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Abstract— On a GPU cluster, the ratio of high computing

power to communication bandwidth makes scaling breadth-

first search (BFS) on a scale-free graph extremely challenging.

By separating high and low out-degree vertices, we present

an implementation with scalable computation and a model

for scalable communication for BFS and direction-optimized

BFS. Our communication model uses global reduction for high-

degree vertices, and point-to-point transmission for low-degree

vertices. Leveraging the characteristics of degree separation, we

reduce the graph size to one third of the conventional edge list

representation. With several other optimizations, we observe

linear weak scaling as we increase the number of GPUs, and

achieve 259.8 GTEPS on a scale-33 Graph500 RMAT graph

with 124 GPUs on the latest CORAL early access system.
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I. INTRODUCTION

Breath-First Search (BFS) on graphs is a fundamental
and important problem that draws attention from a wide
range of research communities. It is a building block of
more advanced algorithms that involve graph traversals,
such as betweenness centrality and community detection.
Traversals can be highly parallelizable; however, achieving
good performance is challenging, especially on scale-free
graphs with wide ranges of degree distribution. This is due
in part to low arithmetic computation density and irregular
memory access patterns caused by the algorithm and the
graph topology. When running on distributed memory sys-
tems, high communication cost adds additional challenges
to achieve good performance. Because of the importance
and challenging nature of BFS at large scale, the High
Performance Computing (HPC) graph community chose
BFS as the first benchmark in the Graph500 [1]. In addi-
tion to testing hardware capability of HPC machines, the
Graph500 has been a catalyst for a series of algorithmic
innovations [2]–[4] for HPC graph analytics.
Graphics Processing Units (GPUs) provide more comput-

ing power and memory bandwidth than CPUs, and thus may
be a good candidate for a high-performance BFS. A fast
BFS on GPUs is a challenge, however; irregular memory
access patterns and the workload imbalance caused by
widely different neighbor list lengths require optimizations
to utilize the GPU hardware. Another challenge is the low
per-processor memory size of the GPU (16 GB for the
largest NVIDIA GPUs), much smaller than the CPU’s.
Processing graphs larger than one GPU’s memory requires
multiple GPUs and a distributed-memory implementation.

On the algorithms side, Beamer, Asanović and Patter-
son [4] introduced Direction-Optimizing (DO) BFS that sig-
nificantly reduces traversal workload on power-law graphs,
such as those used by Graph500 and social-network graphs.
DOBFS’s workload reduction exacerbates the imbalance
between highly efficient local GPU computation and the
relatively limited communication bandwidth in and out of
GPUs: a DOBFS implemented across multiple GPUs using
existing techniques will almost surely be limited completely
by communication bandwidth and will fail to scale. Our
previous work [5] shows DOBFS is the most challenging
algorithm (among the five we tried) to scale even on multiple
GPUs connected by a PCI Express bus. Targeting a multi-
node GPU cluster, with its lower inter-node bandwidth, will
be even more difficult. Existing work on GPU clusters does
not target DOBFS because of these challenges.
Our work targets the growing trend of multiple GPUs

per compute node on HPC systems. CORAL/Sierra [6]
will be Lawrence Livermore National Lab’s (LLNL) newest
supercomputer. This system will contain only a few thousand
compute nodes, compared to 10⇥ that amount in previous
supercomputers. However, each node will feature more local
computing power, mainly from four Volta GPUs, and more
memory. This change further raises the computing power vs.
communication bandwidth ratio. From a BFS perspective,
the graph partition on each GPU will be larger, while the
communication bandwidth for each GPU may not increase.
Thus, the available bandwidth per unit graph size decreases
significantly, and makes scaling on such systems harder.
In short, the challenges of a scalable (DO)BFS on GPU

clusters are: 1) limited GPU memory—small per-GPU
graphs will not be sufficient to utilize the computing power
of latest GPUs; 2) irregular memory access patterns and
unbalanced workloads, which together limit local traversal
performance; and 3) a high-computing-power to limited-
communication-bandwidth ratio, making scaling difficult.
Our work in this paper targets an scalable implementation

of (DO)BFS for the CORAL early access system at LLNL
called Ray [7] that can utilize the latest hardware. Our
implementation makes no CORAL-specific optimizations
but instead aims for generality to address any GPU cluster.
We achieve scalable performance up to a scale-33 RMAT
graph on this machine. The key idea allowing us to achieve
scalable performance is that by separating high- and low-
degree vertices [8], we design and implement a scalable



computation and communication model that, for the first
time, achieves scalable DOBFS on GPU clusters. We make
the following contributions:

• Scalable BFS and DOBFS traversal results, reaching
260 Giga Traversal Edges Per Second (GTEPS) on a
scale-33 Graph500 RMAT graph with 124 GPUs, which
is 18.5⇥ better weak-scaling performance than the best
known GPU cluster work on the Graph500 list [1];

• An efficient graph representation that uses about half
the memory as the conventional compressed sparse row
(CSR) format;

• Fast and scalable local traversal on GPUs;
• A scalable communication model for DOBFS; and
• Several design decisions that may be useful for other
programmers on similar systems.

II. RELATED WORK

A. Terminology
For ease of discussion, we define the following terms, and

use them in later sections of the paper.
graph A graph G(V,E) is defined by its vertices V and

edges E. In this paper, to study DOBFS scalability without
doubling the storage size, we assume the graph is symmetric.
n = |V |, the number of vertices in the graph.
m = |E|, the number of edges in the graph.
prank the number of Message Passing Interface (MPI)

ranks.
pgpu the number of GPUs per MPI rank.
p = prank · pgpu, the number of GPUs used.
g the inverse of inter-node communication bandwidth.
TH the degree separation threshold (section III-A).
delegates vertices with out-degree larger than TH .
normal vertices vertices with out-degree at most TH .
Enn, End, Edn, Edd normal ! normal, normal ! del-

egate, delegate ! normal, and delegate ! delegate edges.
d the number of delegates in the graph.
S the number of iterations (i.e., super-steps) of running

BFS on the graph, bounded by the diameter of the graph.

B. Challenges with Scaling Directional Optimization
Directional optimization is a widely adopted optimization

used in high-performance BFS implementations. First de-
scribed by Beamer, Asanović, and Patterson [4], it switches
from the conventional forward-push (i.e. top-down) direction
to the backward-pull (i.e. bottom-up) direction when the
workload of visiting all neighbors of the newly discovered
vertices from the previous iteration is greater than trying
to find only one previously visited parent of the unvisited
vertices. The workload savings from skipping a vertex’s
parent list once a valid one is found can be huge, and it
is very efficient for graphs with small diameters and dense
cores, for example, social networks and RMAT graphs.
However, conventional DOBFS implementations face

scaling issues in a cluster environment. When running in the

backward-pull direction, each active (unvisited) vertex must
know the status of all its possible parents. This information
comes with a high communication cost. If the graph is 1D-
partitioned, it forces broadcasting the newly visited vertices
to all the peers that host their neighbors. In practice, this
often results in broadcasting the newly visited vertices to
every peer, which is 8m bytes in communication volume,
and 8m/p · g in communication time. If the graph is 2D-
partitioned [10], it takes 2 hops to propagate the visiting
status of vertices: one reduction across the row direction,
and one broadcast across the column direction.
Let us use nt to indicate the number of vertices visited in

the forward-push iterations, and Sb to indicate the number of
iterations in the backward-pull direction. We make the fol-
lowing assumptions: 1) row- and column-wise vertex num-
bers are 32-bit; 2) reduction and broadcast works in a tree-
like manner, which gives log

p
p communication for each

column or row; 3) the same vertex is never visited in more
than one iteration, otherwise the communication cost will
be higher; and 4) the processor grid is square, i.e., there are
equal divisions in the row and the column directions. Then
the total communication volume for the forward direction is
8nt

p
p log

p
p bytes, and it is 2nSb

p
p(log

p
p)/8 bytes for

the backward direction using compressed bit masks. The
communication time is (4nt + nSb/8)((log

p
p)/

p
p) · g.

When the graph size and the number of nodes increase
at the same rate (weak scaling), the above communication
cost will increase as p

p, and this limits the scalability on
large systems. There are also increases in the computation
workload: instead of finding only one valid parent for each
unvisited vertex, the 2D partitioned case tries to finds p

p

valid parents, one in each of the p
p row-partitions of an

unvisited vertex. When running on large clusters, i.e. pp

is large, this workload increase defeats the workload saving
purpose of DO. In summary, both 1D and 2D partitioning
within a cluster on a DOBFS present significant scalability
challenges.
Previous work on large-scale BFS falls into three cate-

gories. Single-node projects, either CPU or GPU, generally
sustain the highest throughput per processor but are limited
by storage or compute to relatively modest graph scales.
The largest CPU clusters (tens of thousands of nodes)
have addressed the largest graph scales (� 36), whereas
smaller-sized GPU clusters (thousands of nodes) have not
yet reached that scale. As a gross generalization, CPU
implementations are limited in scalability by computation
(they must add nodes to have more compute resources to
process larger graphs), whereas the GPU ones are limited by
memory size (they must add nodes to have more memory to
store larger graphs). We summarize this work in figure 1.

C. BFS within Single Node
Using GPUs in the same node for BFS yields impressive

per-node performance [5], [9], [11], [12], but because all
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Figure 1: Placing our work (marked [T]) in the context of other large-scale BFS projects. GPU clusters are black circles
and CPU clusters are red crosses. Two symbols mark top single-node CPU [9] and GPU [5] accomplishments. Left: RMAT
scale (graph size) vs. number of processors to process a graph at that scale. Results nearer the bottom right can process
larger graphs with fewer processors. The dashed line represents the weak scaling line corresponding to our scale-processor
count. Annotations mark aggregate GTEPS. Right: Cluster size vs. throughput (edges processed per second) per processor.
Results nearer the top right sustain higher throughput with more processors. Annotations mark maximum RMAT scale.

their communication is within a node and thus faster than
within a cluster, their per-node performance is superior to
cluster-based solutions. However, their graphs must fit into
one node’s memory (GPU or CPU), and this inherently limits
the maximum size of a processed graph.
To break this memory limitation, other researchers have

used a shared memory architecture [9] or high-speed local
storage [13]. The shared memory architecture is essentially
multiple nodes with unified memory space, and it is less
common than distributed memory architectures. Using fast
local storage can help to process huge graphs with limited
hardware resources, but moving large amounts of graph data
limits overall traversal performance.

D. BFS on CPU Clusters

The Graph500 list is mostly CPU cluster implementa-
tions [14]–[16], which use a large number of processors,
typically more than 10k, to reach the reported performance.
These implementations tend to use very specific graph

representations [2], [14], which may not be GPU-friendly,
because their complex memory access patterns bring extra
irregularity and more branching conditions, both of which
reduce achievable parallelism on GPUs. We instead choose
a standard graph representation (CSR). We expect our BFS
implementation will be used as a component of a complex
workflow with many components that use standard formats
for passing data between them. Using non-standard graph
representations requires such a workflow to incur an addi-
tional cost of format conversion, to duplicate graphs, or to
redesign other components, none of which are desirable.
These implementations also generally use 2D partitioning

to distribute the graph across processors. 2D partitioning
may introduce a high communication cost (Section II-B).
As subgraph sizes on each processor increase (to make full

usage of more capable nodes as the number of nodes de-
creases), the data transmitted per node will increase together
with the graph size, but the bisection network bandwidth will
be lower as the network shrinks. Machine-specific network
optimization could help, but this direction may make the
implementation less applicable to other systems.
The recent implementation by Yasui and Fujisawa [9]

shows a significant improvement in per-processor perfor-
mance, using a shared memory system with 128 processors.
In this work, the subgraph size on each processor is con-
siderably larger than previous BFS work on CPU clusters.
With upcoming supercomputers featuring a smaller number
of nodes with more resources per node, using larger sub-
graphs per processor may be more suitable for upcoming
machines.

E. BFS on GPU Clusters

BFS on GPU clusters is a relatively recent topic of
study [1], [17], [18] (citation [1] here refers to TSUBAME
2.0’s number 31 ranking in the June 2017 Graph500 list. The
achieved performance is 462.25 GTEPS with scale 35 using
4096 Tesla GPUs in 1366 nodes. We can’t find published
work that references this particular record.), with some
recent work focusing on a smaller number of GPUs [19]–
[21]. None of this work demonstrates competitive per-node
performance vs. single-node work, and none shows the
combination of scalability and performance per node that
we demonstrate in this work.

III. GRAPH REPRESENTATION

The key to a scalable DOBFS on a GPU cluster is
to (a) maximize the fraction of the graph that can be
stored on one GPU, thus allowing fast computation with no
communication on that portion of the graph, and (b) optimize



the communication between GPUs, which would otherwise
limit scalability, even within a single node [5].

A. Separation of Vertices
Our design to accomplish these goals starts from a simple

but powerful idea that we have pursued in previous work
on CPU clusters [8]: separate the vertices into two sets
by out-degrees, and treat them differently. The separation
point between the two, the threshold out-degree TH , is
an important tuning parameter, and we will show how
it affects the overall performance in upcoming sections.
We call vertices with more than TH direct neighbors the
delegates, and the rest normal vertices.

The intuition behind this design choice is that in local
traversal, vertices at different ends of the degree distribution
should have different load-balancing strategies; and in com-
munication, vertices that almost every GPU touches should
not be treated the same as those needed by very few GPUs.
By separating vertices into different sets, we can pursue
different strategies in graph representation, local traversal,
and communication on those sets, which we describe below.

B. Distribution of Edges
Algorithm 1 Edge Distributor

Let P (v) = mod(v, prank )
Let G(v) = mod(v/prank , pgpu)

1: for each edge (u ! v) do:
2: if u is normal then: to rank P (u), GPU G(u)
3: else if v is normal then: to rank P (v), GPU G(v)
4: else if (OutDegree(u) < OutDegree(v)) then:
5: to rank P (u), GPU G(u)
6: else if (OutDegree(u) > OutDegree(v)) then:
7: to rank P (v), GPU G(v)
8: else: to rank P (min(u, v)), GPU G(min(u, v))
9: end if

10: end for

On scale-free graphs, most storage is devoted to edges,
not vertices. We distribute edges to individual MPI ranks,
and then to individual GPUs within the same rank, using
the distributor described in Algorithm 1. In it, we divide
edges into four categories depending on the type of their
source and destination vertices (normal or delegate). Our
edge distributor has the following advantages:

Simple The location of an edge can be easily computed
from its index locally without table lookup or remote query.

Symmetric Except for normal to normal edges, subgraphs
on individual GPUs are symmetric. Because we make an
edge pair of opposite directions for an undirected edge, they
need to be on the same GPU to preserve the correctness of
DOBFS without a global traversal direction. Otherwise if
the traversal directions of the edge pair are opposite to their
respective directions, both edges will be ignored.

Bounded size The number of possible destination vertices
for non-(normal to normal) edges on each GPU are bounded:
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DV Normal vertex Delegate

nd / dn Edge nn Edge dd Edge

Figure 2: Example of degree separation and edge distribution
for a graph with 3 partitions and degree threshold 5. Top:
the original graph. Bottom: subgraphs after making vertex
7 as delegate 0, and vertex 8 as delegate 1. nd, dn, nn and
dd refer to normal to delegate, delegate to normal, normal
to normal, and delegate to delegate edges, respectively.

the number of normal vertices is at most n/p, and the
number of delegates is at most d. Thus vertex indices for
these edges can be represented as 32-bit numbers locally, and
converted back to 64-bit when necessary for communication.
This allows us to store more of the graph in a fixed-size
memory.

Balanced This distribution prioritizes placement of ver-
tices with lower out-degrees. Neighbor lists of high-degree
vertices are distributed according to the destination vertices,
and scattered across the entire cluster. The number of edges
in the partitioned subgraphs on individual GPUs are very
close to each other, giving each GPU a balanced workload.

Figure 2 illustrates our vertex separation and edge dis-
tribution strategies. Vertices 7 and 8 have out-degree more
than TH , which is 5 in this example, and they are converted
to delegates 0 and 1, respectively. All partitions keep a
copy of the delegates, and all edges involving the dele-
gates are changed to the local copies. After this operation,
only edges between normal vertices require communication
across GPUs; all other edges are between two vertices on
the same GPU. This is the right choice because normal
vertices are the ones with the fewest neighbors and thus the
least communication. Any delegate-related communication
is performed using global reductions (details in section V).

C. Efficient Graph Storage

The bounded-size feature of our edge distributor is critical
for processing huge graphs within limited GPU device
memory, and makes processing larger graphs using the



sub-graph row offsets column indices

nn n/p · 4 |Enn|/p · 8
nd n/p · 4 |End|/p · 4
dn d · 4 |Edn|/p · 4
dd d · 4 |Edd|/p · 4

Total 8n+ 8d · p 4m+ 4|Enn|

Table I: Memory usage for subgraphs in bytes.
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Figure 3: Local computation for one BFS iteration, showing
data dependency and stream allocation.

same number of GPUs possible. When the number of local
normal vertices and the number of delegates are bounded
by n/p, with the exception of destinations of nn edges,
we can use 32-bit values to store local normal vertex and
global delegate ids, instead of 64-bit values. This provides
significant savings on the memory storage footprint of the
graph. As listed in Table I, the total memory usage for all
subgraphs on the GPUs is 8n+8d ·p+4m+4|Enn| bytes. In
practice, when using suitable values of TH (Section VI-B),
while still using CSR format for each sub-graphs, the above
memory usage is only about one third of the conventional
edge list format (16m bytes), and a little more than half of
CSR format (8n+ 8m) without the degree separation.

It is possible to utilize CPU memory and handle graphs
larger than GPU memory, with different techniques [22],
[23]. However, the current latency and bandwidth differences
between GPU memory and the GPU-CPU connection would
impose a high performance penalty. This decision could be
revisited when CORAL is fully equipped with NVLink2,
which doubles CPU-GPU bandwidth, in the near future. In
this paper, we only focus on graphs that fit in GPU memory.

IV. LOCAL COMPUTATION

On each GPU, we now have 4 different subgraphs:
normal to normal (nn), normal to delegate (nd), delegate to
normal (dn) and delegate to delegate (dd). While we could
apply the exact same strategies to each of them, we note
that their different characteristics motivate different load-
balancing strategies for traversal (Section IV-A), different
direction switching conditions for DOBFS (Section IV-B),
and different input from/output to the communication model
(Section V). Because subgraphs can be processed in parallel,
we can achieve some overlap between computation and

communication in our processing pipeline (Fig. 3).
At a high level, we separate local traversal on the four

subgraphs into a delegate stream and a normal stream,
depending on the destination type of the edge, as two
cudaStreams. Each stream begins with a “previsit” kernel,
used to preprocess the inputs. This includes marking level
labels for input vertices, filtering out duplicates and zero-
out-degree vertices, forming the queues of vertices to be
visited by the visit kernels, and calculating the would-
be workload for these kernels, which is important for the
direction decisions in DO. Then each stream spawns a “visit”
kernel for the two edge types in the stream. The two streams
run independently of each other, except when dependencies
are established explicitly (Fig. 3).

A. Forward Traversal

The visited status of delegates are maintained by bitmasks,
with each delegate only occupying 1 bit. This is an effective
way to store and communicate the status of high out-degree
vertices. We use advanced load balancing techniques for
the visiting kernels: the delegate to delegate visit kernel
uses merge-based workload partitioning [24], because the dd
subgraph covers a wide range of degree distribution, and has
large average out-degrees; the other visit kernels use thread-
warp-block dynamic workload mapping [25], based on the
fact that the out-degree range of dn, nd, and nn subgraphs
are all limited, and the average out-degrees are low.

B. Directional Optimization

Not all subgraphs benefit from directional optimization.
We do not use DO for normal ! normal visits, because the
nn subgraph on each GPU is not symmetric, the range of
destination vertices of nn edges are unbounded, and most
importantly, DO is not efficient for the very low in-degree
nn subgraphs. Without separating the graph, skipping the nn
portion from using DO is impossible.

On each GPU, we keep a source list of the normal-to-
delegate subgraph, i.e., all the normal vertices that have
edges pointing to delegates. These are exactly the potential
destination vertices in the reverse subgraph, i.e., the delegate
to normal subgraph. When running in the backward-pull
direction for a delegate to normal visit, we use the normal-
to-delegate subgraph, and start from its source list. For the
same purpose, we keep source masks for the dd and dn
subgraphs. Keeping source lists and masks avoids vertices
that may not find local parents, and provides more accurate
workload prediction.

The traversal direction is decided based on a workload
comparison, computed in each iteration, between the forward
and the backward directions. The forward workload FV is
calculated by the previsit kernels as the sum of neighbor list
lengths from the source vertices to be visited. The backward
workload BV is calculated using the estimated number of



parents to check until finding the first visited one. Let:

U = unvisited sources in the reversed graph;
q = input frontier length;
s = number of unvisited sources in the forward graph;
a = probability that a potential parent is newly visited;
= q/(q + s);

od(u) = out degree of u;

Then: BV =
X

u2U

((1� a)od(u) +

od(u)�1X

i=0

a(1� a)i)

=
X

u2U

1� (1� a)od(u)

a
⇡ |U |/a

assuming od(u) is large, & a not too small
= |U |(q + s)/q

Starting from the forward-push direction, with two
direction-switching factors factor0 and factor1 , the visiting
direction is decided as:

if current direction is forward, and FV > factor0 · BV
then switch to backward;

if current direction is backward, and FV < factor1 ·BV
then switch to forward;

otherwise keep current direction.
No matter which direction a visiting kernel takes, it only
affects the kernel itself, and the input and the output are the
same. The three visiting kernels with DO have three sets of
direction-switching factors. This allows the kernels to switch
for their own optimized conditions.

Our strategy for DOBFS results in a smaller workload
than a 2D partitioning strategy. In our strategy, for normal
vertices, only one GPU must do the reverse visiting for
each individual normal vertices. Only the delegates may
need to have more than one GPUs visiting their parents,
and moreover, the delegates are only a small portion of
all vertices. Let m

0 be the number of edges the DOBFS
algorithm would need to visit if the graph was traversed
by a single processor. Then the workload of our DOBFS
implementation would be bounded by m

0 + dp · b, where b

is the average number of parents a delegate must search on
each GPU before finding a visited one. While keeping d in
the order of O(n/p), the term dp · b is scalable even when
p is large, because it is in the order of O(nb) and b is not
a large number—only delegates with very large out-degrees
are distributed across a large number of nodes, and delegates
with large out-degrees tend to be close to portions of the
graph with high connectivity, which reduces the number of
neighbors to try before finding a visited one.

V. COMMUNICATION

Because local computation performance is increasing
more quickly than interconnect bandwidth, designing for
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scalable communication is more important for graph pro-
cessing than ever before. Our scalable communication model
(shown in Fig. 4) adopts different strategies for delegates and
normal vertices.

A. Communication for Delegates

The visited status of delegates may be updated by any
GPU, or consumed by any GPU. We thus use a global
reduction to gather and distribute the delegate mask updates
whenever any update occurs in a iteration. The reduction is
done in two phases: locally across peer GPUs, and globally
across different MPI ranks. During the local phase, all
GPUs in the same MPI rank push their updated masks to
GPU0, and GPU0 performs the reduction in parallel. During
the global phase, only GPU0 (more accurately, the CPU
thread that controls GPU0) participates, and all GPUs in
the same MPI rank consume the resulted masks for the next
iteration. We utilize fast GPU-GPU data channels and the
GPU’s parallel computing capability for the local phase, and
efficient MPI (I)AllReduce calls for the global phase.

The cost of this delegate communication is small. For each
iteration that has updates to the delegate masks, the commu-
nication volume is 2dpranks/8 bytes, and the communication
time is d log pranks/4 · g, assuming the global reduction is
done in a tree-like manner. The delegate reduction might
run on every iteration, which gives the total communication
cost as d log prank/4 · gS. However, for graphs with more
concentrated cores, the delegate updates will finish faster
than normal vertices, which reduces the number of iterations
that require delegate communication. In practice, we keep d

(the number of delegates) low, so that the size of delegate
masks, d/8, is under the limit of several tens of MBs.

B. Communication for Normal Vertices

The basic communication model for normal vertices is
point-to-point transmission via MPI Isend and MPI Irecv.
We use a non-blocking version to keep the pipeline running
and take advantage of possible workload overlaps. The total
communication volume is 4|Enn| bytes, assuming each nn
edge is a cutting edge (i.e., a edge with end points on two
different GPUs). The communication time is 4|Enn|/p · g.
Note that only the outputs from nn edge visits may result
in direct remote normal vertex updates: the results from dd
and nd edge visits are communicated via global delegate
mask reduction, and the updates from dn visits are always



local, as a result of our edge distributor (Algorithm 1). When
setting TH , the degree threshold, to an optimal value, the nn
edges are only a small portion of the graph, and the resulting
normal communication is a lot less than m.
The normal vertex exchange requires some extra local

computation, such as binning (group vertices need to be sent
to the same GPU together) and vertex number conversion
(from the 64-bit global ids used in nn edge destinations
to 32-bit local ids at destination GPUs). These computa-
tions are done on GPUs. The workload is in the order of
O(|Enn|/p) on each GPU for all iterations combined. This
is a small cost compared to the traversal workload, and does
not affect the scalability of our BFS implementation.
We also tried two optimizations to reduce communication

cost. The first one is called Local All2all: prior to the remote
vertex exchange, we first run a local exchange to gather
vertices going to GPUxs in all MPI ranks on the local GPUx.
As a result, normal vertex exchanges only occur among
GPU0s, among GPU1s, etc., but never between GPU0s and
GPU1s, etc. This reduces the number of communication
pairs from p

2 to p
2
/pgpu, each of which has more vertices

to send. In turn, this allows a second optimization, uniquifi-
cation, which removes duplicated vertices going to the same
GPU. However, because relatively few individual destination
vertices of nn edges are on a given GPU or node, with
the expected value capped by TH /prank, the chance to find
duplications is small, and may not be sufficient to overcome
the extra computation. We show our findings in the next
section.
Combining the communication for delegates and nor-

mal vertices together, we have a model that has at most
dpranks/4 ·S+4|Enn| bytes total volume and (d log pranks/4 ·
S + 4|Enn|/p)g communication cost. For graphs that have
a small number of vertices covering a large portion of
edges, the number of iterations S0 that need delegate masks
exchange, is less than S; for the graphs we tested, S0 is
about half of S. With suitable values of TH (Section VI-B),
we saw delegate mask reduction and normal vertex ex-
change taking roughly the same amount of time. Under
these conditions, we approximate our communication cost
as d log prank/4 · Sg. We also keep d on the same scale as
n/p, more accurately, under the value of 4n/p in practice.
As a result, the communication cost is n log prank/p · Sg. It
starts from n ·Sg on single node, and grows on the order of
log prank when n and m increase at the same rate as p (weak
scaling). This growth is slow, and more scalable than the pp

growth order of conventional 2D partitioning methods. Thus,
we argue that our communication model is more scalable.

VI. RESULTS

A. Testing Environment
1) Hardware: Our implementation targets an early access

system (Ray) of LLNL’s upcoming CORAL/Sierra super-
computer. The current system has more than 40 compute

nodes; each features two 10-core IBM Power8+ CPUs at
2.06 GHz with 256 GB CPU memory. Each CPU has two
NVIDIA Tesla P100 GPUs; the two GPUs and the CPU
are connected by high-speed NVLink [26] with 40 GB/s
bandwidth in each direction. Each socket has a Enhanced
Data Rate (EDR) 100 Gbps InfiniBand connection to a
network with FatTree topology.
Because the interconnection speed is higher than a con-

ventional cluster, and because GPUs achieve their best
performance only when fully occupied by a sufficient work-
load, we first test how the network performs with different
message sizes. In an experiment, we use 32 nodes, each with
one MPI rank, and 4 CPU threads, and each thread sending
MB-sized data to all threads on other nodes, to simulate
a scenario where each of the 128 GPUs sends out data to
the 124 GPUs on other nodes. After sweeping through the
message size from 128 kB to 16 MB, we found that the
optimal message size is about 4 MB for data larger than
2 MB. While this is much larger than normal MPI usage, it
is the best fit for the GPUs. With smaller data (under 2 MB),
the network appears to do a better job with caching, and the
differences between message sizes are not that significant.
2) Software: The cluster runs on 64-bit Linux with GPU

driver version 384.59. The compilation toolchain includes
gcc 4.9.3, cuda 9.0.167, and spectrum-mpi 2017.08.24 with
OpenMP support. nvcc options are -O3 –std=c++11 –expt-
extended-lambda. The GPU target is set to the hardware’s
SM version (i.e., 6.0 for P100 GPUs).
At the time of our experiments, we faced the following cur-

rent limitations with Ray. Many of these will be addressed
in the full system or with system software updates.

• Network Interface Controller (NIC)-GPU Remote Di-
rect Memory Access (RDMA) was not planned for Ray;
instead all NIC-GPU traffic goes through CPU memory.

• Asynchronous GPU memory copy was not supported
by the MPI implementation; as a workaround, our
implementation copies data from GPU memory to CPU
memory with appropriate cudaMemcpyAsync calls, then
issues MPI calls from the CPU memory, and copies the
data from CPU to GPU on the receiving end.

• Random delays of ⇠100 ms were observed when
consuming data on CPU right after receiving them from
unblocking MPI calls; as a result, we only use the CPUs
for GPU workload scheduling and data movement
controls in our experiments.

• Degraded data movement performance between CPUs
and GPUs were observed on some nodes; all but one
experiments only use up to 124 GPUs on 31 selected
nodes to avoid this issue; the experiment with the WDC
2012 graph includes 3 GPUs affected by this issue, out
of 160 GPUs on 40 nodes.

3) Reporting: We use RMAT graphs for testing our BFS
implementation. The RMAT graph generator is a distributed
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Figure 5: Distribution of different kinds of edges and dele-
gates, as a function of degree threshold, for a scale-30 RMAT
graph.

GPU implementation conforming to the Graph500 specifica-
tions [1]. The edge factor is 16, and the RMAT parameters
are A,B,C,D = 0.57, 0.19, 0.19, 0.05. For a given RMAT
graph at scale N , the number of vertices n is 2N ; the
number of edges m, after making the graph undirected by
edge doubling, is 2N ·32. However, following the Graph500
specification [1], we only use m/2 = 2N ·16 to calculate the
edge traversal rate. Vertex numbers are randomized using a
deterministic hashing function after edge generation.
Our implementation outputs the hop-distances from the

source vertex, instead of the BFS tree required by Graph500.
The cost of building such a tree should be low in our imple-
mentation: only the destination vertices of nn edges, without
possible delegate parents, would need to communicate their
parent information at the end of BFS; vertices visited by dd,
dn, and nd kernels can get the parent information locally,
with almost no extra cost to the local computation.
For each reported data point, we executed 140 BFS

runs with randomly generated sources; only the ones that
executed for more than 1 iteration are considered. We report
the geometric mean of edge traversal rates (in the unit of
Giga Traversal Edges Per Second, GTEPS) or elapsed times
(in the unit of milliseconds, ms).
We use number of nodes ⇥ number of MPI ranks per node

⇥ number of GPUs per MPI rank to denote the hardware for
our experiments and for prior work. For example, 4⇥ 1⇥ 2
means 4 nodes with 1 MPI rank per node, and 2 GPUs per
MPI rank, 8 GPUs in total.

B. Parameter Settings

Our implementation has several parameters and options
that can be used to tune performance. The single most im-
portant parameter is the degree threshold TH . By changing
TH , we are balancing the percentages of delegates and nn
edges. Generally we want d to be on the same order as the
number of local vertices n/p; in our experiment, we keep d

under 4n/p. It would also be desirable to keep the nn edge
percentage under 10%. Figure 5 shows how TH changes the
distributions of vertices and edges on the scale-30 RMAT
graph. Any TH in the range of [16, 512] will satisfy our
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Figure 6: Traversal rates vs. degree threshold, for a scale-30
RMAT graph with 4⇥ 1⇥ 4 GPUs.
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Figure 7: Suggested degree thresholds for different RMAT
scales, with the resulting delegate and nn edges percentages.
The 4/2N�26 line is the percentage of 4n/p vertices when
using scale 26 RMAT graph per GPU.

goal. We sweep this range to see the resulted performance,
as shown in Figure 6. The actual range that gives the best
performance for both BFS and DOBFS is quite wide, from
45 to 90; we use 64 in our experiments.
With a similar experiment, we suggest degree thresholds

for a wide range of graph scales (Fig. 7). The optimal TH
increases at the rate of about

p
2 per scale. For scales up

to 33, the delegate percentage is well below the 4n/p line;
at scale 33, the delegate percentage is 1.75%, and the 4n/p
line is at 3.23%. The nn edge percentages increases slightly,
to 6.3% at scale 33, which is still a small and acceptable
percentage. For larger scales that may lead to insufficient
GPU memory caused by a large number of delegates or nn
edges, the following options may be considered: 1) increase
TH to decrease the number of delegates, as a range of
values yield similar performance; 2) increase p to reduce the
memory usage per GPU, as there is no limitation on how
many GPUs can be used, provided that the GPU memory is
sufficient. With these two options, we believe our method
could continue to scale on larger GPU clusters.
We can tune our implementation with several options:

directional optimization (DO), local all2all (L), uniquify (U),
blocking global mask reduction (BR) using MPI Allreduce
or unblocking reduction (IR) using MPI Iallreduce, and
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Figure 8: Effect of different options on performance. DO
stands for directional optimization; L for local-all2all; U
for uniquify; IR for unblocking delegate mask reduction;
and BR for blocking reduction. The graph is RMAT scale
32 with degree threshold 128, with a 16 ⇥ 2 ⇥ 2 hardware
configuration on the left and 16⇥ 1⇥ 4 on the right.

hardware configuration (e.g., a ⇤ ⇥ 2 ⇥ 2 or ⇤ ⇥ 1 ⇥ 4
setup). Figure 8 shows how different options affect the
timings of different parts of the BFS runtime. DO cuts
the computation time by a factor of three, even when the
workload is distributed on 64 GPUs. L and U add a small
amount of time to local data exchange, but do not have a
significant impact on the global communication time, mainly
because the degree threshold TH is so low that we see few
duplications in the normal vertex exchange. BR significantly
reduces the communication time in this example, although
the actual volumes of communication are the same. This
may be a consequence of an unoptimized implementation of
MPI Iallreduce, a newly available feature on this machine.
When running on fewer than 8 nodes, the communication
time of IR is less than that of BR. We hope the same
applies to a larger number of nodes so that the advantage of
workload overlapping can be fully explored. The sum of all
parts in one column is more than the elapsed time of BFS,
because different parts may overlap. For example, visiting
from the delegates can start once the delegate masks are
received without waiting for the normal vertices. For this
particular experiment, the overlaps reduce the running time
by about 10% on average when compared to the sum of all
parts.
For each of the three subgraphs that apply DO, our im-

plementation has two direction-switching factors that decide
when to change the traversal direction. For RMAT, once the
traversal switches to the backward direction, it does not need
to change back; as a result, we only have three factors to
decide. After scanning these factors from 10�8 to 10 for the
best performance, we found out that all three factors have a
wide range of near-optimal values; in fact, the same range
(0.5, 0.05, 1⇥10�7) for dd, dn, and nd subgraphs applies to
almost all configurations that follow the weak scaling curve
and the suggested TH values. From our experience, these
selections are similar for the same type of graphs.
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Figure 9: Weak scaling with a scale-26 RMAT graph per
GPU
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Figure 10: Runtime breakdown for ⇤⇥2⇥2 setup along the
weak scaling curve. DOBFS is on the left, and BFS on the
right; scales 28 to 30 use unblocking global delegate mask
reductions and merge communication time for masks and
normal vertices; scale 31 to 33 use blocking global delegate
mask reduction. Because of overlap, the sum of different
parts in a column is not equal to the BFS running time.

C. Overall Results and Comparisons

Figure 9 shows overall weak scaling curves, with ⇠scale-
26 RMAT graphs on each GPU up to 124 GPUs. In this
range it is mostly linear, peaking at 259.8 GTEPS for RMAT
scale 33 on 124 GPUs. From 16 GPUs to 32 GPUs, we
switch from MPI Iallreduce to MPI Allreduce, as discussed
earlier in this section, which introduces performance in-
creases higher than the average.
Figure 10 shows detailed timing for DOBFS and BFS

at different scales. Local visiting time grows slowly, only
4⇥ over 7 scales for DOBFS as the graph size and the
number of GPUs increase to 124⇥. The BFS computation
time increases to 3⇥ for the same range. This shows the
computation is scaling as expected. The communication
grows slightly faster than the computation, especially from
scale 32 to 33. This may be caused by the increases in
number of delegates and nn edges, as shown previously in
Figure 5 and Section VI-B, or it may be traffic conditions
in the network, as about 70% of the nodes in the cluster are
actively transmitting large amounts of data. Because our im-
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Figure 11: Strong scaling with a scale-30 RMAT graph.

plementation overlaps communication and computation, we
mitigate the effects of this increase in communication cost.
Both computation and communication appear to successfully
scale throughout this range of RMAT sizes.
Figure 11 shows strong scaling curves using the scale-30

RMAT graph. Because of our efficient graph representation,
we can fit the 34 billion edge graph onto 12 GPUs, at about
2.9 billion edges per GPU. The performance of DOBFS
increases 29% when using 24 GPUs instead of 12, and the
strong scaling curve stays almost flat after 24 GPUs. When
using more GPUs, the timing improvement in computation
is about the same as the increase in communication, caused
by delegate masks reduction across more nodes and more
cutting nn edges. On more than 48 GPUs, the communi-
cation time is dominant and the GPUs are under-utilized,
thus the performance starts to drop. BFS yields better strong
scalings than DOBFS, primarily because of its comparably
larger computation workload.
We compare our results with previous efforts in Ta-

ble II. When compared against single-node multi-GPU Gun-
rock [5], this work is a little slower when using the same
graphs, which may be the effect of more optimizations
in Gunrock’s traversal kernels. As we add more GPUs in
this work, we see the gap in performance is narrowing,
which indicates better scalability; and the memory size
improvements we made in this paper allows us to process
larger graphs on one node, up to scale 28 on 4 GPUs, than
any other GPU-based previous work.
Compared to Bernaschi et al. [18], our work achieves

about 31% of their performance with only 3% the number of
GPUs. Although the GPUs they used are not as new as ours,
the 10⇥ per-GPU performance shows our efficient compu-
tation and communication. Compared to Krajecki, Loiseau,
Alin, and Jaillet [20], we achieve 4⇥ the performance using
only one eighth the number of GPUs.
The flagship shared-memory CPU implementation by

Yasui and Katsuki [9] uses a similar number of processors;
we obtained 1.49⇥ the performance of their work, which we
believe is partially because of the performance advantages of
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Figure 12: Distribution of different kinds of edges and
delegates, as a function of degree threshold, for the friendster
graph.
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Figure 13: Traversal rates vs. degree threshold, for the
friendster graph with 1⇥ 2⇥ 2 GPUs.

the GPU. We also demonstrate slightly better performance
than Buluç et al. [16] despite their 8.4⇥ more processors.

D. General Graphs and Applications
We are also interested in graphs more general than RMAT,

and use the Friendster graph [27] to test our implementation.
We prepare this graph by randomizing the vertex numbers
and make the graph symmetric by edge doubling. The
resulting graph has 134 million vertices, about half of which
are isolated ones, and 5.17 billion edges. Figure 12 shows
how the distribution of different kinds of edges and vertices
change with regard to various degree thresholds TH , and
Fig. 13 shows the resulting performance. Similar to RMAT,
the friendster social network has a wide range of suitable
TH values, in [16, 128]. There is also a wide range [32, 91]
of TH values that gives close to the best performance.
We also analyze the Web Data Common (WDC) 2012

hyperlink graph [28], but reduce the hyper edges into single
ones. Vertex-randomization and edge-doubling give a graph
with 4.29 billion vertices, 402 million of which are zero-
degree ones, and 224 billion edges. Using 160 GPUs in a
40⇥ 2⇥ 2 setup, our implementation achieves 84.2 GTEPS
and 79.7 GTEPS, for BFS and DOBFS respectively, both
using degree threshold 256. The BFS searches have about
330 iterations at average, and experience long-tail behavior.
The averaged per-iteration time of 8 µS is not much more
than the per-iteration overhead of a few µS. In this situation,
the additional workload for direction decisions in DOBFS
is more than the workload saving in traversal. As a result,



scale ref. ref. hw. ref. comm. ref. perf. our hw. our perf.

{24, 25, 26} Pan [5] 1⇥1⇥{1, 2, 4} Tesla P100 single node {31.6, 42.9, 46.1} 1⇥1⇥{1, 2, 4} Tesla P100 {22.9, 32.5, 39.8}
33 Bernaschi [18] 4096⇥1⇥1 Tesla K20X Dragonfly 100Gbps 828.39 31⇥2⇥2 Tesla P100 259.8
29 Krajecki [20] 64⇥1⇥1 Tesla K20Xm FatTree 10Gbps 13.7 2⇥1⇥4 Tesla P100 53.13
33 Yasui [9] 128⇥10⇥1/10 Xeon E5-4650 v2 shared memory 174.7 31⇥2⇥2 Tesla P100 259.8
33 Buluc [16] 1204⇥1⇥1 Xeon E5-2695 v2 Dragonfly 64Gbps ⇠240 31⇥2⇥2 Tesla P100 259.8

Table II: Comparison with previous works.

the DOBFS performance is slightly less than BFS.
For algorithms more general than BFS, in most cases,

the local computation is at least in the order of O(m),
much larger than that of DOBFS. They also introduce larger
communication volumes: BFS only needs 1 bit for the
visited status of delegates, and 32 bits for newly visited
normal vertices of cutting nn edges across GPUs. Other
graph algorithms require more bits of state for delegates—
for example, ranking scores for PageRank—and associative
values for normal vertices in additional to the vertex numbers
themselves. For large scale-free graphs, the increases in
computation and communication are roughly in the same
order, and our computation and communication models
should still be scalable. For graph processing that yields
insufficient local workloads over many iterations, either
caused by the graph topologies or the algorithms, we argue
that they may not be suitable for Bulk Synchronous Parallel
(BSP) frameworks on systems with fat nodes: the GPUs
will be underutilized, and the per-iteration overhead may
well make such implementations unscalable. Asynchronous
graph frameworks, such as HavoqGT [29] and Groute [12],
may be more suitable for such workloads.

VII. CONCLUSIONS

Base on the idea of separating vertices by out-degrees, we
implemented a scalable BFS, consisting of an efficient graph
representation, scalable and fast local computation kernels,
and a scalable communication model. With 124 P100 GPUs
on the CORAL EA system, we achieved 259.8 GTEPS
on the scale 33 RMAT graph. The close-to-linear weak
scaling indicates that our work successfully targets modern
GPU clusters, which feature fewer nodes and more local
computing power than previous systems.
We believe our work provides a better alternative to con-

ventional 2D partitioning methods for scaling DOBFS, and
is better aligned with the latest trend of supercomputers and
large systems. Further exploration using even more GPUs
in the range of thousands, when they are available, could
bring us more insight into and solutions for the scalability
problem.
Future work includes investigating graph applications be-

yond BFS. These applications need more local computation
than just neighborhood queries, more communication than
just 1-bit visited status, and more attributes on vertices
and edges than a single label. While most techniques and
optimizations for BFS should still be applicable, we hope to

see further work in the components of graph representation,
local computation, and remote communication, under more
complex application scenarios.

ACKNOWLEDGMENTS

This work was performed, in part, under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-742180). Experiments were performed at the
Livermore Computing facility. We appreciate the support of
NSF grants CCF-1629657 and OAC-1740333, the Defense
Advanced Research Projects Agency (DARPA), and an
Adobe Data Science Research Award.
We intend to open source our code from this work. Please

contact rpearce@llnl.gov for the latest updates.

REFERENCES

[1] “The June 2017 Graph500 list,” https://graph500.org/?page
id=254, Jun. 2017.
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