for regular RMAB formu-
lation presented in [6], such that instead of directly observing
the real channel state, we will use the available feedback infor-
mation (CQI) embedded in the users channel state information
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Fig. 1. System model.

(CSI). We will assume that the FBS has N. independent
channels shared with neighboring MUEs.

Each channel is modeled using the Gilbert-Elliott channel
model shown in Fig. 1. At each time, FBS has to schedule K
channels for K FUEs. We aim to use Whittle index to rank the
available channels based on the subsidy for passivity concept
[4], such that the more attractive the channel for use the higher
rank or index it will have.

The belief w(t) refers to the conditional probability of being
in the good state at time ¢. While the belief vector (w(t)) con-
sists of all the instantaneous beliefs of the available channels.
For channel ¢, denote a;(t) as the decided action based on the
observed CQI according to certain policy function, while a(t)
is the action vector for all the available channels. Basically,
the policy function (7) will map the belief vector to the action.

Our objective is to maximize the expected discounted re-
ward over infinite horizon which can be described by

m(ifs“m(tnw(l)), 1)

where w(1) is the initial belief vector, J is the discount factor
(0 € [0 1)), and the reward function is defined as

Re(t)= Y Xi(t)Bi, )

1€EA(t)

where A(t) is the set of active arms/channels at time ¢,
X;(t) is state indicator function equals to “1” when the
channel is in the good state (S;) and “0” otherwise. B; is the
throughput/bandwidth of channel i. B = {B1,By... By} is
the vector containing the channels throughputs, and without
loss of generality, we normalized this vector such that the
greatest throughput is 1. In the next section, we will drop the
channel index, since the proposed indexing policy will handle
each channel independently (i.e. B; = 1).

A. Restless Multiarmed Bandit (RMAB) Problem Statement

According to our system model, each FBS is assigned
number of channels to schedule their users, such that for
FBS F there exists /N, channels and the FBS need to assign
K channels for K FUEs. We assume that the MBS-MUEs



channels follow Gilbert-Elliott channel model shown in Fig. 1,
meanwhile these channels are considered as unknown channels
to the FBS, hence their actual state is unobservable. Instead of
observing the channels actual state, FBSs can overhear/observe
the CQI reports for the available channels, in order to update
the probability of being in the good state (belief). Accordingly,
we need to update the belief based on the available observation
(i.e. q(t)) as follows

w;, fora(t) =1,q(t) =4

Tw(t)], for a(t) =0 ’ 3)

w(t+1) = {
where w; is the probability that the channel state at ¢t + 1 is
in the good state when the observation (¢(t)) at time ¢ is 4
(Pr(S(t +1) = Sylq(t) = 14)) for i = 1,...N, and T[w(t)]
is the belief update when passive action is decided, hence no
observation such that

Tlw(t)] = pggw(t) + Pog(1 — w(t)). )
Define the belief of receiving a CQI observation ¢ as
w; = Pr(S(t +1) = Sylq(t) = 9), (5)

and using the law of total probability, we get
w; =PH(S(t+ 1) = 5,[S(1) = 5,)Pr(S(t) = S,la(t) = i)
+Pr(S(t + 1) = S,4]S(t) = Sp)Pr(S(t) = Splq(t) = i),
_ PggPigw(t) + Pogpin(1 — w(t)) ©)
Pigw(t) + pir(1 — w(t))
while the probability of observing a certain CQI given w(t)
(Pr(q(t) = i|w(t))) is given by

pi(w) = wpig + (1 — w)pip,

N,

forio=1...Ny,

Wi

(7

where p;q,p;p are the probabilities of observing ¢(t) = 1
when the channel is in the good or bad state, respectively.
Accordingly vaqu Pig =1 and ZlN:ql pip = 1.

The value function (fs s(w)) represents the maximum ex-
pected total discounted reward achievable using a single armed
bandit with a subsidy s and belief w. It can be described as

fs,5(w) = max(fss5(w;a =0), fss(w;a=1)), (8

where f,s(w;a = 0) is the value function when a passive
action is taken (no observation) while f; s(w;a = 1) is the
value function when an active action is taken and the discount
factor is 9. We denote the value function for the passive and
active actions as

Fos(wia=0)=s+05f,s(T)), ©)
Nq

foswia=1) =w+38(d_ pi(w)fosw),  (10)
=1

where s is the subsidy that represent the reward for the passive
action in the first time slot.

The RMAB is considered indexable if all the arms/channels
are indexable. Due to the problem decomposability, showing
that an arbitrary arm is indexable is suffice to prove that all
arms are indexable, hence the problem is indexable. According

to [4] and [6], an arm is considered indexable if the passive
set of a single armed bandit process with a certain subsidy s
increases from @ to include the whole space [0, 1] monotoni-
cally with the increase of s from —oo to co.

For indexable problem, the Whittle index can be defined as

W(w) = irb}f{s Cfsswia=0) = fos(wia=1)}, (11

where W (w) is Whittle index at belief w. In this work, we
did not prove the problem indexability, so our indexing policy
will be referred as approximated Whittle index policy and our
approximated index (W (w)) will be defined as in (11)

W(w) = ir;f{s S fsswia=0) = fos(wya=1)}.

We will base our solution on a threshold policy such that start-
ing from any belief value, arms will reach certain threshold
which it will be easier to define the value function. Such policy
was previously presented in [6]. First, we need to show that
there exists a certain threshold w*(s) where the passive and
active actions are equally attractive.

We need to emphasis that the belief propagation for the
unobserved arm can be derived using the same procedure
shown in [6], such that

12)

Prg — (Pgg — pbg)k(pbg — (14 Pog — Pgg)w)

L+ pog — Pgg
where k is the number of the propagated time slots. Another
important function to define is L(w,v), which represents the
time taken for a passive arm to propagate from a certain belief
(w) to another one (v). Since this function evaluates the time
for a passive arm, then the belief update will follow the passive
arm update shown in (3), leading to the result introduced in
[6], at pgg > Dy

T*[w] =

,» (13)

0, if w>v
L(w,v) = < [log,, %mj +1, ifw<v<ws,
0, fw<v &v>ws

(14)
where pg = pgg—Pbg and wes = Prg/(1+Prg—Dgg) represents
steady state belief, and for pyy > pgq

0, ifw>v
Lw,v) =11, ifw<vand Tw]>v. (15)
00, ifw<vand Tw] <wv

In the next section, we need to construct our policy structure.

B. Policy Structure

In this section, we need to show that there exists a threshold
w*(s) such that the arm will transfer from the passive state to
the active state where f, s(w;a =0) = fss5(w;a =1).

We will show that for 0 < s < 1, there must exists
at least one belief value such that the passive action value
function is equal to the value function when the arm is
active. From (6), we can deduce that w;(t)|,)=0 = Pbg and
Wi(t)]w(t)=1 = Pgg» While from (7), we have p;(w)|,4)=0 =

pib and p;(w)|w =1 = pig for i = 1... Ny,

b



Then for 0 < s < 1:
At w(t) =0

Ny Ny
fas(w=0ia=1) =6 pivfos(pg) = 0fss(Dg) Y it

=1 i=1
:6fs,5(pbg) <s+ 5fs,5(pbg)
= fss(w=0;a=0)
fssw=0;a=1) <fss5(w=0;a=0).

fss(w=0;a=1)

(16)

While at w(t) =1
Nq
faslw=11a=1) =146 pigfas(pgy)
i=1
fso(w=11a=1) =146 fss(pgg) > 5+ fs6(Pgq)
= fss(w=1;a=0)

fsslw=1a=1)>fs5(w=1;a=0). (17)

From which we can confirm that for 0 < s < 1 there exists at
least one crossing such that f; 5(w;a = 0) = fss(w;a = 1)
at some point w*(s).

IV. CLOSED FORM VALUE FUNCTION

In order to derive a close form for the value function, we
need to refer to a base case for which we reach a certain
constant belief. According to our optimum policy and the value
function structure, we can describe the value function at any
belief to start with the value function for the passive action
until we reach w*(s) then the arm will be transfered from the
passive to active action.

Accordingly, we can write the value function in terms of the
active action value function after L(w,w*(s)) + 1 time slots.
L(w,w*(s)) is the time needed to transfer from the starting
belief (w) until it reaches w*(s), such that

1— 6L(cu w*(s))

fs&( ) 1——68

n 5L(w,w*(8))fs’6(TL(“’v“’*(3))[w}; a=1), (18)

which have the same structure as the value function shown
in [6], as outcome of the threshold policy similarity. Since
fos(TE@« () (w);a = 1) is function in w;, then we can
evaluate a close form for f,s(w;) which can be used to
evaluate a general closed form for fs 5(w). According to (6),
w; is function in w(t) which prevent having the base case
needed to derive a closed form.

In order to recover the problem of having w; as function
in w(t), we are suggesting an approximation where instead of
using the instantaneous belief value (w(t)), we use the steady
state belief value (ws,) such that

Low(t (1 — w(t
Wl(t) — pggp gw( )+pbgp b( w( )), (19)
Pigw(t) + pin (1 — w(t))
can be approximated to
7 ss (2 1- ss
wl(t) ~ (IJ»L _ pggp gw +pbgp b( w )7 (20)
PigWss + pib(l - wss)

where Wy = Pog/(1+ pug —Pgg)- By this way we can reach a
constant w; and have the base case needed to derive a closed
form value function.

From (19), we can see that the values of w;(t) varies
between py, to pg, such that w;(t)|um=0 = pby and
wi(t)|w(t)=1 = Pgg-

We will start by substituting in (18) to evaluate fs 5(w;) to
get

Nq
foo@)=mis+yi+ > 2zi;fes(@;), 2D
J=1,j#i
where
1 — §L@w*(5)
T = 5EG e I (TG (D [])) (1 — )
SL(@ " () PL@: " () [55,]
Yi=1_ L@ (N, (TL @ () [;])
Lo 5L(@i,w*<s))+1pj(TL(@i w () [@])

v _]_ _ 5L(@i,w*(s))+1 ( @;,w*(s) )[ ])

now we got N, equations for f, s(@;) for i =1...N,, which

can be written in matrix form as a system of linear equations

1 —21 —21,N, | [ fs6(@1) 18+ Y1
—221 1 —Za2,N, fo,5(cw2) 28 + Y2
- 9
_Zqul _ZNq,Z 1 fsvé(a}Nq) quSJ’_yN‘Z
then
Av = b, (23)

where A, % and b are the matrix and arrays shown in (22).
This set of linear equations can be solved in polynomial
time (O(n?)), but the value functions will still be function
in the subsidy s. The number of equations in (22) are N,
meanwhile we got IV, + 1 unknown (IV, value functions and
the subsidy s). Accordingly, we need to add one more equation
to the equation set in (22) to be uniquely solvable. Using the
equality condition of the active and passive value functions,
we should be able to add the needed equation, as follows

fos(wia=0) = fss(wia=1), 24)

5+6fs6(

—w+52pz

and substituting with the results illustrated in (18), we will get

fs 5 Wz (25)

N‘I
s— Y €ifos(@)=m, (26)
i=1
where
(1 _ 5)(w _ 5L(T[w],w*(s))+1TL(T[w],w*(s))[T[w”)
- 1 — pL(Tlw (s)+1 :
5(1 = 8)pi(w) — SLTWLW™ () +1p (PLTW]w” () [T[w]])

€; =

1 — §L(T[w]w*(s))+1



w*(s) = 0.2, s = 0.15999 w*(s) = 0.3, s = 0.26857

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
w*(s) = 0.4, s = 0.37714 w*(s) = 0.5, s = 0.48571

0 0.2 0.4 0.6
w*(s) = 0.6, s = 0.59428

0.8 1 0 0.2 0.4 0.6 0.8 1
w*(s)=0.7, s = 0.71388

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 2. Optimum threshold for different w*(s).

Using (26), we can evaluate Whittle index directly from the
given equations as follows

— fs5(@1) Y1
i Js,5(@2) Y2
A : . .
—IN '7 ’

e, | s

27)
such that

Av = b, (28)

where A,v and b are the matrix and arrays shown in (27).
Now, we can calculate the approximated Whittle index by
solving the set of linear equations described in (27) and (28)
with polynomial complexity (O(n?)), where n is the number
of unknowns (n = N, +1), or by applying Cramer’s rule with
the same complexity Thus, the approximated Whittle index
for each channel ¢ with a bandwidth B; can be described as

follows

Wz(w) = BiM

det(A) 29)

w*(s)=w

From (29), we can deduce that the existence of the approxi-
mated Whittle index is directly related to the matrix A non-
singularity, that is to say that there exists an approximated
Whittle index when the matrix A is full rank.

Value function

Fig. 3. Active and passive value functions at Whittle index.

V. NUMERICAL PERFORMANCE RESULTS

We divide the performance section into two main parts,
part I will focus on validating the presented formulas in
the previous sections, while in part II, we will compare the
performance of the proposed heuristic index policy and the
myopic policy.

Figs. 2, and 3 demonstrates the existence of a Whittle index
and correctness for different belief values. Fig. 4, will illustrate
the performance of the approximated Whittle policy compared
to the myopic policy.

In Fig. 2, we provide the value function at @ = 0 versus
a = 1, to show the existence of approximated Whittle index
for different belief values. It is clear from the figures that the
intersection point (w*(s)) perfectly match the calculated value.

In Fig. 3, we present the value function variation with
w*(s) at the approximated Whittle index which confirms the
correctness of the calculated index such that it satisfy the active
and passive value functions equality condition in (24).

A. Myopic Policy Comparison

The myopic policy is considered to be one of the simplest
non-trivial RMAB polices, where the objective is to maximize
the current reward only without considering future rewards.
The myopic action (A(w)) for a belief vector w is

A(w) = arg max

wiBi,
A(t)

(30)

where w? is the instantaneous belief of channel i. The simula-
tion flow used to evaluate the system performance start by gen-
erating the channel states according to the provided channel
model, then we generate the CQI observations in accordance.
Based on the CQI observation, we calculated the actual belief
using (6), which will be used by the myopic policy to select
the used arm. In (20), we provide an approximation for the
belief which was used to derive our Whittle policy.
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Fig. 4. Expected throughput using the Whittle and myopic poli-

cies ({pi)}_; = {0.8,06,04,09,08,06,07}, {pyy}l_, =
{0.6,0.4,0.2, 0.2,0.4,0.1,0.3}, N, = 15,K = 1,N = 7 and B; =
£0.4998, 0.6668, 1.0000, 0.6296, 0.5830, 0.8334, 0.6668}.

In Fig. 4, we present the expected throughput for the myopic
and Whittle indexing policies. The dashed blue lines provide
the expected throughput using the actual belief update, while
the dotted red lines shows the expected throughput when using
the approximated belief. Although, we used the actual belief in
generating the myopic policy response, Whittle index policy
which is based on the approximated belief still outperform
the myopic policy. The expected reward for the myopic and
Whittle indexing policies presented in Fig. 4 is calculated
using N, = 15 and the reward is defined as

Raw(t) = Z X;(t)B;,

1€A(L)

€29

such that if the state of the observed channel is good then
Xi(t) = 1, and X;(t) = 0 otherwise. In other words, the
user transmits and collects reward if the selected channel is in
the good state, otherwise, the user collects no reward. This
performance measure is based on the channel state, which
should be a common measure between the myopic and Whittle
index policies. In Fig. 4, we evaluated the throughput for
the proposed Whittle index policy using the approximated
steady state belief and the actual belief, which shows partially
the approximated steady state belief effect on the presented
formula.

VI. CONCLUSION

In this work, we formulated the FBS channel allocation
problem in heterogeneous networks where the femtocell avail-
able bandwidth is shared with the macrocell. We deployed the
RMAB framework in order to describe the FBS scheduling
problem while taking into account the available feedback
information. We leverage the RMAB formulation to develop
an indexing policy that represents a practical low complexity
solution for the shared FBS resource allocation problem. We

proved the existence of an optimal belief where the active
and passive actions value functions are equally attractive
under the new problem formulation. Moreover, we derived an
approximate closed form Whittle index for the given problem
using an approximate belief value. Lastly, we illustrated the
advantage of the proposed Whittle index policy through test
comparisons with results of the myopic policy.
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