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Abstract—Effective cancer treatment strategy requires an un-
derstanding of cancer behavior and development across multiple
temporal and spatial scales. This has resulted into a growing
interest in developing multiscale mathematical models that can
simulate cancer growth, development and response to drug treat-
ments. This study thus investigates multiscale tumor modeling
that integrates drug pharmacokinetic and pharmacodynamic
(PK/PD) information using stochastic hybrid system modeling
framework. Specifically, (1) pathways modeled by differential
equations are adopted for gene regulations at the molecular
level; (2) A cellular automata is proposed for cellular scale; and
(3) the multicellular scale model follows a transit compartment
tumor model. Markov chains are used to model the cell behaviors
by taking into account the gene expression levels, cell cycle
and the microenvironment. The proposed model enables the
prediction of tumor growth under given molecular properties,
microenvironment conditions and drug PK/PD profile. Simulation
results demonstrate the effectiveness of the proposed approach
and the results agree with observed tumor behaviors.

Index Terms— Multiscale Modeling, Stochastic Hybrid System,
PK/PD, Genetic Regulatory Network, Drug Effect Modeling

I. INTRODUCTION

The complexity and heterogeneity of cancer makes it highly
difficult to develop effective cancer therapeutics. Mathematical
models can help in designing effective cancer therapy and
predicting cancer behavior in a more tractable, efficient and
inexpensive manner [1]-[3]. There is an increasing interest
in developing multiscale mathematical models that can sim-
ulate and predict cancer growth, development and response
to drug treatments due to its potential for enabling patient-
oriented predictions, treatment design, planning and drug
delivery [4]-[9]. This is because cancer is a complex disease
and its evolution cuts across multiple temporal and spatial
biological scales. The spatiotemporal scales are characterized
by processes ranging from reactions at the molecular scale
to interactions within and among the cells, and to cancer
growth, development and metastasis at the tissue level [10].
The multiscale and complex nature of cancer thus calls for
modeling frameworks that are able to capture the molecular,
cellular, tissue and organ level processes involved across the
spatio-temporal scales adequately.

Recent studies have highlighted the significance of multi-
scale modeling to cancer behavior and treatment strategies.
For instance, multi-cellular modeling of the growth and de-
velopment of cancer through the alteration in the mechanical
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property of mutant cells has been investigated in [4]. It pro-
vides insights into how mutations affect the structures of cells
and an approach for the inclusion of cell phenotypic properties
with diverse mechanical features associated with Cellular Potts
Models is given [4]. Yan et al. [7] developed a 3D multiscale
model to examine the progression of glioblastoma (GBM) by
exploring tumor development under diverse microenvironment
conditions. The effect of feedback among diverse types of cell
and crosstalk between vascular endothelial cells and glioma
stem cells were explored. A partial disruption of the crosstalk
link results in tumor size reduction but does not increase the
invasive potential. Thus, the crosstalk link may be exploited
as a new therapeutic target for GBM therapy [7]. To show that
telomerase inhibitions represses the rate of cell death detects
and increases the cell senescent rate, a cell compartment
approach was implemented to investigate the time-dependent
and dose-based impacts of the anti-cancer agent (RHPS4) on
the cancer cell lines HCT116 [8].

The dynamic behavior and phenotypic properties of a single
tumor cell to an external therapeutic agent may be influenced
by the cell’s interaction with the diverse neighboring cells,
hence, the effect of treatment(s) may deviate significantly
from the expected outcome based solely on the individual
cell’s phenotypic features. Thus Brown et al [9] investigated
four beneficial and detrimental aggregation effects in cancer
cell populations by applying the evolutionary and ecological
concept to multiscale mathematical modeling while accounting
for the relationships among diverse group of tumor cells. The
model shows the importance of exploiting the detrimental
aggregation effects in designing evolutionary-based drugs that
can take advantage of the deleterious effects that neighbor cells
might have on one another [9].

In cancer system modeling and drug therapeutics, it is vital
to understand the response of the system to perturbations
and how to obtain a desired effect via a modification to the
system. For effective drug discovery and intervention, it is
critical to have an understanding of the complex mapping
between genotype and phenotype, an evaluation of the reg-
ulatory interaction among genes, proteins and other molecules
and the effect of perturbations and other biological processes
at the molecular, cellular, and tissue/organ scales [11]-[14].
Thus, it is imperative to have models that can predict and
provide functional insights into disease-drug interactions and
pharmacokinetics/ pharmacodynamics (PK/PK) information,
to ensure that therapeutic intervention becomes a more sys-
tematic and faster process. A major challenge is linking drug
PK characteristics with PD information for a better grasp of
the time-course of drug effects after drug intake. Mathematical



modeling [15] and simulation tools are indispensable in inte-
grating PK/PD information and optimizing drug regimen. Thus
this study presents a systematic and multiscale mathematical
model to study drug effects under the assumption that the
drug(s) target corresponds to a gene(s) or protein(s) in the
proposed model [16], [17]. The goal is to investigate the
system responses at various scales under drug perturbations
and provide suggestion for effective therapeutic intervention.

The proposed multiscale model is highlighted in Fig. 1,
where three scales are considered, namely, the molecular level,
cellular level, and the tumor level. An Ordinary Differential
Equation (ODE) pathway model is adopted at the molecular
level, where the concentration of proteins and gene expression
levels are treated as continuous values. Cellular automata of
a 2D grid at the cellular level is used. Each individual cell
is treated as a discrete entity, and cell fate is derived using
a Markov chain. The transition probability of the Markov
chain is determined by the downstream gene expression levels
of the pathway of interest and the microenvironment (mE).
The tumor model follows a transit compartment model with
progressive degrees of decay from the surface to the core
assuming a solid tumor. From the biological signal transduc-
tion perspective, biological signals and drug perturbation at
the molecular scale trigger intra-cellular signaling in various
pathways. At the cellular scale, the biological signals coupled
with the cell cycle and microenvironment cues determine cell
fate such as proliferation, apoptosis etc. At the multicellular
scale, the population of cells and their behavior determines the
structure and behavior of the resulting tumor.

The detailed model set up is discussed in Section II.
Simulation studies are presented in Section III. Section IV
presents additional discussions while Section V provides a
conclusion to the paper.

II. MULTISCALE MODEL FORMULATION

Mathematical cancer models usually follow the discrete,
continuous or hybrid modeling methods [18]. Discrete model-
ing approaches involve the explicit representation of individual
cells for instance by using biological rules. Discrete modeling
methods are usually based on the lattice-free modeling (Agent-
based modeling (ABM)) or the lattice-based modeling (Cel-
lular automata (CA)) approaches [19]-[21]. These techniques
have the capability to describe the evolving population-level
dynamics without prior knowledge of tumor behaviors.

Continuous mathematical models describe the large-scale
tumor growth dynamics by treating the tumor size as a
continuous medium instead of the resolutions of individual
cells. Hybrid modeling approaches involve the integration of
both the continuous and discrete entities used to describe
the concentrations or density fields and the individual cells
respectively. Continuum mathematical modeling methods are
commonly based on ordinary and partial differential equations.
These modeling methods have the ability to describe the
common behaviors of tumors, simulate experimental observa-
tions and recommend modification as well as test theoretical
hypotheses.

Hybrid models combine the strengths of both continuous
and discrete modeling approaches. Stochastic hybrid system
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Fig. 1. The schematics of the proposed multiscale model.

can also model randomness that may be inherent to the system
being modeled. In this work, stochastic hybrid modeling
method is proposed to integrate randomness and exploit the
advantages of both the discrete and the continuous modeling
frameworks to stochastically simulate the behavior of the
tumor cells [6], [7].

Since cancer tumor cells divide uninhibitedly and they often
grow and develop with the goal of optimizing their prolifera-
tion potentials, they are categorized as proliferating, quiescent,
or decaying/dead in the proposed model. It is assumed that
each proliferating cell from the cancer cell population may
produce daughter cells with similar kinetic characteristics
when the cell cycle and microenvironment permit. It is also
assumed that cancer tumor cells will go through a series of
decay until dead when damaged.

A. Molecular Level: Proliferation and Survival Pathway Mod-
eling

In this study, the proliferation and survival pathway (see
Fig. 2 and Table I) are considered. The RAS/RAF/MEK/ERK
pathway is usually associated with cell proliferation, preven-
tion of programmed cell death, and resistance to therapies.
This pathway is exploited by growth factors and mitogens in
transmitting signal(s) from the receptors for regulating gene
expression and preventing apoptosis or programmed cell death.
Some of the proliferation pathway’s components (for instance,
RAS, B-RAF) undergo mutations or over-expressions in hu-
man cancer (for instance, breast and prostate cancers) [24].
On the other hand, PI3K/AKT/mTOR pathway signifies a
proto-typical survival pathway which is activated in various
types of cancer. The pathway is usually activated by diverse
processes some of which include mutations or amplifications
of the PI3K, loss of the tumor suppressor (PTEN) function,
activations of the growth factor receptors, amplifications or
mutations of AKT, exposure to carcinogen and so on. After it
is activated, signaling through AKT may propagate to various
array of substrates, that includes mTOR, a crucial regulator
of protein translation. The survival pathway functions as an
appealing drug target for cancer therapy because it serves as a
point of convergence for various growth stimuli. It is equally
responsible for the regulation of cellular processes that con-
tribute to cancer growth and development via the downstream
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Fig. 2. The proliferation and survival pathways used in the model [22].

NOTATIONS AND PATHWAY EQUATIONS/DYNAMICS (T)drugi. Tdrug2. AND T)dpryg3 REPRESENT COEFFICIENTS DUE TO DRUG LAPATINIB APPLIED TO

TABLE 1

DIFFERENT PROTEINS/COMPLEXES [22], [23].)

Variable| Protein or Complex Pathway Dynamics
y(1) EGFR2 2 = Bi[EGFR|[EGFR] _a1y(1)narug1S _an2y(7)
¥(2) EGFR+ERBB2 23 _ g [EGFR|[ERBB2]  asy(2)narug2S  a10y(7)
v3) ERBB2+ERBB3 W) — B3[ERBB2][ERBB3]  a13y(3)NarugaS  a11y(7)
y(4) RAS B — o1y(1)narug1S + a2y(2)narug2S  asy(4)  asy(4)
¥5) | RAF B2 = asy(4) _asy(10) aey(5)
y6) | MEK B2 = aey(5) _ary(6)
y(7) ERK WD = ary(6) asy(7) aoy(7) aioy(7) omry(7)  ay(7)
y(8) PI3K B — 213y (3)narugsS  1ay(8) + auy(4)
¥(9) PDPK1 PO = a1ay(8)  a1sy(9)
y(10) | AKT W0 = ansy(9)  asy(10)  auey(10)
y(11) | mTOR D — a16y(10)  arry(11)neS
y(12) | RP6SKBI B — ay7y(11) + aoy(7)  asy(12)
y(13) | FOS 20 = agy(7) + casy(12)  aioy(13)

] 1 Drug is not present
Ndrug:S | drug coeff. MdrugiS = Tdrugi Drug is present i=1,2,3




substrates. Additionally, activation of the AKT/mTOR path-
way bolsters resistances to many cancer treatment approaches,
and it thus constitutes one of the poor prognostic factors for
several types of cancer [25].

Genetic regulation in a pathway with drug perturbation can
be modeled with rate equations that express the differences
between production and degradation rates [11], [26] as follows

switch is off.

(D

{1‘,’ = OéjIj — ;X4

i = 0T Ndrug — OGT;,  SWitch is on

where z; and x; represent gene (protein) expression levels,
aj > 0is a synthesis factor and o; > 0 is a degradation
factor. 1g,g represents the drug-effect factor which is deter-
mined by the pharmacological model of the drug input. The
state of the switch depends on the drug perturbation.

Using the rate equations, the  proliferation
and survival pathways that  biologists  currently
understand, for example the Kegg collection of
pathways (http://www.genome.jp/kegg/pathways.html)
and the NIH BioCarta pathway collections
(https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways),
are illustrated in Fig.2 as well as Table I [22], [23], [27]. For
our model set up, Table I provides the pathway dynamics
(following equation(1)) for the proteins and complexes
together with input from drug Lapatinib [22]. The expected
effect of the drug (Lapatinib) is the suppression of the
pathway, that is, reducing the concentration level of ERK
and thus preventing the tumor cells from proliferation. It is
expected that the lower the ERK concentration level, the more
effective the drug is and the lower the number of proliferating
cells.

B. Pharmacokinetics(PK) and Pharmacodynamics(PD) model

Pharmacokinetics describes the drug dose concentration-
time response, i.e., how the drug is absorbed, distributed,
metabolized and excreted, while pharmacodynamics describes
the concentration-response of drug effects [1]. Our model
includes a drug-effect factor 74,4 in equation (1) and Table I
that is related to the time course of drug effects (PK/PD) after
drug perturbation (i.e. 1)grvg links PK and PD as described in
the following sections). An integrated PK and PD model is
vital in adequately describing the time course of drug effects
since such model bridges between a pair of classical topics in
pharmacology [28].

1) The PK model: The concentration of the drug at
the effect site is vital for the pharmacological effect of the
drug. As illustrated by Kuh et al. [29], the drug’s intra-
cellular concentrations increase exponentially when the drug is
absorbed following each intake of the drug. The concentration
of the drug may change slowly (this is approximated as a
flat line in our model) when the drug’s intra-cellular and
extra-cellular concentrations approach equilibrium. Then the
concentration decreases exponentially as the drug elimination
rate is higher than the rate of entering the effect site, resulting
in diminishing effects. According to Kuh et al. [29], a widely
used modeling curve for the concentration-time profile of the
drug is shown in Fig. 3. The proposed modeling approach
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Fig. 3. The PK model: drug concentration versus time profile (in log scale).
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Fig. 4. The PD model: drug concentration-response characteristics.

is generalized enough to handle diverse cases even though
different drugs function differently. The concentration increase
stage may be ignored if the drug concentration increases very
rapidly, or the equilibrium phase may be neglected if it is
very short. By adjustment of the model’s parameters, one can
represent specific drug characteristic.

2) The PD model: Generally, drug pharmacological effect
magnitude is directly proportional to the dose before it eventu-
ally reaches saturation [30]. The most widely used concentra-
tion response model is the logistic model or the Hill equation,
equally referred to as the sigmoidal E,,,, model [31]. It is
assumed in our model that the drug effect coefficient 7g,vg
(where the drug target is x; according to equation(1)) relates to
the concentration via a sigmoidal function approximated by the
plot in Fig. 4, where the drugs only begin to be effective after
the concentration level exceeds a lower threshold (C7) and the
effect of the drug reaches saturation after the concentration
level rises above an upper threshold (C).



C. Cellular/Multicellular Level

A cellular automata model is proposed at the cellular level
inan N X N grid to describe the intracellular and intercellular
interactions among the cells, drug profile and the microenvi-
ronment (mE) conditions. Specifically, It is assumed that each
cell is in one of the states at a given time. For each cell, the
gene expression levels and the microenvironment conditions
such as nutrients and the number and types of neighboring
cells, as well as the current cell states and cell cycle determine
the transition probabilities in the proposed Markov chain as
shown in Fig. 5. For instance, If [ERK] is above a threshold,
it is expected that P, and Py will be high since high ERK
concentration implies that more cells are expected to be in a
proliferating state. It is assumed that once a cell enters the
decaying state, it will never transition back to the quiescent
or proliferating state and it is eventually dead based on the
progressive degree of decay from the transit compartment
model [32], [33]. Proliferation of cells potentially increase the
number of cells in the grid. It results in a cell duplicating
into a pair of similar offspring cells. The proliferating cells
with a good microenvironment condition search for an empty
space to deliver their offspring. Since each grid site may be
occupied by a single cell, one offspring cell resides in the
mother’s grid site and the second is situated in the empty grid
site comprising the Moore neighborhood of the mother [34].
The procedures for simulating the above process is illustrated
in Algorithm 1.

Algorithm 1 : Procedures for simulating the phenotypic
decision process for cancer cells
1: Input: Pathway parameters, drug dosage, initial transi-
tion probabilities F;;, initial number of cells, initial
gene expression levels

2: Output: Cell phenotype, percent of non-proliferating cells
3: for each observation interval (t = t;) do

4: for each cell do

5: Get 1grug(t;) from drug PK/PD curve

6: Solve pathway ODEs and obtain [ERK]

7: if ([ERK] >[ERK]¢hreshotd) then

8: adjust P

9: Sample Markov chain

10: Cell phenotype +state of markov chain
11: end if

12: if Cell phenotype < Proliferating then

13: if mE + Good & Space < empty then
14: Add new cell

15: end if

16: end if

17: return Number of cells

III. SIMULATION RESULTS

Simulations have been performed in MATLAB using the
proposed model. The simulations incorporate a baseline run
of the pathway equations by following the procedures in
Algorithm 1. Three scenarios have been simulated using the
proposed model, namely, with no drug input, low dose drug
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Fig. 5. The proposed Markov chain where the transition probability is a
function of the expression level of ERK, cell cycle, and the microenvironment.

input, and high dose drug input. The output results correspond
to the time series data of the number and type of cells as well
as the state of each individual cell.

As a solid tumor grows and develops, the cells at the
core of the tumor may often be starved of nutrients and thus
become dead cells (Fig. 6) which are the typical characteristic
of solid tumors. Taking into account the typical duration of
the cell cycle (about 24 hours) [35], [36] and the effective
drug half-life (approximately 24 hours for Lapatinib) [37],
the Markov chain of cell state is sampled in about every 10-
hour interval divided into time slots of one hour each. The
growth patterns of the cells can be observed in Fig. 6 from
the snapshots of spatial and temporal evolutions of cancer
cells with different inputs, namely, no drug perturbation and
with drug administration (low dose and high dose). Simulation
depicts a tumor having a necrotic core that is surrounded
by cells in quiescent or proliferating state. Under periodic
drug intake with high dose, the constant drug concentration in
plasma is high enough to cause the drug PD value falling into
the effective region. In contrast, the drug being administered
periodically at low dose causes the drug PD value to fall in the
ineffective range. Thus, the growth of cancer cells is repressed
under high dose drug administration (Fig. 6C) as compared
with the case with low dose drug administration (Fig. 6B)
where limited drug effect is observed, although it is better than
the case of no drug input given in Fig. 6A. This demonstrates
that the administered drug being effective in inhibiting the
proliferation pathway indicated by the expression level of
ERK. The spatial and temporal patterns in Fig. 6 depict a
tumor having a compact shape and a boundary that is irregular,
as it has been observed in some solid tumors [21].

Fig. 7 shows the evolution of the different cell types with
and without drug intakes. It is observed that the proliferating
cell population grow exponentially when they are not exposed
to any drug (Fig. 7A). When the drug intake has low dose,
proliferating cell population will still grow (Fig. 7B) since the
drug PD value falls in the ineffective range. It is also shown
that cancer cell proliferation happens at a much greater speed
in comparison with tumor cell death when there is no drug
administered or when the administered dose is too low. With a
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Fig. 6. Growth patterns of the cancer cells after 50, 100, 150, 200, 250, 300 and 350 iterations. Snapshots of spatial and temporal evolutions of cancer cells
are given for (A) with no drug perturbation; (B) with low dose drug intake; (C) with high dose drug intake.
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Fig. 7. Dynamic evolution of proliferating, quiescent and dead cells (A) with
no drug administration (B) with lower dose drug administration (C) with high
dose drug perturbation.

high dose drug intake, an initial warm-up period is observed in
Fig. 7C given the drug’s PK, then the number of proliferating
cells starts to go down after the drug effect kicks in, i.e.,
the constant drug concentration in plasma is high enough to
eventually cause the drug PD value fall within the effective
region. Fig. 7C also shows that the cancer cell proliferation
initially happens at a much greater speed than that of tumor
cell death, then the trend is reversed as the drug becomes
more effective in repressing the proliferating cells. Overall, the
results show that gene(s) or protein(s) network perturbation by
drug at the sub-cellular level manifests as functional changes
at the inter-cellular and tumor scales.

IV. DISCUSSIONS

Mathematical models are increasingly being used in the area
of quantitative multiscale cancer modeling. Although several
modeling approaches have been explored in the literature, the
actual bio-systems are far more complex to the point that cur-
rent available computational tools are not able to sufficiently
describe all the details. In addition, such mathematical models
are usually computationally demanding and should therefore
be designed in a way that maintains a balance between model
complexity and mathematical tractability or simplicity with
the aid of clinical or experimental data. In modeling such
type of integrated systems and experimental modeling method,
associated challenges that researchers may encounter includes
availability of pertinent biomedical/experimental data, model
validation, estimation of model parameters, uncertainty and
sensitivity analyses, variable choice for model inclusions and
access to data standards facilitating sharing of results and
information [38]. Access to proven biomedical or experimental
data, model validation against in vivo experiments and high-
level innovative mathematical and simulation tools may help
to mitigate some of the challenges.

To limit the complexity of the model and to focus primarily
on system modeling, we have not incorporated processes
such as angiogenesis, vascularization, cell heterogeneity, drug
resistance, 3D tumor morphology and several other biological
and biochemical mechanisms into the proposed model. There
have been many studies integrating some of these processes
into multiscale tumor models and interested readers may
refer to [6], [39]-[42]. However, many existing models do
not usually integrate the relevant and detailed modeling of
the regulatory networks or signaling pathways and the drug
pharmacology information. The proposed model is simulated
on a fixed grid size for the sake of simplicity and in the
case of real cells, the regulation and interaction processes
are much more complicated since several hundreds of bio-
chemical reactions occur in the cells. The proposed multiscale
model is conceptual and the model parameters are not directly
estimated from clinical/experiment data. They are obtained
based on general understanding of tumor behavior and via
literature search. Availability of various clinical or in vivo
data and assays (for instance, drug delivery and metabolism
data) may help improve the prediction accuracy of the model.
For a more realistic application towards precision medicine,
future work on the model could incorporate detailed descrip-
tions of some of these processes and the dynamic changes in



tissue morphology resulting from the evolutionary competition
among the cells.

V. CONCLUSIONS

This study has proposed a multiscale mathematical model
depicting the dynamics of cancer cell population with different
drug perturbations. The model has been implemented at the
sub-cellular, cellular and multicellular hierarchical levels. It is
shown by simulations that the tumor cell population typically
grow exponentially when they are not exposed to anti-cancer
drug or low dosage of drugs, while the growth of tumor cells
is repressed with high dose of drugs. The proposed multiscale
model could provide vital insight into tumor growth, devel-
opment and therapeutic strategies while taking into account
specific PK/PD profiles and genetic pathway information.
As further experimental/biomedical data becomes available,
the model parameters could be better refined, estimated and
calibrated. Additional study is needed to extend the modeling
approach to describe cancer cells in primary cultures and
tumor tissues. This may provide further insights into the
growth dynamics and response to drug-treatments of cancer
cell population in vivo.
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