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Abstract 

Biomolecular force field development has been instrumental in improving the predictive power 

of molecular simulations over the past four decades.  More recently, the era of large quantitative 

experimental datasets and ubiquitous high performance computing power has enabled rapid 

progress in the field.  In this review we summarize recent developments in all-atom protein, 

nucleic acid, and small molecule force fields, paying specific attention to developments in 

parameterization methods and improvements in the representations of nonbonded interactions 

that are critical for solving the challenging biophysical problems of the present.  We also sketch 

out new avenues for force field development and grand challenge applications for the near 

future. 
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Introduction 

Molecular dynamics (MD) simulations have become a powerful and ubiquitous technique for 

understanding the detailed structure and thermodynamics of biomolecular systems [1]. The 

quality –and therefore predictive and explanatory power – of these simulations has steadily 

improved due to parallel advancements in increasing the timescales for statistical sampling of the 

most relevant conformations using accelerated sampling techniques [2–4], disruptive computer 

hardware such as massively multicore CPUs, GPUs, and specialized hardware [5–7], and 

improving the accuracy of the potential energy functions (i.e., force fields) used to drive these 

simulations [1]. In this review we highlight recent and promising developments in force fields, 

paying particular attention to all-atom, fixed-charge force fields that are the workhorses of 

present-day biomolecular simulations. Where applicable we also discuss polarizable force fields 

[8–10], which can offer greater physical accuracy and transferability, and for which new 

algorithms are diminishing their computational cost [11–16]. We focus on force fields that have 

been developed for primarily small molecule ligands, proteins, and nucleic acids and bypass 

detailed discussions of force fields tailored for carbohydrates and lipids. For readers interested in 

understanding the progress and challenges in the emerging area of lipid force fields and cell 

membrane simulations, however, we recommend reviews [17] and [18].  



Protein force fields 

Modern all-atom, fixed-charge protein force fields, based on a simple pairwise additive 

approximation [19], owe a great deal to their progenitors such as AMBER ff94 [20], CHARMM 

22 [21], and OPLS-AA [22]. These force fields have often been quite successful in simulations 

of globular proteins and short peptides [23] and are mature enough that protein folding 

simulations of small single domain proteins (~100 amino acids) are entirely feasible [24]. More 

recently, however, detailed experimental data have revealed that these force fields have 

deficiencies in simulating intrinsically disordered proteins [25–27], protein folding equilibria and 

their dependence on temperature [28,29], and correctly identifying protein folding 

pathways/intermediates [30].  

 One common avenue for improving protein force fields has been the torsion potentials 

governing the behavior of both backbone and sidechain dihedral angles. These potentials are an 

obvious target for improvement because they sit at the length scale where force fields transition 

from being dominated by bonding chemistry to being governed by nonbonded interactions. In 

some sense these potentials provide the major correction for deficiencies in the nonbonded 

interactions for atoms separated by three bonds and may even implicitly capture many-body 

effects. The approaches used for deriving these potentials have ranged from fitting to only ab 

initio quantum chemistry data, e.g., AMBER ff99SB-ildn [31,32], ff14SBsconly [33], or FB-15 

[34] or OPLS-AA/M [35], to matching only experimental NMR or structural database data as in 

the developments of AMBER ff99sb*/ff03*/ff03w [36,37] and ff99sbnmr [38], while AMBER 

ff14SB [33] and CHARMM 36 [39,40] have used a mixture of both types of data.  

 An interesting alternative approach to this problem is embodied by RSFF2 [41], which is 

based on the AMBER force field, but uses random coil libraries and modifications to 1-5 and 1-6 

van der Waals parameters to improve accuracy for the torsional degrees of freedom. A variety of 

these revised torsion potentials have been developed with the explicit goal of improving the 

accuracy of IDP simulations. In addition to AMBER ff03w mentioned above, Huang et al. 

modified the CMAP backbone potential of CHARMM 36 to create CHARMM 36m (intended 

for simulations of both folded proteins and IDPs) [42] and Song et al. generated residue-specific 

backbone potentials to create AMBER ff14IDPSFF [43]. While purely empirical approaches for 

fitting torsion potentials to experiment somewhat unsurprisingly yield improved agreement with 

other experimental observables, it is interesting that torsion potentials fitted to gas phase 

quantum chemistry data appear to be equivalently accurate when validated against the same 

experimental data [34].  This is evident in the AMBER FB-15 fit to high quality RI-MP2 data, 

where the key development is new torsion parameters that significantly lower the potential in 

regions away from the energy minima [34].  This allows the force field to remain accurate in 

simulating folded states, as well as multi-temperature simulations that agree well with protein 

folding equilibrium experiments [34]. 

 While the development of more advanced torsion potentials has improved simulations of 

protein folding and intrinsically disordered proteins, several studies have pointed to significant 

deficiencies in simulations of proteins that are unlikely to be remedied by torsion potentials 



alone. Most notably, nearly all force fields predict ensembles of disordered proteins and unfolded 

states of proteins that are far too compact [25,27,28,37]. Likewise, the solvation free energies of 

many amino acid analogues in water are more unfavorable than experimental values [44,45]. 

Together these observations suggest that most current protein force fields are generally too 

hydrophobic and also that the relative strengths of protein-water vs. protein-protein interactions 

are incorrect. Several solutions have been proposed to address this behavior and we review the 

main approaches here.   

 One approach, utilized by both Nerenberg et al. and Best et al., has been to modify the 

protein-water van der Waals interactions within AMBER force fields to effectively increase the 

strength of these interactions [44,45]. A second approach, has been to develop a new water 

model, TIP4P-D, with significantly strengthened dispersion interactions (i.e., both water-water 

and protein-water dispersion interactions) [46], and CHARMM 36m uses a modified TIP3P 

model for simulations of IDPs as well (although its developers suggest that further validation 

studies are necessary) [42]. All of these approaches yield improved agreement with experimental 

data, especially with respect to solvation free energies of amino acid analogues and the 

dimensions of disordered proteins characterized by SAXS [44–47]. These developments, 

however, still have known inaccuracies, including local unfolding of folded proteins [44,46] 

(although an additional intra-protein hydrogen bonding potential can correct this problem [44]), a 

lack of cooperativity in protein folding [45], and inaccurate protein folding thermodynamics 

[46,48,49].  

A related approach pursued independently by Yoo and Aksimentiev [49,50] and Miller et 

al. [51] (for multiple different force fields), has been to reduce the strength of protein-protein 

interactions via reparameterization of van der Waals parameters, using osmotic coefficients of 

amino acids as target and/or validation data. Interestingly, Miller et al. showed that the protein 

van der Waals modifications introduced for the AMBER force field [44,52] yield good 

agreement with osmotic coefficient data despite not using these data in the parameterization 

process [51]. While these modifications have not yet been extensively tested for folded proteins 

or IDPs, the application of similar ideas to the AMBER ff99SB-ildn-phi force field [31,32,53] 

has yielded improved simulations of protein folding and unfolded state ensembles that are less 

compact and in better agreement with experimental data [49]. 

 Some of the modifications to fixed-charge protein force fields and accompanying water 

models have been made with explicit goal of more accurately simulating the free monomeric 

form of IDPs. Such proteins (or regions of proteins), however, exist in a diverse array of 

chemical environments: interacting with folded proteins [54], undergoing disorder-to-order 

transitions in peptides [55], and comprising intrinsically disordered regions within folded 

proteins [56]. Therefore a truly transferable protein force field must be able to function 

accurately in many different environments. Recent work by Wu et al. aims to tackle these issues 

by combining RSFF2 together with TIP4P-D and an additional Lennard-Jones potential that 

stabilizes i to i+4 peptide backbone hydrogen bonds [48]. The combination of improved torsion 

potentials, a water model with stronger dispersion interactions, and strengthened intra-protein 





 

  A somewhat different approach to protein force field development – and specifically the 

issue of polarization in fixed-charge force fields – is AMBER ff15ipq [66]. Although it re-uses 

some parameters from the existing AMBER ff94 family of force fields, ff15ipq deploys unique 

strategies for the parameterization of angle and torsion potentials and – most notably – partial 

atomic charges.  The overarching philosophy of ff15ipq is to fit all of the bonded potentials in 

the gas phase, using partial atomic charges for the MM calculations that have been derived from 

gas phase electrostatic potentials (ESPs) generated using the MP2/cc-pVTZ method and basis set 

[66,67].  This eliminates some of the ambiguity in the parameterization of other force fields in 

which ESPs are calculated using HF/6-31G*, which is known to yield overpolarized charge 

distributions for the gas phase relative to more accurate quantum chemistry methods [68]. For 

condensed phase simulation, however, an alternative charge set is used that represents a 

“halfway point” between gas phase and aqueous environments [69]. Specifically, aqueous 

environment charges are derived using ESP calculations with a solvent reaction field of explicit 

water molecules included [69]. The final charges used in simulation, however, are scaled to be 

halfway between the gas phase charges and aqueous environment charges [69]. This choice may 

implicitly capture the missing polarization cost inherent in fixed-charge force fields and echoes 

empirical observations of the dipole moments of various fixed-charge water models [69,70].  

Moreover, the pre-polarization of these charges is likely more consistent across various moieties 

than the ad hoc overpolarization of charges based on ESP calculations using HF/6-31G*. 

Although encouraging, more experimental validation and cross-comparisons against other force 

fields, especially for simulations of IDPs and protein folding equilibria, are required to fully 

adopt the ff15ipq model. 

 

Nucleic acid force fields 

MD simulations of nucleic acids have been one of the greatest beneficiaries of increased 

computational power [71,72].  In part this is because many of the enhanced sampling methods 

that have worked well for proteins have not been nearly as successful when applied to nucleic 

acid systems [72].  Nevertheless, the extension of nucleic acid simulations from the ~100 ns time 

scale to the multi-µs time scale exposed many previously unnoticed shortcomings in these force 

fields.  

 As with protein force fields, a great deal of effort has been put into the improvement of 

torsion potentials, most notably for those that describe the nucleic acid backbone dihedral angles 

(e.g., α, β, γ, ε, and ζ), as well as the glycosidic dihedral angle, χ, and sugar pucker.  For the 

CHARMM force field, this work is encapsulated by Denning et al. (for RNA) [73] and Hart et al. 

(for DNA) [74].  For the AMBER force field, two different groups have worked independently to 

generate parmbsc1 [75] and OL15 [76–78] for DNA.  Likewise, several groups have aimed to 

improve the AMBER force field for simulations of RNA [79–83].  In contrast to the 

development of protein force fields, both parmbsc1 and OL15 explicitly include solvent effects 

in the derivation of the torsion potentials (e.g., by aiming to minimize the relative differences 







compounds with halogen bonds, aryl nitrogens, and/or sulfur [102,106]. This parallels work 

indicating that similar extra points improve accuracy for solvation free energies of halogen-

containing compounds with GAFF [107].  (It is worth noting that the developers of ff15ipq aim 

to include extra points in the next version of that force field [66].)  Studies with both OPLS and 

GAFF have also found issues with polarization of hydroxyls which have been addressed to 

various degrees [108–110].  

The choice of charge model is also an ongoing topic of investigation [69,109,110], and to 

some extent the charge derivation procedure for each force field is a matter of philosophy. 

GAFF, for example, can be used with two different charge models (with two different underlying 

derivation procedures) interchangeably: RESP HF/6-31G* and AM1-BCC [68,111,112].  IPolQ 

is another more recent option [69], and other charge models have been tested [107].  (We note 

that GAFF has recently undergone a comprehensive reparameterization of both bonded and 

Lennard-Jones parameters to yield GAFF2, which has been available since the AmberTools 16 

distribution but not yet described in print.)  CGenFF, on the other hand, has a moiety-specific 

charge derivation protocol [100].  OPLS3’s default charge model, CM1A-BCC, is somewhat 

similar to AM1-BCC in GAFF (although unlike GAFF, experimental hydration free energy data 

are used to parameterize the charge corrections), but its developers have been actively 

investigating new charge derivation procedures [109,110].  The charge model of GROMOS, 

however, is considerably different from these other force fields.  In the most recent version of 

GROMOS (2016H66), the charges and van der Waals parameters are derived simultaneously by 

fitting liquid densities, enthalpies of vaporization, and solvation free energies in both water and 

cyclohexane [104].   

Despite these apparent differences in philosophy, the overarching goal of small molecule 

force field developers has been to arrive at a set of pre-polarized charges (and van der Waals 

parameters) that are broadly applicable for condensed phase simulation.  Conversely, polarizable 

force fields arrive at such charge distributions automatically due to their response to the 

surrounding chemical environment. To that end, the AMOEBA force field has demonstrated 

good agreement with experimental solvation and binding free energies [8,113] and in principle 

should be able to accurately simulate the diverse chemical environments encountered during 

protein-ligand (or nucleic acid-ligand) binding, although it is likely that further development is 

necessary to exceed the accuracy of the best fixed-charge force fields [113].  

 

Future directions and challenges 

Although the force field case studies we have explored in this review are seemingly disparate, a 

few clear trends emerge for future directions, especially concerning parameterization. For 

example, almost all force field development to this point has assumed that there is a single 

optimal solution for any given parameter. This is probably not actually the case, and therefore 

Bayesian methods are increasingly being employed in deriving the parameters [114–117]. 

Bayesian methods can of course generate a single “best” estimate for any given parameter, but 

more interestingly they can provide information on the uncertainty/variability of that parameter 



given all of the other assumptions incorporated into the parameterization process. Moreover, 

Bayesian methods can be used to determine if additional complexity in a given force field (e.g., 

using additional parameters or functional forms to describe certain interactions) provides a useful 

benefit in terms of increased accuracy or alternatively if having less complexity might be equally 

accurate. 

 Another fundamental aspect of force field parameterization is chemical perception, the 

process by which molecular simulation software recognizes the chemistry of a molecule with the 

ultimate goal of assigning appropriate force field parameters for that molecule.  Up until now this 

has been done indirectly by first assigning pre-defined atom types to the molecule and then using 

these atom types to assign parameters.  An alternative route is the use of direct chemical 

perception that automatically recognizes the entirety – or at least a large fragment – of the 

molecule and assigns parameters accordingly.  Such an approach could substantially reduce the 

number of unique atom types and parameters necessary for biomolecular simulations, especially 

those involving small molecule ligands.  Currently this approach is being pursued by Mobley et 

al. in the new SMIRNOFF format [118], which uses the SMIRKS chemical query language to 

define molecular structure and topology. The use of a chemical query language enables the 

parameterization engine to identify molecular substructures and assign parameters directly to 

them, thereby rendering large numbers of pre-defined atom types unnecessary.   

 Looking further ahead, force fields may undergo a more radical transformation, moving 

away from certain privileged functional forms selected based on physical motivations. Machine 

learning opens up the possibility of simulating interaction energies and forces without any sort of 

explicit functional form, or at least of automatically selecting functional forms. Machine 

learning-derived potentials have already been used to compute interaction energies between 

molecules with accuracy equivalent to the quantum chemistry methods they were trained with 

[119,120].  Likewise, these potentials have already been successfully used in MD simulations of 

relatively simple systems [120,121].  There are many open questions in this nascent subfield, 

including how transferable such models are to “novel” situations or how such models take into 

account long-range interactions that are important for complex biomolecules. 

 Several grand challenges face force fields for the next few years. One set of challenges 

involves the accurate estimation of thermodynamic quantities of interest. In particular, today’s 

force fields are not able to compute the free energies and enthalpies of binding in relatively 

simple host-guest systems with acceptable accuracy [122], and this probably also holds true for 

biomolecular binding interactions where such calculations are more difficult [123].  Likewise, 

present-day force fields – including polarizable force fields –  have to this point had only mixed 

success at accurately estimating partition/distribution coefficients (e.g., in water-octanol or 

water-cyclohexane) [124]. 

 A related set of challenges is the ability of a single pairwise additive force field to 

accurately simulate the native states of folded proteins, intermediate states along protein folding 

pathways, and the conformational ensembles of IDPs. An analogous problem in the field of 

nucleic acids is the accurate folding of RNAs, which has thus far proven to be a major challenge 



for fixed-charge force fields. In principle, polarizable force fields should provide the flexibility 

necessary to capture the subtle energy landscapes of folded proteins, IDPs, and protein folding 

intermediates. Nonetheless, improvements in sampling are necessary to validate this claim for 

the more expensive force fields such as AMOEBA, although long time scale MD simulations of 

~0.5 µs are starting to be realized for simpler Drude polarization models [60]. However, the 

recent developments that we have described in this review point to encouraging and rapid 

progress in both pairwise additive and many-body potentials for biomolecular simulation, but 

whose long term predictive value will need to be assessed in future simulation studies. 
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