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Abstract—In this paper, the problem of joint caching and resource
allocation is investigated for a network of cache-enabled unmanned
aerial vehicles (UAVs) that service wireless ground users over the
LTE licensed and unlicensed (LTE-U) bands. The considered model
focuses on users that can access both licensed and unlicensed
bands while receiving contents through UAV cache-user links and
content server-UAV-user links. This problem is formulated as an
optimization problem which jointly incorporates user association,
spectrum allocation, and content caching. To solve this problem, a
distributed algorithm based on the machine learning framework
of liquid state machine (LSM) is proposed. Using the proposed
LSM algorithm, the cloud can predict the users’ content request
distribution while having only limited information on the network’s
and users’ states. The proposed algorithm also enables the UAVs
to autonomously choose the optimal resource allocation strategies
depending on the network states. Simulation results using real
datasets show that the proposed approach yields up to 33.3% and
50.3% gains, respectively, in terms of the number of users that have
stable queues compared to two baseline algorithms: Q-learning with
cache and Q-learning without cache. The results also show that
LSM significantly improves the convergence time of up to 33.3%
compared to Q-learning.

I. INTRODUCTION

The use of aerial wireless communication platforms such as

unmanned aerial vehicles (UAVs) is seen as a promising approach

to improve the coverage and capacity of future wireless networks

[1]. Due to their flying nature, UAVs can provide line-of-sight

(LoS) connections toward ground users and, thus, potentially

improving the rate, delay, and overall performance of wireless

networks. However, deploying UAVs for wireless communication

purposes faces many challenges [2]–[5] that include air-to-ground

channel modeling, optimal deployment, energy efficiency, path

planning, and resource management.

The existing literature in [3]–[5] has studied a number of

problems related to UAVs. In [3], the deployment of an unmanned

aerial vehicle acting as wireless base stations that provide cov-

erage for ground users is analyzed. The authors in [4] propose

a statistical propagation model for predicting the air-to-ground

path loss between a low altitude platform and a ground user. In

[5], the authors investigate a multi-tier drone-enabled network

complementing a terrestrial heterogeneous network. However,

most of these existing works are focused on the UAV-ground users

wireless communications and do not account for the ground-to-

air fronthaul communications between the core network and the

UAVs. Indeed, capacity-constrained fronthaul links will signifi-

cantly limit the transmission rate of the links from the UAVs to the

ground users. In order to reduce the traffic load on the fronthaul
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links and improve the performance of UAV-based communication,

one promising approach is to cache popular content [6] at the

UAVs thus allowing them to directly transmit data to the ground

users without using wireless fronthaul transmissions [7].
To further improve performance and overcome the spectrum

scarcity problem, the UAVs can be equipped with LTE over the

unlicensed band (LTE-U) capabilities thus allowing them to use

both licensed and unlicensed spectrum to service their ground

users. Recently, there has been significant interest in studying

the performance of LTE-U enabled cellular networks such as

in [8]–[10]. In [8], the authors investigate the use of LTE-U

for unmanned aerial base stations to enhance the achievable

broadband throughput during emergency situations. The authors

in [9] introduce a deep learning approach for resource allocation

problem in LTE-U SCNs. In [10], the authors propose a novel

learning algorithm to solve the problem of resource allocation

with uplink-downlink decoupling. However, the LTE-U works

in [9] and [10] do not consider the use of LTE-U with UAV-

carried base stations. Meanwhile, the work in [8] considers the

LTE-U resource allocation in a UAV network, however, it does

not consider the effect of the limited-capacity cloud-UAVs links.

Caching the popular contents at UAVs can help overcome the

limited capacity of the cloud-UAVs links.
The main contribution of this paper is a novel resource alloca-

tion framework for allowing cache-enabled UAVs to effectively

service ground users over licensed and unlicensed bands in a

cloud network under fronthaul capacity constraints. The proposed

approach will enable dual-mode UAVs to autonomously learn and

determine which content to cache and how to allocate the licensed

and unlicensed bands to each user depending on the network

environment. Developing such a dynamic resource allocation

algorithm requires a self-organizing, decentralized approach so as

to minimize the overhead and coordination among UAVs while

maximizing performance. Unlike previous studies [3]–[5], that

overlook the limited-capacity of the UAV-cloud links, we propose

a novel learning approach based on the powerful framework of

liquid state machine (LSM) [11] to perform caching and resource

allocation in a network of cache-enabled LTE-U UAVs. The use

of LSM enables the cloud to quickly learn the users’ content

request distribution so as to determine the content caching strategy

for each UAV. It also enables the UAVs to autonomously adjust

their spectrum allocation schemes to service users. To our best

knowledge, this is the first work to jointly consider the use of the

caching and LTE-U for UAV-assisted communication. Simulation

results show that the proposed approach yields, respectively,

33.3% and 50.3% gains in terms of the number of users having a

stable queue compared to Q-learning with cache and Q-learning

without cache.
The rest of this paper is organized as follows. The system



model and problem formulation are described in Section II. The

LSM-based algorithms for content request distribution prediction

and resource allocation are proposed in Section III. In Section IV,

numerical simulation results are presented and analyzed. Finally,

conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of an LTE-U network composed of a set

K of K UAVs and W WiFi access points (WAPs). In this model,

the UAVs are equipped with cache storage units [12] and can be

deployed to act as flying cache-enabled LTE-U base stations to

serve a set U of U ground users. The UAVs are controlled by a

cloud-based server. Here, we consider dual mode cache-enabled

UAVs that are able to access both the licensed and unlicensed

bands. The transmissions from the cloud to the UAVs occur over

wireless fronthaul links using the licensed cellular band.

In this system, a frequency division duplexing (FDD) mode

is considered for LTE on the licensed band. The FDD mode

separates the licensed band for the downlink LTE-U users. A

time division duplexing (TDD) mode with duty cycle method is

considered for LTE-U. Using the duty cycle method, the UAVs

will use a discontinuous, duty-cycle transmission pattern so as to

guarantee the transmission rate of WiFi users. Under this method,

the unlicensed band time slots will be divided between LTE-U

and WiFi users. In particular, LTE-U transmits for a fraction ϑ of

time and will be muted for 1−ϑ time which is allocated for WiFi

transmission. The WAPs transmit using a standard carrier sense

multiple access with collision avoidance (CSMA/CA) protocol

and its corresponding RTS/CTS access mechanism.

In our model, we assume that all of the users will only request

contents of equal size L from a set N of N contents that are

stored at a cloud-based content server. Each UAV k is equipped

with a storage unit that can store a set Ck of C popular contents

that the users can request. Caching at the UAVs can significantly

offload the fronthaul traffic of UAVs since each UAV can directly

transmit its stored contents to the users without using fronthaul

links. Hereinafter, caching at the UAVs is referred to as “UAV

cache”. The cached contents at a UAV are assumed to be refreshed

at off peak hours when the UAVs return to their docking stations.

A. WiFi data rate analysis

For the WiFi network, we assume that the WAPs will adopt

a CSMA/CA scheme with binary slotted exponential backoff.

Therefore, the saturation capacity of Nw users sharing the same

unlicensed band can be expressed by [10]:

R (Nw) =
Ptr (Nw)Ps (Nw)E [A]

(1−Ptr (Nw))Tσ+Ptr(Nw)Ps(Nw)Ts+Ptr(Nw)(1−Ps(Nw))Tc
,

(1)

where Ptr (Nw) = 1 − (1− τ)
Nw with Ptr (Nw) being the

probability that there is at least one transmission in a time slot

and τ being the transmission probability of each user. Ps (Nw) =
Nwτ(1− τ )Nw−1/Ptr (Nw) , is the successful transmission prob-

ability, Ts is the average time that the channel is sensed busy

because of a successful transmission, Tc is the average time that

the channel is sensed busy by each station during a collision, Tσ is

the duration of an unoccupied slot time, and E [A] is the average

packet size. In our model, the WiFi network adopts conventional

distributed coordination function access and RTS/CTS access

mechanisms. Tc and Ts are computed as done in [10].

We assume that one LTE time slot consists of TW WiFi time

slots. Based on the duty cycle mechanism, the UAVs can occupy

ϑ fraction of TW time slot on the unlicensed band while the WiFi

users can occupy a fraction (1− ϑ) fraction of TW time slots.

Thus, the per WiFi user rate is:

Rw =
R (Nw) (1− ϑ)

Nw

, (2)

where Nw is the number of WiFi users on the unlicensed band.

Given the rate requirement of each WiFi user γ, the fraction of

the time slot on the unlicensed band allocated to the LTE-U users

can be given by ϑ ≤ 1−Nwγ/R(Nw).

B. UAV data rate analysis

Next, we define the rate of each user associated with a UAV.

The UAVs’ content transmission link consists of the wireless

fronthaul links that connect each UAV to the cloud (ground-to-air

links) and the UAV-users links (air-to-ground links). We consider

probabilistic LoS and non-line-of-sight (NLoS) links over the

licensed band for both the UAVs’ fronthaul links and UAV-user

links. In such a model, NLoS links experience higher attenuation

than LoS links due to the shadowing and diffraction loss.

1) UAVs-users links over the licensed band: The LoS and

NLoS path loss of UAV k transmitting a content to user i will be

given by (in dB) [4]:

lLoS
ki = 20 log

(

4πdkif

c

)

+ ηlLoS, l
NLoS
ki =20 log

(

4πdkif

c

)

+ ηlNLoS,

where 20 log (dkif4π/c) is the free space path loss with dki
being the distance between user i and UAV k, f being the

carrier frequency, and c being the speed of light. ηlLoS and ηlNLoS

represent, respectively, additional attenuation factors due to the

LoS/NLoS connections over the licensed band. In our model,

the probability of LoS connection depends on the environment,

density and height of buildings, the locations of the user and the

UAV, and the elevation angle between the user and the UAV. The

LoS probability is given by [4]:

Pr
(

lLoS
ki

)

= (1 +X exp (−Y [φki −X ]))−1, (3)

where X and Y are constants which depend on the environment

(rural, urban, dense urban, or others) and φki = sin−1 (hk/dki)
is the elevation angle. Clearly, the average path loss from UAV

k to user i is given by [4]:

l̄lki = Pr
(

lLoS
ki

)

× lLoS
ki + Pr

(

lNLoS
ki

)

× lNLoS
ki , (4)

where Pr
(

lNLoS
ki

)

= 1 − Pr
(

lLoS
ki

)

. Based on the path loss, the

downlink rate of user i associated with UAV k on the licensed

band at time t can be given by:

Rlki(uki (t))= uki (t)Fllog2









1+
PK10l̄

l
ki/10

∑

j∈K,j 6=k

PK10l̄
l
ji/10+PChi+ σ2









, (5)

where Fl is the downlink bandwidth on the licensed band, PK is

the transmit power of each UAV, hi is the channel gain between

user i and the cloud, and PC is the transmit power of the cloud

over the fronthaul. σ2 is the power of the Gaussian noise. Finally,

uki (t) is the fraction of the downlink licensed band allocated

from UAV k to user i at time t with
∑

i uki (t) = 1.



2) UAVs-users links over the unlicensed band: In our model,

the UAVs can only use the unlicensed band of the WiFi networks

whenever the WiFi users’ rate requirement is satisfied. Based on

(2), we obtain a fraction TV of a time slot over the unlicensed

band that can be occupied by UAVs. Therefore, the downlink rate

of user i associated with UAV k on the unlicensed band is:

Ruki(eki (t))=eki(t)ϑFulog2









1+
PK10l̄

u
ki/10

∑

j∈K,j 6=k

PK10l̄
u
ji/10 + σ2









, (6)

where l̄uki is the average path loss over the unlicensed band, Fu is

the bandwidth of the unlicensed band, and eki (t) is the fraction

of ϑ over the unlicensed band with
∑

i eki (t) = 1.
3) Cloud-UAVs ground-to-air links: The LoS and NLoS path

loss from the cloud to UAV k can be given by [3]:

LLoS
k = d−β

Ck , LNLoS
k = ςd−β

Ck , (7)

where ς is the additional path loss of the NLoS connection and

dCk is the distance between UAV k and the cloud. The average

path loss L̄k of the fronthaul link of UAV k can be computed

using (3) and (4). Here, we assume that the total bandwidth of

the UAVs’ fronthaul is FC which is equally divided among the

users that received the contents from the cloud. Therefore, the

fronthaul rate of each user associated with UAV k is given by:

RCk (t) =
FC

UC (t)
log2









1 +
PCL̄k

∑

j∈K,j 6=k

PK10l̄
l
ki/10 + σ2









, (8)

where UC(t) is the number of the users that receive a content

from the cloud at time t. UC(t) can be calculated by the content

server as the users request contents from the content server.

C. Queueing model

Let Ai (t) be the random content arrival (number of bits) for

user i from the content server at the end of time slot t. We assume

that each user can request at most one content during each time

slot t and, consequently, Ai (t) ∈ {0, L}. Let Qi (t) be the queue

length (number of bits) of user i at the beginning of time slot t,
which can be given by [13]:

Qi (t+ 1) = Qi (t)−Rki (t) +Ai (t) , (9)

where Rki (t) is the rate of user i. Since the content transmission

links consist of (a) UAV-user on the licensed band, (b) UAV-user

on the unlicensed, (c) cloud-UAV-user on the unlicensed band,

and (d) cloud-UAV-user on the licensed band, the rate of content

transmission from UAV k to user i can be given by:

Rki (uki (t), eki (t)) =























Rlki (uki (t)) , link (a),

Ruki (eki (t)) , link (b),
Ruki(eki(t))RCk(t)
Ruki(eki(t))+RCk(t)

, link (c),
Rlki(uki(t))RCk(t)
Rlki(uki(t))+RCk(t)

, link (d).

(10)

where the equation of link (c) is obtained from the fact that the

time duration of a single data packet transmitted from the cloud

to UAV k is 1/RCk (t) and a single data packet transmitted from

UAV k to user i is 1/Ruki (t). Therefore, the data rate of the

transmission from the cloud to user i is 1
1/RCk(t)+1/Ruki(t)

.

From (10), we can see that the rate of user i that receives a

content from the UAV cache (link (a) and link (b)) is larger than

the rate of user i that receives contents from the cloud (link (c)

and link (d)). We use the notion of queue stability to measure the

users’ content transmission delay. In essence, a queue Qi (t) is

said to be rate stable if [13]:

lim
t→∞

Qi (t)

t
= 0. (11)

From [13, Theorem 2.8], we can also see that the queue Qi (t)
is rate stable if Rki (t) ≥ Ai (t).

D. Problem formulation

Given this system model, our goal is to develop an effective

spectrum allocation scheme for cache-enabled UAVs that can

allocate appropriate bandwidth over the licensed and unlicensed

bands to satisfy the queue stability requirement of each user.

To achieve this goal, we formulate an optimization problem

whose objective is to maximize the number of users with stable

queue. This maximization problem involves finding the optimal

association Uk for each UAV k, bandwidth allocation indicators

on the licensed band uki, time slots indicators on the unlicensed

band eki, and the set of cached contents Ck for each UAV k.

Therefore, this problem can be formalized as follows:

max
u,e,Ck,Uk

∑

k∈K

∑

i∈Uk

1{

lim
t→∞

Qi(t)

t
=0

}=
∑

k∈K

∑

i∈Uk

1{Rki(uki(t),eki(t))≥Ai(t)}

(12)

s. t. Rw ≥ γ, (12a)
∑

i∈U

uki (t) ≤ 1, ∀k ∈ K, (12c)

∑

i∈U

eki (t) ≤ 1, ∀k ∈ K, (12d)

where 1{x} = 1 when x is true and 1{x} = 0 otherwise, Uk is

the set of the users associated with UAV k, and u, e denote the

spectrum allocation indicators on the downlink licensed and un-

licensed bands, respectively. (12a) guarantees the communication

quality of each WiFi user. The LTE-U users can only occupy the

unlicensed band when (12a) is satisfied. (12b) indicates that each

user can only access each UAV’s licensed band or unlicensed

band, (12c) indicates that the licensed band allocation cannot

exceed the total bandwidth for each UAV and (12d) captures the

fact that the time slots over the unlicensed band cannot exceed

the total number of time slots allocated to the UAVs.

III. LIQUID STATE NETWORKS FOR CONTENT PREDICTION

AND SELF-ORGANIZING RESOURCE ALLOCATION

The optimization problem in (12) is challenging to solve,

because spectrum allocation and content caching depend on the

user association which, in turn, depends on the rate of each

user. In fact, this problem can be shown to be combinatorial

and non-convex, thus it is difficult to solve it using conventional

optimization algorithms. Moreover, each UAV may not know the

users’ content requests which makes it challenging to determine

which content to cache at the UAVs. To address these challenges,

we propose a novel liquid state machine learning approach [11]

to predict the users’ content request distribution and perform

resource allocation.

Liquid state machine is a novel kind of spiking neural net-

works [11] that are randomly generated. Learning algorithms

based on LSM can store the users’ behavioral information and

track the state of a network over time. Therefore, an LSM-

based algorithm will enable the cloud to leverage information
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Fig. 1. The components of the proposed LSM-based algorithm.

on the users’ behavior, that are stored in LSM, to predict the

content request distribution and automatically adapt spectrum

allocation to the change of network states. Consequently, LSM-

based algorithms are promising candidates for content request

distribution prediction and wireless resource allocation problems.

Next, we first begin by introducing the components of the LSM

algorithm. Then, we introduce the entire process using LSM to

predict the users’ content request distribution and to solve (12).

A. LSM Components

As illustrated in Fig. 1, an LSM-based algorithm consists

of five components: a) agents, b) input, c) output, d) liquid

model, and e) output function. Since the prediction of the content

request distribution and resource allocation are function-specific,

we design the specific components for the problems of predicting

content request distribution and resource allocation, separately.

1) Content request distribution prediction: The content request

distribution prediction algorithm has the following components:

• Agent: The agent is the cloud. Since each LSM approach

performs a content request distribution prediction for just one

user, the cloud must implement U LSM algorithms.

• Input: The input of the LSM prediction algorithm is defined

by a vector xj (t) = [xj1 (t) , · · · , xjNx
(t)]

T
that captures the

context information related to user j’s content request at time t.
Such information includes age, gender, occupation, and device

type (e.g., tablet or smartphone). Nx is the number of properties

that constitute the context information of user j. The vector xt,j

is used to predict the content request distribution yt,j of user j.

• Output: The LSM output at time t is a vector of probabilities

yj (t) = [ptj1, ptj2, . . . , ptjN ] that represents the discrete prob-

ability density function of content request of user j with ptjn
being the probability that user j requests content n at time t.
• Liquid model: A liquid model for each user j can store

the users’ dynamic features that are extracted from the users’

context over time. These dynamic features can be used with the

output functions to predict the users’ behavior such as content

request and mobility patterns. Here, the liquid model consists

of W1 × W2 × W3 leaky integrate and fire neurons that are

arranged in a 3D-column. In particular, each neuron that consists

of resting state S, action state, and refractory period Tf (ms) is

defined as a excitatory neuron while the neuron that consists of

resting state, inhibitory state, and refractory period is defined as

an inhibitory neuron. The resting state indicates that the neuron

does not receive any users’ context information. The action state

indicates that the neuron receives a certain amount of users’

context and transmits this context to the connected neurons.

The inhibitory state indicates that the users’ information in the

neuron is decreasing and, thus, cannot reach an action state. When

each neuron transmits information to other connected neurons, its

users’ information may decrease to a value that is below that of

the resting state. In this case, the neuron will have a refractory

period during which the neuron returns to the resting state. The

action state of neuron j, vj (t) at time t is [11]:

vj (t) = vj (t− 1) +
S + ZIj (t− 1)− vj (t− 1)

Zρ
, (13)

where Z is the neuron resistance, Ij (t− 1) is the input of

the users’ information, and ρ is the neuron time constant.

Based on (13), the LSM state can be given by v (t) =
[v1 (t) , v2 (t) , . . . , vNW

(t)], where NW = W1 × W2 × W3 is

the number of neurons.

The connections from the input to the liquid model are made

with probability PIN. The probability connection between neurons

i and j can be given by:

Pij = Ce−(d(i,j)/λ)2 , (14)

where C ∈ {CEE, CEI, CIE, CII} is a constant that depends on the

type of both neurons. In particular, CEE denotes an excitatory-

excitatory connection, CEI is an excitatory-inhibitory connection,

CIE is an inhibitory-excitatory connection, and CII is a inhibitory-

inhibitory connection. d (i, j) is the Euclidean distance between

neurons i and j. λ is a parameter that influences how often

neurons are connected.

• Output function: The output function is used to build the re-

lationship between the state of the LSM model and the prediction

of each user’s content request distribution. Let f j ∈ R
NW×N be

the output function of UAV j, where N is the total number of

contents. In order to predict the user’s content request distribution,

f j is trained in an offline manner using ridge regression to

approximate the prediction function:

f j = yT,jv
T
j

(

vT
j vj + δ2I

)−1
, (15)

where vj = [vj (1) , . . . ,vj (Nt)] is the LSM state sequence for

user j and NM is the number of the prediction patterns of each

user’s content request distribution. Here, yT,j is the target output

of the LSM algorithm, I is an identity matrix, and δ is the learning

rate. Based on the trained output function, the prediction of user

j’s content request distribution at time t can be given by:

yj (t) = f jvj (t). (16)

2) Resource allocation: The LSM reinforcement learning al-

gorithm for resource allocation has the following components:

• Agent: The agents in this LSM algorithm are the UAVs.

• Input: mk(t)=[a1(t), · · · , ak−1 (t) , ak+1 (t) , aK (t)]
T

rep-

resents the actions that all UAVs other than UAV k takes at time t.
Here, ai (t) is the action that UAV i takes at time t. In particular,

each UAV’s action represents a UAV-user association scheme. As

the UAV-user association is determined, the UAV cached content

can be determined by our result in [7, Theorem 2]. Since the

user association and cached contents [14] are determined, (12)

for each UAV can be simplified as follows:

max
u,e

∑

i∈Ulkc

1{Rlki(uki(t))=Ai(t)} +
∑

i∈Uukc

1{Ruki(eki(t))=Ai(t)}+

∑

i∈Ulk

1{Rlki(uki(t))RCk(t)

Rlki(uki(t))+RCk(t)
=Ai(t)

}+
∑

i∈Uuk

1{Ruki(eki(t))RCk(t)

Ruki(eki(t))+RCk(t)
=Ai(t)

},
(17)

where Ulkc (Ulk) is the set of users that are associated with

UAV k over the licensed band and their requested contents are

(not) stored in the cache. Uukc (Uuk) is the set of users that

are associated with UAV k over the unlicensed band and their

requested contents are (not) stored in the cache. (17) is a convex



optimization problem that can be solved by linear programming.

• Output: The LSM output at time t is a vector of bk (t) =
[bk1 (t), bk2 (t), . . . , bkAk

(t)] that represents the resource alloca-

tion results. Ak is the number of actions that each UAV k can take

and bkj (t) is the expected number of stable queue users when

UAV k uses resource allocation scheme j, which is:

bki (t) =
∑

a−k∈A−k

bki,a−k
(aki,a−k)π−k,a−k

, (18)

where A−k is the action set of all UAVs other than UAV k and

bki,a−k
is the number of stable queue users as UAV k uses the

resource allocation scheme i and the other UAVs use the schemes

a−k. π−k,a−k
=
∑

aki∈Ak
π(aki,a−k) is the marginal probability

distribution over the action set of UAV k.

• Liquid model: The liquid model in the resource allocation

algorithm is used to store the network state information including

UAV-user association schemes and their corresponding output

results. The liquid model consists of Wα
1 ×Wα

2 ×Wα
3 number of

leaky integrate and fire neurons that are arranged in a 3D-column.

The generation of the resource allocation LSM model is similar

to the one in the content request distribution prediction case.

• Output function: The output function is used to build the

relationship between the UAVs-user association schemes and the

number of users with a stable queue. Let fα
k ∈ R

Ak×(Ak+Nα
W )

be the output function of UAV k, where Nα
W is the number of

the neurons in the liquid model. To train fα
k , a linear gradient

descent approach can be used to derive the following update rule,

f
α
k,i (t+ 1) = f

α
k,i (t)+δ

α (ek,i (t)− bki (t)) [vk (t);mk (t)]
T
, (19)

where fk,i is row i of fk, δα is the learning rate, ek,i (t) is the

expected output, and vk (t) is the LSM state at time t. Based

on (19), the estimated number of users that have a stable queue

resulting from the users allocation scheme i is:

bki (t) = fα
k,i [vk (t);mk (t)] . (20)

B. LSM Algorithm for content prediction and spectrum allocation

To solve the problem in (12), the cloud first predicts the content

request distribution of each user using an LSM-based prediction

approach. Based on the users’ content request distribution, each

UAV k uses the LSM-based learning algorithm with ǫ-greedy

mechanism [10] to find the optimal users association. Once the

users association is determined, the optimal content caching and

spectrum allocation will also be determined. In this algorithm,

each UAV can store the users’ and network’s states as UAV k
adopts different users association schemes. During each iteration,

the LSM algorithm can record the number of stable queue users,

bki,a−k
(aki,a−k). Since the LSM-based algorithm satisfies the

convergence conditions of [10, Theorem 2], as time elapses, each

UAV k’s output resulting from the resource allocation scheme i
will converge to a final value bki. At this convergence point, bki
indicates the expected value of the number of stable queue users

with respect to all other UAVs’ stategies. The proposed LSM

approach performed by the cloud and each UAV k is shown, in

detail, in Algorithm 1.

IV. SIMULATION RESULTS

In our simulations, the content request data that the LSM uses

to train and predict content request distribution is obtained from

Youku of China network video index1. The detailed parameters

are listed in Table I. We consider a circular cloud-based UAVs

1The data is available at http://index.youku.com/.

Algorithm 1 LSM-based learning algorithm

Input: The set of users’ context, xj (t), UAVs’ input mk (t);
Init: The cloud generates the liquid model for each user.

Each UAV generates a liquid model based on (13) and (14).

1: Calculate the time slots L based on (2)
2: Predict users’ content request distribution using (16)

3: for time t do

4: Estimate the number of the users that are at stable queuing state using (20)
5: if rand(.) < ε then

6: Randomly choose one action

7: else

8: Choose action ak (t) = argmax
ak(t)

(bk (t))

9: end if

10: Observe the number of the users that are at the stable queuing state ek,i (t)
11: Update the output weight matrix fα

k,i (t) based on (19)

12: Update the input ak (t) according to the result of the users choosing BSs
13: end for

TABLE I
SYSTEM PARAMETERS

Parameter Value Parameter Value Parameter Value

PK 15 dBm L 1 Mbits Z 20 dB

PC 20 dBm ηuLoS, η
u
NLoS 1.2, 23 ρ 30 ms

σ -94 dBm DIFS 50 µs FC 2 Gbit

Fl 10 Mbit E [A] 1500 bytes Nw 8

Fu 20 Mbit δ, δα 0.1, 0.05 β 2

C 3 W1,W2,W3 5,5,20 ACK 304 µs
CTS 304 µs X, Y 11.9, 0.13 RTS 352 µs

N 25 ηl
LoS

, ηl
NLoS

1, 20 ς 20 dB

CEE 0.3 CIE,CII,CEI 0.2,0.1,0.4 SIFS 16 µs

Rw 4 Mbps Wα
1 ,Wα

2 ,Wα
3 5,5,30 PIN 0.3

W 2 S 13.5 mV Nx 4

network area with a radius r = 200 m, U = 20 uniformly

distributed users and K = 5 uniformly distributed UAVs. For

implementing the proposed LSM-based algorithm, we use the

Matlab LSM toolbox described in [11]. Other system parameters

are listed in Table I. We compare our approach with: a) Q-

learning algorithm in [10] with content caching and b) Q-learning

algorithm without content caching. All statistical results are

averaged over 5000 independent runs.

In Fig. 2, we show how the average number of stable queue

users changes as the number of the UAVs varies. From Fig. 2,

we can see that the number of stable queue users increases as

the number of the UAVs increases. This is due to the fact that

increasing the number of UAVs provides more connection options

for the users, and, thus, improves the number of stable queue

users. Fig. 2 also shows that the proposed LSM algorithm can

yield up to 33.3% and 50.3% gains in terms of the number of

stable queue users compared to Q-learning algorithm with cache

and Q-learning without cache, respectively, for a network with

5 UAVs. These gains stem from the fact that the proposed LSM

algorithm can use the historical resource allocation information to

find an optimal resource allocation scheme and predict the users’

content request distribution to improve content caching.

In Fig. 3, we show the variations of two content request

probabilities of an arbitrarily selected user during one day. From

Fig. 3, we can see that the accuracy of the predictions of the

proposed LSM algorithm is within less than 8% from the real

content request probability. Since this gap does not affect the

ranking of each content request probability, the cloud can find

the optimal contents to cache using the proposed algorithm. Fig.

3 also shows that the sum of the probabilities with which this user

requests contents 1 and 2 exceeds 0.5 during each hour. This is

because the user always requests a small number of contents

Fig. 4 shows the number of iterations needed till convergence
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Fig. 2. Average number of stable queue users as the number of UAVs varies.
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Fig. 3. Content request probability predictions.

for both the proposed approach and Q-learning with cache. In

this figure, we can see that, as time elapses, the number of stable

queue users increases until convergence to their final values. Fig.

4 also shows that the proposed approach needs 400 iterations to

reach convergence and exhibits a considerable reduction of 33.3%

less iterations compared to Q-learning with cache. This is due to

the fact that LSM algorithm stores the users states.

In Fig. 5, we show the variations of the number of the users that

are allocated to the licensed and unlicensed bands as the number

of contents stored at the UAV cache varies. From Fig. 5, we can

see that the number of users over the licensed and unlicensed

bands increases as the number of cached contents increases. This

is due to the fact that content caching decreases the traffic load of

the cloud-UAV links thus decreasing the rate needed for having

stable queues at the users. Fig. 5 also shows that the number of

users on the licensed band is 50% more than the number of users

over the unlicensed band due to the difference in the parameters

of the path loss over the unlicensed band.

V. CONCLUSION

In this paper, we have developed a novel framework that uses

flying cache-enabled UAVs to provide service for users in an LTE-

U system. We have formulated an optimization problem that seeks

to maximize the number of stable queue users. To solve this prob-

lem, we have developed a novel algorithm based on the machine

learning tools of liquid state network. The proposed prediction

algorithm enables the cloud to predict each user’s content request

distribution and, thus, determine the UAV’s cached contents.

Using the proposed LSM resource allocation algorithm, each UAV

can decide on its spectrum allocation scheme autonomously with

limited information on the network state. Simulation results have

shown that the proposed approach yields significant performance

gains.
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Fig. 4. Convergence of the learning algorithms.
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