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Abstract—In this paper, the problem of joint caching and resource
allocation is investigated for a network of cache-enabled unmanned
aerial vehicles (UAVs) that service wireless ground users over the
LTE licensed and unlicensed (LTE-U) bands. The considered model
focuses on users that can access both licensed and unlicensed
bands while receiving contents through UAV cache-user links and
content server-UAV-user links. This problem is formulated as an
optimization problem which jointly incorporates user association,
spectrum allocation, and content caching. To solve this problem, a
distributed algorithm based on the machine learning framework
of liquid state machine (LSM) is proposed. Using the proposed
LSM algorithm, the cloud can predict the users’ content request
distribution while having only limited information on the network’s
and users’ states. The proposed algorithm also enables the UAVs
to autonomously choose the optimal resource allocation strategies
depending on the network states. Simulation results using real
datasets show that the proposed approach yields up to 33.3% and
50.3% gains, respectively, in terms of the number of users that have
stable queues compared to two baseline algorithms: Q-learning with
cache and Q-learning without cache. The results also show that
LSM significantly improves the convergence time of up to 33.3%
compared to Q-learning.

I. INTRODUCTION

The use of aerial wireless communication platforms such as
unmanned aerial vehicles (UAVs) is seen as a promising approach
to improve the coverage and capacity of future wireless networks
[1]. Due to their flying nature, UAVs can provide line-of-sight
(LoS) connections toward ground users and, thus, potentially
improving the rate, delay, and overall performance of wireless
networks. However, deploying UAVs for wireless communication
purposes faces many challenges [2]—[5] that include air-to-ground
channel modeling, optimal deployment, energy efficiency, path
planning, and resource management.

The existing literature in [3]-[5] has studied a number of
problems related to UAVs. In [3], the deployment of an unmanned
aerial vehicle acting as wireless base stations that provide cov-
erage for ground users is analyzed. The authors in [4] propose
a statistical propagation model for predicting the air-to-ground
path loss between a low altitude platform and a ground user. In
[5], the authors investigate a multi-tier drone-enabled network
complementing a terrestrial heterogeneous network. However,
most of these existing works are focused on the UAV-ground users
wireless communications and do not account for the ground-to-
air fronthaul communications between the core network and the
UAVs. Indeed, capacity-constrained fronthaul links will signifi-
cantly limit the transmission rate of the links from the UAVs to the
ground users. In order to reduce the traffic load on the fronthaul
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links and improve the performance of UAV-based communication,
one promising approach is to cache popular content [6] at the
UAVs thus allowing them to directly transmit data to the ground
users without using wireless fronthaul transmissions [7].

To further improve performance and overcome the spectrum
scarcity problem, the UAVs can be equipped with LTE over the
unlicensed band (LTE-U) capabilities thus allowing them to use
both licensed and unlicensed spectrum to service their ground
users. Recently, there has been significant interest in studying
the performance of LTE-U enabled cellular networks such as
in [8]-[10]. In [8], the authors investigate the use of LTE-U
for unmanned aerial base stations to enhance the achievable
broadband throughput during emergency situations. The authors
in [9] introduce a deep learning approach for resource allocation
problem in LTE-U SCNs. In [10], the authors propose a novel
learning algorithm to solve the problem of resource allocation
with uplink-downlink decoupling. However, the LTE-U works
in [9] and [10] do not consider the use of LTE-U with UAV-
carried base stations. Meanwhile, the work in [8] considers the
LTE-U resource allocation in a UAV network, however, it does
not consider the effect of the limited-capacity cloud-UAVs links.
Caching the popular contents at UAVs can help overcome the
limited capacity of the cloud-UAVs links.

The main contribution of this paper is a novel resource alloca-
tion framework for allowing cache-enabled UAVs to effectively
service ground users over licensed and unlicensed bands in a
cloud network under fronthaul capacity constraints. The proposed
approach will enable dual-mode UAVs to autonomously learn and
determine which content to cache and how to allocate the licensed
and unlicensed bands to each user depending on the network
environment. Developing such a dynamic resource allocation
algorithm requires a self-organizing, decentralized approach so as
to minimize the overhead and coordination among UAVs while
maximizing performance. Unlike previous studies [3]-[5], that
overlook the limited-capacity of the UAV-cloud links, we propose
a novel learning approach based on the powerful framework of
liquid state machine (LSM) [11] to perform caching and resource
allocation in a network of cache-enabled LTE-U UAVs. The use
of LSM enables the cloud to quickly learn the users’ content
request distribution so as to determine the content caching strategy
for each UAV. It also enables the UAVs to autonomously adjust
their spectrum allocation schemes to service users. To our best
knowledge, this is the first work to jointly consider the use of the
caching and LTE-U for UAV-assisted communication. Simulation
results show that the proposed approach yields, respectively,
33.3% and 50.3% gains in terms of the number of users having a
stable queue compared to Q-learning with cache and Q-learning
without cache.

The rest of this paper is organized as follows. The system



model and problem formulation are described in Section II. The
LSM-based algorithms for content request distribution prediction
and resource allocation are proposed in Section III. In Section IV,
numerical simulation results are presented and analyzed. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of an LTE-U network composed of a set
K of K UAVs and W WiFi access points (WAPs). In this model,
the UAVs are equipped with cache storage units [12] and can be
deployed to act as flying cache-enabled LTE-U base stations to
serve a set i/ of U ground users. The UAVs are controlled by a
cloud-based server. Here, we consider dual mode cache-enabled
UAVs that are able to access both the licensed and unlicensed
bands. The transmissions from the cloud to the UAVs occur over
wireless fronthaul links using the licensed cellular band.

In this system, a frequency division duplexing (FDD) mode
is considered for LTE on the licensed band. The FDD mode
separates the licensed band for the downlink LTE-U users. A
time division duplexing (TDD) mode with duty cycle method is
considered for LTE-U. Using the duty cycle method, the UAVs
will use a discontinuous, duty-cycle transmission pattern so as to
guarantee the transmission rate of WiFi users. Under this method,
the unlicensed band time slots will be divided between LTE-U
and WiFi users. In particular, LTE-U transmits for a fraction ¥ of
time and will be muted for 1 — 1) time which is allocated for WiFi
transmission. The WAPs transmit using a standard carrier sense
multiple access with collision avoidance (CSMA/CA) protocol
and its corresponding RTS/CTS access mechanism.

In our model, we assume that all of the users will only request
contents of equal size L from a set ' of N contents that are
stored at a cloud-based content server. Each UAV £ is equipped
with a storage unit that can store a set C;, of C' popular contents
that the users can request. Caching at the UAVs can significantly
offload the fronthaul traffic of UAVs since each UAV can directly
transmit its stored contents to the users without using fronthaul
links. Hereinafter, caching at the UAVs is referred to as “UAV
cache”. The cached contents at a UAV are assumed to be refreshed
at off peak hours when the UAVSs return to their docking stations.

A. WiFi data rate analysis

For the WiFi network, we assume that the WAPs will adopt
a CSMA/CA scheme with binary slotted exponential backoff.
Therefore, the saturation capacity of V,, users sharing the same
unlicensed band can be expressed by [10]:

Py (Nw)Ps (Nw)E [A]

BN = B NV T 1 P Vo) P Vo) T R R

where Py (N,) = 1 — (1—7)"* with Py (N,) being the
probability that there is at least one transmission in a time slot
and 7 being the transmission probability of each user. P (N,,) =
Nor(1 —7)N“"1 /P (N,,), is the successful transmission prob-
ability, T is the average time that the channel is sensed busy
because of a successful transmission, 7, is the average time that
the channel is sensed busy by each station during a collision, 7} is
the duration of an unoccupied slot time, and F [A] is the average
packet size. In our model, the WiFi network adopts conventional
distributed coordination function access and RTS/CTS access
mechanisms. 7 and 7 are computed as done in [10].

We assume that one LTE time slot consists of Ty, WiFi time
slots. Based on the duty cycle mechanism, the UAVs can occupy
¢ fraction of Ty time slot on the unlicensed band while the WiFi
users can occupy a fraction (1 —¢) fraction of Ty time slots.
Thus, the per WiFi user rate is:

R (Nw) (1 — 19)
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where N,, is the number of WiFi users on the unlicensed band.
Given the rate requirement of each WiFi user -, the fraction of
the time slot on the unlicensed band allocated to the LTE-U users
can be given by ¥ <1 — N,v/R(Ny).

Ry =

B. UAV data rate analysis

Next, we define the rate of each user associated with a UAV.
The UAVs’ content transmission link consists of the wireless
fronthaul links that connect each UAV to the cloud (ground-to-air
links) and the UAV-users links (air-to-ground links). We consider
probabilistic LoS and non-line-of-sight (NLoS) links over the
licensed band for both the UAVs’ fronthaul links and UAV-user
links. In such a model, NLoS links experience higher attenuation
than LoS links due to the shadowing and diffraction loss.

1) UAVs-users links over the licensed band: The LoS and
NLoS path loss of UAV k transmitting a content to user ¢ will be
given by (in dB) [4]:
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where 20log (dy; f4m/c) is the free space path loss with dj;
being the distance between user ¢ and UAV £k, f being the
carrier frequency, and c being the speed of light. nﬁos and nIl\ILos
represent, respectively, additional attenuation factors due to the
LoS/NLoS connections over the licensed band. In our model,
the probability of LoS connection depends on the environment,
density and height of buildings, the locations of the user and the
UAYV, and the elevation angle between the user and the UAV. The
LoS probability is given by [4]:

Pr (ll,;fs) =1+ Xexp(—Y [pri — X]))fl, 3)

where X and Y are constants which depend on the environment
(rural, urban, dense urban, or others) and ¢; = sin™* (hi/dgi)
is the elevation angle. Clearly, the average path loss from UAV
k to user ¢ is given by [4]:

i = Pr (1%) > 1% + Pr (15°%) > 15, @)
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where Pr (IJ1°5) = 1 — Pr (I}95). Based on the path loss, the
downlink rate of user 7 associated with UAV k on the licensed
band at time ¢ can be given by:
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where Fj is the downlink bandwidth on the licensed band, Py is
the transmit power of each UAV, h; is the channel gain between
user ¢ and the cloud, and P¢ is the transmit power of the cloud
over the fronthaul. o2 is the power of the Gaussian noise. Finally,
ug; (t) is the fraction of the downlink licensed band allocated
from UAV £ to user ¢ at time ¢ with ) ug; (1) = 1.



2) UAVs-users links over the unlicensed band: In our model,
the UAVs can only use the unlicensed band of the WiFi networks
whenever the WiFi users’ rate requirement is satisfied. Based on
(2), we obtain a fraction Ty, of a time slot over the unlicensed
band that can be occupied by UAVs. Therefore, the downlink rate
of user ¢ associated with UAV k on the unlicensed band is:
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where l_}:l- is the average path loss over the unlicensed band, F}, is
the bandwidth of the unlicensed band, and ey; (t) is the fraction
of ¥ over the unlicensed band with ), ex; (t) = 1.

3) Cloud-UAVs ground-to-air links: The LoS and NLoS path
loss from the cloud to UAV £ can be given by [3]:

LS =dg, LS =gy, )
where ¢ is the additional path loss of the NLoS connection and
dcy 1s the distance between UAV k and the cloud. The average
path loss Lj, of the fronthaul link of UAV k can be computed
using (3) and (4). Here, we assume that the total bandwidth of
the UAVs’ fronthaul is Fo which is equally divided among the

users that received the contents from the cloud. Therefore, the
fronthaul rate of each user associated with UAV k is given by:
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where Uc(t) is the number of the users that receive a content
from the cloud at time ¢. Uc(t) can be calculated by the content
server as the users request contents from the content server.

Rey (t) = , (8)

C. Queueing model

Let A; (t) be the random content arrival (number of bits) for
user ¢ from the content server at the end of time slot ¢. We assume
that each user can request at most one content during each time
slot ¢ and, consequently, A; (t) € {0, L}. Let Q; (¢) be the queue
length (number of bits) of user ¢ at the beginning of time slot ¢,
which can be given by [13]:

Qi(t+1)=Qi(t) — Ri (t) + Ai (), )
where Ry; (t) is the rate of user i. Since the content transmission
links consist of (a) UAV-user on the licensed band, (b) UAV-user
on the unlicensed, (¢) cloud-UAV-user on the unlicensed band,

and (d) cloud-UAV-user on the licensed band, the rate of content
transmission from UAV k to user ¢ can be given by:
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where the equation of link (c) is obtained from the fact that the
time duration of a single data packet transmitted from the cloud
to UAV k is 1/ Ry, (t) and a single data packet transmitted from
UAV k to user i is 1/Ryg; (t). Therefore, the data rate of the
transmission from the cloud to user 7 is 7 RCk(t)il/Rm(t).

From (10), we can see that the rate of user ¢ that receives a
content from the UAV cache (link (a) and link (b)) is larger than

the rate of user ¢ that receives contents from the cloud (link (c)
and link (d)). We use the notion of queue stability to measure the
users’ content transmission delay. In essence, a queue @Q; (t) is
said to be rate stable if [13]:
lim —QZ *)
t— 00 t
From [13, Theorem 2.8], we can also see that the queue Q; ()
is rate stable if Ry; (t) > A; (¢).

=0. (11)

D. Problem formulation

Given this system model, our goal is to develop an effective
spectrum allocation scheme for cache-enabled UAVs that can
allocate appropriate bandwidth over the licensed and unlicensed
bands to satisfy the queue stability requirement of each user.
To achieve this goal, we formulate an optimization problem
whose objective is to maximize the number of users with stable
queue. This maximization problem involves finding the optimal
association U}, for each UAV k, bandwidth allocation indicators
on the licensed band uy;, time slots indicators on the unlicensed
band ey;, and the set of cached contents C; for each UAV k.
Therefore, this problem can be formalized as follows:

Jax > ]1{ i 50 :O}:Z 2 Lo then ()2 400}
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s. t. Ry > 7, (12a)
STug () <1, VkeK, (12¢)
ieU
e (t) <1, VkeKk, (12d)
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where 1,3 = 1 when z is true and 1,y = 0 otherwise, Uy, is
the set of the users associated with UAV k, and u, e denote the
spectrum allocation indicators on the downlink licensed and un-
licensed bands, respectively. (12a) guarantees the communication
quality of each WiFi user. The LTE-U users can only occupy the
unlicensed band when (12a) is satisfied. (12b) indicates that each
user can only access each UAV’s licensed band or unlicensed
band, (12c¢) indicates that the licensed band allocation cannot
exceed the total bandwidth for each UAV and (12d) captures the
fact that the time slots over the unlicensed band cannot exceed
the total number of time slots allocated to the UAVs.

III. L1QUID STATE NETWORKS FOR CONTENT PREDICTION
AND SELF-ORGANIZING RESOURCE ALLOCATION

The optimization problem in (12) is challenging to solve,
because spectrum allocation and content caching depend on the
user association which, in turn, depends on the rate of each
user. In fact, this problem can be shown to be combinatorial
and non-convex, thus it is difficult to solve it using conventional
optimization algorithms. Moreover, each UAV may not know the
users’ content requests which makes it challenging to determine
which content to cache at the UAVs. To address these challenges,
we propose a novel liquid state machine learning approach [11]
to predict the users’ content request distribution and perform
resource allocation.

Liquid state machine is a novel kind of spiking neural net-
works [11] that are randomly generated. Learning algorithms
based on LSM can store the users’ behavioral information and
track the state of a network over time. Therefore, an LSM-
based algorithm will enable the cloud to leverage information
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on the users’ behavior, that are stored in LSM, to predict the
content request distribution and automatically adapt spectrum
allocation to the change of network states. Consequently, LSM-
based algorithms are promising candidates for content request
distribution prediction and wireless resource allocation problems.

Next, we first begin by introducing the components of the LSM
algorithm. Then, we introduce the entire process using LSM to
predict the users’ content request distribution and to solve (12).

A. LSM Components

As illustrated in Fig. 1, an LSM-based algorithm consists
of five components: a) agents, b) input, ¢) output, d) liquid
model, and e) output function. Since the prediction of the content
request distribution and resource allocation are function-specific,
we design the specific components for the problems of predicting
content request distribution and resource allocation, separately.

1) Content request distribution prediction: The content request
distribution prediction algorithm has the following components:

e Agent: The agent is the cloud. Since each LSM approach
performs a content request distribution prediction for just one
user, the cloud must implement U LSM algorithms.

o Input: The input of the LSM prediction algorithm is defined
by a vector @; (t) = [z1 (t),---,z;n, (t)]" that captures the
context information related to user j’s content request at time .
Such information includes age, gender, occupation, and device
type (e.g., tablet or smartphone). N, is the number of properties
that constitute the context information of user j. The vector x; ;
is used to predict the content request distribution y, ; of user j.

e Output: The LSM output at time ¢ is a vector of probabilities
y; (t) = [ptj1,Peja, - -, Prjn] that represents the discrete prob-
ability density function of content request of user j with p;jy
being the probability that user j requests content n at time t.

o Liquid model: A liquid model for each user j can store
the users’ dynamic features that are extracted from the users’
context over time. These dynamic features can be used with the
output functions to predict the users’ behavior such as content
request and mobility patterns. Here, the liquid model consists
of W1 x Wy x W3 leaky integrate and fire neurons that are
arranged in a 3D-column. In particular, each neuron that consists
of resting state .S, action state, and refractory period T (ms) is
defined as a excitatory neuron while the neuron that consists of
resting state, inhibitory state, and refractory period is defined as
an inhibitory neuron. The resting state indicates that the neuron
does not receive any users’ context information. The action state
indicates that the neuron receives a certain amount of users’
context and transmits this context to the connected neurons.
The inhibitory state indicates that the users’ information in the
neuron is decreasing and, thus, cannot reach an action state. When
each neuron transmits information to other connected neurons, its
users’ information may decrease to a value that is below that of
the resting state. In this case, the neuron will have a refractory

The components of the proposed LSM-based algorithm.

period during which the neuron returns to the resting state. The
action state of neuron j, v; (t) at time ¢ is [11]:

R e
where Z is the neuron resistance, I; (t — 1) is the input of
the users’ information, and p is the neuron time constant.
Based on (13), the LSM state can be given by v (t) =
[1)1 (t) , V2 (t), -y UNw (t)], where NW = W1 X WQ X W3 is
the number of neurons.

The connections from the input to the liquid model are made
with probability Pry. The probability connection between neurons
7 and j can be given by:

P;; = Ce(@@0)/N)?

(14)

where C' € {Cgg, Cg1, Cg, Cni } is a constant that depends on the
type of both neurons. In particular, Cgg denotes an excitatory-
excitatory connection, Cy is an excitatory-inhibitory connection,
Cig is an inhibitory-excitatory connection, and CY; is a inhibitory-
inhibitory connection. d (¢, j) is the Euclidean distance between
neurons ¢ and j. A is a parameter that influences how often
neurons are connected.

e Output function: The output function is used to build the re-
lationship between the state of the LSM model and the prediction
of each user’s content request distribution. Let f; € RNwW XN be
the output function of UAV j, where NV is the total number of
contents. In order to predict the user’s content request distribution,
J; is trained in an offline manner using ridge regression to
approximate the prediction function:

fi= yT)jv]T(v;rvj + 52I) 1, (15)
where v; = [v; (1),...,v; (IVy)] is the LSM state sequence for
user j and Ny, is the number of the prediction patterns of each
user’s content request distribution. Here, y;- ; is the target output
of the LSM algorithm, I is an identity matrix, and ¢ is the learning
rate. Based on the trained output function, the prediction of user
7’s content request distribution at time ¢ can be given by:

Y, (t) = fivj (t). (16)

2) Resource allocation: The LSM reinforcement learning al-
gorithm for resource allocation has the following components:

e Agent: The agents in this LSM algorithm are the UAVs.

o Input: mi(t)=lar(t), - ,an—1 (t), a1 (), ax (t)]" rep-
resents the actions that all UAV's other than UAV £ takes at time .
Here, a; (t) is the action that UAV i takes at time ¢. In particular,
each UAV’s action represents a UAV-user association scheme. As
the UAV-user association is determined, the UAV cached content
can be determined by our result in [7, Theorem 2]. Since the
user association and cached contents [14] are determined, (12)
for each UAV can be simplified as follows:

XD (R (s )=A 0} + D L Runaens )=} F
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where Uik (U;) is the set of users that are associated with
UAV £k over the licensed band and their requested contents are
(not) stored in the cache. Uyp. (Uyk) is the set of users that
are associated with UAV k over the unlicensed band and their
requested contents are (not) stored in the cache. (17) is a convex



optimization problem that can be solved by linear programming.

e Output: The LSM output at time ¢ is a vector of by (t) =
[br1 (t),br2 (1), ..., bka, (t)] that represents the resource alloca-
tion results. Ay, is the number of actions that each UAV k can take
and by; (t) is the expected number of stable queue users when
UAV £ uses resource allocation scheme j, which is:

bri (t) = Z bria_r (Qki, Q@—k) T—k.a_, s
a_LEA i
where A_j, is the action set of all UAVs other than UAV k and
bii,a_, 1s the number of stable queue users as UAV k uses the
resource allocation scheme 7 and the other UAVs use the schemes
a_yg. ﬂ'*kva—k:ZakieAkﬂ(akiv a_y) is the marginal probability
distribution over the action set of UAV k.

o Liquid model: The liquid model in the resource allocation
algorithm is used to store the network state information including
UAV-user association schemes and their corresponding output
results. The liquid model consists of W* x Wg* x Ws' number of
leaky integrate and fire neurons that are arranged in a 3D-column.
The generation of the resource allocation LSM model is similar
to the one in the content request distribution prediction case.

e Output function: The output function is used to build the
relationship between the UAVs-user association schemes and the
number of users with a stable queue. Let f € RAx*(Ax+Nw)
be the output function of UAV k, where Ny, is the number of
the neurons in the liquid model. To train f}, a linear gradient
descent approach can be used to derive the following update rule,

Fra+1) = £, (0)+8 (eni (t) = bei (1)) [vx (0);ma (O], (19)
where f) ; is row i of f, 0 is the learning rate, ey, ; (¢) is the
expected output, and vy, (t) is the LSM state at time ¢. Based
on (19), the estimated number of users that have a stable queue
resulting from the users allocation scheme : is:

bri (t) = Fii vk (£);my ()] .

B. LSM Algorithm for content prediction and spectrum allocation

(18)

(20)

To solve the problem in (12), the cloud first predicts the content
request distribution of each user using an LSM-based prediction
approach. Based on the users’ content request distribution, each
UAV £k uses the LSM-based learning algorithm with e-greedy
mechanism [10] to find the optimal users association. Once the
users association is determined, the optimal content caching and
spectrum allocation will also be determined. In this algorithm,
each UAV can store the users’ and network’s states as UAV k
adopts different users association schemes. During each iteration,
the LSM algorithm can record the number of stable queue users,
bki,a_, (aki,a—k). Since the LSM-based algorithm satisfies the
convergence conditions of [10, Theorem 2], as time elapses, each
UAV £k’s output resulting from the resource allocation scheme
will converge to a final value bg;. At this convergence point, by;
indicates the expected value of the number of stable queue users
with respect to all other UAVs’ stategies. The proposed LSM
approach performed by the cloud and each UAV £k is shown, in
detail, in Algorithm 1.

IV. SIMULATION RESULTS
In our simulations, the content request data that the LSM uses
to train and predict content request distribution is obtained from

Youku of China network video index'. The detailed parameters
are listed in Table I. We consider a circular cloud-based UAVs

The data is available at http://index.youku.com/.

Algorithm 1 LSM-based learning algorithm

Input: The set of users’ context, x; (¢), UAVs’ input my, (t);
Init: The cloud generates the liquid model for each user.

Each UAV generates a liquid model based on (13) and (14).
1: Calculate the time slots L based on (2)
2: Predict users’ content request distribution using (16)
3: for time t do

4: Estimate the number of the users that are at stable queuing state using (20)
5:  if rand(.) < e then

6: Randomly choose one action

7: else

8: Choose action ay, (t) = argmax (by, (t))

9:  end if ak (1)

10: Observe the number of the users that are at the stable queuing state ey, ; (t)

11:  Update the output weight matrix f§ ; (¢) based on (19)

12: Update the input ay () according to the result of the users choosing BSs
13: end for

TABLE I
SYSTEM PARAMETERS
Parameter Value Parameter Value Parameter | Value
Pr 15 dBm L 1 Mbits Z 20 dB
Pc 20 dBm s MLos 12,23 p 30 ms
o -94 dBm DIFS 50 ps Fco 2 Gbit
F 10 Mbit E[A] 1500 bytes Ny 8
Fy, 20 Mbit 9, 0% 0.1, 0.05 8 2
C 3 Wi, Wo, W3 5,5,20 ACK 304 us
CTS 304 ps XY 11.9, 0.13 RTS 352 ps
N 25 N 5o Tl as 1,20 < 20 dB
CEE 0.3 Cie,Cn,Crr | 0.2,0.1,0.4 SIFS 16 ps
Ruw 4 Mbps W, W', Wg'| 5530 Py 0.3
W 2 S 13.5 mV Ny 4
network area with a radius r = 200 m, U = 20 uniformly

distributed users and K = 5 uniformly distributed UAVs. For
implementing the proposed LSM-based algorithm, we use the
Matlab LSM toolbox described in [11]. Other system parameters
are listed in Table I. We compare our approach with: a) Q-
learning algorithm in [10] with content caching and b) Q-learning
algorithm without content caching. All statistical results are
averaged over 5000 independent runs.

In Fig. 2, we show how the average number of stable queue
users changes as the number of the UAVs varies. From Fig. 2,
we can see that the number of stable queue users increases as
the number of the UAVs increases. This is due to the fact that
increasing the number of UAVs provides more connection options
for the users, and, thus, improves the number of stable queue
users. Fig. 2 also shows that the proposed LSM algorithm can
yield up to 33.3% and 50.3% gains in terms of the number of
stable queue users compared to Q-learning algorithm with cache
and Q-learning without cache, respectively, for a network with
5 UAVs. These gains stem from the fact that the proposed LSM
algorithm can use the historical resource allocation information to
find an optimal resource allocation scheme and predict the users’
content request distribution to improve content caching.

In Fig. 3, we show the variations of two content request
probabilities of an arbitrarily selected user during one day. From
Fig. 3, we can see that the accuracy of the predictions of the
proposed LSM algorithm is within less than 8% from the real
content request probability. Since this gap does not affect the
ranking of each content request probability, the cloud can find
the optimal contents to cache using the proposed algorithm. Fig.
3 also shows that the sum of the probabilities with which this user
requests contents 1 and 2 exceeds 0.5 during each hour. This is
because the user always requests a small number of contents

Fig. 4 shows the number of iterations needed till convergence
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Fig. 2. Average number of stable queue users as the number of UAVs varies.
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Fig. 3. Content request probability predictions.

for both the proposed approach and Q-learning with cache. In
this figure, we can see that, as time elapses, the number of stable
queue users increases until convergence to their final values. Fig.
4 also shows that the proposed approach needs 400 iterations to
reach convergence and exhibits a considerable reduction of 33.3%
less iterations compared to Q-learning with cache. This is due to
the fact that LSM algorithm stores the users states.

In Fig. 5, we show the variations of the number of the users that
are allocated to the licensed and unlicensed bands as the number
of contents stored at the UAV cache varies. From Fig. 5, we can
see that the number of users over the licensed and unlicensed
bands increases as the number of cached contents increases. This
is due to the fact that content caching decreases the traffic load of
the cloud-UAV links thus decreasing the rate needed for having
stable queues at the users. Fig. 5 also shows that the number of
users on the licensed band is 50% more than the number of users
over the unlicensed band due to the difference in the parameters
of the path loss over the unlicensed band.

V. CONCLUSION

In this paper, we have developed a novel framework that uses
flying cache-enabled UAVSs to provide service for users in an LTE-
U system. We have formulated an optimization problem that seeks
to maximize the number of stable queue users. To solve this prob-
lem, we have developed a novel algorithm based on the machine
learning tools of liquid state network. The proposed prediction
algorithm enables the cloud to predict each user’s content request
distribution and, thus, determine the UAV’s cached contents.
Using the proposed LSM resource allocation algorithm, each UAV
can decide on its spectrum allocation scheme autonomously with
limited information on the network state. Simulation results have
shown that the proposed approach yields significant performance
gains.

—— Proposed LSM-based algorithm ||
= + - Q-learning with cache
201 ®  Convergence point

Average number of stable queue users

2 I I I I I I
1 2 3 4 5 6 7 8

Number of iterations (1 02)
Fig. 4. Convergence of the learning algorithms.

14L —4&— Users allocated to the licensed band ||
~ * ~Users allocated to the unlicensed band

Average number of stable queue users

1 2 3 4 5 6
Number of contents stored at UAV cache

Fig. 5. Number of users associated with licensed and unlicensed bands as the
number of stored contents at UAV cache varies.
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