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Generalized extended Lagrangian Born-Oppenheimer molecular dynamics (XLBOMD) methods
provide a framework for fast iteration-free simulations of models that normally require expensive
electronic ground state optimizations prior to the force evaluations at every time step. XLBOMD
uses dynamically driven auxiliary degrees of freedom that fluctuate about a variationally optimized
ground state of an approximate ‘shadow’ potential which approximates the true reference potential.
While the requirements for such shadow potentials are well understood, constructing such potentials
in practice has previously been ad hoc, and in this work we present a systematic development of
XLBOMD shadow potentials that match the reference potential to any order. We also introduce a
framework for combining friction-like dissipation for the auxiliary degrees of freedom with general-
order integration, a combination that was not previously possible. These developments are

demonstrated with a simple fluctuating charge model and point induced dipole polarization models.
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INTRODUCTION

Under the Born-Oppenheimer approximation' the time scale separation between the motions of the
nuclear and electronic degrees of freedom allows for the latter to be solved iteratively to self-
consistency at each time step for a fixed nuclear configuration during a molecular dynamics
trajectory. However, the undesirable added computational cost of iterative optimization, combined
with numerical errors that destroy energy conservation if the self consistent field (SCF) is not
tightly converged, has led to treating the electronic degrees of freedom as additional dynamical
variables in an extended system in which they are integrated forward in time with no SCF iterations.
The extended Lagrangian (EL) scheme for ab initio molecular dynamics by Car and Parrinello,?
where the electronic degrees of freedom are included as classical dynamical variables, has been
used with success in condensed phase simulations and in applications with classical polarization
solutions for inducible point dipoles,’ Drude particles,* and fluctuating charges.’”’ However, the
time steps are typically much smaller than those of SCF converged Born-Oppenheimer simulations
in order to maintain numerical stability and energy conservation, thus negating the benefit of
eliminating the SCF calculation during the MD simulation.

Over the last decade Niklasson and colleagues®!'® have introduced and developed a more
generalized extended Lagrangian Born-Oppenheimer molecular dynamics approach (XLBOMD), in
which an auxiliary set of electronic degrees of freedom are used as either a time reversible initial
guess for a self-consistent solver or as part of a well designed approximate potential, which we term
a “shadow potential” (which conceptually is closely related to a shadow Hamiltonian'”). The
shadow potential is derived as a variationally fully minimized approximate functional for which
exact forces can be calculated at low cost. With the right functional, one can obtain truly iteration-
free dynamics by exactly integrating an approximate potential, as opposed to approximately
integrating the exact potential. This idea of a backward error analysis is frequently used in applied
mathematics and it is a key concept behind the construction of geometric integration schemes in
classical dynamics.?’ In XLBOMD the approach was initially applied to non-linear self-consistent
field theory such as Hartree-Fock and density functional theory (DFT).!6"!8 While the XLBOMD
methods can be hindered by resonance or accumulating numerical errors in the integration of the
auxiliary equations of motion, the inclusion of dissipation into the integration of the extended
electronic degrees of freedom in the form of a Langevin-like friction has proven very effective for
small systems at short time-scales that are more typical in ab initio molecular dynamics (AIMD).!!

Recently, Albaugh and co-workers extended the XLBOMD ideas to classical induced

dipole?'?? and Drude®® polarizable force fields, as well as linear scaling DFT?*, by controlling
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numerical errors and resonances not through dissipation, but by thermostating the auxiliary degrees
of freedom. The primary benefit of the thermostating approach over dissipation is that time-
reversibility is satisfied, however condensed phase system sizes must be large enough such that a
thermodynamic temperature is well-defined.?! Using thermostated auxiliary induced dipoles as an
initial guess to an iterative SCF solver, one can reduce the number of SCF iterations required for
tight convergence of a polarizable potential or electron density calculation by half or more in the
iEL/SCF method?!:?*. Furthermore, we have shown that by formulating an approximate polarization
potential one can completely do away with the need for an iterative solver altogether in the so-
called iEL/0-SCF method, which proved effective for both the induced dipole?> and Drude®
polarization models where significant increases in time step are now possible. The iEL/0-SCF
formulation thus has the benefits of an EL approach, i.e. no iterations are performed at each time
step, while eliminating the drawbacks of defining fictitious masses or dual temperature schemes, or
the necessity of reducing the time step to maintain energy conservation and numerical stability.

In this work we show that the iEL/0-SCF approach is part of a general class of XLBOMD
approaches whose success rests on the proper formulation of a shadow potential functional, i.e. a
potential energy functional that is at its variationally optimized solution, and is a close
approximation to the reference potential, for which exact forces can be evaluated. Although the
general theoretical requirements in the construction of the shadow potential, in principle, are fairly

well understood!®!” previous approaches to building such potentials tended to be ad hoc'’-??

as per
the iIEL/0-SCF method. However, in contrast to previous theoretical formulations, the electronic
degrees of freedom will not be used as auxiliary dynamical variables and instead an approximation
to the interaction operator acting on the electronic or polarizable degrees of freedom is used as an
extended dynamical degree of freedom. Furthermore, we combine our shadow potential formalism

with Langevin-like friction!!-1%2

introduced through higher-order integration schemes that increase
the accuracy and stability of the molecular dynamics and better minimize the energy drift. While
this has previously been found to be difficult,'® in this work we develop a general structure for
systematically increasing the order of integration and dissipation to better satisfy time reversibility
and energy conservation. We show that by combining the systematic improvements in the shadow
potential formulation with increasing order in the intrinsic integration error with commensurate
order of dissipation, there are synergistic effects on accuracy and stability in the XLBOMD
formalism, as illustrated on a simple fluctuating charge model, but trivially extensible to point
dipole formalism for polarization. Finally, we show how the iEL/0-SCF method fits within the

general XLBOMD framework, whose success we show is an interplay of an optimal shadow
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potential and a time-reversible auxiliary temperature control on the auxiliary equation of motion

that mimics higher order dissipation.

THEORY
Here we present a systematic way of constructing the ‘shadow potential energy functional’, that
satisfies both an adiabatic separation of the time scales between the electronic and the nuclear
degrees of freedom, while also delivering an accurate approximation of the underlying exact
potential that is given through an iteration-free exact optimization. This is coupled to the
formulation of the equations of motion that drive the dynamics of the nuclear (particle) and
electronic degrees of freedom using higher order integration schemes with comparable order in
friction-like dissipation. The combination of all aspects then yields a general framework for
classical polarization whereby we can choose or construct shadow potentials, dissipation, and
integration, each to any order, allowing us to control accuracy and energy drift to an arbitrary
degree. We present the theory in terms of a fluctuating charge model, for which we have formulated
numerical experiments in the Results section, as well as the small variations needed to formulate the
same theory for an inducible dipole model described in Appendix A.

Higher Order Shadow Potentials. The exact electrostatic potential energy surface for a

fluctuating charge model is given from the constrained charge optimization given in Eq. (1)
1

v, q) = x'q +54q'Cq (1)
where y is a vector of all the electronegativities of the N atoms in the system (y = [x; ... xn17), q is
a vector of the fluctuating partial charges of the N atoms (q = [q ...qn]7), 7" denotes that the
potential energy surface, U, is a function of the positions of the N atoms, and € = C(r") is a
symmetric interaction tensor whose off-diagonal terms describe Coulombic interactions between
charges q; and q; (C;; = 1/r;j for i # j in atomic units) and whose diagonal terms are twice the
electronegative hardness of the i*" atom (C;; = 2H;)."> Ignoring enforcement of charge neutrality

for simplicity, the set of charges that minimizes the potential surface in Eq. (1) is thus the ground

state Born-Oppenheimer solution for the system as given by Eq. (2).

=0=x"+ Cq = Qqnmin= —C_l){ (2)

The potential energy surface is then given as the variational, equilibrated charge minimum, i.e.
Uet(rN) = U (r", q,in) from Eq. (2). Note that solving for €1 through matrix inversion or via

an SCF procedure is the costly step that needs to be avoided.



We now introduce a dynamical auxiliary variable X, which we design to be a good
approximation to C~1. We then build a ‘shadow’ potential functional around X using some function
f(X) that we require to give a better approximation of ! than X itself, and for which we can

control the degree to which this shadow potential matches the reference potential of Eq. (1):

1
U aaow @, X, @) = xTq + ;4" [f(X]'q 3)

Eq. (4) is a method for approximating the inverse of the € matrix such that f(X) — €~ in the limit
that m — oo,
fX)=ctI-u-cxm 4)

whose general form in Eq. (4) was introduced by Niklasson?®

as a generalization of the Schulz
method originally derived for the case of m = 2.7’
We can determine the set of charges, q, that minimize this new form of the shadow potential
functional, given by substituting Eq. (4) into Eq. (3).
aU.inadow ", X, q)
=0=x"+[fX]*
2q x +IfX] 'q (58)

= Qmin = —fX)x = —CI-(- CX)™x

1 1 1
U.gliadow(rNrX) = EXTqmin = _EXTC_I[I - - CX)m]X = _EXTf(X)X (5b)

From Eq. (5a) we can see that the set of charges that minimize the shadow potential functional are
given by the negative action of any choice for f(X) acting on the electronegativities, a
straightforward operation, guaranteeing the variationally optimized minimum condition. Eq. (5b),
then, gives various equivalent forms of this shadow potential energy surface at the variationally
optimized minimum described by Eq. (5a) for different values of m. Note that while C~1 does
appear explicitly in Eq. (5) it is annihilated when multiplied into the expansion and does not appear
when writing f(X) for some finite m (Table 1).

16-17 one can now define an

Following the previous work of Niklasson and colleagues
extended Lagrangian for a system with the shadow potential of Eq. (5b). Instead of introducing
auxiliary degrees of freedom that represent the electronic degrees of freedom themselves, (i.e.
auxiliaries representing q), we build the extended Lagrangian with the auxiliary X matrix, which
should dynamically follow the behavior of the €~1 operator matrix, as a dynamical degree of

freedom with a fictitious mass, my. This extended Lagrangian is given by

N

. 1 1 .

LN, X, X) = > E mT? + metr[XZ] -u@EN)+ (6)
i=1
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szf(X))( - mewztr [(C‘1 - X)Z]
where U(r") are other non-electrostatic potential energy functions we may have in the system such
as bonds, angles, van der Waals interactions, etc. that are independent of the fluctuating charges.
The final term in Eq. (6) is a harmonic oscillator with frequency w that seeks to keep the auxiliary
X close to the ground state solution. This oscillator fluctuates about €, which is given as a general
placeholder for C~1. €~ can explicitly be €=, which is not practical as inverting the € matrix is
what we want to avoid, so €' can be any approximation to €1, as long as C~! is a better
approximation to C~1 than X itself.
Table 1: The m"-order f(X), and the corresponding variationally minimized set of atomic partial

charges, q, for that order along with the shadow potential, UE 4., and equations of motion for
the nuclear degrees of freedom and the auxiliary matrix, m;7"; and myX, respectively.

m 2 3 4
£(X) 2X — XCX 3X — 3XCX + XCXCX 4X — 6XCX + 4XCXCX — XCXCXCX
q —(2X—XCX)x —(3X — 3XCX + XCXCX)x —(4X — 6XCX + 4XCXCX —
XCXCXCX)y
Ushadow - % xT(2X — XCX)x - % xT(3X — 3XCX + - § X7 (4X — 6XCX + 4XCXCX —
XCXCX)x XCXCXCX)x
m;¥; _1 ryr9C _ 1y (20C _ 9C vy _L ryr(9C _ 49C
’ laU(TN) ZX X ariXx ZX X (3 or; ariXC ZX X (6 ar; 46riXC .
=" or CX35)Xx 22 XCXC — 4CX = + CXCX = +
to CX25XC) Xx
X= w?(X — XCX) w?(2X — 3XCX + XCXCX) w?(3X — 6XCX + 4XCXCX —
XCXCXCX)

Applying the Euler-Lagrange equation to the Lagrangian of Eq. (6) we can derive the
equations of motion for our system where Eq. (7a) is the equation of motion for the it" real particle

and Eq. (7b) for the auxiliary matrix, X.

U™y 1 of(X) gt ac™?
= — = T4 T, -1_ 7
myX = 19 T X)) x] + myw? (€ — X) — myw? (€t - X) oc” (7b)
20X X

From the equations of motion in Eq. (7) we assume a classical adiabatic separation between the time
) o . a . .

scales of the particle and auxiliary motion where X [xT f(X)x] decays as w™2 or faster. With this

assumption and taking the limit my — 0 and w — oo, the resulting equations of motion are given by

Eq. (8), where we have explicitly evaluated ag_g) and used Eq. (4) for f(X).




mii*l arl
1 ac
__Trr-1_" r-1 _ _ m
SX c or) cCl(I-(UI-cx)™) 8a)
m—1 aC
— z (I - CcX)/ e X(I-cx)m™ Ity
j=0 ‘
X=0?(C'-X)=w?(CH-U-CX)™] - X) (8b)

Eq. (8a) gives the particle equation of motion, whose electrostatic force (second term on the right
hand side) is now explicitly dependent on the auxiliary variable X. Eq. (8b) defines an equation of
motion that will propagate the auxiliary X, and by choosing €~! = f(X) guarantees that the energy
is variationally minimized by construction. The shadow potential then better matches the exact
reference potential from Eq. (1) to an increasing degree of accuracy as m increases. Notice that for
both Eq. (8a) and (8b), the equations of motion that drive this system no longer depend on an
auxiliary mass parameter, my. One may note, again, that C~1 appears explicitly in Eq. (8), but this
inverse is annihilated in the expansions of these equations for finite m, as seen in Table 1. Table 1
also gives explicit expressions for the equations of motion (Eq. (8)), f(X), U 440w and q for
several values of m. Finally, at the beginning of a simulation X is initialized to €~ (or a close
approximation), but this expensive operation only needs to be calculated once.

Using Eq. (8) we can now build XLBOMD based schemes that are time reversible, have
exact analytical agreement between forces and energies, yield ground state atomic partial charges
that minimize the potential energy at every time step, using a potential energy function that can be
made arbitrarily close to the reference energy function by choosing higher values of m. One can

see that this approach is similar to that of Brooks and colleagues**’

who build the polarization
energy as a perturbation of the electrostatics truncated at a certain order, then statistically
extrapolating to an infinite order to, in principle, recover the true energy minimized mutual
polarization response. By contrast, we obtain an exact minimization of an approximate potential
energy, which matches the true potential energy to a degree of our choosing.

Higher Order Dissipation. In practice the equation of motion of the auxiliary degree of
freedom (Eq. (8b)) can suffer from resonance effects or instabilities caused by its coupling to the
real degrees of freedom or due to numerical noise in the integration'!:2!. These numerical artifacts

need to be dissipated away lest the auxiliary matrix X drift too far from €' and cause the

simulation to become unstable or energy to drift. To combat this problem Niklasson and



colleagues!!-1> %

introduced a modified Verlet integration scheme for the auxiliary equation of
motion, which has an additional dissipative term similar to the friction term used in Langevin
dynamics. In order to introduce some amount of dissipation into the Verlet integration of the
auxiliary equation of motion, Eq. (8b), we will introduce a friction-like term that is dependent on
the history of the auxiliary matrix X, as given in Eq. (9).

X(t + At) = 2X(t) — X(t — L}{t) +r[CL[I-[I-CcX()]™] - X()] +
« Z e X (t — kAD)

k=0
where At is the time step of the simulation, a controls the strength of the dissipation, and K is the

)

order of the dissipation. We have also introduced k = w?At?, a dimensionless parameter that now
controls the frequency of the auxiliary harmonic oscillation. While Eq. (9) does break time
reversibility, the coefficients of the friction term, ¢y, are designed to only break time reversibility up
to 0(4t?%~3) by removing odd-order terms in At from an expansion of the equation of motion!!.

These coefficients are reproduced for several orders governed by K in Table 2.

Table 2: Coefficients for friction-like dissipation’’.

K Co Cq Cy C3 Cy Cs Ce Cy Cg Cq
3 -2 3 0 -1
4 -3 6 -2 -2 1
5 -6 14 -8 -3 4 -1
6 -14 36 -27 -2 12 -6 1
7 -36 99 -88 11 32 -25 8 -1
8 -99 286 -286 |78 78 -90 42 -10
9 -286 | 858 -936 | 364 168 -300 | 184 -63 12 -1

Higher Order Integrators. The integration of the equation of motion given in Eq. (8), and
combined with dissipation, is typically done by Verlet integration, shown in Eq. (9). While Verlet
integration is generally robust, being symplectic, time-reversible, and energy conserving, one may
want to use higher-order geometric integration schemes in order to realize a higher degree of
accuracy or to use larger time steps. Such higher-order integrators have a general multi-step form

(Il =1,2,...,L) described by Eq. (10).

l -1 -1
X t+ijAt =X(t+ ) biAt |+ bAtX t+ZajAt , 1=12,..,L (10a)
j=1 j=1 j=1
l -1
X t+ZajAt =X(t+ ) ajdt |+ adtX t+ijAt , 1=12,..,L (10b)

j=

1]
Juy
[y

j=1 j



For an integrator with L intermediate integration steps, Eq. (10) represents the [*"

update of the
velocity and position where the overall time step At is divided into L segments. The coefficients q;
and b, are specific to the integrator and are subject to the condition ¥+ a, =Yk b =1.
Previously the use of friction-like dissipation when integrating the auxiliary equation of motion, Eq.
(8b), was not well-defined in the context of higher-order integrators of the form of Eq. (10) due to
the use of velocities as intermediates for higher order integrators.'?

Instead we define a generalization of the friction-like dissipation terms of the modified
Verlet integration scheme, Eq. (9), to the higher order integrator schemes of Eq. (10). As a general
integration scheme this combination of friction-like dissipation and general order integration takes
the form of Eq. (11). Eq. (11) introduces dissipation as a friction-like force term as the last term in
Eq. (11a), thus only appearing in the velocity updates. The key insight is that L sets of K previous

lth

positions are stored, and during the calculations of friction terms of the [*" velocity update only the

lth

positions at integer multiples, 4, of the full integration time step, A¢, from previous [*" integration

steps are considered. Position updates stay the same and do no require any special consideration.

-1 -1
X t+ijAt =X t+2bj4\t +X(t+ ) aat
' j=1 j=1
(11a)
b K -1
A_Z CkX t — kAt + a]-At
j=1
l -1
X t+zajm =X|t+ ) adt |+ adtX t+ijAt (11b)

j=1 j=1

Applying the general integration of Eq. (11) to the auxiliary equation of motion, Eq. (8b),

then takes the following form:

l -1
X t+ijAt =X t+ijAt +
j=1 j=1

-1 m -1
blK _1
T c|I-|I-CX t+ZajAt —X|t+ a;jAt (12a)
j=1 j=1
K -1
1a
A_E CkX t — kAt + Z ajAt
k=0 j=1



1—

=

l
a4t | + a,AtX t+ijAt
j=1 j=1

(12b)

l
X t+ZajAt =X|[t+
j=1

Table 3 gives the optimal integration parameters a; and b; to minimize the error of the integration
for a velocity Verlet method®® and also several optimal higher-order methods as described by

McLachlan and Atela?'.

Table 3: Integration schemes of various order and their parameters®’. Note that the 5M-order
optimal method requires a time step to be broken down into six velocity and position updates, L =
6. In nomenclature for the remainder of this paper L = 2, L = 3, L = 4, and L = 6 will refer to the
2" order, 3"-order, 4M-order, and 5™-order optimal methods, respectively.

Name L a, b,
velocity Verlet 2 a; =1 b = 1
a, = 0 1= 2
b = 1
)
2" _order optimal | 2 0 = 1 b, = a,
T2 b, = a

a, = 1-— aq

3 _order optimal | 3 a; = 0.919661523017399857 by = as
= L _ 4 b, = a,
4= 4a; 2 b; = a,

az;=1—a; —a,

4" _order optimal | 4 a; = 0.5153528374311229364 by = 0.1344961992774310892
a, = —0.085782019412973646 b, = —0.224819030794208058
az = 0.4415830236164665242 b; = 0.7563200005156682911
a, = 0.1288461583653841854 b, = 0.3340036032863214255
5" _order optimal | 6 a; = 0.339839625839110000 b; = 0.1193900292875672758

a, = —0.088601336903027329
az = 0.5858564768259621188
a, = —0.603039356536491888
as = 0.3235807965546976394
ag = 0.4423637942197494587

b, = 0.6989273703824752308
b; = —0.1713123582716007754
b, = 0.4012695022513534480
bs; = 0.0107050818482359840
bg = —0.0589796254980311632

Combining Shadow Potentials, Dissipation, and Integration of Varying Order. Using the

methods proposed in previous sections one can now construct a shadow potential to match the
reference potential for any order, selecting from Table 1 and driving the equations of motion in Eq.
(8). We can also select a dissipative scheme that will only break time reversibility up to some
chosen order by selecting from Table 2. Finally one can choose an integration scheme that is correct
to some order in At by integrating with Eq. (12) and choosing a method from Table 3. This sets
forth a general framework for extended Lagrangian Born-Oppenheimer dynamics for classical
polarization. While we have illustrated this formalism with a classical fluctuating charge model we

also present the formalism adapted for an induced dipole model in Appendix A.
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Table 4: Optimal k and a values for a combination of dissipative and integration orders, K and L,

respectively. The value of the dissipation for each combination, [p(T)]min, 1s also given.

Integrator Name L K K a [p(D)]min_|
velocity Verlet 1.776 | 0.112 0.5785

1.738 ] 0.0655 0.8278

1.752  10.0248 0.9084

1.769 | 0.00825 0.9487

1.790 ] 0.00250 0.9708

1.802 | 0.000750 | 0.9833

1.818 ]0.000212 | 0.9906

2.183 10.190 0.7315

2279 10.0712 0.7487

2271 10.0292 0.8597

2281 ]0.0101 0.9150

2.295 10.00320 0.9469

2311 ]0.000958 | 0.9665

2.327 10.000276 | 0.9787

2"_order optimal

3_order optimal 3.856 |0.403 0.9178
4.025 |0.155 0.8727
4.172 | 0.0475 0.8290
4312 |0.0125 0.7792

4.376 | 0.00349 0.7644
4.350 |0.00117 0.8326
4.323 |0.000382 | 0.8735
3.891 10.363 0.9154
4.061 |0.139 0.8704
4.187 10.0430 0.8259
4.292 10.0116 0.7731
4.332 | 0.00340 0.7646
4.298 10.00121 0.8296
4.288 10.000384 | 0.8703
3.973 |0.358 0.9206
4.133 [0.139 0.8781
4.255 10.0434 0.8366
4361 ]0.0117 0.7895
4424 |0.00316 0.7425
4.385 |0.00115 0.8167
4371 ]0.000371 | 0.8602

4™_order optimal

5"_order optimal

AN N[N R [BR[BR|R B [B]P W [W WL [W[W W I[NNI [D DD (DD N[N
O (R QA[NN|PR|WIO|XRX[(QADNN|ER|WR|OC|X QAN N|R|W|O (X (AN [(N | WO |0\ [Nk |W

Optimal Parameters. The integration described by Eq. (11) is dependent on two key
parameters not yet discussed, k and a, which are given in Table 4. The parameter k describes the
frequency of the auxiliary harmonic and should be as high as possible to drive X to the ground state
solution and to enforce an adiabatic decoupling to the nuclear motion. We want « to be as high as

possible as well, to give the maximum possible amount of dissipation to stay close to the ground
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state solution and to dampen resonance and numerical noise. With these conditions in mind,
Appendix B examines what the optimal sets of k and a parameters are (summarized in Table 4),

which rounds out the necessary information to build a general XLBOMD method.

RESULTS

To give a clear illustration of our general approach let us choose the lowest order of shadow
potential, dissipation, and integration by selecting m = 2 from Table 1, K = 3 from Table 2, and
L = 2 (second-order optimal) from Table 3. The equations of motion become Eq. (13a) for the

particles and Eq. (13b) for the auxiliary, X.

U™y 1 . _.ocC
= — — i 13
m;1; or, 2)( X ar, Xy (13a)
X = w?(X — XCX) (13b)

If we now integrate Eq. (13) with 2™-order optimal integration and 3™-order dissipation, a single

full integration time step would look like

X(t +bAt) = X(b) + IZ—: [X(t) — X(t)CX ()]

+ bj—f [coX(t) + ¢, X(t — At) + ¢, X(t — 24t) + 3 X(t — 34¢t)] (142)
X(t + a,At) = X(t) + a,4tX(t + b, At) (14b)
X(t+ At) = X(t + b, At) + IZ—: [X(t + a,4t) — X(t + a,;4t)CX(t + a,At)]
+ bj—f [coX(t + a,4t) + ¢, X(t + a; At — At) + ¢, X(t + a4t — 24t) (14c¢)
+ 3 X(t + a, At — 34t)]
X(t + At) = X(t + a,4t) + a,AtX(t + At) (14d)

For brevity the time dependence of the € matrices has been dropped, but these need to be
updated with the positions, 7V. The particle equation of motion should be integrated using the
corresponding 2™-order optimal integration scheme as the auxiliary X, but without the dissipative
force term. In this case the integration of the particles would therefore be given by Eq. (15), which
would be interleaved with Eq. (14) at equal time intervals.
by [ au(r"(®) 1 ac

_XTXT(t)_X(t)X (153)

ye . A — Y.,
rl(t + bl t) rl(t) + miAt ari (t) 2 ari

r;(t + a,4t) = r;(t) + a,4t7;(t + b, At) (15b)
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7;(t + At) = r;(t + a,4t)

b, oU(rV(t + ayat)) 1 . . ac
B 5 - 15
m;At or;(t + a,4t) 2% Xt + a4t or; X(t+a40)x (15¢)

ri(t + At) = r;(t + a,4t) + a, At (t + At) (15d)

We next test the theory presented above using a dimensionless charge equilibration model,
involving three particles with electrostatic interactions described by Eq. (1) along with a harmonic
restraining potential for each particle, which constitutes the entirety of the system. For further
simplicity the system was confined to a single dimension. This basic system allows for efficient
testing of the potentials, integrators, and dissipation schemes. Furthermore, the simple charge
equilibration model does not exhibit a well-defined statistical temperature, and if successful, the
higher-order dissipative integration schemes should therefore be applicable also to first-principles
Born-Oppenheimer molecular dynamics?*.

Dissipation. To illustrate why the XLBOMD schemes require dissipation, we introduce a
perturbation after 1000 time steps into the simulation, by swapping the auxiliary matrix, X, with its
value with the value from the three previous time steps. This modeled perturbation simulates a spike
in numerical noise or a resonance instability one may encounter in a more complex system. Figure 1
shows the scaled energy deviation from the initial system energy over the course of a simulation;
for good energy conservation we expect this quantity to stay close to 0 with little drift. We can see
that this perturbation is quickly corrected when we use a dissipative scheme (red curve), however,
when no dissipation is used the auxiliary variables have no way to remove the momentary
disturbance and their equation of motion quickly becomes unstable.

5% 107

- - perturbation
5 -—L =3, no diss.
—L=3,K=7
4

B(t)—E(0)
E(0)
[§%]

i
s

0 500 1000 1500 2000
/AL

Figure 1: The response of the scaled energy deviation to a perturbation for a dissipative (red) and
non-dissipative (black) integration scheme. Both schemes used a 3™-order optimal integrator (L =
3) and a 7"-order dissipative scheme (K = 7). The introduced perturbation (dotted blue line) is a
swap of the X matrix at the 1000 time step with its previous value at the 997" time step.
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One downside to the friction-like dissipative schemes described is that they break time
reversibility, which can lead to energy drift. So while dissipation is necessary to account for
numerical noise or resonance effects if we use a dissipative scheme as described in this text we can
achieve low energy drift rates by using higher order dissipation, where the dissipative c; (k =
0,1, ..., K) coefficients are designed to only break time reversibility up to some order K in the time
step’®. In Figure 2a we give an example of the energy drift over the course of a trajectory for a
specific integration order and shadow potential order; we can see that the energy drift decreases as
the dissipative order increases. This trend is then replicated for many combinations of integration
order and shadow potential order in Figure 2b, where we report the fitted energy drift rates as a

function of dissipative order.

0.1
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E(t)—E(0)
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VAt x10° K

Figure 2: Energy conservation properties as a function of dissipation. (a) The scaled energy
deviation from the total initial energy over trajectories using the second order optimal integration
method (L = 2) and various dissipative orders, K. (b) The fitted energy drifts as a function of
dissipative order, K, for various combinations of integration order, L, and shadow potential order,
m. In (b) line color denotes shadow potential order and line and symbol shape denote integration
order. The time step has been increased by a factor of 5 to clearly demonstrate the effect of
dissipative order on energy drift. The energy drift is calculated by taking a linear fit of the energy
over total simulation time, A E/T, and non-dimensionalized by the time step and initial energy.

We note that the dissipation schemes presented here are not the only way to introduce
dissipation into the auxiliary integration. One can also define an auxiliary temperature and use a
thermostat to control that temperature, essentially ensuring that the inertia of the auxiliaries does not
diverge®!?3. While this method works well for large systems where the temperature better manifests
as a macroscopic quantity, we have previously shown that it does not perform well if system sizes
are too small?*, where the temperature becomes quite variable and hard to control, such as in our
test system. However, for larger systems the amount of information that needs to be stored increases
as O(N?), as X~N?, and the highest order dissipative methods required for excellent energy

conservation can become very memory intensive. Hence for larger systems, auxiliary temperature
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control may be the more attractive option, since it does not require storing any history and relies
only on information in the current time step.

Integration. Using the formulation we developed in Eq. (11) we can now use general order
dissipative methods with general order integrators. While a higher order integration scheme requires
more force evaluations per time step (which can be expensive), the benefit that is derived is a more
stable simulation and more accurately calculated properties, such as energy shown in Figure 3 for a
second order (m = 2) shadow potential. In Figure 3a and 3b we see that for the same time step, and
more force evaluations, the higher order integrators give a lower deviation in the energy along a
trajectory. If instead we maintain a fixed cost (i.e. higher order integrators use larger time steps so
that the number of force evaluations per total simulated time is fixed) then the higher the order the
integrator, the greater the deviation that is seen for a second order shadow potential.

Figure 3c shows the interplay of integration order with the order of the shadow potential.
For this particular system the benefits of going to fourth (L = 4) and fifth (L = 6) order optimal
integration are marginal when using just a second order shadow potential, but we can achieve ever
greater accuracy by increasing the integration order with higher order shadow potentials. Whereas
for a second order shadow potential the energy deviation became worse with increasing integration
order for fixed cost, by using third and fourth order shadow potentials now a fixed cost simulation
can yield a greater accuracy by using a higher integrator order. This demonstrates that the more
accurate integration is able to reveal the adequacy of the approximation of the shadow potential to
the true solution.

As Figures 3d and 3e show, the difference between the potential energies and forces with
respect to an exactly converged reference potential scale as At?™ and At?(™=1| respectively. This
means that higher order shadow potentials will scale more rapidly in their deviation from the
reference potential as the time step increases and will therefore require more accurate (higher order)
integration to realize this greater agreement with the reference potential.

Shadow Potentials. Since the potential is variationally optimized at each time step by
construction with Eq. (5b), with no explicit matrix inversion, we are at the ground state of the
shadow potential at every time step. Similar to integrator order, in the limit of high shadow potential
order we obtain the true self-consistent solution to the reference potential, which is the highest

possible level of accuracy one could obtain in terms of potential energy convergence.
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Figure 3: Scaled energy deviation and standard deviation over the course of a trajectory using
fifth order dissipation (K =5) with a second order shadow potential (m = 2) for various
integration orders (L) and scaling of errors in potential energy and forces with time step. (a) For
each order of the integrator the same time step is used, but differ in the number of force evaluations
used. (b) The time steps are adjusted so that each order of integrator uses the same number of force
evaluations per time so that the higher order the integrator the larger the time step. (c¢) Standard
deviation using fixed time step or fixed number of force evaluations (fixed cost) over the course of a
trajectory for different orders of the shadow potential for various optimal integration orders. The
color and line style denotes the shadow potential order (black dashed is second order, m = 2; red
dotted is third order, m = 3; blue red/dotted is fourth order, m = 4) and symbol denotes same time
step (solid square) or same cost (hollow circle). The difference (L2 norm) between the potential
energy (d) and forces (e) compared to the exactly converged reference potential as a function of
time step and for various orders of the shadow potential. Fitted dependencies on time step, At, are
plotted as solid lines for comparison. Note that the limit of machine precision here is ~10716,
which is why the m = 4 curve in (e) does not scale to At = 0.01.
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Figure 4a gives an example of this, where we see the energy trajectory over the course of a
simulation for a specific value of integration and dissipation order, but with varying orders of the
shadow potential. Figure 4b shows that we can reach complete convergence of the simple
fluctuating charge model with just a third order shadow potential for integration schemes up to
fourth order (L = 4). For a fifth order integration (L = 6) we need to use a fourth order shadow
potential (m = 4) to achieve a level of convergence akin to the fully converged reference potential.
Therefore, we can choose exactly how closely we need to match the reference potential for a given
application. In practice, the necessary order of the shadow potential could be dictated by time scale
of decay of the true ground state solution. If the electronic degrees of freedom decay on a time scale
much longer than the time step, as we have shown for classical polarization models?!, then the

shadow potential may not need to be of a high order to accurately follow the dynamics.

. %107
5

(@ -~ (b)10*

8 T ——

-= shadow, L. =2
exact, L=2 ¢
5 ~+ shadow, L=3 LS
_5 ~—gxact, L=3
) - shadow, L =4
—m=2 107 -gxact, L=4

E(t)-E{0)

E0)
=

—m=3 -+ shadow, L=6
- m=4 ~-gxact, L= 6
exact . . - . . e
-10 lo-ll
0 2000 4000 6000 8000 10000 1 2 ) 4 5
VAL m

Figure 4: (a) Scaled energy deviation and (b) standard deviation over the course of a trajectory
using fifth order dissipation (K = 5) with a second order optimal integration (L = 2) for various
shadow potential orders (m). In both plots the ‘exact’ dynamics are given as a point of comparison
where the C matrix is inverted directly and used with the reference potential, Eq. (1) to drive the
dynamics for a given integrator order.

Figure 5 gives a succinct summary of the interplay between the shadow potential order,
order of the integration scheme, and order of dissipation in terms of the energy deviation from the
initial energy over the course of each type of simulation. For the simulation that uses a low
dissipative order, low integration order, and low shadow potential order, the energy exhibits large
fluctuations and energy drift. Upon increasing the dissipative order, the energy drift has been
corrected since the time irreversibility of the dissipation is pushed out to a higher order in the time
step. By increasing the integration order the underlying shadow potential is more accurately
integrated and the energy deviations decrease. Finally, increasing the order of the shadow potential

gives a better approximation to the underlying fully converged reference potential and the

deviations decrease even further.
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Figure 5: Scaled energy deviations for selected combinations of dissipation order, K, integration
order, L; and shadow potential order, m. The combinations are low dissipation, low integration,
low shadow potential (black); high dissipation, low integration, low shadow potential (red); high
dissipation, high integration, low potential (blue); and high dissipation, high integration, and high
shadow potential (green).

DISCUSSION

The methods discussed here present a generalized starting point from which to work with the
XLBOMD methods. Here we show that the iEL/0-SCF method??>* formally fits within the general
framework, and furthermore that it leads to a reduction in cost by replacing the matrix-matrix with a
matrix-vector calculation.

Taking the case of a 2"%-order potential (m = 2) and ignoring dissipation for a moment, the

equations of motion are given in Eq. (16)

ou(r™y 1 . _.0C
P _Z _— 16
m;1; or, 2){ X or, Xy (16a)
X = w?(2X - XCX - X) (16b)

From a computational efficiency perspective there is no great expense in the particle
equation of motion, Eq. (16a), as we only ever have to perform matrix-vector multiplications which

are O(N). This can easily be seen as Xy and Y7 XT are matrix-vector operations resulting in vectors

and [¥TXT] j—f [Xx] would become a matrix-vector operation, as well. The auxiliary equation of

motion, Eq. (16b), however, has a matrix-matrix-matrix multiplication, XCX, which is O(N?3) and
would scale poorly with system size; for larger or condensed phase systems, €~ could instead be
approximated by using real space cutoffs and leveraging sparse linear algebra techniques for the
multiplication in order to improve its scaling.

One practical remedy that is used in the iEL/0O-SCF method is to perform a change of

variables and dynamically integrate @ = —Xy instead of X. In this case, the dynamical variables
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correspond to the matrix operator acting on a vector, as opposed to the matrix operator itself. This
substitution is also convenient for ‘bulk’ simulations where periodic boundary conditions or Ewald
summations are used and explicitly calculating the interaction matrix operator itself is difficult.
Making this substitution the equations of motion now become

N
—a‘g(r" )_ %aTg—:;a (17a)
a = w’(qla] — a) (17b)

In Eq. (17b) we have made use of the identity in Eq. (5b), ¢ = —f(X)x. The new auxiliary, a, can

ml’f'i = —

be thought of as an auxiliary variable that will stay close to the ground state fluctuating charges, q,
and q[a] then becomes an approximation of the ground state charges. Furthermore, a is a vector
and we avoid any costly matrix-matrix multiplication. However this substitution trick is only
applicable to the special case of m=2, since for m > 2, X is not always multiplied into y like it is in
particle equation of motion, Eq. (16a).

16-17,22-23 " \which we now see as a

This result is very similar to previously described methods
specific type of approximation to the general formalism outlined here. For example, to recover the
previously described iEL/0-SCF method?? the specific form of q[a] used is described by Eq. (18a),
which is a single iteration using a as an initial guess. A further refinement for the auxiliary equation
of motion, Eq. (18b) is introduced as a corrector-like step with a tunable correction parameter, v,
which can range from 0 to 1.

qlal=-D'y—DY(L+U)a (18a)
qscrlal = yqlal — (1 —y)a (18b)

In Eq. (18) D, L, and U are the diagonal, lower triangular, and upper triangular components
of C, respectively. Since the diagonal components, D, are simply fixed parameters (the atomic
hardness) the inverse D! is straightforward and need only be calculated once at the beginning of a
simulation. One further refinement of the iEL/0-SCF method is that q[a] is used in the particle
equation of motion, as opposed to a. Since q[a] is now dependent on particle positions, whereas a
is not as it is an independent dynamic degree of freedom, we must account for this additional
position dependence in the particle equation of motion. Combining all of these refinements we

recover the iEL/0-SCF equations of motion, Eq. (19).

L _aua) 1 ac _, ac
m;¥; = — o EqT[a]a—riq[a] + (xT + q"[a]C)D 1a—ria (19a)
a =yw*(qla] — a) (19b)
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The resulting iIEL/0-SCF method is a specific example of how one might use this general
XLBOMD formalism. The formal method establishes the relevant criteria, and although the formal
methods can be computationally expensive, they can be built upon to introduce approximations to
reduce cost. While the general method of Eq. (16) involves expensive, poorly scaling matrix-matrix
multiplication, subsequent approximations that led to Eq. (19) gives the iEL/0-SCF method, which
has already been proven effective for large, condensed phase systems using point dipoles and Drude
polarization.?>?3 It is interesting to note that the dissipation approach described here was not used
for the iEL/0-SCF method, since even for the higher order dissipation method it does not perform as
well as time-reversible auxiliary temperature control to the auxiliary equation of motion.?! While
the auxiliary thermostating scheme is arguably the best choice for long time scale simulations of
systems with many degrees of freedom, for small test systems or small ab initio systems the

dissipative schemes may be suitable.

CONCLUSIONS
We have presented a general and flexible framework on which to build XLBOMD methods for
treating models that require self-consistent optimization at each time step. This general framework
combines increasing orders of shadow potentials that are designed to systematically improve
agreement with the reference potential, increasing orders of dissipation to correct for unwanted
numerical noise or resonance effects, and higher order integrators to provide greater accuracy in the
simulation of properties of a given potential, such as energy conservation. When used together we
obtain equations of motion for an auxiliary matrix, X, a dynamically driven approximation to the
inverse interaction operator that would normally solve the true system exactly. Within this general
framework, then, one can choose a combination of dissipation, integration, and shadow potential
suitable for a given application and in terms of what is acceptable for energy drift and accuracy. In
summary, greater dissipation order will lead to less energy drift and greater integration and shadow
potential order will lead to better accuracy. We illustrated our results with a small, simple charge
equilibration system.

In addition, we now have a better understanding as to why the previously proposed iEL/0-
SCF method works as well as it does for larger condensed phase systems by casting it within this
general framework. First is that by proposing an alternative auxiliary integration variable, only
applicable to low orders of the shadow potential (m = 2), we can avoid the matrix-matrix
multiplication by integrating a vector auxiliary quantity instead of a matrix, which ultimately

recovered the iEL/0-SCF equations of motion. Furthermore, while the cost of the dissipation
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schemes presented here may also prove to be too expensive for larger systems due to the necessity
of storing matrices that scale as O(N?) from previous time steps, the use of auxiliary thermostats®!
is largely analogous to implementation of a very high order dissipation scheme.

One final outstanding problem is how to leverage the method of shadow potentials for ab
initio methods. For the classical models presented here, the fluctuating charge in the Theory section
and induced dipole in Appendix A, one needs to solve a linear equation to obtain the ground state
electronic degrees of freedom (Egs. (2) and (A2)). For an ab initio method one needs to solve a non-
linear optimization. Determining how to leverage a general order shadow potential for such a model
requiring non-linear optimization is a point of ongoing work'’, however, using it successfully for a

classical model in this work is an excellent proof of concept.
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Appendix A: Shadow Potentials for Induced Dipole Polarization
While the dissipation and integrations schemes laid out in the theory section are generally
applicable, the shadow potentials were illustrated with a classical fluctuating charge model. One
could, in principle, adapt the discussion of higher order shadow potentials to a range of models and
simulation techniques. Here we present the development of higher order shadow potentials for a
classical dipole polarization model. For the most part the details mirror those already laid out in the
theory section so we will focus on brevity here.

Dipole Polarization. The potential energy surface for an inducible dipole model is given by

the constrained minimization of Eq. (A1).
1
yrot =§uTCu—ETu (A1)

In Eq. (Al), pu represents a set of N inducible dipoles on the N atoms of the system. E is the
permanent electrostatic field created by any fixed electric multipoles in the system, and C =
C(r") = a ! — T where a is a diagonal matrix with the values of atomic polarizability for each
atom, «;, on the diagonal and T = T(r") is the dipole-dipole interaction matrix. The ground state
(self-consistent field) solution of Eq. (Al) is the set of induced dipoles that minimizes the

polarization energy, which is given in Eq. (A2).
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As before we can now introduce a dynamically driven auxiliary matrix, X, that should

=0=-E+Cu = p,,= —CE (A2)

follow the behavior of €1 and build a shadow potential functional around this auxiliary matrix as

shown in Eq. (A3).

U i 7, X, 10) = 2 T Tt — E (A3)

We make the same choice of f(X) as before, and reproduced in Eq. (A4). This form, again, will
produce a better estimate of €~ from X.

fX)=cI-U-cx)™ (A4)

We can also show that the shadow potential functional we have constructed in Eq. (A3) is

necessarily minimized for the set of induced dipoles given in Eq. (AS5), which is simply the function

of Eq. (A4) dotted into the permanent electrostatic field.

shadow

ou

UL 1o V. X, 1)

0= [c-l[l — - c;()m]]_1 pu—E = as)

Hmin = CUI-(U-CX)ME = fX)E
Making the substitution of Eq. (A5) into Eq. (A3) we can now build a Lagrangian with this
shadow potential and X as an additional dynamical degree of freedom, shown in Eq. (A6).
L(r", N, X, X)
N
_2 ’2+1 tr[X?] — U( N)—EET X)E
=3 m;r; mer r 2 f(X) (A6)

i=1
1 24 [ (-1 2
— S myw?tr [(C - X) ]
In Eq. (A6), U(rN) gives components of the potential that are independent of the induced dipoles,
and 7 are the positions and velocities of the atoms, and my is introduced as a fictitious mass for the

X degree of freedom. C~! represents some approximation to C~* that is valid as long as € is

closer to €~ than X. Applying the Euler-Lagrange equation to Eq. (A6) we obtain Eq. (A7).

U™y 1__of(X) OE R aC!

e 1 _ 9E -1 _ A7
m;i; ar, + 2E ar, E—-f(X) ar, myw*(C X) o, (ATa)
ek = — 22 (BT O0E] + my?(T — X) — mya (@ — 1) 2 (ATb)

X 20X X X X
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From Eq. (7) we assume a classical adiabatic separation between particle and auxiliary motion
where aa_x [ET f(X)E] decays as w™2 or faster. Then taking the limit that my — 0 and w — oo the

resulting equations of motion are given by Eq. (A8), where we have also evaluated the derivate
If(X)

L

and substituted for f(X).

. ou (r")
m;r; = —
ari
1 aC
_FTer-1|__ r-1 _ _ m
+5E"C aric I-I-cx)™) (ASa)
m-—1
- ac .
+ ) A-ex) (- eI E
. or;
Jj=0
X=0?(C1'-X)=?(CH-UT-CX)™] - X) (A8b)

We now choose €~ = f(X), as shown in the second right hand side of Eq. (A8b), which
guarantees the auxiliary X oscillates about an approximation to €1 that is better than itself. The
equations of motion in Eq. (A8) can be integrated and dissipation can be introduced as laid out in
the subsequent Theory sections, as before. One may be concerned that C~1 appears explicitly in Eq.
(A7), however, for some finite m the expansion in m and subsequent algebraic simplification
removes any €1 terms. We now have a shadow potential for dipole polarization that can match the
base potential to an arbitrary degree, yet is guaranteed to be minimized via Eq. (AS) at any point

with no iteration.

Appendix B. Optimization of k and a parameters
Under the requirement that C~! gives a better approximation to €~ than X and that X is close to
C~1 we can describe €~ to be given through an approximate linearized optimization process I'
acting on X, C-1 = I'’X'""'2. For a convergent optimization we can expect the eigenvalues of I to
be |y| < 1. By replacing I' by its maximum eigenvalue, y, we can examine the stability of the
integration under incomplete convergence to the ground state reference potential. The equation of
motion in Eq. (8b) of the text then becomes Eq. (B1)

X(t) = w*(y — DX(t) (B1)
And we can examine its behavior for a range of convergences (y € [—1,1] with y =0

corresponding to complete convergence, C~* = X) and for different integration methods.
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We can now integrate the equation of motion, Eq. (B1), using our combined higher order

dissipation and integration schemes, given by Eq. (11) in the text. This integration can be described
as a mapping of X and its velocity X at one time step to the next. This mapping is given by Eq. (B2)

Xe+4) 7 [ X(O®
X(t + At) X(t)
l X() X(t — At

=T (B2)

[X(t - (k + 1)At)J [X(t - KAt)J

where T is a matrix that describes the mapping (integration) process and is a function of a;, by, k,
a, and y (see Supplementary Information for more specifics). In Eq. (B2) we make the implicit
variable substitution X — AtX so that all elements of the T matrix are dimensionless. If the
integration is to be stable then the maximum absolute eigenvalue of T (its spectral radius) must be
no greater than 1.0, otherwise the mapping corresponds to an exponential increase that diverges into
instability. Spectral radii less than 1.0, on the other hand, represent dissipation in the integration.
With this metric we can determine the optimal values of k and a for a given choice of L and K that
will maintain integration stability while maximizing dissipation.

Figure B1 shows the analysis of the T matrix for the specific case of K = 3 and L = 2 (2™-
order optimal). Discrete values of a are chosen and tested over a range of k values. For each set of
values of a and k the range of y from -1 to 1 is tested and the maximum spectral radius of T from
that range of y is recorded, which is shown in Figure Bla. For each value of a we can determine the
maximum possible k value as the value at which the spectral radius becomes greater than 1.0. These
values, then, define the curve of a,,,, as a function of k given in Figure Blc. Using this set of k
and corresponding a,,,, values we also look at their specific spectral radius behavior as a function
of y, shown in Figure B1b. The lower the spectral radius is the more dissipation that particular
combination of a,,,, and k achieves. We define the maximum dissipation as the spectral radius at
y = 0, which we call [p(T)]nin Which is plotted as a function of k in Figure Blc, as well.

While we do want to maximize k we also want to maximize the dissipation, [p(T)]min
(lower values of [p(T)],nin correspond to more dissipation). Figure Blc shows that the maximum
possible k occurs when there is no dissipation (@nqy = 0, [0(T)]min = 1), which is not optimal.
Fortunately, [p(T)]min has a local minima near the maximum possible value of k. We choose this
point to be the optimal combination of large k and maximum dissipation. In this specific case we
find that for K = 3 and L = 2 (2"%-order optimal) the optimal values for k and a are 2.183 and
0.190, respectively, with [p(T)]nin = 0.7315. An analysis like that described above and shown in
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Figure B1 is repeated for a wide combination of K and L values and the optimal k and « for each is

given in Table 4.
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Figure B1: Stability analysis of the integration schemes. Analysis of the T matrix (Eq. 17) for the
specific case of K = 3 and L = 2. (a) The maximum spectral radius of T, [p(T)]max, @s a function
of x for a range of a values. (b) The point at which [p(T)]nax becomes greater than 1.0 defines a
pair of x and o, 54 and for those sets of points we plot the spectral radius, p(T), as a function of
y.(c) We define the maximum dissipation as the spectral radius at y = 0 and call this [p(T)]min,
which is a function of k and a,,x. Both ay,ax (black) and [p(T)]min (red) are given as function of
K.
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