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Abstract

Biomolecular force field development has been instrumental in improving the predictive power
of molecular simulations over the past four decades. More recently, the era of large quantitative
experimental datasets and ubiquitous high performance computing power has enabled rapid
progress in the field. In this review we summarize recent developments in all-atom protein,
nucleic acid, and small molecule force fields, paying specific attention to developments in
parameterization methods and improvements in the representations of nonbonded interactions
that are critical for solving the challenging biophysical problems of the present. We also sketch
out new avenues for force field development and grand challenge applications for the near
future.
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Introduction

Molecular dynamics (MD) simulations have become a powerful and ubiquitous technique for
understanding the detailed structure and thermodynamics of biomolecular systems [1]. The
quality —and therefore predictive and explanatory power — of these simulations has steadily
improved due to parallel advancements in increasing the timescales for statistical sampling of the
most relevant conformations using accelerated sampling techniques [2—4], disruptive computer
hardware such as massively multicore CPUs, GPUs, and specialized hardware [5-7], and
improving the accuracy of the potential energy functions (i.e., force fields) used to drive these
simulations [1]. In this review we highlight recent and promising developments in force fields,
paying particular attention to all-atom, fixed-charge force fields that are the workhorses of
present-day biomolecular simulations. Where applicable we also discuss polarizable force fields
[8-10], which can offer greater physical accuracy and transferability, and for which new
algorithms are diminishing their computational cost [11-16]. We focus on force fields that have
been developed for primarily small molecule ligands, proteins, and nucleic acids and bypass
detailed discussions of force fields tailored for carbohydrates and lipids. For readers interested in
understanding the progress and challenges in the emerging area of lipid force fields and cell
membrane simulations, however, we recommend reviews [17] and [18].



Protein force fields

Modern all-atom, fixed-charge protein force fields, based on a simple pairwise additive
approximation [19], owe a great deal to their progenitors such as AMBER {194 [20], CHARMM
22 [21], and OPLS-AA [22]. These force fields have often been quite successful in simulations
of globular proteins and short peptides [23] and are mature enough that protein folding
simulations of small single domain proteins (~100 amino acids) are entirely feasible [24]. More
recently, however, detailed experimental data have revealed that these force fields have
deficiencies in simulating intrinsically disordered proteins [25-27], protein folding equilibria and
their dependence on temperature [28,29], and correctly identifying protein folding
pathways/intermediates [30].

One common avenue for improving protein force fields has been the torsion potentials
governing the behavior of both backbone and sidechain dihedral angles. These potentials are an
obvious target for improvement because they sit at the length scale where force fields transition
from being dominated by bonding chemistry to being governed by nonbonded interactions. In
some sense these potentials provide the major correction for deficiencies in the nonbonded
interactions for atoms separated by three bonds and may even implicitly capture many-body
effects. The approaches used for deriving these potentials have ranged from fitting to only ab
initio quantum chemistry data, e.g., AMBER ff99SB-ildn [31,32], ff14SBsconly [33], or FB-15
[34] or OPLS-AA/M [35], to matching only experimental NMR or structural database data as in
the developments of AMBER {f99sb*/ff03*/ff03w [36,37] and ff99sbnmr [38], while AMBER
ff14SB [33] and CHARMM 36 [39,40] have used a mixture of both types of data.

An interesting alternative approach to this problem is embodied by RSFF2 [41], which is
based on the AMBER force field, but uses random coil libraries and modifications to 1-5 and 1-6
van der Waals parameters to improve accuracy for the torsional degrees of freedom. A variety of
these revised torsion potentials have been developed with the explicit goal of improving the
accuracy of IDP simulations. In addition to AMBER ff03w mentioned above, Huang et al.
modified the CMAP backbone potential of CHARMM 36 to create CHARMM 36m (intended
for simulations of both folded proteins and IDPs) [42] and Song et al. generated residue-specific
backbone potentials to create AMBER f{f14IDPSFF [43]. While purely empirical approaches for
fitting torsion potentials to experiment somewhat unsurprisingly yield improved agreement with
other experimental observables, it is interesting that torsion potentials fitted to gas phase
quantum chemistry data appear to be equivalently accurate when validated against the same
experimental data [34]. This is evident in the AMBER FB-15 fit to high quality RI-MP2 data,
where the key development is new torsion parameters that significantly lower the potential in
regions away from the energy minima [34]. This allows the force field to remain accurate in
simulating folded states, as well as multi-temperature simulations that agree well with protein
folding equilibrium experiments [34].

While the development of more advanced torsion potentials has improved simulations of
protein folding and intrinsically disordered proteins, several studies have pointed to significant
deficiencies in simulations of proteins that are unlikely to be remedied by torsion potentials



alone. Most notably, nearly all force fields predict ensembles of disordered proteins and unfolded
states of proteins that are far too compact [25,27,28,37]. Likewise, the solvation free energies of
many amino acid analogues in water are more unfavorable than experimental values [44,45].
Together these observations suggest that most current protein force fields are generally too
hydrophobic and also that the relative strengths of protein-water vs. protein-protein interactions
are incorrect. Several solutions have been proposed to address this behavior and we review the
main approaches here.

One approach, utilized by both Nerenberg et al. and Best et al., has been to modify the
protein-water van der Waals interactions within AMBER force fields to effectively increase the
strength of these interactions [44,45]. A second approach, has been to develop a new water
model, TIP4P-D, with significantly strengthened dispersion interactions (i.e., both water-water
and protein-water dispersion interactions) [46], and CHARMM 36m uses a modified TIP3P
model for simulations of IDPs as well (although its developers suggest that further validation
studies are necessary) [42]. All of these approaches yield improved agreement with experimental
data, especially with respect to solvation free energies of amino acid analogues and the
dimensions of disordered proteins characterized by SAXS [44-47]. These developments,
however, still have known inaccuracies, including local unfolding of folded proteins [44,46]
(although an additional intra-protein hydrogen bonding potential can correct this problem [44]), a
lack of cooperativity in protein folding [45], and inaccurate protein folding thermodynamics
[46,48,49].

A related approach pursued independently by Yoo and Aksimentiev [49,50] and Miller et
al. [51] (for multiple different force fields), has been to reduce the strength of protein-protein
interactions via reparameterization of van der Waals parameters, using osmotic coefficients of
amino acids as target and/or validation data. Interestingly, Miller et al. showed that the protein
van der Waals modifications introduced for the AMBER force field [44,52] yield good
agreement with osmotic coefficient data despite not using these data in the parameterization
process [51]. While these modifications have not yet been extensively tested for folded proteins
or IDPs, the application of similar ideas to the AMBER ff99SB-ildn-phi force field [31,32,53]
has yielded improved simulations of protein folding and unfolded state ensembles that are less
compact and in better agreement with experimental data [49].

Some of the modifications to fixed-charge protein force fields and accompanying water
models have been made with explicit goal of more accurately simulating the free monomeric
form of IDPs. Such proteins (or regions of proteins), however, exist in a diverse array of
chemical environments: interacting with folded proteins [54], undergoing disorder-to-order
transitions in peptides [55], and comprising intrinsically disordered regions within folded
proteins [56]. Therefore a truly transferable protein force field must be able to function
accurately in many different environments. Recent work by Wu et al. aims to tackle these issues
by combining RSFF2 together with TIP4P-D and an additional Lennard-Jones potential that
stabilizes i to i+4 peptide backbone hydrogen bonds [48]. The combination of improved torsion
potentials, a water model with stronger dispersion interactions, and strengthened intra-protein



hydrogen bonds yields significantly more accurate protein folding thermodynamics for a diverse
set of peptides than previous force fields [48]. Similarly, CHARMM 36m [42] and the recent
a99SB-disp force field from Robustelli et al. [57] have built on previous work [40,46] to more
accurately simulate both folded proteins and IDPs.

Polarizable force fields for proteins [58—60], which advance upon standard fixed-charge
force fields by more faithfully representing the many-body nature of molecular electrostatic
response, are hypothesized to be more accurate in simulating both folded proteins as well as
IDPs since they are responsive to diverse chemical environments. Recently we have tested the
polarizable AMOEBA force field [59], as well as unmodified (AMBER ff99SB-ildn and TIP3P)
and modified fixed-charge force fields for IDPs (AMBER ff03ws and TIP4P/2005; AMBER
ff99SB-ildn and TIP4P-D), to simulate the conformational ensemble of the 24-residue disordered
histatin 5 (Hst 5) peptide [61]. Experimental circular dichroism (CD) [62,63] and NMR [62,64]
studies have found that in aqueous solutions Hst 5 does not display any helical conformations,
and recent SAXS data determined a structural ensemble that is dominated by extended
conformations, with a measured radius of gyration, <R,> = 1.38 nm [65].

As shown in Figure 1, the standard pairwise additive force field ff99SB-ildn/TIP3P is
more collapsed when compared against experiment, while the two IDP-specific force fields yield
<Rg> = 1.3 nm and diminish the helical content relative to the standard model, demonstrating the
ability of targeted parameter modifications to improve the ability of a fixed-charge force field to
model IDPs. Nonetheless, the structural ensemble for Hst 5 generated using the AMOEBA
polarizable model also exhibits good agreement with the experimental <R,> [65] and secondary
structure data [62—64]. Since this involved no changes in AMOEBA parameters, it suggests that
protein-protein and protein-water interactions are better balanced and more transferable using a
polarizable force field.
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Figure 1: Histatin 5 radius of gyration and secondary structure population for different force fields.
(a) Estimates for the ensemble average radius of gyration. (b) Average percentages of different secondary
structural features. The data for the fixed-charge force fields was obtained from Henriques et al. [25,47],
who used multiple us MD simulations. Data obtained from temperature cool-walking (TCW) simulations
using the AMOEBA model — with no modifications — shows improved quantitative agreement with
SAXS and NMR data (<Rz> = 1.38 nm and an extended conformation with no helical content).



A somewhat different approach to protein force field development — and specifically the
issue of polarization in fixed-charge force fields — is AMBER ff15ipq [66]. Although it re-uses
some parameters from the existing AMBER {94 family of force fields, ff15ipq deploys unique
strategies for the parameterization of angle and torsion potentials and — most notably — partial
atomic charges. The overarching philosophy of ff15ipq is to fit all of the bonded potentials in
the gas phase, using partial atomic charges for the MM calculations that have been derived from
gas phase electrostatic potentials (ESPs) generated using the MP2/cc-pVTZ method and basis set
[66,67]. This eliminates some of the ambiguity in the parameterization of other force fields in
which ESPs are calculated using HF/6-31G*, which is known to yield overpolarized charge
distributions for the gas phase relative to more accurate quantum chemistry methods [68]. For
condensed phase simulation, however, an alternative charge set is used that represents a
“halfway point” between gas phase and aqueous environments [69]. Specifically, aqueous
environment charges are derived using ESP calculations with a solvent reaction field of explicit
water molecules included [69]. The final charges used in simulation, however, are scaled to be
halfway between the gas phase charges and aqueous environment charges [69]. This choice may
implicitly capture the missing polarization cost inherent in fixed-charge force fields and echoes
empirical observations of the dipole moments of various fixed-charge water models [69,70].
Moreover, the pre-polarization of these charges is likely more consistent across various moieties
than the ad hoc overpolarization of charges based on ESP calculations using HF/6-31G*.
Although encouraging, more experimental validation and cross-comparisons against other force
fields, especially for simulations of IDPs and protein folding equilibria, are required to fully
adopt the ff15ipq model.

Nucleic acid force fields

MD simulations of nucleic acids have been one of the greatest beneficiaries of increased
computational power [71,72]. In part this is because many of the enhanced sampling methods
that have worked well for proteins have not been nearly as successful when applied to nucleic
acid systems [72]. Nevertheless, the extension of nucleic acid simulations from the ~100 ns time
scale to the multi-ps time scale exposed many previously unnoticed shortcomings in these force
fields.

As with protein force fields, a great deal of effort has been put into the improvement of
torsion potentials, most notably for those that describe the nucleic acid backbone dihedral angles
(e.g., a, B, v, & and (), as well as the glycosidic dihedral angle, y, and sugar pucker. For the
CHARMM force field, this work is encapsulated by Denning et al. (for RNA) [73] and Hart et al.
(for DNA) [74]. For the AMBER force field, two different groups have worked independently to
generate parmbscl [75] and OL15 [76-78] for DNA. Likewise, several groups have aimed to
improve the AMBER force field for simulations of RNA [79-83]. In contrast to the
development of protein force fields, both parmbscl and OL15 explicitly include solvent effects
in the derivation of the torsion potentials (e.g., by aiming to minimize the relative differences



between QM/PCM with MM/PBSA as in [84]). This is particularly interesting in light of the fact
that both of these force fields use the a and y potentials from the earlier parmbscO force field,
which were derived in gas phase [85]. Extensive comparisons suggest that all of these force
fields are able to reasonably reproduce the properties of double-stranded DNA [86,87]. RNA
folding, however, remains a challenge even for the newest nucleic acid force fields [80,88,89].
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Figure 2: Root-mean-square deviations for MD simulations of the Dickerson Dodecamer (1INAJ)
over 1 ms of aggregate simulation time. The 1 ps running averages of the RMSD are shown in solid-
colored lines, while data from individual frames (every 2 ns) are shown in gray for all systems. RMSD
probability densities are also shown. Figure adapted from ref. [86].

Relatively little effort has been expended in developing new nonbonded parameters for
nucleic acid force fields, although certain interactions (e.g., base pair stacking) are known to be
represented inaccurately [90,91]. At present only a few moieties have been targeted for such
improvements and no one has undertaken a comprehensive reparameterization approach akin to
AMBER f{f15ipq (or FB-15). That said, a considerable amount of attention has been directed
toward improving the fixed-charge models of ions (particularly multivalent ions), which are
generally more important for accurately simulating nucleic acids. Yoo and Aksimentiev group
developed parameters for water-bound Mg?* (as well as monovalent ions) for the CHARMM
force field [92], while Li and Merz developed the so-called 12-6-4 model for ion interactions
[93], which includes a 1/r* term that is meant to represent favorable ion-induced dipole
interactions. Including these interactions — or some other modification of the nonbonded
potentials — is necessary for fixed-charge force fields to accurately model water oxygen-ion
radial distribution functions and solvation free energies (i.e., structure and thermodynamics) for
multivalent ions simultaneously [93]. It should be noted that these additional parameters have
required pair-specific fine-tuning to achieve a satisfactory balance between water-ion and nucleic
acid-ion interactions [94].

The most extensive polarizable force field work on nucleic acids has been done with the
CHARMM Drude polarizable force field [95,96]. While thus far this force field has been used
primarily for simulations of DNA, it has already demonstrated that explicit polarizability yields



qualitatively and quantitatively different results for base flipping [97] and ion-groove
interactions [98]. Accurately simulating multivalent ions and their interactions with nucleic
acids, however, are still a challenge for this force field [99], although improvements are to be
expected in future iterations.

Small molecule force fields

Small molecule force fields have played a vital role in being able to simulate ligands of natural
and synthetic origin. Moreover, they have been used extensively to simulate non-aqueous
solvents and mixtures for biomolecular simulations. These force fields are also often testing
grounds for new paradigms in force field development that eventually make their way into the
force fields for proteins, nucleic acids, and lipids. At present there are four widely used small
molecule force fields: CGenFF (compatible with CHARMM biomolecular force fields) [100],
GAFF/GAFF2 (designed for use with AMBER biomolecular force fields, but used more broadly)
[101], OPLS [22,102], and GROMOS [103,104]. These force fields are under near-constant
revision of at least an incremental nature, and our specific focus in this review will be recent
developments in the representation and parameterization of nonbonded interactions, both of
which may have a significant impact on the larger enterprise of biomolecular force fields.
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Figure 3: Calculated and experimental aqueous solvation free energies of 642 small molecules from
the FreeSolv database v0.51 [105]. The calculated solvation free energies are generated using MD
simulations with the combination of GAFF and TIP3P water. The green shaded region indicates a range
of £1.2 kcal/mol (~2 kgT at 298 K) from perfect agreement with experimental data.

One philosophy for small molecule force field development has been to improve the
accuracy of the molecular electrostatic potential (ESP), which is believed to be essential for
accurately computing solvation and binding free energies. OPLS3, for example, deploys extra
points to remedy known physical inaccuracies in representing ESPs of c-holes or lone pairs in



compounds with halogen bonds, aryl nitrogens, and/or sulfur [102,106]. This parallels work
indicating that similar extra points improve accuracy for solvation free energies of halogen-
containing compounds with GAFF [107]. (It is worth noting that the developers of ff15ipq aim
to include extra points in the next version of that force field [66].) Studies with both OPLS and
GAFF have also found issues with polarization of hydroxyls which have been addressed to
various degrees [108—110].

The choice of charge model is also an ongoing topic of investigation [69,109,110], and to
some extent the charge derivation procedure for each force field is a matter of philosophy.
GAFF, for example, can be used with two different charge models (with two different underlying
derivation procedures) interchangeably: RESP HF/6-31G* and AM1-BCC [68,111,112]. TPolQ
is another more recent option [69], and other charge models have been tested [107]. (We note
that GAFF has recently undergone a comprehensive reparameterization of both bonded and
Lennard-Jones parameters to yield GAFF2, which has been available since the AmberTools 16
distribution but not yet described in print.) CGenFF, on the other hand, has a moiety-specific
charge derivation protocol [100]. OPLS3’s default charge model, CM1A-BCC, is somewhat
similar to AM1-BCC in GAFF (although unlike GAFF, experimental hydration free energy data
are used to parameterize the charge corrections), but its developers have been actively
investigating new charge derivation procedures [109,110]. The charge model of GROMOS,
however, is considerably different from these other force fields. In the most recent version of
GROMOS (2016H66), the charges and van der Waals parameters are derived simultaneously by
fitting liquid densities, enthalpies of vaporization, and solvation free energies in both water and
cyclohexane [104].

Despite these apparent differences in philosophy, the overarching goal of small molecule
force field developers has been to arrive at a set of pre-polarized charges (and van der Waals
parameters) that are broadly applicable for condensed phase simulation. Conversely, polarizable
force fields arrive at such charge distributions automatically due to their response to the
surrounding chemical environment. To that end, the AMOEBA force field has demonstrated
good agreement with experimental solvation and binding free energies [8,113] and in principle
should be able to accurately simulate the diverse chemical environments encountered during
protein-ligand (or nucleic acid-ligand) binding, although it is likely that further development is
necessary to exceed the accuracy of the best fixed-charge force fields [113].

Future directions and challenges

Although the force field case studies we have explored in this review are seemingly disparate, a
few clear trends emerge for future directions, especially concerning parameterization. For
example, almost all force field development to this point has assumed that there is a single
optimal solution for any given parameter. This is probably not actually the case, and therefore
Bayesian methods are increasingly being employed in deriving the parameters [114—-117].
Bayesian methods can of course generate a single “best” estimate for any given parameter, but
more interestingly they can provide information on the uncertainty/variability of that parameter



given all of the other assumptions incorporated into the parameterization process. Moreover,
Bayesian methods can be used to determine if additional complexity in a given force field (e.g.,
using additional parameters or functional forms to describe certain interactions) provides a useful
benefit in terms of increased accuracy or alternatively if having less complexity might be equally
accurate.

Another fundamental aspect of force field parameterization is chemical perception, the
process by which molecular simulation software recognizes the chemistry of a molecule with the
ultimate goal of assigning appropriate force field parameters for that molecule. Up until now this
has been done indirectly by first assigning pre-defined atom types to the molecule and then using
these atom types to assign parameters. An alternative route is the use of direct chemical
perception that automatically recognizes the entirety — or at least a large fragment — of the
molecule and assigns parameters accordingly. Such an approach could substantially reduce the
number of unique atom types and parameters necessary for biomolecular simulations, especially
those involving small molecule ligands. Currently this approach is being pursued by Mobley et
al. in the new SMIRNOFF format [118], which uses the SMIRKS chemical query language to
define molecular structure and topology. The use of a chemical query language enables the
parameterization engine to identify molecular substructures and assign parameters directly to
them, thereby rendering large numbers of pre-defined atom types unnecessary.

Looking further ahead, force fields may undergo a more radical transformation, moving
away from certain privileged functional forms selected based on physical motivations. Machine
learning opens up the possibility of simulating interaction energies and forces without any sort of
explicit functional form, or at least of automatically selecting functional forms. Machine
learning-derived potentials have already been used to compute interaction energies between
molecules with accuracy equivalent to the quantum chemistry methods they were trained with
[119,120]. Likewise, these potentials have already been successfully used in MD simulations of
relatively simple systems [120,121]. There are many open questions in this nascent subfield,
including how transferable such models are to “novel” situations or how such models take into
account long-range interactions that are important for complex biomolecules.

Several grand challenges face force fields for the next few years. One set of challenges
involves the accurate estimation of thermodynamic quantities of interest. In particular, today’s
force fields are not able to compute the free energies and enthalpies of binding in relatively
simple host-guest systems with acceptable accuracy [122], and this probably also holds true for
biomolecular binding interactions where such calculations are more difficult [123]. Likewise,
present-day force fields — including polarizable force fields — have to this point had only mixed
success at accurately estimating partition/distribution coefficients (e.g., in water-octanol or
water-cyclohexane) [124].

A related set of challenges is the ability of a single pairwise additive force field to
accurately simulate the native states of folded proteins, intermediate states along protein folding
pathways, and the conformational ensembles of IDPs. An analogous problem in the field of
nucleic acids is the accurate folding of RNAs, which has thus far proven to be a major challenge



for fixed-charge force fields. In principle, polarizable force fields should provide the flexibility
necessary to capture the subtle energy landscapes of folded proteins, IDPs, and protein folding
intermediates. Nonetheless, improvements in sampling are necessary to validate this claim for
the more expensive force fields such as AMOEBA, although long time scale MD simulations of
~0.5 ps are starting to be realized for simpler Drude polarization models [60]. However, the
recent developments that we have described in this review point to encouraging and rapid
progress in both pairwise additive and many-body potentials for biomolecular simulation, but
whose long term predictive value will need to be assessed in future simulation studies.
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