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Abstract

Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across
the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG
family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have
proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades
and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hy-
potheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those
from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our
analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod
clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod
Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in
hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to
land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa.
We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All
antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an asso-
ciation with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG
family evolution across the largest and most speciose metazoan phylum Arthropoda.
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would have imposed novel challenges and requirements for
chemosensation, as the transmission and reception of chem-
ical stimuli become altered in diverse environments, such as
in aquatic versus aerial media. Such diverse transmission me-
dia would impose varying evolutionary pressures on genes
underlying chemosensory responses. Interestingly, the three
major subphyla within the Arthropoda, that is, the
Pancrustacea (e.g, crustaceans and insects), Myriapoda (e.g,
centipede and millipedes), and Chelicerata (e.g, spiders, mites,

Introduction

Chemosensation refers to the physiological responses of sense
organs to chemical stimuli, including taste and odor, and is
observed across a wide range of taxa from bacteria to humans
(Bargmann 2006; Vosshall and Stocker 2007; Nei et al. 2008;
Kaupp 2010). Chemosensory systems play critical roles in
mediating behavioral responses such as feeding, mating, pred-
ator avoidance, and predation. Chemosensing in the phylum

Arthropoda is particularly intriguing, given the extraordinary
diversity of habitats and ecological niches that arthropods
have been able to colonize, spanning marine, brackish, hyper-
saline, freshwater, terrestrial, and extremely arid environ-
ments (Cloudsley-Thompson 1975; Semme 1989; Glenner
et al. 2006; Kelley et al. 2014). These habitat colonizations

and scorpions) have colonized freshwater and terrestrial hab-
itats independently (Giribet et al. 2001; Regier et al. 2010; von
Reumont et al. 2012; Oakley et al. 2013). Thus, given these
independent transitions to land, have chemosensing systems
evolved through the same pathways during these parallel but
independent colonization events?
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Based primarily on the study of the fruit fly Drosophila mel-
anogaster, arthropod chemoreception has been found to be
mediated by three different multigene families of chemosen-
sory receptors. These include two gene families of seven trans-
membrane receptors, namely the gustatory receptors (GRs)
(Clyne et al. 2000) and the more derived odorant receptors
(ORs) (Clyne et al. 1999; Gao and Chess 1999; Vosshall et al.
1999), which are unrelated to the vertebrate GRs and ORs
(Gardiner et al. 2009). More recently, a third family of chemo-
sensory receptors has been discovered in D. melanogaster,
namely, the ionotropic receptors (IRs), which are a class within
the ancient and highly conserved ionotropic glutamate recep-
tor (iGluR) family of ligand-gated ion channels (Benton et al.
2009; Croset et al. 2010; Abuin et al. 2011; Benton 2015). In
addition, two soluble binding protein families, the chemosen-
sory proteins (CSPs) and insect-type odorant binding proteins
(OBPs), are known to mediate the transport of ligands to the
chemosensory receptors (Pelosi et al. 2006; Laughlin et al. 2008;
Vieira and Rozas 2017; Pelosi et al. 2014). In this study, we refer
to these five gene families (ORs, GRs, IRs, CSPs, and OBPs) col-
lectively as the “Chemosensory-Related Gene families” (CRGs).

Although CRGs have been studied intensively since the
2000s, little information has been gained regarding these
genes in arthropods beyond the insects (Hexapoda), until
very recently. Thus, the evolutionary history of CRGs through-
out the Arthropoda had remained largely unexplored and
poorly understood. Emerging data are beginning to suggest
that the major CRGs might have expanded, contracted, or
become completely lost throughout the course of arthropod
evolution (Robertson and Wanner 2006; Penalva-Arana et al.
2009; Robertson and Kent 2009; Hansson and Stensmyr 2011;
Vieira and Rozas 2011; Zhou et al. 2012; Pelosi et al. 2014;
Robertson 2015; Saina et al. 2015).

Some hypotheses have posited a link between CRG family
expansion and habitat colonizations. In particular, the expan-
sion of the OR gene family had been hypothesized to be
associated with the colonization of land by insects
(Hexapoda), to enable the detection of volatile compounds
in air (Robertson et al. 2003; Penalva-Arana et al. 2009; Krang
et al. 2012). This hypothesis was consistent with the intriguing
absence of ORs and OBPs in the water flea Daphnia pulex,
belonging to the crustacean lineage (Branchiopoda) that
forms a clade with the insects (Penalva-Arana et al. 2009;
Vieira and Rozas 2011) (fig. 1). Nevertheless, there is some
debate regarding whether the expansion of the OR gene fam-
ily was the result of a terrestrial adaptation (Missbach et al.
2014). In addition, prior studies had not sampled the crusta-
ceans outside of the branchiopod/hexapod clade, preventing
resolution on whether the ORs and OBPs are absent from the
Daphnia lineage alone or instead absent from all crustaceans
outside of the insect clade. Also, unresolved is whether inde-
pendent colonizations of land in the other arthropod sub-
phyla (i.e, Chelicerata and Myriapoda) also coincided with
expansions of the OR gene family (Chipman et al. 2014).

More generally, the evolutionary histories of CRG families
and hypotheses regarding which CRG gene families are the
most ancient have been gaining some clarity only recently. An
earlier hypothesis had posited that the IRs represent the most

ancient arthropod chemoreceptors, dating back to the origin
of the Protostomia (Croset et al. 2010). In contrast, more recent
studies found GRs to be more ancient, originating early in the
evolution of metazoans, given their presence in the eumeta-
zoan phylum Placozoa (Trichoplax adhaerens) (Robertson
2015; Saina et al. 2015). In addition, the analysis of evolutionary
histories of IR genes has been based mostly on studies of
insects, with relatively little investigation of their presence or
absence in other arthropod lineages (Croset et al. 2010).

Addressing the hypotheses above, regarding patterns of
CRG evolution across the Arthropoda, requires the analysis
of multiple members within the subphylum Pancrustacea
beyond the insects (Hexapoda), the inclusion of the arthro-
pod subphyla Myriapoda (e.g, centipedes and millipedes) and
Chelicerata (e.g, spiders, mites, and scorpions), as well as the
inclusion of outgroup phyla. However, until recently, genomic
data beyond the hexapod/branchiopod clade (e.g, insects
and Daphnia) had been lacking. Very few comparative anal-
yses of CRG evolution had included the subphyla Chelicerata
and Myriapoda (Chipman et al. 2014; Robertson 2015), and
only a few molecular evolutionary studies of crustacean CRGs
had been performed (Penalva-Arana et al. 2009; Krang et al.
2012; Corey et al. 2013). Within the Pancrustacea, the critical
phylogenetic placement of the Copepoda enables the resolu-
tion of CRG family gain or loss in the insects (Hexapoda), as
they are outside of the Allotriocarida (Hexapoda/
Branchiopoda/Remipedia) clade, yet are often found to be
the closest sister group to this clade (von Reumont et al. 2012;
Oakley et al. 2013; Sasaki et al. 2013; Eyun 2017). Thus, we
focused much attention on the Copepoda, in order to explore
patterns of CRG gain or loss in close evolutionary proximity to
the clade containing the insects.

In addition to the crucial phylogenetic placement of the
Copepoda, their chemoreception is inherently interesting
from both ecological and evolutionary perspectives.
Copepods occupy an enormous range of habitats in the
aquatic realm, from freshwater to hypersaline, and shallow
pool to deep sea environments (Hardy 1956; Huys and
Boxshall 1991; Martin and Davis 2001). They also form the
largest biomass of all animals in the world’s oceans, and pos-
sibly on the planet (Hardy 1956; Huys and Boxshall 1997;
Humes 1994; Verity and Smetacek 1996). Copepods are par-
ticularly known to frequently exhibit cases of cryptic specia-
tion, where large genetic distances and reproductive isolation
are accompanied by morphological stasis (Burton 1990; Ganz
and Burton 1995; Edmands 1999; Lee 2000; Lee and Frost
2002; Goetze 2003; Grishanin et al. 2006; Rynearson et al.
2006; Eyun et al. 2007; Chen and Hare 2011). In the absence
of morphological cues and differentiation, it has been hypoth-
esized that speciation in copepods occurs through rapid evo-
lution of chemical sensing (Snell and Morris 1993).

Thus, the goals of this study were to address the hypoth-
eses above on CRG family evolution across the Arthropoda.
Our specific goals were to: 1) determine patterns of gains and
losses of CRG families across the phylum Arthropoda, 2) infer
the evolutionary origins of the arthropod CRG families, and 3)
examine sex-specific differences in CRG family expression in
copepods.
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Fic. 1. Patterns of chemosensory-related gene (CRG) family evolution in the Arthropoda. Gene family gain events (red plus sign) are shown along the
branches. Numbers of GR, IR, CSP, OR, and OBP genes for representative species are shown in the right-hand columns. Letters to the right of the
columns indicate the taxa used in the analysis, listed below. Green dots on the phylogeny indicate terrestrial colonization of most members of a lineage.
Numbers of CRG genes were obtained from genome sequence data, except for four species (Acropora millepora, Amphibalanus amphitrite, Penaeus
monodon, and Artemia franciscana: indicated with underline and gray font letters to the right of the columns), for which CRG genes were obtained from
transcriptome data. A consensus of the arthropod phylogeny was obtained from von Reumont et al. (2012), Oakley et al. (2013), and Sasaki et al. (2013).

In this study, we address current hypotheses and examine
prior conclusions regarding GR and OR gene family evolution,
as well as explore patterns of IR gene family evolution in
greater detail. This study addresses the hypotheses using a
more comprehensive data set than in prior studies (Croset
et al. 2010; Robertson 2015; Saina et al. 2015). We included all
three arthropod subphyla (i.e, the Pancrustacea, Myriapoda,
and Chelicerata) and a member of the closest related out-
group phylum, the Onychophora (Euperipatoides rowelli), as
well as other outgroup phyla. A unique feature of this study is
the inclusion of 14 crustacean genomes and transcriptomes.
We additionally introduce the high-quality draft genome of

1840

the copepod Eurytemora affinis, as the first published report
of a comprehensive copepod genome sequence. The inclu-
sion of multiple crustacean taxa greatly enhances our ability
to make inferences regarding patterns and timing of CRG
evolution in close phylogenetic proximity to the most heavily
studied arthropod clade, the insects (Hexapoda). This study is
the most comprehensive comparative analysis to date of CRG
family evolution across the largest and most speciose meta-
zoan phylum Arthropoda. As such, this study serves as a
critical starting point for generating hypotheses on how dif-
ferent CRGs might have expanded and evolved to adapt to
diverse ecological niches.


Deleted Text: fourteen 
Deleted Text:  

Arthropod Chemosensory-Related Genes - doi:10.1093/molbev/msx147

MBE

Results

General Characteristics of the Copepod Eurytemora
affinis Genome

We sequenced the full genome of the copepod Eurytemora
affinis, as copepods provide a critical phylogenetic outgroup
data point to the branchiopod/hexapod clade for analyzing
patterns of CRG evolution. The E. affinis genome was se-
quenced as part of the i5K pilot at the Baylor College of
Medicine Human Genome Sequencing Center, a pilot project
to investigate large-scale genomic sampling of the arthropods
and provide a framework for comparative arthropod geno-
mics. Genome sequencing was performed on an inbred line
(see Materials and Methods), with a genome size estimated at
0.6-0.7 pg DNA/cell (~587-685 Mb) based on Feulgen DNA
cytophotometry (Rasch et al. 2004). The draft genome assem-
bly is relatively compact at 495 Mb, smaller than the total
genome size due to our inability to assemble highly repetitive
heterochromatin from short read sequence data. It is larger
than the Daphnia pulex genome (~200 Mb) (Colbourne et al.
2011), a species selected in part for its small genome size in
the age of expensive Sanger sequencing. The genome size of E.
affinis is on the lower end of the range observed for copepods
(0.14-12 pg) (Gregory 2016), and smaller than most crusta-
ceans, where the average genome size of 6.7 pg has slowed the
adoption of genome sequencing of these taxa.

The contiguity was below average with a contig N50 of
5.7 kb with a scaffold N50 of 863 kb, giving us confidence for a
high-quality automated annotation (see supplementary table
S1 for additional statistics and public repository accession
numbers, Supplementary Material online). Automated gene
model annotation using a Maker 2.2 pipeline customized for
arthropods (Cantarel et al. 2008) generated 29,783 gene mod-
els. This number is likely an overestimate due to gene model
fragmentation across gaps within and between scaffolds, but
is somewhat in-line with the 18,440 gene models in D. pulex

(PA42) (Ye et al. 2017) and 29,121 gene models in Daphnia
magna, relative to the lower number of ~15,000 for insects.
Of 1,977 control genes expected to be present in all arthro-
pods (Simao et al. 2015), 91.5% were identified in the genome
assembly and 86.3% were represented in the automated gene
model set. Thus, gene families and most genes were present in
the assembly and gene set, but the absence of any particular
gene from the assembly could be due to the draft nature of
the assembly.

Overview of Chemosensory-Related Gene (CRG)
Family Evolution

We comprehensively examined gains and losses of CRGs (ORs,
GRs, IRs, CSPs, and OBPs), using 33 distinct genomes and
transcriptomes across the phylum Arthropoda, as well as mul-
tiple metazoan outgroup phyla (Onychophora, Nematoda,
Mollusca, Cnideria, Placozoa, Porifera, Ctenophora) and addi-
tional fungal and protistan groups (see Materials and
Methods; supplementary tables S2-S4, Supplementary
Material online). We found fewer chemosensory recep-
tor genes in arthropods (~12-500; fig. 1), relative to
vertebrates (~1,391 olfactory receptors and >300 vom-
eronasal receptors in mouse) and nematodes (>1,200
serpentine receptors in  Caenorhabditis elegans)
(Niimura and Nei 2003; Chen et al. 2005; Bargmann
2006; Robertson and Thomas 2006). While this relatively
low number had been known for insects (Nei et al. 2008),
we now confirm that this pattern holds generally true
across the phylum Arthropoda (fig. 1) (Chipman et al.
2014; Gulia-Nuss et al. 2016).

Our results on patterns of CRG evolution revealed the GRs
to be the most ancient of all the eumetazoan CRGs, given the
inferred presence of GR or GR-Like genes in the common
ancestor between arthropods and the phylum Placozoa (fig.
1; see next section for details). This result was consistent with

Fic. 1 Continued

Branching resolution among earliest animal lineages were obtained from Parfrey et al. (2010), Moroz et al. (2014), and Whelan et al. (2015). The gray
branches indicate the protistan phyla and the gray-dashed branches are the fungal phyla. Numbers of CRG genes obtained through our analyses are
indicated by asterisks to the left of the columns above, whereas references are provided (below) for data obtained from other studies. Species

shown in the figure above are as follows:

Placozoa Trichoplax adhaerens® (Robertson 2015; Saina
et al. 2015)
Cnidaria Nematostella vectensis®, Hydra
magnipapillata“, Acropora milleporad
(Robertson 2015; Saina et al. 2015)
Mollusca Aplysia californica® (Croset et al. 2010;
Robertson 2015)
Nematoda Caenorhabditis elegans’ (Croset et al. 2010;
Robertson 2015)
Onychophora Euperipatoides rowelli®
Arthropoda
Chelicerata Ixodes scapularish (Gulia-Nuss et al. 2016),
Centruroides exilicauda', Latrodectus
hesperusj, Loxosceles reclusa®
Myriapoda Strigamia maritima' (Chipman et al. 2014)
Pancrustacea

(continued)

Copepoda Eurytemora affinis™, Tigriopus californicus"

Thecostraca Amphibalanus amphitrite®

Malacostraca Hyalella aztecap®, Penaeus monodon®

Anostraca Artemia franciscana”

Cladocera Daphnia pulex® (Penalva-Arana et al. 2009;
Croset et al. 2010; Vieira and Rozas 2011)

Hexapoda Drosophila melanogaster*, Bombyx mori*,

Tribolium castaneum®,Apis mellifera®,
Acyrthosiphon pisum™, Pediculus
humanus’(Robertson and Wanner 2006;
McBride and Arguello 2007; Wanner et al.
2007; Engsontia et al. 2008; Tribolium
Genome Sequencing Consortium 2008;
Wanner and Robertson 2008;

Tanaka et al. 2009; Croset et al. 2010;
Kirkness et al. 2010; Vieira and Rozas 2011).
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Fic. 2. Phylogeny of the GR gene families from representatives of some major clades within the Arthropoda. Phylogenetic relationships among GR
genes of the fruit fly Drosophila melanogaster (Hexapoda, Groups | and II, olive), the waterflea Daphnia pulex (Cladocera, within Branchiopoda,
Groups VII-IX, blue), the copepod Eurytemora affinis (Copepoda, Group IlI, red), the centipede Strigamia maritima (Myriapoda, Group X,
magenta), and the black-legged tick Ixodes scapularis (Chelicerata Groups IV-VI, orange). The phylogeny was constructed using maximum likelihood,
based on alignments of 1,346 amino acids of GR genes (see Materials and Methods). The numbers at internal branches show bootstrap support values
(%) for the maximume-likelihood reconstruction and posterior probabilities (%) for the Bayesian reconstruction. Support values on the major internal
branches are shown for values higher than 60%. Groups I-X each represent lineage-specific expansions (of more than three genes) and are supported
by > 0.70 posterior probability in the Bayesian reconstruction. The scale bar represents the number of amino acid substitutions per site. See
supplementary figure S1, Supplementary Material online, for a more detailed GR amino acid phylogeny using additional taxa.

recent studies (Robertson 2015; Saina et al. 2015)
(see Discussion). We also found that GRs are characterized
by lineage-specific expansions within the Arthropoda (fig. 2;
see below). The IRs date back to at least the emergence of the
Protostomes (fig. 1; see below), as found in another study
(Croset et al. 2010). This study clarified the evolutionary his-
tory of antennal IRs in the Arthropoda (figs. 3 and 4; see
below) and revealed that the antennal IR76b, previously
thought to be insect-specific (Croset et al. 2010),

1842

originated prior to the divergence of the insects (fig. 4,
see below). Intriguingly, antennal IRs in E. affinis showed
higher expression in males than in females, the first such
finding for an aquatic animal (fig. 5). These male-biased
genes also showed signatures of natural selection (see
below). The CSPs were present only in the Arthropoda
(figs. 1 and 6), as found in another study (Pelosi et al.
2014). Our analysis, which included more pancrustacean
taxa and greater sampling of arthropod clades than prior
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Fic. 3. Phylogeny of the iGIuR gene families from nine copepod species and four other invertebrate species. Allamino acid sequences except for the
copepod sequences were taken from Croset et al. (2010). Information on the copepod sequence assemblies are shown in table 1. The phylogeny
was constructed using maximum likelihood (see Materials and Methods) based on sequence alignments of 3,211 amino acids. The numbers to the
left of the nodes show the bootstrap support values (%) for neighbor-joining and maximum-likelihood reconstructions, and posterior probabilities

studies, revealed that ORs and OBPs were only present in phyla (fig. 1). Our results were consistent with prior stud-
the Hexapoda (insects), while being absent in other pan- ies, while expanding the comparisons with more compre-
crustaceans, other arthropod subphyla, and all outgroup hensive sampling within the Arthropoda (see Discussion).
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Origin of Gustatory Receptors (GRs)

Our results place the timing of the origin of GRs to the
timing of the most recent common ancestor of the
Cnideria/Protostomia clade and the phylum Placozoa
(Trichoplax adhaerens) (fig. 1). This timing of the origin of
the GRs was based on the presence of GR or GR-like genes in
the placozoan T. adhaerens, and the absence of GR gene
candidates in the outgroup lineage leading to the animal
phylum Porifera (sponge Amphimedon queenslandica) and
the more distantly related Ctenophora (comb jelly
Mnemiopsis leidyi) (fig. 1). In addition, we did not find GR
or GR-like genes in the genomes of any protistan or fungal
taxa examined, including members of the protistan phylum
Choanozoa (choanoflagellate Monosiga brevicollis), the fun-
gal phyla Ascomycota (Saccharomyces cerevisiae) and
Basidiomycota (Sporobolomyces roseus), and the protistan
phyla Mycetozoa (slime mold, Dictyostelium purpureum),
Percolozoa (amoeboflagellate, Naegleria gruberi), and
Metamonada (Giardia intestinalis and Trichomonas vagina-
lis) (fig. 1; see supplementary table S3 for list of genomes
sampled, Supplementary Material online). Although our
study was based on sampling of taxa (see supplementary
table S4, Supplementary Material online) that was more
comprehensive than and distinct from those of two prior
studies (Robertson 2015; Saina et al. 2015), our results were
consistent with the previous findings.

We found three GR-like genes in the placozoan T. adhae-
rens, consistent with results from two previous studies
(Robertson 2015; Saina et al. 2015). We also identified four
GRL genes in the genome of the cnidarian Nematostella vec-
tensis. These genes had been identified previously, two by Saina
et al. (2015), NvecGrl1 (KP294348) and NvecGrl2 (KP294349)
(located in scaffold_86:815817.816695 and scaffold_91:194748.
194002), and two additional genes by Robertson (2015)
(jgi|Nemve1|198670 and jgi|Nemve1|214946) found in scaf-
fold_11 (818242.819090) and scaffold_214 (150068.149415).
We also found two GR-like genes in a data set of expressed

sequence tags of the cnidarian Acropora millepora (fig. 1). On
the other hand, our analyses failed to identify GR candidates in
another cnidarian genome, that of the polyp hydra, Hydra
magnipapillata, consistent with Saina et al. (2015) and
Robertson (2015). Additionally, we found three GR fragments
(data not shown) in the draft genome of the velvet worm E.
rowelli (Onychophora) and GR genes in the Chelicerata (12
GRs in Centruroides exilicauda and 1 GR in Loxosceles reclusa),
the Theocostraca (Pancrustacea, one GR in the purple acorn
barnacle Amphibalanus amphitrite), and the Copepoda
(Pancrustacea, ten GRs in E. affinis and ten GRs in Tigriopus
californicus) (fig. 1). Our findings represent the first discovery of
GR genes in the Multicrustacea (within the subphylum
Pancrustacea) and add to what has been found for other
taxa (see fig. 1).

Lineage-Specific Expansions and Contractions of GRs
across the Arthropoda

We observed and confirmed the GR gene family to exhibit
high levels of lineage-specific gene expansions across the
Arthropoda (Chipman et al. 2014; Gulia-Nuss et al. 2016).
Our phylogenetic reconstruction suggests that GR genes
most likely experienced gene duplications and differentiation
following lineage-splitting events, given that we could not
resolve orthologous relationships among GR genes from dif-
ferent clades, even among different hexapod orders (fig. 2 and
supplementary fig. S1, Supplementary Material online). Based
on high-quality full genome sequence data, we found a gen-
eral pattern of GR gene family expansions in representative
members of most major arthropod clades (i.e, Chelicerata,
Myriapoda, and Branchiopoda/Hexapoda), but not for the
Multicrustacea (e.g, Copepoda and Amphipoda) (figs. 1
and 2, and supplementary fig. S1, Supplementary Material
online). For instance, based on high-quality genome sequence
data, the black-legged tick Ixodes scapularis (Chelicerata)
(fig. 2, Groups IV-VI, orange branches), the centipede
Strigamia maritima (Myriapoda) (fig. 2, Group X, magenta

Fic. 3 Continued

(%) for the Bayesian analysis, respectively. Support values for the major internal branches are shown only for those higher than 60%.
Gene abbreviations for other iGIuR members (NMDAR, NMDA receptors; AMPAR, AMPA receptors; KR, Kainate receptors) are adopted from
Benton et al. (2009). The NMDAR gene family was used as the outgroup (see Materials and Methods). The inset illustrates a current consensus of
the invertebrate phylogeny (Regier et al. 2010; Zwick et al. 2012). Species names were abbreviated according to the following four-letter codes:

Cnideria
Mollusca
Arthropoda

Starlet sea anemone Nematostella vectensis (Nvec, green)
California sea hare Aplysia californica (Acal, teal)
Branchipoda/Hexapoda
Fruit fly Drosophila melanogaster (Dmel, olive)
Waterflea Daphnia pulex (Dpul, blue)
Copepoda (red)
Salmon louse Lepeophtheirus salmonis (Lsal)
Sea louse Caligus rogercressey (Crog)
Freshwater cyclopoid Mesocyclops edax (Meda)
Anchor worm Lernaea cyprinacea (Lcyp)
Tide pool copepod Tigriopus californicus (Tcal)
Asian Pacific copepod Calanus sinicus (Csin)
North Atlantic copepod Calanus finmarchicus (Cfin)
Oceanic shelf copepod Acartia fossae (Afos)
Common estuarine copepod Eurytemora affinis (Eaff)

1844


Deleted Text: Gustatory Receptors (
Deleted Text: )
Deleted Text: gustatory receptors (
Deleted Text: )
Deleted Text: -
Deleted Text: While 
Deleted Text: -like
Deleted Text: (
Deleted Text: ,
Deleted Text:  (ESTs)
Deleted Text: 3 
Deleted Text: 1 
Deleted Text: 10 
Deleted Text: 10 
Deleted Text: c
Deleted Text: Gustatory Receptors (
Deleted Text: )
Deleted Text:  
Deleted Text:  
Deleted Text: , V, and 

Arthropod Chemosensory-Related Genes - doi:10.1093/molbev/msx147

MBE

branches), the waterflea D. pulex (Cladocera, within the
Branchiopoda) (fig. 2, Groups VII-IX, blue branches), and
the fruit fly D. melanogaster (Hexapoda) (fig. 2, Groups |
and I, olive branches) possessed relatively high numbers of
GR genes (see Discussion).

In contrast to most arthropod groups (previous para-
graph), the multicrustaceans showed a relative lack of a GR
gene family expansion (fig. 2, Group Ill, red branches), typically
containing a few or no GR genes within species (fig. 2 and

Cnidaria

Eumetazoa Annelida

+Divergent IRs

Mollusca

+Divergent IRs

Nematoda

Ecdysozoa R aT Onychophora

Chelicerata
+Divergent IRs

Arthropoda

Myriapoda
+IR40a,IR21a,IR76b,IR93a

-IR93a,IR76b,IR21a

+Divergent IRs

+|R8a Multicrustacea

- a
+Divergent IRs
+Other Antennal IRs

Pancrustacea Branchiopoda

-IR40a,IR8a,IR21a

+Divergent IRs

Hexapoda

+Divergent IRs
+Other Antennal IRs

Fic. 4. IR gene gains and losses in the Metazoa. IR gene subfamily gains
(red color) and losses (blue color) are shown along the branches. The
taxa used for this analysis are listed in the Results section (in the
section “Origins of lonotropic Receptors Subfamilies”). The antennal
IR genes that show significant differential expression between the
sexes in the copepod Eurytemora affinis are underlined in magenta,
whereas the IR genes that do not show significant differences are
underlined in gray (see fig. 5 and supplementary table S8,
Supplementary Material online).

supplementary fig. S1, Supplementary Material online). Based
on full genome sequences, we found 10 GR genes in the
copepod E. affinis, 10 GR genes in the copepod T. californicus,
and OGR genes in the amphipod Hyalella azteca
(figs. 1 and 2). Likewise, based on transcriptome data of ad-
ditional multicrustacean species (including Thecostraca and
Eumalacostraca), which are not fully reliable as GR genes
might not be expressed or data sets might be incomplete,
we found only one GR gene in the purple acorn barnacle A.
amphitrite and two GR genes in the copepod anchor worm
Lernaea cyprinacea (supplementary table S5 and file S1,
Supplementary Material online). Determining whether the
low numbers of GRs are specific to the multicrustaceans, or
are also characteristic of other crustacean lineages (such as
the Ostracoda), requires further investigation.

Low Homology among GR Gene Candidates

GR sequences share extremely low sequence similarity, even
among paralogs within a species and among GR genes of
insect species (Robertson et al. 2003; Saina et al. 2015). For
example, the amino acid sequence identity among D. mela-
nogaster GR proteins alone drops to as low as 8% (Robertson
et al. 2003). Also, there are absolutely no conserved domains
among insect GR protein sequences. Because of these char-
acteristics of GRs, homologous relationships are extremely
difficult to infer for this protein family. In order to overcome
this difficulty, we undertook several analyses (see Materials
and Methods). First, we explored the positions of introns,
because many intron positions are conserved over extremely
long evolutionary time spans (Rogozin et al. 2003). We found
that two intron positions were shared even among the highly
divergent GR genes of Arthropoda, Cnidarian, and Placozoa
(supplementary fig. S2, Supplementary Material online). One

*
360 * * s
j? :M:r!r?ale e T ) =
30 A
25 4
= 20 A
X
& 15
10 A
5 -
O T T T T T T T T T T T
N oV D o> D 0 A D Q 2 N PR N N D N oV o> oh
CECCCECLCL L LS @%{;@@Q@ FEL S S S
L 11 L LL 1 L 1
GRs IRs CSPs

Fic. 5. Chemosensory-related gene expression levels in males (blue bars) versus females (red bars) of the copepod Eurytemora affinis. Gene
expression levels were determined by calculating RPKM values. The average RPKM from two technical replicates were used. Statistical significance
of differences in expression levels between male and female samples was analyzed for each gene. Significant P values (<0.001) are marked with an
asterisk (*). RPKM and P-values are summarized in the supplementary table S8, Supplementary Material online.
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Fic. 6. Phylogeny of CSPs from 6 copepods and 11 other arthropod species. The phylogeny was constructed using maximum likelihood based on
sequence alignments of 402 amino acids. Fourteen CSP sequences from six copepods are included (shown in red). In addition to copepods, 81 CSP
sequences are included from 11 representative arthropod species. All amino acid sequences except for the copepod sequences are taken from
Vieira and Rozas (2011) and Gu et al. (2012). The asterisks indicate branches with at least one of the phylogenetic reconstruction approaches
(maximum-likelihood, neighbor-joining phylogenies, or Bayesian) showing bootstrap values or posterior probabilities greater than 70%. The black
arrow on the phylogeny points to the node forming a clade within Pancrustacea, composed of a Daphnia pulex CSP, seven insect CSPs, and
copepod CSPs. This clade supports a clear homologous relationship between copepod and insect/branchiopod CSPs. This node is supported by a
maximume-likelihood bootstrap value of 62% and a Bayesian posterior probability of 0.78. The following representative species were used in this
analysis: the fruit fly Drosophila melanogaster (Diptera, olive), the silkworm moth Bombyx mori (Lepidoptera, pink), the red flour beetle Tribolium
castaneum (Coleoptera, brown), the honeybee Apis mellifera (Hymenoptera, dark green), the pea aphid Acyrthosiphon pisum (Hemiptera, cyan),
the human body louse Pediculus humanus (Phthiraptera, slate-blue), the waterflea Daphnia pulex (Cladocera, blue), the six copepod species
(Copepoda, red), the centipede Strigamia maritima (Myriapoda, magenta), and the black-legged tick Ixodes scapularis (Chelicerata, orange). All
other arthropod species are shown in black. The tree is midpoint rooted due to the absence of obvious outgroups. The scale bar represents the
number of amino acid substitutions per site.

intron position (indicated by a pink triangle, supplementary supplementary figure S2, Supplementary Material online,
fig. S2, Supplementary Material online) was shared only be- the first matching intron position (indicated by an orange
tween Nematostella vectensis Grl1 (NvecGrlT) and Trichoplax arrow and an asterisk) has phase 0 in all GR sequences except
adhaerens Grl3 (TadhGrl3), but was absent in arthropods. for TadhGrl3, which has phase 2. In this position of TadhGrl3,
This finding was consistent with the observation that the a non-GT-AG intron was found, indicating either a nonca-
ancestral introns have generally been lost in arthropods nonical intron or more commonly an error.

(Rogozin et al. 2003). In addition, sequence homology was In our second approach, we analyzed the domain com-
supported by codon phases (supplementary fig. S2, position of putative N. vectensis and T. adhaerens GR-like
Supplementary Material online). For instance, in the genes to computationally infer their protein family
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classification  (supplementary table S6, Supplementary
Material online). All GR-like proteins from N. vectensis and
T. adhaerens were related to the GR family or Trehalose
receptor family (supplementary table S6, Supplementary
Material online). Finally, we confirmed that these GR-like
proteins had relatively high sequence similarity with insect
GRs (>31.5% among five representative GRs by local se-
quence similarity, E-values < 1.2 x 10~) and that reciprocal
blastp results were also supported by the top hit to previ-
ously known insect GRs (data not shown). These analyses
provided strong support for the identity of the GR gene
homologs.

Origins of lonotropic Receptor (IR) Subfamilies,
Particularly the Antennal IRs

Based on localization of gene expression in insects, IRs had
been classified into two groups, namely, conserved “antennal
IRs” and species-specific “divergent IRs” (Croset et al. 2010)
(fig. 3). We found six antennal IR subfamilies present in the
Arthropoda, with one (IR25a) stemming back to the origin of
the Protostomia, as found by Croset et al. (2010), and five
exclusive to the Arthropoda (i.e, IR40a, IR21a, IR76b, IR93a,
IR8a). Until recently, four antennal IRs, IR40a, IR21a, IR76b,
and IR8a, were thought to be insect-specific (Croset et al.
2010), but recent studies (see Discussion) and our analysis
(see below) found many instances of these IR gene subfamilies
occurring outside of the insect clade (fig. 4) (Chipman et al.
2014; Groh-Lunow et al. 2015; Gulia-Nuss et al. 2016; Vizueta
et al. 2017).

Of the arthropod-specific antennal IR gene subfamilies, our
results indicate that the antennal IR93a and IR76b are the
most widespread among arthropod lineages, as they were
absent only in the Myriapoda (fig. 4), which is represented
by only one species (supplementary table S4, Supplementary
Material online). We found orthologs of IR93a in the genomes
of four chelicerates (I. scapularis, C. exilicauda, Latrodectus
hesperus, and L. reclusa), five copepods (Multicrustacea)
(Caligus rogercresseyi, T. californicus, Calanus sinicus, Acartia
fossae, and E. dffinis), and two branchiopods (D. pulex and
Artemia franciscana), but absent from the velvet worm
Euperipatoides rowelli (phylum Onychophora, immediate
outgroup phylum to the Arthropoda) and also absent from
all other outgroup phyla.

We are the first to discover orthologs of antennal IR76b
occurring in arthropod taxa outside of the insect clade (fig. 4).
This antennal IR was previously thought to be insect-specific
(Croset et al. 2010). We found orthologs of IR76b in the ge-
nomes of the chelicerate bark scorpion C. exilicauda and in
two copepod genomes, of E. affinis and L. cyprinacea, and in
the genome of the branchipod Daphnia pulex. We confirmed
that D. pulex IR304 (EFX75437.1) is the ortholog of IR76b of D.
melanogaster. IR76b was absent from the genome of the vel-
vet worm Euperipatoides rowelli (phylum Onychophora) and
those of other phyla outside of arthropods.

Of the arthropod-specific antennal IRs, we found that the
distributions of IR40a, IR21a, and IR8a were less widespread
within the Arthropoda, but still occurring outside of the
insect clade (fig. 4). With respect to IR40a, we found an

IR40a ortholog (known as SmarlR49) present in the ge-
nomes of the myriapod centipede S. maritima (fig. 4).
Also, a prior study did find IR40a in a chelicerate (the hunter
spider Dysdera silvatica) (Vizueta et al. 2017) (see
Discussion). However, our analyses failed to identify IR40a
in the Onychophoran velvet worm, chelicerates, and all 14
crustacean species including the branchiopods (D. pulex and
A. franciscana) (listed in the supplementary tables S2 and S4,
Supplementary Material online).

We found the IR21a genes to be present only in copepods
(Caligus rogercresseyi and E. affinis) and hexapods (insects).
However, a prior study did find IR21a in present in a cheli-
cerate (the hunter spider D. silvatica) (Vizueta et al. 2017) (see
Discussion). Orthologs of IR21a were absent from the ge-
nomes of a species of the outgroup phylum Onychophora
(velvet worm E. rowelli), four species of Chelicerata (1. scap-
ularis, C. exilicauda, L. hesperus, and L. reclusa), one species of
Myriapoda (centipede S. maritima), and two branchiopod
species (D. pulex and A. franciscana).

We found IR8a orthologs to be present in the Copepoda
(Lepeophtheirus salmonis, C. rogercresseyi, L. cyprinacea, T.
californicus, and E. affinis) (supplementary table S7,
Supplementary Material online) and also in the Myriapoda
(S. maritima) (fig. 4). However, IR8a orthologs were absent
from the Chelicerata (D. silvatica, I. scapularis, C. exilicauda, L.
hesperus, and L. reclusa) (Vizueta et al. 2017), two branchio-
pod species (D. pulex and A. franciscana), and the outgroup
phylum Onychophora (E. rowelli) (fig. 4).

For the nine copepod species examined (table 1 and sup-
plementary table S2, Supplementary Material online), we
identified 33 IRs from seven of the copepod species (fig. 3
and supplementary table S7, Supplementary Material online).
Based on sequence similarity and phylogenetic analysis, we
were able to classify the 33 copepod IRs into five antennal IR
subfamilies (IR25a, IR76b, IR93a, IR8a, and IR21a) and diver-
gent IRs (fig. 3 and supplementary table S7, Supplementary
Material online). Interestingly, we observed duplicated IR
genes in several copepod species (fig. 3 and supplementary
table S7, Supplementary Material online). For instance, two
IR8a genes were identified in L. cyprinacea and three in T.
californicus, and two IR93a genes were identified each in C.
sinicus and E. affinis. These genes (IR93a and IR8a) had not
previously been found as duplicated genes in arthropods
(Croset et al. 2010). In this study, we were unable to deter-
mine the details of the origins of divergent IRs, because di-
vergent IRs showed no one-to-one orthology among Diptera
species and exhibited lineage-specific gene duplications
(Croset et al. 2010; Chipman et al. 2014) (fig. 4).

Among the 14 crustacean species examined (table 1 and
supplementary table S4, Supplementary Material online), we
were unable to find IRs in two copepod species Mesocyclops
edax and Calanus finmarchicus. The absence of IRs in these
two species might have arisen from very low coverage of
whole-genome sequencing. Mesocyclops edax (accession
numbers SRX246444 and SRX246445) and C. finmarchicus
(accession number SRX456026) were sequenced only to
~022 and ~0.55 gigabases (~0.4 and ~ 3 million reads)
by 454 GS FLX Titanium and the lon Personal Genome

1847


Deleted Text: gustatory receptor
Deleted Text: Ionotropic Receptors (
Deleted Text: )
Deleted Text: p
Deleted Text: ionotropic receptors (
Deleted Text: )
Deleted Text: fourteen 
Deleted Text: thirty-three
Deleted Text: ionotropic receptors (
Deleted Text: )
Deleted Text: thirty-three
Deleted Text: fourteen 
Deleted Text:  
Deleted Text: <italic>M</italic>.

Eyun et al. - doi:10.1093/molbev/msx147

MBE

Table 1. Summary of Next-Generation Sequencing Assemblies for Nine Copepod and Three Additional Crustacean Species Used in This Study.

Order and Family Species Names

Source Assemblies® (range; N50)

Siphonostomatoida

Caligidae Lepeophtheirus salmonis

Caligidae Caligus rogercresseyi
Cyclopoida

Cyclopidae Mesocyclops edax

Lernaeidae Lernaea cyprinacea

Harpacticoida

Harpacticidae Tigriopus californicus

Calanoida
Calanidae Calanus sinicus
Calanidae Calanus finmarchicus
Acartiidae Acartia fossae
Temoridae Eurytemora affinis

Branchiopoda, Anostraca

Artemiidae Artemia franciscana
Malacostraca, Decapoda

Penaeidae Penaeus monodon
Thecostraca, Sessilia

Balanidae Amphibalanus amphitrite

Genome
Transcriptome

Genome
Transcriptome

Genome and Transcriptome
Transcriptome

Genome

Transcriptome

Genome and Transcriptome
Transcriptome

Transcriptome

Transcriptome

10,615 (300-827 bp; 366)
76,788 (301-9,505 bp; 1,414)

25,442 (300-1,275 bp; 401)
271,824 (301-22,442 bp; 2,266)

60,840 (301-8,614 bp; 1,510)
29,458 (301-3,923 bp; 513)
8,629 (300-1,067 bp; 347)
100,383 (301-8,174 bp; 769)
88,104 (301-26,685 bp; 2,),
6,899 (604-7,289,689 bp; 862,645)
59,654 (301-48,245 bp; 1,747)
94,814 (301-17,471 bp; 2,473)

80,455 (301-8,040 bp; 857)

*The number of contigs (> 300 bp). The NCBI accession numbers and sequencing platforms were summarized in the supplementary tables S1and S2, Supplementary Material
online. The transcriptomes and the genomes were assembled using the software package Trinity and Velvet, respectively (more details in Materials and Methods).

Machine sequencer, respectively (supplementary table S2,
Supplementary Material online). The N50 length of de
novo assemblies in M. edax and C. finmarchicus was shorter
than that of other copepod assemblies (401 and 347 bp, re-
spectively; table 1). Therefore, the depth of coverage of se-
quencing might not have been sufficient to detect any IR
sequences.

Sex Differences in Expression Levels of IRs, CSPs, and
GRs in the Copepoda
In order to compare expression levels of the GR, IR, and CSP
genes between the sexes in the copepod E. affinis, we mapped
lllumina RNA-Seq reads to each gene and normalized for
sequencing depth and gene length by presenting them in
RPKM (reads per kilobase per million mapped reads) values.
Most notably, three of the antennal IR genes (EaffIR8a,
EaffiR25a, and EafflR93-1) showed significantly greater expres-
sion in the male RNA-Seq samples, relative to the female
samples (P < 0.001) (fig 5 and supplementary table S8,
Supplementary Material online). This was the first study to
discover IRs with male-biased expression in an aquatic animal.
In contrast to the significant sex-specific differences in ex-
pression of the three antennal IR genes, we found no sex-
specific difference in five representative housekeeping genes
of E. affinis (Cyclophilin-33, Actin 42A, Heat shock protein 83,
Glyceraldehyde 3 phosphate dehydrogenase 1, and Ribosomal
protein  L32) (supplementary table S9, Supplementary
Material online). The levels of expression were similar be-
tween the sexes for these housekeeping genes, in contrast
to the large sex differences in expression we found for three
antennal IR genes (EaffIR8a, EafflR25a, and EaffIR93-1) and one
CSP gene (EaffCSP1). Although we had only two replicate
samples for each sex, we included ~220 individual copepods
per replicate, and found very low variance between the
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replicates for both the antennal IRs and CSP gene, as well
as for the five housekeeping genes (see standard deviations in
the supplementary tables S8 and S9, Supplementary Material
online).

In contrast to the male-biased expression of some antennal
IR genes, the expression of the E. affinis CSP gene EaffCSP1 was
~30-fold higher in female RNA-Seq samples (in RPKM reads)
than in male samples (P < 0.0001 by edgeR and Prob. = 0.95%
by NOlISegq; fig. 5 and supplementary table S8, Supplementary
Material online) (see Discussion). The other E. affinis CSP
genes showed slightly higher, but not significant
(P> 0.1643), expression levels in male than in female samples
(fig. 5 supplementary table S8, Supplementary Material
online).

Six E. affinis GR genes showed no difference in expression
between the sexes (fig. 5 and supplementary table S8,
Supplementary Material online). In the contrast to relatively
high expression levels in antennal IRs, we found that crusta-
cean GRs were generally expressed at very low levels, except
for the copepod T. californicus GR7 (TcalGR7) and the barna-
cle A. amphitrite GR1 (AampGR1) (supplementary tables S5
and S8, Supplementary Material online). In E. affinis, the
RPKM values of all six E. affinis GRs from all four samples
were lower than 1 (fig. 5 and supplementary table S8,
Supplementary Material online).

Signatures of Selection in Antennal IR Genes

When we tested for signatures of natural selection in antennal
IR genes, we found significantly stronger signatures of purify-
ing selection in the IR genes showing elevated expression in E.
affinis males, relative to IR genes that showed no sex differ-
ences in expression (see fig. 5, supplementary fig. S3,
Supplementary Material online). Based on expression levels
of the antennal IR genes, we classified them into two groups
(fig. 5), namely “male-biased expression IRs” (IR25a, IR93a-1,
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and IR8a), which displayed significantly elevated expression in
males, and “unbiased expression IRs” (IR76b and IR21a),
which showed no difference in expression between the sexes.

To compare patterns of molecular evolution in the two
sets of IR genes, we used the branch model in codeml in the
software package PAML (Yang 2007). All the male-biased
expressed IR genes (IR25a, IR93a-1, and IR8a) showed signif-
icantly stronger signatures of purifying selection relative to
the unbiased IR genes (IR76b and IR21a) (supplementary fig.
S3, Supplementary Material online). When comparing the
average o (the ratio of nonsynonymous to synonymous sub-
stitutions, @ or dy/ds) between the two groups, they both
showed signatures of purifying selection (dy/ds < 1) (supple-
mentary fig. S3, Supplementary Material online). However,
the o (dy/ds) of unbiased IRs (@ = 0.0249) was 1.9 times
higher than that of the male-biased IRs (@ =0.0131), and
the difference was significant (P =0.0387; supplementary
fig. S3, Supplementary Material online). This lower value of
o (dn/ds) in male-biased IRs indicated that purifying selection
has acted more strongly in these genes.

Chemosensory Proteins (CSPs), a Class of CRGs
Unique to the Arthropoda

Our results indicated that CSPs are an arthropod-specific
gene family that emerged after the divergence between the
phyla Arthropoda and Onychophora (698.5 Ma) (fig. 1). CSPs
were found in all arthropod taxa we examined (fig. 1 and 6),
except for the transcriptome assembly of the barnacle A.
amphitrite (Thecostraca) and the genome sequence of the
brown recluse spider L. reclusa (Arachnida). In contrast, CSPs
were absent in the draft genome of the velvet worm E. rowell,
a member of the outgroup phylum Onychophora, and all
other nonarthropod genomes (fig. 1).

CSP gene numbers tended to be low within arthropod
genomes, relative to other arthropod CRG families (fig. 1).
Within crustaceans, we identified 14 CSPs in six copepod
species and seven CSPs in three other crustacean species
(Hyalella azteca, Penaeus monodon, and Artemia franciscana)
(fig. 1 and supplementary table S10, Supplementary Material
online). Our phylogenetic analyses of CSPs showed that sub-
groups could not be resolved for most of the major nodes due
to the low bootstrap values (below 50%) (fig. 6). This result
was reflected in the low levels of sequence similarity among all
arthropod CSPs (as low as 15.9% among four Drosophila CSP
proteins) and the short sequence lengths of CSPs (average
length of ~127 amino acid residues). Our phylogenetic anal-
ysis revealed that CSPs from all six copepod species formed a
well-supported monophyletic clade (fig. 6, red branches). The
copepod CSPs formed a larger clade with a D. pulex CSP and
seven insect CSPs (indicated by the arrow in fig. 6, and sup-
ported by Bayesian posterior probability of 0.78 and
maximum-likelihood bootstrap value of 62%), supporting ho-
mology between them.

We found that all arthropod CSPs we examined, including
those of D. pulex (Cladocera), S. maritima (Myriapoda), and
three chelicerates (1. scapularis, C. exilicauda, and L. hesperus),
contained a highly conserved four cysteine motif that is found
in insects (Foret et al. 2007; Liu et al. 2012). Interestingly,

copepod CSPs contained this motif (CXs_,CX16-16CX3_4C)
and two additional cysteines (supplementary fig. S4,
Supplementary Material online). Although this motif in co-
pepods was conserved, it was slightly less conserved than that
of insects (CXgCX4_1sCX,C)  (supplementary fig. S4,
Supplementary Material online).

Protein Structural Homology-Modeling and a
Potential Conserved Role of IRs and CSPs

To understand the spatial distribution of the ligand-binding
amino acid residues, we performed homology-modeling of
copepod IR25a and CSP proteins (see Materials and
Methods). In IR25a, three ligand-binding amino acid residues
(corresponding to the positions 489R, 654A, and 739D in T.
californicus IR25a) were proposed (Benton et al. 2009) (sup-
plementary fig. S5, Supplementary Material online). These
three potential ligand-binding amino acid residues were lo-
cated in the extracellular domain, which might play critical
roles in ligand recognition (supplementary fig. S6,
Supplementary Material online). Furthermore, the potential
ligand-binding amino acid residues that we found are identi-
cal to those of D. melanogaster (DmellR25a, ADU79032.1), the
waterflea D. pulex (DpullR25a, EFX86214), and the mollusc
Aplysia californica (AcallR25a, XP_005102425.1) (supplemen-
tary fig. S5, Supplementary Material online).

The predicted 3D structural model we constructed for the
copepod E. affinis CSP2 protein (EaffCSP2) comprised six o-
helices and two pairs of disulphide bridges (supplementary fig.
S7, Supplementary Material online). This 3D model was con-
cordant with the X-ray structure of the CSP protein from the
cabbage moth (Mamestra brassicae) MbraCSPA6, which ap-
pears in a globular shape composed of six amphiphatic -
helices that surround an internal hydrophobic binding pocket
(Campanacci et al. 2003). Also, we found that all copepod
CSPs, except for one incomplete CSP (LsalCSP: 76 aa), possess
the typical six a-helices from the sequence-based secondary
structure prediction, but do not have ancient 5-helical struc-
ture in arthropods (supplementary table S11, Supplementary
Material online) (Kulmuni and Havukainen 2013). Based on
the presence of a conserved four-cysteine motif and protein
structure similarity, copepod CSPs might have similar func-
tions to those of insects (fig. 6 and supplementary figs. S4 and
S7, Supplementary Material online).

Discussion

This study provides the most comprehensive analysis to date
of CRG family evolution of the Arthropoda, as well as of some
outgroup animal phyla. Our phylogenetic and molecular evo-
lutionary analyses offer a more lucid and comprehensive view
of the evolutionary histories of the arthropod CRGs by in-
cluding more in-depth sampling of arthropod and related
taxa. Our study included all the major subphyla within the
Arthropoda and representatives from a range of metazoan
and protistan phyla. Most notably, this study was the first to
include multiple crustacean genomes outside of the bran-
chiopod/insect clade, allowing more detailed inference of
evolutionary patterns proximate to the insects. Thus, this
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more comprehensive analysis provided the strongest case
thus far to infer that the ORs and OBPs are unique to insects
(Hexapoda) and that CSPs are specific to the Arthropoda, and
clarified the evolutionary histories of antennal IR subfamilies
(see below). Moreover, we gained insights into general prin-
ciples governing patterns of multigene family evolution of the
CRGs (see below on “Birth-and-Death Model of Multigene
Family Evolution”).

Gustatory Receptors (GRs) Are the Most Ancient

of the Arthropod CRG Families

Our study confirmed that GRs arose early in the course of
metazoan evolution and are the most ancient of the CRGs
found in arthropods. Our results revealed the presence of GRs
in the metazoan phyla Placozoa and Cnidaria, but not in the
phyla Porifera and Ctenophora, or in fungal and protistan
phyla (fig. 1). Given that recent phylogenetic studies indicate
that lineages leading to the phyla Ctenophora and Porifera
branched earlier during metazoan evolution (fig. 1) (Moroz
et al. 2014; Whelan et al. 2015), we can infer that the GRs
evolved after the emergence of metazoans (850-550 Ma) and
during the early stages of animal evolution (fig. 1).

Our finding that places the origin of GRs at the early stages
of animal evolution was consistent with results from recent
studies (Robertson 2015; Saina et al. 2015). Our results, along
with those of Saina et al. (2015) and Robertson (2015), placed
the origin of GRs earlier than prior studies, which had placed
the origin of GRs dating back either to the Cnideria
(Nordstrom et al. 2011) or to the Ecdysozoa (Robertson
et al. 2003; Croset et al. 2010). Our study sampled multiple
chelicerates and crustaceans, an immediate outgroup phylum
Onychophora, and other basally-branching phyla (including
single-cell eukaryotes), making the placement of the evolu-
tionary origins of CRG gene families more certain. This study
included five protists and two fungi (supplementary table S3,
Supplementary Material online), whereas Robertson (2015)
examined two protist species (choanoflagellates Monosiga
brevicollis and Salpingoeca rosetta). Our sampling of protists
and fungi was similar to that of Saina et al. (2015), but our
study included additional invertebrate animal phyla (fig. 1
and supplementary table S4, Supplementary Material online).

The gustatory roles of GRs in noninsect arthropod taxa are
poorly understood and require functional studies. In insect
models, GRs are known to be typically expressed at low levels
in only a few gustatory or olfactory sensory neurons (Wang
et al. 2004; Thorne and Amrein 2008). Thus, the low expres-
sion levels of E. affinis GRs we found (fig. 5) were consistent
with the low levels of expression found in insect GRs. Some
Drosophila GR genes are known to be involved in proprio-
ception, hygroreception, light sensing, and other sensory mo-
dalities (Thorne and Amrein 2008). The functional roles of GR
(or GR-like) genes from the placozoan Trichoplax and cnidar-
ian Nematostella as GRs are still inconclusive, as they have not
been confirmed to have obvious chemosensory roles. Our
computational protein family classifications strongly support
the inference that Trichoplax and Nematostella GRs are ho-
mologous to those of arthropods (supplementary table S6,
Supplementary Material online). Interestingly, the cnidarian
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homolog to the insect GR gene, NvecGrl1 (KP294348) in
Nematostella, has been found to play a role in early develop-
mental body patterning, rather than in external chemosensa-
tion (Saina et al. 2015).

Evolutionary Origins of lonotropic Receptors (IRs)
The IRs had previously been hypothesized to be most ancient
of the arthropod CRGs, dating back to the Protostomia, based
on their presence in arthropods, nematodes, and molluscs,
but absence in the basally branching metazoan phyla, such as
Cnidaria, Placozoa, and Porifera (Croset et al. 2010).
Consistent with Croset et al. (2010), our analysis also found
IRs present in the protostomes, including arthropods, an on-
ychophoran (velvet worm Euperipatoides rowelli) and a mol-
lusc (California sea slug Aplysia californica), and absent in the
basally branching metazoan phyla outside of the protostomes
(figs. 1, 3, and 4). In contrast to Croset et al’s (2010) postu-
lation, however, the evolutionary history of IRs is considerably
more recent than that of GRs, given that GRs have since been
found in several basally branching metazoan phyla (see pre-
vious section; fig. 1).

Until recently, only the antennal IRs IR25a and IR93a were
thought to occur outside of the insect clade, whereas four
others (i.e, IR40a, IR21a, IR76b, and IR8a) were considered to
be insect specific (Croset et al. 2010). In addition, more recent
studies also have found IR25a and IR93a in the Caribbean
hermit crab Coenobita clypeatus (Pancrustacea) (Groh et al.
2014; Groh-Lunow et al. 2015) and in the spider mite
Tetranychus urticae (Chelicerata) (Ngoc et al. 2016), and
IR93a in the tick Ixodes scapularis (Chelicerata) (Gulia-Nuss
et al. 2016). However, recent studies have also uncovered
three of the “insect-specific” antennal IRs outside the insect
clade, namely IR8a and IR40a in the centipede Strigamia
maritima (Myriapoda) (Chipman et al. 2014) and IR21a and
IR40a in the hunter spider D. silvatica (Vizueta et al. 2017).
With the inclusion of our study we now know that none of
the six arthropod antennal IRs are unique to insects (see next
paragraph).

Our more comprehensive analysis, including 14 crustacean
taxa, revealed patterns of gains and losses of antennal IR
subfamilies across the arthropod clades (fig. 4). This study
discovered an additional antennal IR gene subfamily occur-
ring outside of the insect (Hexapoda) clade, namely IR76b,
which previously had been considered insect-specific (Croset
et al. 2010). Our finding of IR76b in the genomes of the
chelicerate bark scorpion C. exilicauda and in two copepods,
E. affinis and L. cyprinacea, but absent in the velvet worm or
some other phyla outside of arthropods, revealed this anten-
nal IR to be more widespread within the Arthropoda than
previously thought (fig. 4).

Our results suggest that IR40a emerged in the common
ancestor of arthropods, but was subsequently lost from the
genomes of some chelicerates (C. exilicauda and L. reclusa)
and from all 14 crustacean species we examined, including
the multicrustaceans and branchiopods (fig. 4). The insect
clade is nested within pancrustaceans, yet they do possess
IR40a (fig. 4). Likewise, our finding of IR21a present in cope-
pods and insects and the prior finding of this IR subfamily in a
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spider (Chelicerata) (Vizueta et al. 2017) suggest that IR21a
arose in the common ancestor of arthropods, but was lost in
myriapods and branchiopods (fig. 4), although sampling in
the myriapods is scant. However, the absence of this gene
in two species of branchiopods (D. pulex and A. franciscana)
suggests a loss in this clade.

Likewise, we also found IR8a orthologs occurring outside
the insect clade, in the Copepoda (see Results; fig. 4), and
previous studies found this gene present in the genome of the
centipede (Myriapoda) Strigamia maritima (known as
SmarlR8a) (Chipman et al. 2014). This antennal IR8a gene
was absent in the Onychophora (E. rowelli), five chelicerate
species including the spider (Chelicerata) D. silvatica (Vizueta
et al. 2017), and two branchiopod species (see Results). Our
results suggest that IR8a arose in the myriapod and pancrus-
tacean lineages after their split from the chelicerates, but was
subsequently lost in the branchiopods (fig. 4).

IRs of arthropods have been found to be associated with a
variety of sensory functions, including taste, olfaction, ther-
mosensation, and hygrosensation (Benton et al. 2009; Croset
et al. 2010; Abuin et al. 2011; Zhang et al. 2013; Stewart et al.
2015; Knecht et al. 2016). For example, Knecht et al. (2016)
demonstrated that IR93a/IR25a mediates thermosensation
and hygrosensation and IR27a/IR25a responds to cool tem-
peratures. In addition, IR76b was found to be expressed in
gustatory neurons of D. melanogaster, implicating this IR
group in taste detection (Zhang et al. 2013). Antennal
IR25a and IR93 have been found to be expressed in the
olfactory neurons of antennules of the terrestrial hermit
crab Coenobita clypeatus (Pancrustacea) (Groh-Lunow et al.
2015). For the spider Dysdera silvatica (Chelicerata), a homo-
log of the antennal IR25a/IR8a protein family was found to be
overexpressed in the first pair of legs and the palps, which are
thought to be olfactory appendages in spiders (Vizueta et al.
2017). These results suggest that some IRs mediate olfactory
signaling in a wide range of arthropods. Furthermore, the
function of the antennal IR84a might be related to male
courtship behavior in D. melanogaster (Grosjean et al.
2011). However, elucidating the functional roles of IRs is still
in the very early stages of discovery, and much more remains
to be discovered.

lonotropic Receptors (IRs) Mediating Copepod
Chemodetection during Mating?

Examining differences in CRG gene expression profiles be-
tween males and females could provide clues regarding the
roles of chemical perception in mate-searching. However, few
studies have elucidated the molecular mechanisms linking
specific genes to specific sexual behaviors (Kopp et al. 2008;
Zhou et al. 2009). In D. melanogaster, the expression of OR,
GR, and OBP genes is more extensive in males than in females,
but other receptors (4 GRs and 12 ORs) show altered expres-
sion in females after mating (Zhou et al. 2009). In this study,
several intriguing patterns emerged regarding the expression
and incidence of the antennal IRs in copepods, suggestive of a
role in mating. In particular, we found that three antennal IR
genes (IR8a, IR25a, IR93a-1) showed significantly greater ex-
pression in males of the copepod E. affinis, relative to females

(fig. 5 and supplementary table S8, Supplementary Material
online). In contrast, expression levels of all six GR genes in
E. affinis showed no difference between the sexes (supple-
mentary table S8, Supplementary Material online). Our find-
ings are notable in being the first to find sex-specific
differences in expression of CRGs in an aquatic organism.

Interestingly, two of the antennal IR genes that exhibited
male-biased expression (IR8a and IR93a) have also experi-
enced gene duplications in several copepod species (supple-
mentary table S7, Supplementary Material online). These
gene duplicates of male-biased antennal IRs might serve to
increase expression of antennal IR proteins even further. The
duplications of IR8a and IR93a we found in copepods are
notable, given that the IR93a and IR8a subfamilies have gen-
erally not been found as duplicated genes in arthropods
(Croset et al. 2010).

Most notably, the same antennal IR genes showing male-
biased expression (fig. 5, IR8a, IR25a, IR93a-1) also exhibited
stronger purifying selection than the unbiased IR genes (sup-
plementary fig. S3, Supplementary Material online). This re-
sult suggests that the antennal IR genes showing elevated
expression in males are subjected to greater functional evo-
lutionary constraints. Such functional conservation is consis-
tent with our protein structure model of the copepod T.
californicus IR25a, where the potential ligand-binding amino
acid residues were found to be identical to those of D. mel-
anogaster, D. pulex, and the mollusc A. californica (see Results;
supplementary fig. S6, Supplementary Material online). This
result suggests that ligand-binding functions of IR25a are con-
served across protostomian species (Benton et al. 2009; Liang
et al. 2016). Whether these conserved ligand-binding regions
serve an important role in male behavior or other functions
would be worth investigating.

Our results, as well as results from other studies, suggest
that antennal IRs might have functions related to the chem-
ically mediated mate-recognition behavior observed in male
copepods. For instance, in the fruit fly D. melanogaster, mu-
tational knockdown of the antennal IR84a markedly reduces
male courtship behavior (Grosjean et al. 2011). In three
Drosophila sibling species, IR genes are differentially expressed
among species and between the sexes (Shiao et al. 2015).
IR76a shows significantly higher expression in female D. sim-
ulans, but no significant difference between the sexes in D.
melanogaster and D. sechellia (Shiao et al. 2015). Also, IR25a
shows slightly greater expression in the females than males in
all three Drosophila sibling species (supplementary table S4 in
Shiao et al. 2015). This result differs from ours, as we found no
antennal IR gene where female expression was significantly
higher than that of males (fig. 5). Interestingly, in the hover fly
Scaeva pyrastri, only one IR gene (SpyrIR84a) exhibits signif-
icant sex differences in expression, with male-biased expres-
sion in the antennae (Li et al. 2016).

The male-biased elevated antennal IR expression we found
(fig. 5) might possibly be localized in the antennal tissue, and
might be involved in functions related to mating. We specu-
late that the expression of these antennal IRs is localized in
the antennae based on anatomical studies of this species,
where chemosensory palps are localized heavily in the
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antennae, especially of the male copepod (Katona 1973;
Griffiths and Frost 1976; Snell and Morris 1993). IR25a, which
we found to be highly expressed in males (fig. 5), was also
found localized in olfactory organs of a hermit crab (Groh-
Lunow et al. 2015) and a spider (Vizueta et al. 2017).

In copepods, studies have shown evidence of chemosen-
sation by males during initial mating, such as the detection
and tracking of females from a distance (Gauld 1957; Katona
1973; Friedman and Strickler 1975; Snell and Morris 1993;
Doall et al. 1998; Heuch et al. 2007; Yen et al. 2011). During
mating, the male copepod grips the female with his first an-
tenna (see supplementary movies S1 and S2, Supplementary
Material online) (Katona 1973; Snell and Morris 1993), con-
sistent with the potential importance of antennal IRs in mat-
ing. The possible roles of antennal IRs in mediating the mating
behavior of males might have imposed functional evolution-
ary constraints, possibly imposed by coevolution between
female ligand/pheromone and male IRs. Such coevolutionary
constraints might be reflected in the signatures of purifying
selection we found in the male-biased antennal IR genes (sup-
plementary fig. S3, Supplementary Material online).
Elucidating the actual functions of these male-biased antennal
IRs, and whether they are localized in the copepod antennae
and are involved in mating, requires further investigation.

Chemosensory Proteins (CSPs) Occur in the
Arthropoda Only

Our analysis revealed that CSPs are unique to the phylum
Arthropoda, and are present in all the major arthropod line-
ages, including in the chelicerates, myriapods, and pancrusta-
ceans (crustaceans and insects) (fig. 1). Our results were
consistent with a prior study that found CSPs only in arthro-
pods (Vieira and Rozas 20171; Pelosi et al. 2014). However, our
study differed from this prior study in that we included 14
crustacean taxa beyond the Branchiopoda/Hexapoda
(Allotriocarida) clade (table 1 and supplementary tables S2
and S4, Supplementary Material online), and also incorpo-
rated many additional invertebrate animal phyla (fig. 1; sup-
plementary table S4, Supplementary Material online), making
the conclusion more robust. Given that we did find CSP genes
in all the major crustacean taxa examined, the widespread
occurrence of CSPs across the Arthropoda is more strongly
substantiated. Also, the lack of CSPs in the other invertebrate
phyla (fig. 1) strengthened the conclusion that CSPs occur in
arthropods only.

Insect CSP genes have been linked to a variety of feeding,
mating, and other behaviors (Gu et al. 2012; Liu et al. 2012;
Pelosi et al. 2014). For example, in the Oriental migratory
locust Locusta migratoria manilensis, the CSP gene
LmigCSP91 was highly expressed only in adult male testicles
and adult female accessory glands, but was absent in male
accessory glands and ovaries, as well as in sensory organs
(Zhou et al. 2013). In the tsetse fly, Glossina morsitans morsi-
tans, GmmCSP2 was proposed to be associated with female
host-seeking behavior, because this gene was mainly ex-
pressed in the female antennae and their transcript levels
increased markedly after a blood meal (Liu et al. 2012). In
addition, in the alfalfa plant bug, Adelphocoris lineolatus, three
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antennae-biased CSPs might mediate host plant recognition
(Gu et al. 2012). These genes showed higher expression levels
in the antennae than in the head, legs, and wings.

Interestingly, the copepod E. affinis CSP gene EaffCSP1
showed significantly higher expression in female RNA-Seq
samples relative to male samples (P < 0.0001 by edgeR and
Prob. = 0.95% by NOISeq) (fig. 5). Based on this pattern, we
speculate that the EaffCSP1 gene might be involved in mate
recognition. It would be worth exploring the functions of this
gene in future studies, especially with respect to its role in
mating behavior and interaction with sex pheromone
compounds.

Odorant Receptors (ORs) and Odorant Binding
Proteins (OBPs) Are in Insects Only

We found ORs and OBPs present only in the insects
(Hexapoda), and completely lacking in all other arthropod
taxa, including the nonhexapod pancrustaceans, chelicerates
and myriapods (fig. 1). Our study more conclusively revealed
that ORs and OBPs are specific to the insects alone (fig. 1),
given that our analysis was the first to examine genomes of
multiple crustacean taxa outside of the Branchiopoda/
Hexapoda clade, including the genomes and transcriptomes
of 13 crustacean species (supplementary table $4,
Supplementary Material online). This inclusion of multiple
crustacean taxa was critically important for discerning the
uniqueness of ORs and OBPs to the insects, because the in-
sects are nested within the pancrustacean clade (von
Reumont et al. 2012; Oakley et al. 2013; Sasaki et al. 2013).
With our more intensive sampling within the Arthropoda
and of outgroup phyla (fig. 1 and supplementary tables S2—
S4, Supplementary Material online), our study showed more
definitively than prior studies that the ORs and OBPs are
present in the Hexapoda alone. In addition, our results indi-
cated that OR genes are not universally associated with ter-
restrial invasions by arthropods, given the absence of these
genes in the terrestrial chelicerates and myriapods (fig. 1).

Although, Vizueta et al. (2017) found two novel candidate
chemosensory gene families in the hunter spider D. silvatica,
one of them being distantly related to the canonical insect
OBPs (i.e, three copies of OBP-like proteins) and the other
encoding 12 copies (not related to OBPs). Some of these genes
are expressed in the putative chemosensory appendages of
these spiders, and show typical characteristics of secreted che-
mosensory proteins, such as a conserved cysteine pattern and
the presence of a clear signal peptide. However, the specific
functional roles of these putative chemosensory related genes
are unknown, and further studies are required to determine
whether they do function similarly as insect OBPs.

Our more comprehensive analysis is consistent with, and
considerably extends, results from prior studies, which did not
include the crustaceans beyond the branchiopod/hexapod
clade (Penalva-Arana et al. 2009; Missbach et al. 2014). Our
analysis was consistent with the hypothesis, first stated by
Robertson et al. (2003), that the ORs arose after the emer-
gence of the Hexapoda from within the Pancrustacea
(~470 Ma), and expanded greatly in the hexapod lineage.
Prior studies found that the genome of the water flea D. pulex
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(Branchiopoda) and the transcriptome of the Caribbean her-
mit crab Coenobita clypeatus (Pancrustacea, Malacostraca)
lacked ORs and OBPs (Penalva-Arana et al. 2009; Vieira and
Rozas 2017; Groh et al. 2014). Recent studies also found ORs
and OBPs to be lacking in the genomes of several species from
the arthropod subphyla Chelicerata and Myriapoda, such as
the myriapod centipede (S. maritima) (Chipman et al. 2014)
and three chelicerate spider mites (Tetranychus urticae,
Tetranychus evansi, and Tetranychus lintearius) (Phuong
2013). We confirmed the absence of ORs and OBPs in four
additional chelicerates (black-legged tick I. scapularis, bark
scorpion C. exilicauda, black widow spider L. hesperus, and
brown recluse spider L. reclusa).

Existing data from the literature indicate that OBPs evolved
earlier in the evolution of the insects, whereas ORs are thought
to have emerged long after the establishment of a terrestrial
lifestyle, with their appearance correlated with the emergence
of winged insects (Missbach et al. 2014). For instance, recent
studies focusing on basally branching insects, such as members
of the orders Archaeognatha, Zygentoma, and Phasmatodea,
demonstrate that the jumping bristletail Lepismachilis y-sig-
nata (Archaeognatha, wingless insects) possesses OBPs, but
does not have ORs (Missbach et al. 2014, 2015). In contrast,
OR repertoires (including Orco) were found in the firebrat
Thermobia domestica (Zygentoma) and the leaf insect
Phyllium siccifolium (Phasmatodea) that do have wings, indi-
cating that they arose after the emergence of wings (Missbach
et al. 2014). However, these studies examined transcriptome
sequences of insects, and more thorough analyses of compre-
hensive genome data would clarify the evolutionary history of
the emergence of OR and OBP gene families within the insects.

Although our study provided much added support for the
exclusivity of ORs and OBPs to the insects (Hexapoda), one
taxonomic group remains to be examined. No study has yet
examined the other member of the Allotriocarida clade, the
class Remipedia, which are also crustaceans closely related to
the Hexapoda. Thus, we cannot yet conclude definitively that
ORs and OBPs are exclusive to the Hexapoda (fig. 1).

The absence of ORs and OBPs in noninsect arthropod
clades raises the interesting question of what chemosensing
system the noninsect terrestrial arthropods (i.e, Chelicerata,
Myriapoda) are using to detect volatile ligands in air. Insect
ORs respond to various volatile odorants and pheromonal
molecules that diffuse in air (Hallem et al. 2004). So then
have the terrestrial chelicerates and myriapods co-opted an
existing system that has been described to perform this func-
tion? Or are they using some other gene family that has not yet
been discovered? The newly discovered CCPs and OBP-like
genes found in a spider (chelicerate) (Vizueta et al. 2017) might
fulfill this role in terrestrial habitats, though the functions of
these genes are not yet known. The chemosensing systems of
the noninsect terrestrial arthropods would be worth exploring.

Most Arthropod CRG Families Follow the Birth-and-
Death Model of Multigene Family Evolution

The patterns we found of frequent gene losses and gains by the
GR gene families and the lack of orthologous GR genes among
different  arthropod orders (supplementary fig. S7,

Supplementary Material online) suggest that these genes
have been evolving according to the “birth-and-death” model
of multigene family evolution (Nei and Hughes 1992; Sanchez-
Gracia et al. 2011). A few prior studies have also found patterns
of CRG evolution consistent with this model (see below) (Vieira
et al. 2007; Sanchez-Gracia et al. 2009, 2011). Under this model,
new genes are created by gene duplication. Then, after the
divergence of major lineages, some of the genes are retained
in the genome for a long time as functional genes, whereas
others become nonfunctional through deleterious mutations
or are eliminated from the genome (Nei and Rooney 2005).
This model was first proposed as an alternative to the previ-
ously well-accepted model of concerted evolution (Nei and
Rooney 2005), in order to explain the high degree of polymor-
phism found at MHC loci in mammals (Nei and Hughes 1992).

One line of support for the “birth-and-death” model of
gene family evolution would be that different lineages have
undergone unique gene family expansions or contractions.
We see such patterns of lineage-specific expansions or con-
tractions in multiple arthropod lineages (fig. 1 and 2 and
supplementary fig. S1, Supplementary Material online). For
instance, most of the insect, copepod, and chelicerate GRs
generally formed distinct clades without clear orthology to
one another (Groups I-IX in fig. 2, >0.73 posterior probability
in the Bayesian phylogeny). Likewise, there was an expansion
of 61 GRs in the myriapod (S. maritima) genome, forming a
distinct monophyletic clade (Group X in fig. 2 and supple-
mentary fig. S1, Supplementary Material online) (Chipman
et al. 2014). Within the Hymenoptera, the wasp Nasonia
vitripennis genome had an expansion of 58 GRs (Robertson
et al. 2010). In contrast, the honeybee (Apis mellifera) genome
had only ten GRs (Robertson and Wanner 2006), suggesting a
lineage-specific GR gene family contraction in this lineage
(supplementary fig. S1, Supplementary Material online).

Also in support of the “birth-and-death” model is the fact
that we observed large genetic divergences between GR gene
families in closely related clades (supplementary fig. S1,
Supplementary Material online). For the GR proteins within
the purported Allotriocarida (Branchiopoda/Hexapoda) clade,
the closest sequence similarity between D. melanogaster and
D. pulex was 43.4% (by local alignment between DmelGR64b
and DpulGR56). A consequence of the large divergences be-
tween the clades is the fact that different orders of arthropods
lack truly orthologous GR genes (fig. 2 and supplementary fig.
S1, Supplementary Material online). For example, D. mela-
nogaster and the silkworm moth Bombyx mori represent
two closely related orders (see the inset of supplementary
fig. S1, Supplementary Material online). However, GR orthologs
cannot be identified between the two species, except for the
carbon dioxide receptors and sugar receptors (Wanner and
Robertson 2008), which are relatively conserved within insects
(supplementary fig. S1, Supplementary Material online).

We also observed patterns consistent with the birth-and-
death model in other CRG members. For instance, divergent
IRs displayed patterns consistent with this model, such as
large genetic divergences and no orthology between diver-
gent IRs of D. melanogaster and B. mori (Croset et al. 2010).
Additionally, insect ORs formed a large and highly divergent
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gene family with no close orthologs, such as between ORs of
D. melanogaster and B. mori, except for Orco (Hansson and
Stensmyr 2011). Patterns consistent with the birth-and-death
model have also been reported for CSPs and OBPs (Vieira
et al. 2007; Sanchez-Gracia et al. 2009; Hansson and Stensmyr
2011).

In contrast, antennal IRs are quite conserved in sequence
within the Arthropoda (fig. 3), and did not conform to the
birth-and-death model. The antennal IRs showed clear
orthologous relationships even among distantly related spe-
cies, such as between D. melanogaster and copepod species
(fig. 3). Many of the antennal IRs have generally remained as
single-copy genes (fig. 3). These genes have remained highly
conserved and retained homologous structures across all pro-
tostomian species (fig. 4 and supplementary figs. S5 and S6,
Supplementary Material online).

Overall, the evolutionary patterns we observed here are
consistent with the birth-and-death model being a major
mechanism of molecular evolution in all the CRG families
except for the antennal IRs. Thus, we speculate that such a
birth-and-death process of CRG evolution might reflect a
common process of rapid diversification associated with ad-
aptation to diverse environments (Hayden et al. 2010), result-
ing in high rates of gene family gains and losses.

Conclusions and Future Studies

Elucidating patterns of CRG family evolution provides an im-
portant step toward understanding the interactions between
organisms and their environments, as CRGs are fundamental
to sensing the environment and adapting to various ecolog-
ical niches (Hayden et al. 2010). For instance, the fact that
most CRG families appear to be evolving under the birth-and-
death model, with rapid species-specific gene duplications,
suggests rapid species-specific adaptations to their environ-
ments. Several of our results are suggestive of some CRGs
found in this study playing functional roles in mating. For
instance, this study is the first to find sex differences in ex-
pression of CRGs in an aquatic organism. Most notably, we
found that three of the antennal IRs were highly expressed in
male copepods of the species Eurytemora dffinis, and that
these male-biased antennal IRs showed significantly stronger
signatures of purifying selection than nonsex-biased IRs. It
would be worth exploring the role of antennal IRs in mating
behavior, and how molecular evolutionary changes in anten-
nal IR proteins might correspond to changes in mating be-
havior. In addition, prior studies on CRGs' roles in mating
have focused predominantly on terrestrial organisms. As
the physics of chemosensing and the diffusion of ligands
would differ between water and air, the role of CRGs in mat-
ing and other functions would be worth exploring in the
aquatic realm.

Overall, our results have generated several intriguing hy-
potheses that should be further explored with functional
studies. A comparative functional evolutionary approach
that included diverse arthropod taxa, especially beyond the
insect clade and from multiple habitat types, would provide
key insights into the evolutionary history and functions of
CRG families.
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Materials and Methods

Eurytemora affinis Genome Sequencing

Sample Preparation Genome Sequencing

To generate the comprehensive genome sequence for the
copepod E. gffinis, an inbred line (VA-1) derived from a saline
population in Baie de Llsle Verte, St. Lawrence marsh,
Quebec, Canada (48°00'14”N, 69°25'31"W) was used (Lee
1999, 2000; Winkler et al. 2008). The inbred line was generated
through full-sibling mating for 30 generations (2.5 years), in
order to reduce problems posed by heterozygosity during
genome assembly and annotation. Only egg sacs were used
for genome sequencing to avoid including the rich micro-
biome associated with the copepod. Prior to DNA extraction,
the culture was treated with a series of antibiotics to greatly
reduce bacterial contamination, including Primaxin (20 mg/I),
Voriconazole (0.5 mg/I for at least 2 weeks prior to DNA ex-
traction), p-amino acids to reduce biofilm (10 uM p-methio-
nine, b-tryptophan, o-leucine, and 5 |LM p-tyrosine, for at least
for 2 weeks prior to DNA extraction). In addition, to remove
bacterial contamination from our sample, egg sacs with 10%
bleach for ~1min were bleached. Our method was verified
for drastically reducing the bacterial load using qPCR. In total,
DNA from ~4,000 egg sacs was extracted for genome se-
quencing, using the QIAGEN QIAamp DNA Mini Kit (catalog
#51304) with 4 pl of RNase A (100 mg/ml).

High Throughput Genome and Transcriptome Sequencing
and Genome Assembly
The copepod E. dffinis was one of 30 arthropod species se-
quenced as a part of the pilot project for the i5K Arthropod
Genomes Project at the Baylor College of Medicine
Human Genome Sequencing Center (https://www.hgsc.
bcm.edu/arthropods; last accessed May 4, 2017).
Supplementary table S1, Supplementary Material online,
provides details of all sequences generated for the cope-
pod E. affinis and their National Center for Biotechnology
Information (NCBI) accession numbers, as well as assem-
bly and annotation statistics and their NCBI accessions.
The primary NCBI BioProject for the genome sequencing,
annotation, and assembly of E. affinis is PRINA203087.
An enhanced lllumina-ALLPATHS-LG sequencing and as-
sembly strategy enabled multiple species to be approached in
parallel at reduced costs. For E. affinis, four libraries of nominal
insert sizes 180 bp, 500 bp, 3 kb, and 8 kb at genome cover-
ages of 28.1%, 21.2%, 16.6x and 9.0, respectively, for a total
of 75 genome coverage were sequenced. Libraries were pre-
pared using standard methods as described previously
(Anstead et al. 2015). Sequencing was performed on
lllumina HiSeq2000 platforms generating 100-bp paired-end
reads. These raw sequences have been deposited in the
NCBI SRA, accessions are shown in the supplementary
table S1, Supplementary Material online, BioSample ID:
SAMNO02302763. Additionally, three RNAseq libraries
were prepared from separated samples of adult males,
females, and mixed sex juvenile stages and sequenced
using standard techniques (Anstead et al. 2015). These
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transcriptome sequences were used to support auto-
mated and manual annotation.

The genomic sequence of the copepod E. affinis was as-
sembled using ALLPATHS-LG (release 3-35218) (Gnerre et al.
2011) and further scaffolded and gap-filled using in-house
tools Atlas-Link (v.1.0) and Atlas gap-fill (ver.2.2) (https://
www.hgsc.bcm.edu/software; last accessed May 4, 2017).
This yielded an assembly of size 494.8 Mb including gaps
within scaffolds, with contig N50 of 5.7 kb and scaffold N50
of 862.6kb. The assembly has been deposited in the NCBI
(BioProject PRINA203087).

Automated Gene Annotation Using a Maker 2.0 Pipeline
Tuned for Arthropods

The copepod E. affinis was one of 30 i5K pilot genome as-
semblies subjected to automatic gene annotation using a
Maker 2.0 annotation pipeline tuned specifically for arthro-
pods. The pipeline was designed to be systematic, providing a
single consistent procedure for the species in the pilot study.
Also, the pipeline was scalable to handle hundreds of genome
assemblies, evidence-guided (using both protein and RNA-
Seq evidence to guide gene models), and targeted to utilize
extant information on arthropod gene sets. The core of the
pipeline was a Maker 2 instance, modified slightly to enable
efficient running on our computational resources (Holt and
Yandell 2011). The genome assembly was first subjected to de
novo repeat prediction and CEGMA analysis to generate gene
models for initial training of the ab initio gene predictors.
Three rounds of training of the Augustus (Stanke et al.
2008) and SNAP (Korf 2004) gene predictors within Maker
were used to bootstrap to a high-quality training set. Input
protein data included 1 million peptides from a nonredun-
dant reduction (90% identity) of Uniprot Ecdysozoa (1.25
million peptides), supplemented with proteomes from 18
additional species (S. maritima, Tetranychus urticae, C. ele-
gans, Loa loa, T. adhaerens, A. queenslandica,
Strongylocentrotus purpuratus, N. vectensis, Branchiostoma
floridae, Ciona intestinalis, Ciona savignyi, Homo sapiens,
Mus  musculus, Capitella teleta, Helobdella robusta,
Crassostrea gigas, L. gigantea, and Schistosoma mansoni), lead-
ing to a final nr peptide evidence set of 1.03 million peptides.
RNA-Seq reads from E. affinis adult males and females were
used judiciously to identify exon—intron boundaries, but with
a heuristic script to identify and split erroneously joined gene
models. CEGMA models for QC purposes were used: for E.
affinis, of 1,977 CEGMA single-copy ortholog gene models,
1,808 were found in the assembly, and 1,707 in the final pre-
dicted gene set. Finally, the pipeline used a nine-way homol-
ogy prediction with human, Drosophila and C. elegans, and
InterPro Scan5 to allocate gene names. The automated gene
set is available at the BCM-HGSC website (https://www.hgsc.
bcm.edu/arthropods/bed-bug-genome-project) and at the
National Agricultural Library (https://i5k.nal.usda.gov).

Sample Preparation for Transcriptome Sequencing
Eurytemora affinis transcriptomes were generated using RNA-
Seq strand-specific paired-end lllumina sequencing with one

sample per HiSeq2000 channel at the Institute for Genome
Sciences in the University of Maryland School of Medicine. To
compare relative expression of CRG families in males versus
females of the copepod E. gffinis, three different types of sam-
ples were sequenced: Female, male, and mixed female + male
samples, with two replicates each and ~220 individual cope-
pods per replicate sample. Females and males from an inbred
line (line VA-30-1, 30 generations of full-sib mating) derived
from the same population of E. affinis used for genome se-
quencing (described above) were used. Inbred copepods were
reared under controlled laboratory conditions, at 13 °C, 15
PSU (practical salinity unit /= parts per thousand) salinity, and
on a 15L:9D photoperiod, until the copepods reached adult-
hood. The copepods were fed with saltwater algae
Rhodomonas salina. To prevent bacterial infection, copepods
were treated with the antibiotics Primaxin (20 mg/l), p-amino
acid cocktail (10 pM of p-methionine, p-leucine, o-trypto-
phan, and 5 UM p-tyrosine), and Voriconazole (0.5 mg/l) ev-
ery 3—4 days. The p-amino acids we used (p-methionine, p-
tryptophan, p-leucine, and 5 LM pb-tyrosine) were found to
induce negligible responses in the insect chemoreceptors
tested (D. melanogaster IRs) (Croset et al. 2016).

Two days prior to RNA extraction, males and females were
separated into different beakers, and treated them with an
antibiotic cocktail in order to minimize contamination of
copepod RNA with bacterial RNA. The separated female
and male samples (two replicates per sex) received a full an-
tibiotic cocktail (described below), whereas the mixed
males + female samples (two replicates) received the regular
antibiotic cocktail used in culturing (with only Primaxin, o-
amino acids, and Voriconazole). gqPCR of the bacterial 16S
rRNA gene on the copepod RNA samples was performed
before and after administering varying combinations of anti-
biotic recipes to devise a full antibiotic cocktail that effectively
removed nearly all bacterial contamination. All the antibiotics
used had been tested for toxicity on E. affinis in prior exper-
iments. Our full antibiotic cocktail consisted of: Primaxin
(20 mg/l), Voriconazole (0.5 mg/l), o-amino acids (10 tM b-
methionine, p-tryptophan, p-leucine, and 5 UM b-tyrosine),
Sitofloxacin (10 mg/l, increased to 20mg/l in last 24h),
Rifaximin  (3mg/l, increased to 10mg/l in last 24h),
Phosophomycin (20 mg/l), Daptomycin (3 mg/l), and
Metronidazole (15 mg/I). In order to clear the guts, the cope-
pods were starved and treated with 120 pl/I of 6.0-um copol-
ymer microsphere beads (Thermo Scientific cat# 7505A,
Fremont, CA) for the last 24 h before RNA extraction. Total
RNA was extracted with Trizol reagent (Ambion RNA,
Carlsbad, CA) and then purified with Qiagen RNeasy Mini
Kit (Qiagen cat# 74104, Valencia CA), following the protocol
described by Lopez and Bohuski (2007).

Assembly of Crustacean Transcriptomes and
Genomes

Data Source and De Novo Assembly for 12 Crustacean
Species

De novo genome and transcriptome assemblies were per-
formed for 12 publicly available crustacean species (table 1).
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Next-generation sequence data for the 12 crustacean species
were obtained from the NCBI SRA database (http://www.ncbi.
nlm.nihgov/sra) (supplementary table S1, Supplementary
Material online); For the copepod species, five transcriptome
(C. rogercresseyi, L. cyprinacea, T. californicus, C. sinicus, and A.
fossae) and three genome sequences (L. salmonis, M. edax, and
C. finmarchicus) were downloaded from NCBI SRA. Three ad-
ditional crustacean species were also included: The giant tiger
prawn P. monodon (Malacostraca: Penaeidae), the purple bar-
nacle A. amphitrite (Cirripedia: Balanidae), and the brine
shrimp A. franciscana (Branchiopoda: Artemiidae) from
NCBI SRA. Their NCBI accession numbers and sequencing
platforms are summarized in the supplementary table S2,
Supplementary Material online.

A stringent quality filter process was applied because se-
quencing errors can cause difficulties for the assembly algo-
rithm (Martin and Wang 2011). For 454 reads, the adapter
and poly(A/T) sequences were trimmed using PRINSEQ
(Schmieder and Edwards 2011). In total, 454 reads that had
abnormal read length (<50 or >1,000 bp) or that had average
quality score of less than 20 were removed. lllumina reads
that did not have the minimum quality score of 20 per base
across the whole read were removed using PRINSEQ
(Schmieder and Edwards 2011). The quality scores of 20
(Q20) correspond to 1% expected error rates. Also, lllumina
reads that had any unknown nucleotide “N” were removed.

After the filtering process, de novo assemblies of the crus-
tacean transcriptome sequences using the software package
Trinity (release 2013-11-10) were performed (Haas et al.
2013). The Trinity assembly algorithm uses the minimum
contig length set to 300 bp with a fixed k-mer size of 25.
Note that Zhao et al. (2011) showed that Trinity had the
highest accuracy in mapping reads to the reference genome
among methods specialized in de novo transcriptome assem-
blies, including SOAPdenovo (Li et al. 2009), ABySS (Birol et al.
2009), Velvet/Qasis (ver. 1.2.03) (Zerbino and Birney 2008),
and Mira (ver. 3.4.0) (Chevreux et al. 2004). Also, Eyun et al.
(2014) showed that fractions of contigs that had highly
significant  hits to the UniProt protein database
(E-value <10 ') were larger with Trinity than with
Velvet/Oasis or Mira. To assemble the three copepod genome
sequences (L. salmonis, M. edax, and C. finmarchicus), their
sequences were assembled using Velvet with minimum con-
tig length set to 300 bp and using multiple k-mer sizes (data
not shown).

Sources of Additional Genome Sequences

In addition to the 12 crustacean species mentioned above
(table 1), several publicly released genome assemblies were
added to this study. For the most closely related outgroup
phylum Onychophora, the current version of genome for
velvet worm Euperipatoides rowelli (BioProject accession
number: PRJNA203089) was downloaded from https://
www.hgscbcm.edu. Five genomes were downloaded from
the i5K project (https://i5k.nalusda.gov), namely those of
two crustaceans, a copepod (T. californicus, Harpacticoida)
and an amphipod (H. azteca), and three chelicerates (C.
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exilicauda, L. hesperus, and L. reclusa). In addition, genomes
of four basal metazoan phyla (Cnideria, Placozoa, Porifera, and
Ctenophora), two fungi (Ascomycota and Basidiomycota),
and four single-celled eukaryotic (protist) phyla
(Choanozoa, Mycetozoa, Percolozoa, and Metamonada)
were analyzed (see supplementary tables S2 and S3 for lists
of genomes sampled, Supplementary Material online).

Chemosensory Gene Search and Homology

Query Sequences and Gene Mining

Previously reported insect CRG sequences were used as
search queries to identify the putative CRG genes in 33 spe-
cies (supplementary tables S2 and S3, Supplementary
Material online). Insect-type OR and GR sequences were ob-
tained from Robertson and Wanner (2006), McBride and
Arguello (2007), Wanner et al. (2007), Engsontia et al.
(2008), Penalva-Arana et al. (2009), Chipman et al. (2014),
and Gulia-Nuss et al. (2016). The carbon dioxide receptors
were obtained from Jones et al. (2007). IR sequences were
obtained from Benton et al. (2009) and Croset et al. (2010).

Using these sequences as initial queries, chemosensory
gene candidates were mined from our transcriptomes and
genomes (supplementary table S4, Supplementary Material
online) using NCBI BLAST (standalone tblastn, ver.
2.2.28+) (Altschul et al. 1997; Camacho et al. 2009). The initial
E-value threshold used (of 60 for GRs and ORs and 1 x 10~¢
for the other CRGs) was rather lenient and chosen to avoid
missing all true positives, even though some false positives
from nontarget genes could be included. In order to obtain
comparable E-values, the database size of 1.4 x 10" (using
the “~-dbsize” option) was set to be equivalent to the size
of the Nucleotide collection (nr/nt) database at NCBI. The
putative CRG genes were verified by conducting searches
using blastp against the NCBI NR protein database and
with phylogenetic analyses. A putative protein was desig-
nated as a CRG candidate if the top hit from the blastp search
was previously identified as a CRG. The newly identified gene
candidates were subsequently used as queries against their
transcriptomes or genomes again to find any additional can-
didates. These steps were performed recursively until no
other gene candidate sequences were detected from each
assembly. The candidate genes were manually curated using
JBrowse in Web Apollo for the copepod E. affinis. Reading
frames and intron/exon boundaries were determined using
GeneWise (ver. 2.2) (Birney et al. 2004) for all our genomes
and were manually adjusted using the multiple alignments of
the homologs.

For a more sensitive search, profile hidden Markov models
(HMM) were constructed with insect-type ORs and GR pro-
tein sequences from D. melanogaster, Tribolium castaneum,
A. mellifera, D. pulex, I. scapularis, and S. maritima. Sequences
from D. pulex, I. scapularis, and S. maritima were used only for
the GR models. Each assembly was searched using the
hmmbuild and hmmsearch programs of the HMMER
package (ver. 3.0) (Eddy 2011) for building and calibrating
HMM:s. Customized profile HMMs were also used with only
the most conserved regions (near the seventh transmem-
brane to the C-terminus).
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Protein Family Classification and Transmembrane Protein
Topology Prediction

To perform computational analysis of protein family classifi-
cation of GRs, three different algorithms, namely the
Conserved Domain Database (CDD, http://www.ncbi.nlm.
nih.gov/Structure/cdd/cdd.shtml) (Marchler-Bauer et al.
2015), the PANTHER system (http://www.pantherdb.org)
(Mi et al. 2013), and HHpred (http://toolkit.tuebingen.mpg.
de/hhpred) (Séding et al. 2005) were used.

To predict the transmembrane protein topology of GRs,
HMMTOP (ver. 2.1) (Tusnady and Simon 2001) and Phobius
(ver. 1.01) (Kall et al. 2007) were used. These analyses were
included in N-terminal and C-terminal regions and the num-
ber of transmembrane. These results were summarized in the
supplementary table S6, Supplementary Material online.

Gene Nomenclature

The newly designated gene names were represented by a
four-letter species abbreviation combined with the name of
the D. melanogaster orthologs. The species abbreviations con-
sisted of an uppercase initial letter from the genus name and
three lowercase initial letters from the species name. For ex-
ample, Eaff refers to Eurytemora affinis. Genes orthologous to
those in Drosophila followed the unified nomenclature sys-
tem of the Drosophila receptors, according to Drosophila OR
and GR gene families (Drosophila Odorant Receptor
Nomenclature Committee 2000; Benton et al. 2009). For mul-
tiple gene duplicates, each copy was designated by a dash and
a number (eg, TcallR8a-1, TcallR8a-2, and TcallR8a-3).
Unfortunately, many CRG genes could not be named using
this approach, as they showed no clear orthology to
Drosophila counterparts. In such cases, the genes were given
names that indicated the species and the CRG family, such as
EaffGR1 and EaffGR2.

Multiple Sequence Alignments

Multiple alignments of GR, IR, and CSP protein sequences
were generated using MAFFT (ver. 7.149b) (Katoh and
Standley 2013) with the L-INS-i algorithm (1,000 maxiterate
and 100 retree). This algorithm uses a consistency-based ob-
jective function and local pairwise alignment with affine gap
costs. We also employed the alignment programs ProbCons
(ver. 1.12) (Do et al. 2005) and PRALINE (Pirovano et al. 2008)
using the default parameters for the comparison. Alignments
were adjusted manually when necessary. All CRG sequences
and alignments are available at the Dryad Digital Repository,
http://dx.doi.org/10.5061/dryad.ts747.

Phylogenetic Analysis of CRG Families

Phylogenetic relationships of GR, IR, and CSP gene families
were reconstructed using maximume-likelihood with the
PROTGAMMAJTT model using the software package
RAXML (ver. 8.1.3) (Stamatakis 2014). Neighbor-joining phy-
logenies (Saitou and Nei 1987) were reconstructed using
neighbor in the software package PHYLIP (ver. 3.67)
(Felsenstein 2005). Protein distances were estimated using
protdist with the JTT (Jones, Taylor, and Thornton)

substitution model in the PHYLIP package, while accounting
for gamma-distributed rate variation among amino acid sites
(o0 =3.2253 for GRs, o« = 1.7133 for IRs, and o = 1.5826 for
CSPs) (Yang 1994) estimated using maximum-likelihood with
RAxML. Nonparametric bootstrapping with 1,000 pseudorep-
licates (Felsenstein 1985) was used to estimate the confidence
of branching topology for the maximum-likelihood and
neighbor-joining phylogenies. Bayesian phylogenetic infer-
ence was performed using MrBayes (v3.2.3) (Ronquist and
Huelsenbeck 2003) with the JTT substitution model with a
gamma-distributed rate variation. A Markov Chain Monte
Carlo search was run for 5 x 10° generations, with a sampling
frequency of 10°, using three heated and one cold chain and
with a burn-in of 10 trees. The homolog of iGIuRs is present
in plants, namely the plant glutamate-like receptors (GLRs)
(Croset et al. 2010; Price et al. 2012). Among iGluRs, the
NMDAR subfamily is the closest gene family to GLRs, indi-
cating that the NMDAR subfamily is the most ancient. Thus,
all the iGIuR trees were rooted using the NMDAR subfamily
(Croset et al. 2010). Graphical presentation of the phylogenies
was performed using FigTree (ver. 1.4.2) (http://treebio.edac.
uk/software/figtree).

Differential Gene Expression Analysis of CRGs
between the Sexes

To compare relative expression of CRG families in males
versus females of the copepod E. daffinis, sex-specific ex-
pression levels of the GR, IR, and CSP genes were deter-
mined in transcriptome sequences of female and male
samples, with two replicates each and ~220 individual
copepods per replicate sample. The approaches used for
transcriptome sequencing are described above. As con-
trols, we also examined differential expression of five rep-
resentative housekeeping genes (Cyclophilin-33, Actin
42A, Heat shock protein 83, Glyceraldehyde 3 phosphate
dehydrogenase 1, and Ribosomal protein L32) (supplemen-
tary table S9, Supplementary Material online) in males
and female samples. These controls were used to verify
that there was no general sex-specific bias in gene expres-
sion in these samples.

Single-end reads were mapped onto our assembled tran-
scriptomes using Bowtie (ver. 1.0.1) with 0 mismatches
(Langmead et al. 2009; Katz et al. 2010). We checked the
raw lllumina sequences corresponding to the IR genes and
confirmed their identities using Integrative Genomics Viewer
(Thorvaldsdottir et al. 2013). Numerical count data were
transformed into RPKM to normalize for the number of se-
quencing reads and total read length (Mortazavi et al. 2008).
RPKM values above 0.3 were used as the threshold for gene
expression (Ramskold et al. 2009). The statistical differences in
gene expression levels between male and female samples
were determined using both parametric (edgeR) (Zhou
et al. 2014) and nonparametric (NOISeq) (ver. 2.8.0)
(Tarazona et al. 2011) approaches in the R Bioconductor
package (http://www.bioconductor.org) (ver. 3.1.2). Genes
were considered to be differentially expressed if they had P-
values less than 0.05 using edgeR or had probability values
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above 0.70 using NOISeq (supplementary table S8,
Supplementary Material online).

Testing for Signatures of Selection in Antennal IR
Genes

To test whether the antennal IR genes show differing patterns
of molecular evolution between the male-biased expression
IRs versus the unbiased expression IRs, we used the “branch
models” implemented in codeml in the software package
PAML (Phylogenetic Analysis by Maximum Likelihood, ver-
sion 4.8) (Yang 2007). To estimate the average o (the ratio of
nonsynonymous to synonymous divergences, dy/ds), we per-
formed likelihood ratio tests (LRTs) with df =1 between a
one-ratio model (R1; the same w for all branches) and a two-
ratio model (R2; two independent ®’s) (Yang and Nielsen
2002). As illustrated in the supplementary figure S3,
Supplementary Material online, each test was set up to com-
pare antennal IR genes more highly expressed in males (male-
biased expression IR genes) (IR25a, IR93a, and IR8a) against
antennal IR genes that showed no sex differences in expres-
sion (unbiased expression IR genes) (IR76b and IR21a). All
PAML analyses were performed using the F3X4 model of co-
don frequency (Goldman and Yang 1994). The level of signif-
icance (P) for the LRTs was estimated using a % distribution
with given degrees of freedom (df). The test statistic was cal-
culated as twice the difference in log-likelihood between the
models (2AIn L=2[In L; — In L] where L; and L, are the
likelihoods of the alternative and null models, respectively).

Protein Structural Homology Modeling

Homology modeling of the copepod Tigriopus californicus
IR25a and the copepod Eurytemora affinis CSP2 protein struc-
tures was performed using the SWISS-MODEL Web server
(http://swissmodel.expasy.org) (Arnold et al. 2006) (supple-
mentary figs. S6 and S7, Supplementary Material online). For
the T. californicus IR25a, the B-chain of the rat (Rattus norve-
gicus) iGIuR (PDB: TYAE, NP_062182.1) was selected as the
template (E-value: 2.5 x 107 sequence similarity: 53.4%).
The QMEAN4 Z-score given by SWISS-MODEL was —5.48
(raw score is 0.439). The N-terminal 401 amino acids (aa)
and the C-terminal 96 aa were excluded from the modeling
due to insufficient sequence similarity. For the E. affinis CSP2,
the moth M. brassicae CSP (CSPMbraA6, PDB: 1N8V,
AAF71289.1) was used as the template. The sequence simi-
larity against CSPMbraA6 was 25.93% and the QMEAN4 Z-
score given by SWISS-MODEL was —1.62. The graphical rep-
resentations of the protein structures for the T. californicus
TcallR25a and E. affinis CSP2 structure were created using
PyMOL (version 1.3) (DeLanoScientific, San Carlos, CA).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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