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Abstract—1 In this paper, we address the problem of channel
allocation for femtocells that share the use of regular macrocell
spectrum. The femto basestation (FBS) scheduling problem is
formulated in the form of restless multiarmed bandit (RMAB)
framework. Our goal is to choose the arms/channels that maxi-
mize the total expected discounted reward over infinite horizon
while minimizing the induced interference due to channel sharing
with macrocell. Without direct observation of true channel state,
we use the available macrocell user feedback known as channel
quality indicator (CQI). In general, the RMAB problem is P-
SPACE hard. We propose a heuristic low complexity indexing
policy referred as approximated Whittle index to rank available
channels for FBS. Although finding a closed form channel
ranking solution typically involve dynamic programming, we
show that based on the partial channel information within CQI,
there exists a closed form for the channel index. Moreover, we
demonstrate the performance advantage of the proposed indexing
policy over a myopic policy.

Index Terms—Femtocell; restless multiarmed bandit (RMAB);
resource allocation; Whittle index, myopic policy.

I. INTRODUCTION

Multiarmed bandit (MAB) is a classical mathematical prob-

lem that provides basic framework for dynamic resource allo-

cation problems. In its classical form, a player needs to choose

one arm out of N to play and accordingly gains its reward.

Each arm has certain state that determines its reward such that

state transition can only occur for the active (chosen) arm. The

player objective is to maximize its reward over infinite horizon

through following a certain arm selection policy. Originally,

MAB was first introduced in [1], and remained partially open

since then. In [2] and [3], Gittins provided an essential insight

to resolve the dimensionality problem in MAB by reducing

the complexity from N-dimension problem into N-problems

with 1-dimension for each.

A generalized form of the classical MAB formulation called

the restless multiarmed bandit (RMAB) problem was studied

by Whittle in [4]. In RMAB, the selection of K arms out

of the available N arms is allowed (1 ≤ K ≤ N ) instead

of the previous one arm selection constraint, moreover the

passive arms are allowed to change their state unlike the

classical formulation where the state of any passive arm was

unchanged. Whittle applied the Lagrangian relaxation to derive
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an indexing policy generalizing Gittins policy but for a much

broader type of problems. Whittle index policy attached an

index to each arm (referred as Whittle index), such that the

player will choose the arms with the highest indices. The

optimality of Whittle index policy was achieved by the nature

of Lagrangian relaxation under a relaxed constraint on the

mean number of chosen arms (E[K(t)] = K), instead of strict

constraint K(t) = K.

Many real life applications can be viewed and modeled

using the RMAB formulation. Despite the vast categories and

types of problems, each problem has its own requirements

and special considerations. Many existing works have linked

the general channel allocation problem to the classical RMAB

formulation. On the other hand, relatively fewer have applied

this formulation on heterogeneous networks (HetNets) [5]–

[8]. In this work, we employ the RMAB framework to model

the femto basestation (FBS) resource allocation problem in

HetNets where we take into account the existing feedback

information. Our main motivation is to develop a practical

and low complexity solution for the femtocell scheduling

problem. In order to do so, we will need to provide practical

considerations beyond the literature through using the RMAB

formulation in scheduling the femtocell resources.

Femtocell resource scheduling is a typical problem that

has been studied in many existing works [9]–[12]. It has

been previously shown that the scheduling problem can be

considered as a RMAB problem [5]–[7]. The ability to directly

observe the channel state is one of the common assumptions

made before which no longer applies in HetNet without

direct and continuous coordination between macro basestation

(MBS) and FBSs. Such coordination will require additional

processing and will consume more bandwidth [6]. Unlike

previous works, we did not assume that FBS can access the

instantaneous channel state information. Instead, the proposed

method utilizes the practical channel quality indicator (CQI)

report as partial observation of the channel state. In HetNets,

using cognitive capabilities, FBSs can observe the CQI based

on which the channel state is estimated [13].

In this work, we aim to formulate the femtocell channel

allocation problem in heterogeneous networks as a RMAB

problem using practically available feedback information. We

propose a low complexity solution by using an index policy for

the FBS scheduling problem in which we utilize the overheard
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CQI feedback information. Further, we derive a closed form

index for the given problem using an approximated belief

value. Our performance gain is shown by comparing the

proposed policy, and myopic policy.

Our manuscript is organized as follows, Section II intro-

duces the system model and assumptions used throughout this

work. In Section III, we present the RMAB problem formula-

tion based on the received CQI observation. We provide our

index derivation as well as its closed form in Section IV.

Section V provides comparisons between the performance of

the proposed indexing policy versus a myopic policy. Lastly,

we conclude our work in Section VI.

II. SYSTEM MODEL

Our network model consists of a central MBS, owned by

the service provider, and number of FBSs processed by the

femto holders as shown in Fig. 1. Each FBS shares a number

of assigned channels with the MBS such that the co-tier

interference with other FBSs is avoided. This can be achieved

by orthogonal channel assignments for adjacent femtocells.

Further, we assume cognitive capabilities in each FBS in

order to assist in overhearing the CQI report. Furthermore,

femtocells operate in closed access mode and the physical

layer follows the LTE-A time division duplex (TDD) frame

structure. Owing to channel reciprocity, the channel gains

between the FBS and the users (femto or macro users) are

considered to be known, as well as the channel connecting

the MBS and the femto users (FUEs). On the other hand, the

channel connecting the MBS and the macro users (MUEs) is

considered as unknown channel for the FBS. Moreover, we

require no periodic direct information transfer between FBS

and MBS to finish the scheduling process.

We assume that the channel model describing unknown

channels follow the famous 2-state Markov model (Gilbert-

Elliott model) shown in Fig. 1. Each channel has its transition

probabilities Pbg, Pgg and the probability of being in the

good/bad state Pg, Pb.

According to our system model, each FBS is assigned a

group of orthogonal channels, such that FBSs can obtain their

observation through overhearing the CQI report (q(t)) for

the assigned channels. The observed CQI report includes the

MUEs signal to interference and noise ratio (SINR) informa-

tion. However, full observation is obtained by monitoring the

CQI for the chosen subset of channels, in order to measure

the impact of channel sharing on the primary users (MUEs)

received signal quality such that the instantaneous observed

CQI for a certain channel at time t is denoted as q(t). The

number of available CQI levels will be referred as Nq such

that 1 ≤ q(t) ≤ Nq .

III. PROBLEM FORMULATION

We will provide a generalization for regular RMAB formu-

lation presented in [6], such that instead of directly observing

the real channel state, we will use the available feedback infor-

mation (CQI) embedded in the users channel state information
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Fig. 1. System model.

(CSI). We will assume that the FBS has Nc independent

channels shared with neighboring MUEs.

Each channel is modeled using the Gilbert-Elliott channel

model shown in Fig. 1. At each time, FBS has to schedule K
channels for K FUEs. We aim to use Whittle index to rank the

available channels based on the subsidy for passivity concept

[4], such that the more attractive the channel for use the higher

rank or index it will have.

The belief ω(t) refers to the conditional probability of being

in the good state at time t. While the belief vector (ω(t)) con-

sists of all the instantaneous beliefs of the available channels.

For channel i, denote ai(t) as the decided action based on the

observed CQI according to certain policy function, while a(t)
is the action vector for all the available channels. Basically,

the policy function (π) will map the belief vector to the action.

Our objective is to maximize the expected discounted re-

ward over infinite horizon which can be described by

Eπ

( ∞
∑

t=1

δt−1Rπ(t)|ω(1)

)

, (1)

where ω(1) is the initial belief vector, δ is the discount factor

(δ ∈ [0 1]), and the reward function is defined as

Rπ(t) =
∑

i∈A(t)

Xi(t)Bi, (2)

where A(t) is the set of active arms/channels at time t,
Xi(t) is state indicator function equals to “1” when the

channel is in the good state (Sg) and “0” otherwise. Bi is the

throughput/bandwidth of channel i. B = {B1, B2 . . . BN} is

the vector containing the channels throughputs, and without

loss of generality, we normalized this vector such that the

greatest throughput is 1. In the next section, we will drop the

channel index, since the proposed indexing policy will handle

each channel independently (i.e. Bi = 1).

A. Restless Multiarmed Bandit (RMAB) Problem Statement

According to our system model, each FBS is assigned

number of channels to schedule their users, such that for

FBS F there exists Nc channels and the FBS need to assign

K channels for K FUEs. We assume that the MBS-MUEs



channels follow Gilbert-Elliott channel model shown in Fig. 1,

meanwhile these channels are considered as unknown channels

to the FBS, hence their actual state is unobservable. Instead of

observing the channels actual state, FBSs can overhear/observe

the CQI reports for the available channels, in order to update

the probability of being in the good state (belief). Accordingly,

we need to update the belief based on the available observation

(i.e. q(t)) as follows

ω(t+ 1) =

{

ωi, for a(t) = 1, q(t) = i

T [ω(t)], for a(t) = 0
, (3)

where ωi is the probability that the channel state at t + 1 is

in the good state when the observation (q(t)) at time t is i
(Pr(S(t + 1) = Sg|q(t) = i)) for i = 1, . . . Nq and T [ω(t)]
is the belief update when passive action is decided, hence no

observation such that

T [ω(t)] = pggω(t) + pbg(1− ω(t)). (4)

Define the belief of receiving a CQI observation i as

ωi = Pr(S(t+ 1) = Sg|q(t) = i), (5)

and using the law of total probability, we get

ωi =Pr(S(t+ 1) = Sg|S(t) = Sg)Pr(S(t) = Sg|q(t) = i)

+Pr(S(t+ 1) = Sg|S(t) = Sb)Pr(S(t) = Sb|q(t) = i),

ωi =
pggpigω(t) + pbgpib(1− ω(t))

pigω(t) + pib(1− ω(t))
for i = 1 . . . Nq, (6)

while the probability of observing a certain CQI given ω(t)
(Pr(q(t) = i|ω(t))) is given by

pi(ω) = ωpig + (1− ω)pib, (7)

where pig, pib are the probabilities of observing q(t) = i
when the channel is in the good or bad state, respectively.

Accordingly
∑Nq

i=1 pig = 1 and
∑Nq

i=1 pib = 1.

The value function (fs,δ(ω)) represents the maximum ex-

pected total discounted reward achievable using a single armed

bandit with a subsidy s and belief ω. It can be described as

fs,δ(ω) = max(fs,δ(ω; a = 0), fs,δ(ω; a = 1)), (8)

where fs,δ(ω; a = 0) is the value function when a passive

action is taken (no observation) while fs,δ(ω; a = 1) is the

value function when an active action is taken and the discount

factor is δ. We denote the value function for the passive and

active actions as

fs,δ(ω; a = 0) =s+ δfs,δ(T [ω]), (9)

fs,δ(ω; a = 1) =ω + δ(

Nq
∑

i=1

pi(ω)fs,δ(ωi)), (10)

where s is the subsidy that represent the reward for the passive

action in the first time slot.

The RMAB is considered indexable if all the arms/channels

are indexable. Due to the problem decomposability, showing

that an arbitrary arm is indexable is suffice to prove that all

arms are indexable, hence the problem is indexable. According

to [4] and [6], an arm is considered indexable if the passive

set of a single armed bandit process with a certain subsidy s
increases from ∅ to include the whole space [0, 1] monotoni-

cally with the increase of s from −∞ to ∞.

For indexable problem, the Whittle index can be defined as

W (ω) = inf
s
{s : fs,δ(ω; a = 0) = fs,δ(ω; a = 1)}, (11)

where W (ω) is Whittle index at belief ω. In this work, we

did not prove the problem indexability, so our indexing policy

will be referred as approximated Whittle index policy and our

approximated index (W̄ (ω)) will be defined as in (11)

W̄ (ω) = inf
s
{s : fs,δ(ω; a = 0) = fs,δ(ω; a = 1)}. (12)

We will base our solution on a threshold policy such that start-

ing from any belief value, arms will reach certain threshold

which it will be easier to define the value function. Such policy

was previously presented in [6]. First, we need to show that

there exists a certain threshold w∗(s) where the passive and

active actions are equally attractive.

We need to emphasis that the belief propagation for the

unobserved arm can be derived using the same procedure

shown in [6], such that

T k[ω] =
pbg − (pgg − pbg)

k
(pbg − (1 + pbg − pgg)ω)

1 + pbg − pgg
, (13)

where k is the number of the propagated time slots. Another

important function to define is L(ω, ν), which represents the

time taken for a passive arm to propagate from a certain belief

(ω) to another one (ν). Since this function evaluates the time

for a passive arm, then the belief update will follow the passive

arm update shown in (3), leading to the result introduced in

[6], at pgg ≥ pbg

L(ω, ν) =

⎧

⎪

⎨

⎪

⎩

0, if ω > ν

�logpd

pbg−ν(1−pd)
p01−ω(1−pd)

�+ 1, if ω ≤ ν < ωss

∞, if ω ≤ ν & ν ≥ ωss

,

(14)

where pd = pgg−pbg and ωss = pbg/(1+pbg−pgg) represents

steady state belief, and for pbg > pgg

L(ω, ν) =

⎧

⎪

⎨

⎪

⎩

0, if ω > ν

1, if ω ≤ ν and T [ω] > ν

∞, if ω ≤ ν and T [ω] ≤ ν

. (15)

In the next section, we need to construct our policy structure.

B. Policy Structure

In this section, we need to show that there exists a threshold

ω∗(s) such that the arm will transfer from the passive state to

the active state where fs,δ(ω; a = 0) = fs,δ(ω; a = 1).
We will show that for 0 ≤ s < 1, there must exists

at least one belief value such that the passive action value

function is equal to the value function when the arm is

active. From (6), we can deduce that ωi(t)|ω(t)=0 = pbg and

ωi(t)|ω(t)=1 = pgg , while from (7), we have pi(ω)|ω(t)=0 =
pib and pi(ω)|ω(t)=1 = pig for i = 1 . . . Nq .



Then for 0 ≤ s < 1:

At ω(t) = 0

fs,δ(ω = 0; a = 1) =δ

Nq
∑

i=1

pibfs,δ(pbg) = δfs,δ(pbg)

Nq
∑

i=1

pib

fs,δ(ω = 0; a = 1) =δfs,δ(pbg) ≤ s+ δfs,δ(pbg)

= fs,δ(ω = 0; a = 0)

fs,δ(ω = 0; a = 1) ≤fs,δ(ω = 0; a = 0). (16)

While at ω(t) = 1

fs,δ(ω = 1; a = 1) =1 + δ

Nq
∑

i=1

pigfs,δ(pgg)

fs,δ(ω = 1; a = 1) =1 + δfs,δ(pgg) > s+ δfs,δ(pgg)

= fs,δ(ω = 1; a = 0)

fs,δ(ω = 1; a = 1) >fs,δ(ω = 1; a = 0). (17)

From which we can confirm that for 0 ≤ s < 1 there exists at

least one crossing such that fs,δ(ω; a = 0) = fs,δ(ω; a = 1)
at some point ω∗(s).

IV. CLOSED FORM VALUE FUNCTION

In order to derive a close form for the value function, we

need to refer to a base case for which we reach a certain

constant belief. According to our optimum policy and the value

function structure, we can describe the value function at any

belief to start with the value function for the passive action

until we reach ω∗(s) then the arm will be transfered from the

passive to active action.

Accordingly, we can write the value function in terms of the

active action value function after L(ω, ω∗(s)) + 1 time slots.

L(ω, ω∗(s)) is the time needed to transfer from the starting

belief (ω) until it reaches ω∗(s), such that

fs,δ(ω) =
1− δL(ω,ω∗(s))

1− δ
s

+ δL(ω,ω∗(s))fs,δ(T
L(ω,ω∗(s))[ω]; a = 1), (18)

which have the same structure as the value function shown

in [6], as outcome of the threshold policy similarity. Since

fs,δ(T
L(ω,ω∗(s))(ω); a = 1) is function in ωi, then we can

evaluate a close form for fs,δ(ωi) which can be used to

evaluate a general closed form for fs,δ(ω). According to (6),

ωi is function in ω(t) which prevent having the base case

needed to derive a closed form.

In order to recover the problem of having ωi as function

in ω(t), we are suggesting an approximation where instead of

using the instantaneous belief value (ω(t)), we use the steady

state belief value (ωss) such that

ωi(t) =
pggpigω(t) + pbgpib(1− ω(t))

pigω(t) + pib(1− ω(t))
, (19)

can be approximated to

ωi(t) ≈ ω̄i =
pggpigωss + pbgpib(1− ωss)

pigωss + pib(1− ωss)
, (20)

where ωss = pbg/(1+pbg−pgg). By this way we can reach a

constant ωi and have the base case needed to derive a closed

form value function.

From (19), we can see that the values of ωi(t) varies

between pbg to pgg such that ωi(t)|ω(t)=0 = pbg and

ωi(t)|ω(t)=1 = pgg .

We will start by substituting in (18) to evaluate fs,δ(ω̄i) to

get

fs,δ(ω̄i) = xis+ yi +

Nq
∑

j=1,j �=i

zi,jfs,δ(ω̄j), (21)

where

xi =
1− δL(ω̄i,ω

∗(s))

(1− δL(ω̄i,ω∗(s))+1pi(TL(ω̄i,ω∗(s))[ω̄i]))(1− δ)

yi =
δL(ω̄i,ω

∗(s))TL(ω̄i,ω
∗(s))[ω̄i]

1− δL(ω̄i,ω∗(s))+1pi(TL(ω̄i,ω∗(s))[ω̄i])
,

zi,j =
δL(ω̄i,ω

∗(s))+1pj(T
L(ω̄i,ω

∗(s))[ω̄i])

1− δL(ω̄i,ω∗(s))+1pi(TL(ω̄i,ω∗(s))[ω̄i])
,

now we got Nq equations for fs,δ(ω̄i) for i = 1 . . . Nq , which

can be written in matrix form as a system of linear equations
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −z1,2 · · · −z1,Nq

−z2,1 1 · · · −z2,Nq

...
...

...
...

...
...

. . .
...

−zNq,1 −zNq,2 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

fs,δ(ω̄1)
fs,δ(ω̄2)

...

...

fs,δ(ω̄Nq
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x1s+ y1
x2s+ y2

...

...

xNq
s+ yNq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(22)

then

Āv̄ = b̄, (23)

where Ā, v̄ and b̄ are the matrix and arrays shown in (22).

This set of linear equations can be solved in polynomial

time (O(n3)), but the value functions will still be function

in the subsidy s. The number of equations in (22) are Nq ,

meanwhile we got Nq + 1 unknown (Nq value functions and

the subsidy s). Accordingly, we need to add one more equation

to the equation set in (22) to be uniquely solvable. Using the

equality condition of the active and passive value functions,

we should be able to add the needed equation, as follows

fs,δ(ω; a = 0) = fs,δ(ω; a = 1), (24)

s+ δfs,δ(T [ω]) = ω + δ

Nq
∑

i=1

pi(ω)fs,δ(ω̄i), (25)

and substituting with the results illustrated in (18), we will get

s−

Nq
∑

i=1

εifs,δ(ω̄i) = η, (26)

where

η =
(1− δ)(ω − δL(T [ω],ω∗(s))+1TL(T [ω],ω∗(s))[T [ω]])

1− δL(T [ω],ω∗(s))+1
,

εi =
δ(1− δ)pi(ω)− δL(T [ω],ω∗(s))+1pi(T

L(T [ω],ω∗(s))[T [ω]])

1− δL(T [ω],ω∗(s))+1
.
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Fig. 2. Optimum threshold for different ω∗(s).

Using (26), we can evaluate Whittle index directly from the

given equations as follows

⎡

⎢

⎢

⎢

⎣

Ā
−x1

...

−xNq

−ε1 · · · −εNq
1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

fs,δ(ω̄1)
fs,δ(ω̄2)

...

fs,δ(ω̄Nq
)

s

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

y1
y2
...

yNq

η

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

(27)

such that

Av = b, (28)

where A,v and b are the matrix and arrays shown in (27).

Now, we can calculate the approximated Whittle index by

solving the set of linear equations described in (27) and (28)

with polynomial complexity (O(n3)), where n is the number

of unknowns (n = Nq+1), or by applying Cramer’s rule with

the same complexity Thus, the approximated Whittle index

for each channel i with a bandwidth Bi can be described as

follows

W̄i(ω) = Bi

det(As)

det(A)

∣

∣

∣

∣

ω∗(s)=ω

. (29)

From (29), we can deduce that the existence of the approxi-

mated Whittle index is directly related to the matrix A non-

singularity, that is to say that there exists an approximated

Whittle index when the matrix A is full rank.
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Fig. 3. Active and passive value functions at Whittle index.

V. NUMERICAL PERFORMANCE RESULTS

We divide the performance section into two main parts,

part I will focus on validating the presented formulas in

the previous sections, while in part II, we will compare the

performance of the proposed heuristic index policy and the

myopic policy.

Figs. 2, and 3 demonstrates the existence of a Whittle index

and correctness for different belief values. Fig. 4, will illustrate

the performance of the approximated Whittle policy compared

to the myopic policy.

In Fig. 2, we provide the value function at a = 0 versus

a = 1, to show the existence of approximated Whittle index

for different belief values. It is clear from the figures that the

intersection point (ω∗(s)) perfectly match the calculated value.

In Fig. 3, we present the value function variation with

ω∗(s) at the approximated Whittle index which confirms the

correctness of the calculated index such that it satisfy the active

and passive value functions equality condition in (24).

A. Myopic Policy Comparison

The myopic policy is considered to be one of the simplest

non-trivial RMAB polices, where the objective is to maximize

the current reward only without considering future rewards.

The myopic action (Â(ω)) for a belief vector ω is

Â(ω) = argmax
A(t)

∑

i∈A(t)

ωiBi, (30)

where ωi is the instantaneous belief of channel i. The simula-

tion flow used to evaluate the system performance start by gen-

erating the channel states according to the provided channel

model, then we generate the CQI observations in accordance.

Based on the CQI observation, we calculated the actual belief

using (6), which will be used by the myopic policy to select

the used arm. In (20), we provide an approximation for the

belief which was used to derive our Whittle policy.
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In Fig. 4, we present the expected throughput for the myopic

and Whittle indexing policies. The dashed blue lines provide

the expected throughput using the actual belief update, while

the dotted red lines shows the expected throughput when using

the approximated belief. Although, we used the actual belief in

generating the myopic policy response, Whittle index policy

which is based on the approximated belief still outperform

the myopic policy. The expected reward for the myopic and

Whittle indexing policies presented in Fig. 4 is calculated

using Nq = 15 and the reward is defined as

RA(t)(t) =
∑

i∈A(t)

Xi(t)Bi, (31)

such that if the state of the observed channel is good then

Xi(t) = 1, and Xi(t) = 0 otherwise. In other words, the

user transmits and collects reward if the selected channel is in

the good state, otherwise, the user collects no reward. This

performance measure is based on the channel state, which

should be a common measure between the myopic and Whittle

index policies. In Fig. 4, we evaluated the throughput for

the proposed Whittle index policy using the approximated

steady state belief and the actual belief, which shows partially

the approximated steady state belief effect on the presented

formula.

VI. CONCLUSION

In this work, we formulated the FBS channel allocation

problem in heterogeneous networks where the femtocell avail-

able bandwidth is shared with the macrocell. We deployed the

RMAB framework in order to describe the FBS scheduling

problem while taking into account the available feedback

information. We leverage the RMAB formulation to develop

an indexing policy that represents a practical low complexity

solution for the shared FBS resource allocation problem. We

proved the existence of an optimal belief where the active

and passive actions value functions are equally attractive

under the new problem formulation. Moreover, we derived an

approximate closed form Whittle index for the given problem

using an approximate belief value. Lastly, we illustrated the

advantage of the proposed Whittle index policy through test

comparisons with results of the myopic policy.
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