GraphMatch: Efficient Large-Scale Graph Construction
for Structure from Motion

Qiaodong Cui! Victor Fragoso®

"University of California,
Santa Barbara

{qiaodong@umail, psen@ece} .ucsb.edu

Abstract

We present GraphMatch, an approximate yet efficient
method for building the matching graph for large-scale
structure-from-motion (SfM) pipelines. Unlike modern SfM
pipelines that use vocabulary (Voc.) trees to quickly build
the matching graph and avoid a costly brute-force search of
matching image pairs, GraphMatch does not require an ex-
pensive offline pre-processing phase to construct a Voc. tree.
Instead, GraphMatch leverages two priors that can predict
which image pairs are likely to match, thereby making the
matching process for SfM much more efficient. The first is
a score computed from the distance between the Fisher vec-
tors of any two images. The second prior is based on the
graph distance between vertices in the underlying matching
graph. GraphMatch combines these two priors into an iter-
ative “sample-and-propagate” scheme similar to the Patch-
Match algorithm. Its sampling stage uses Fisher similarity
priors to guide the search for matching image pairs, while
its propagation stage explores neighbors of matched pairs
to find new ones with a high image similarity score. Our ex-
periments show that GraphMatch finds the most image pairs
as compared to competing, approximate methods while at
the same time being the most efficient.

1. Introduction

Recently, structure-from-motion (SfM) algorithms have
achieved impressive reconstructions from large photo col-
lections [3, 15, 18, 38, 40]. These exciting results are possi-
ble thanks to recent improvements in bundle adjustment [2],
motion/camera parameter estimation [6, 7, 11, 13, 14, 16,

,21,22,26,27,32, 44, 46], and feature matching [8, 28].

All modern large-scale SfM pipelines [, 27, 38] re-
quire the building of a matching graph in order to re-
construct a scene from a large photo collection. In this
graph, images are nodes and edges represent matching im-
age pairs that share visual content that could be used for 3D-

Published at IEEE 3DV 2017

2West Virginia University

victor.fragoso@mail.wvu.edu

Chris Sweeney? Pradeep Sen'

3University of Washington

csweeney@cs.washington.edu

reconstruction. Despite the aforementioned advancements,
however, the problem of finding high-quality, matching im-
age pairs to form the matching graph remains a major bot-
tleneck for large-scale SfM pipelines. The reason for this is
that the vast amount (75 - 95%) of image pairs do not match
in most photo collections [47].

An effective, but prohibitively expensive, approach
to filter non-matching image pairs is the brute force
method: an exhaustive test of all possible O(N?) image
pairs. To accelerate the search for suitable image pairs
to match, several state-of-the-art large-scale SfM pipelines
use image-retrieval techniques [9, 30, 31], assuming that
image pairs with high visual similarity scores are likely
to match. Among the adopted image retrieval techniques,
the most implemented in publicly available large-scale StM
pipelines [, 27, 38] is Vocabulary (Voc.) Trees [30].

Although Voc. Trees help SfM pipelines find suitable im-
age pairs to match more quickly, constructing a Voc. Tree
is computationally expensive (due to the computation of a
tree encoding visual words and the image index) and can
demand a large memory footprint [36, 42]. Specifically,
creating the Voc. Tree requires an expensive clustering pass
(e.g., k-means [23]) on a large set or subset of local image
features (e.g., SIFT [25]) for every node in the tree. For
this reason, SfM pipelines construct this tree in an indepen-
dent process before executing the reconstruction pipeline.
In addition, creating an image index requires passing each
of the local features of every image in a dataset through the
vocabulary tree, which is also computationally expensive.
Another disadvantage of Voc. trees is that SfM pipelines
have to load the image index in memory to find suitable
image pairs to match in a large photo collection. In this sce-
nario, substantial memory footprints are necessary since the
image index is large as well. SfM pipelines can reduce the
memory footprint by creating a coarse Voc. tree. However, a
coarse Voc. tree typically decreases matching performance.

Since Voc. Trees were devised for image-retrieval appli-

]
+ Tree

|

Matching |_ - Matching
Vocabulary e Graph | Query Graph
Image Index |—p y i
Tree Computer Computer Im\z;gi I\‘fl'raetec:er [Expansion) Reconstruction
. I |
i ===
mage Database . Photo collection SfM Pipeline
(@) Voc. Trees + Query Expansion
Matching Matching
Encoder Image Matcher Graph Query Graph
GMM Fisher Vector > Expansion »|Reconstruction
@ ' - - - -
| *
(b) GraphMatch Photo collection SfM Pipeline

Figure 1. (a) Modern, state-of-the-art SfM pipelines, such as the Building-Rome-in-a-Day (BRIAD) pipeline [!], accelerate the search
for potential image pairs using Vocabulary (Voc.) Trees. However, this requires an expensive offline stage that clusters a large database
of image features to construct the Voc. Tree, and also has to build an index of the images which consume a large amount of memory.
Furthermore, finding potential image matching pairs with Voc. Trees can produce a non-dense matching graph that can affect reconstruction
quality. To reduce this effect, pipelines such as BRIAD use a query-expansion step, which uses the current matching graph to identify new
potential pairs. (b) On the other hand, our proposed GraphMatch approach does not use Voc. Trees, and hence eliminates this expensive
offline stage. Instead, GraphMatch uses Fisher distances [33, 35] to measure image similarity, since we find that they are better priors
for finding matching pairs than Voc. trees similarity scores. GraphMatch then follows an iterative “sample-and-propagate” scheme, where
the sampling process finds suitable image pairs to match and the propagation step uses the current state of the matching graph and image

similarities to discover new matching pairs.

cations and not for SfM, they only find a fraction of the
potentially matching pairs (see Sec. 5), which decreases
reconstruction quality. To increase the number of poten-
tially matching image pairs computed by the Voc. trees,
some SfM pipelines such as the Building-Rome-in-a-Day
(BRIAD) pipeline [1] execute a query-expansion step after
building an initial matching graph (see Fig. 1a). This idea,
drawn from work on text/document retrieval [10], is based
on the observation that if images ¢ and j are matched, and
image j is also matched with image &, then potentially im-
age ¢ could be matched with k.

In BRIAD, potentially-matching image pairs are found
by applying query expansion a repeated number of times.
This approach has a fundamental problem, however, in that
repeated query expansions lead to drift [1], where the con-
text of the images found rapidly diverge from that of the
initial image, especially as it starts examining the neigh-
bors of the neighbors, and so on. Although the geometric
verification step in the matching process ensures that these
pairs are not admitted into the graph as edges, it greatly re-
duces the efficiency of the overall matching process because
it tests more pairs unlikely to share edges. In other words,
in approaches like BRIAD, the more it performs query ex-
pansion, the less efficient the algorithm becomes.

To combat these problems, in this work we present a new
algorithm called GraphMatch (see Fig. 1b), an efficient, ap-
proximate matching algorithm that significantly accelerates
the search for image pairs in SfM pipelines. GraphMatch is
inspired by the PatchMatch algorithm [4], which has been
used successfully for accelerating the search for patch-wise
correspondences between two images. Compared to algo-

rithms such as BRIAD, GraphMatch has two key differ-
ences which greatly improve its performance.

First, GraphMatch does not use Voc. trees, so it does not
require an offline expensive stage to construct them or the
image index. Instead, we use a score computed from the
distance between Fisher vectors [33, 35] of any two im-
ages. Our experiments demonstrate that Fisher vector dis-
tances are faster to compute and more indicative of a possi-
ble match than Voc. Tree similarity scores, or those of other
descriptors such as VLAD [20] or GIST [31].

Second, we use an alternative approach to the query ex-
pansion step that is based on the PatchMatch algorithm [4].
This alternative approach maximizes the fraction of match-
ing pairs and ensures high-quality reconstruction. Patch-
Match makes a similar observation to that of query expan-
sion: if patch ¢ in one image and patch j in another are
matched, then the neighboring patches of patch j are likely
to be matches for patch ¢. This information is used by
PatchMatch in an iterative “sample-and-propagate” scheme
to efficiently compute the correspondence fields between
patches of two images. First, the correspondences of each
patch are initialized to point to random patches in the sam-
pling step. Then in the propagation step, the valid corre-
spondences found in the previous step are propagated to
their neighbors. This algorithm iterates until the full, ap-
proximate correspondence field has been found.

GraphMatch implements a similar iterative “sample-
and-propagate” algorithm which builds the matching graph
incrementally. However, rather than doing random sam-
pling as in PatchMatch, the sampling stage of GraphMatch
uses Fisher scores to search for matching image pairs more

effectively. The propagation stage then uses the current
graph of matched image pairs to explore the neighbors of
images belonging to geometrically verified image pairs.
Unlike the query expansion in BRIAD which is only exe-
cuted after the graph has been constructed and therefore suf-
fers from drift, GraphMatch alternates sampling and propa-
gation in an iterative fashion to find suitable image pairs.

The “sample-and-propagate” scheme of GraphMatch
provides an excellent balance between matching images
with similar visual appearance (the sample stage) while also
taking advantage of local connectivity cues (the propagate
stage). As a result, GraphMatch is able to efficiently deter-
mine which image pairs are likely to produce a good match,
avoiding unnecessary overhead in attempting to match im-
age pairs which are unlikely to match.

2. Previous Work

Determining correspondence between pairs of images is
a critical first key step in recovering scene geometry through
StM. Typical SfM pipelines first detect point features such
as SIFT [24] features, then perform feature matching be-
tween SIFT descriptors in pairs of images to estimate their
epipolar geometry. Pairs of images which produce a suffi-
cient number of feature correspondences that pass an addi-
tional geometric verification step are then used during SfM
to generate feature tracks. Given an input dataset of N
images that we wish to reconstruct, brute-force matching
approach exhaustively tests all possible image pairs lead-
ing to an O(NN?) algorithm. However, most image pairs do
not lead to successful matches. Large-scale SfM pipelines
can gain efficiency by leveraging information that helps the
pipeline identify image pairs that are more likely to match
and filter image pairs that are unlikely to match. Wu [47]
measures this likelihood by matching only a subset of fea-
tures, observing that an image pair is likely to match when
these subset-features produce a sufficient number of image
correspondences. While this strategy provides a significant
increase in efficiency, it can yield to disconnected recon-
structions [47] and is still requires testing every image pair.

To mitigate the cost of exhaustive matching approaches,
image retrieval techniques have been employed to effi-
ciently determine a set of candidate image pairs for fea-
ture matching based on image similarity. Vocabulary (Voc.)
trees [30] are frequently used to efficiently match datasets.
A vocabulary is learned (typically from clustering image
features), and the visual words are organized into a tree that
may be efficiently searched. Term Frequency Inverse Docu-
ment Frequency (TF-IDF) is used to determine the similar-
ity of images using inverted files [30]. Voc. Trees are highly
scalable due to efficient search of the tree structure. Ad-
ditional image retrieval works have used a learning-based
approach to predict which images contain visual overlap.
Schonberger er al. [37] uses a machine-learning-based ap-

proach dubbed PAIGE to predict which images contain vi-
sual overlap. PAIGE trains a random forest (RF) [19] using
image-pair features to predict the pairs with scene overlap.

Image retrieval techniques offer efficient performance
but typically are optimized based on precision and recall,
not for the final SfM reconstruction quality. As such, these
methods are suboptimal for use with SfM. Shen et al. [39]
proposed a graph-based approach for SfM image matching
where image pairs to match are chosen based on a combina-
tion of appearance similarity and local match graph connec-
tivity. After an initial minimum spanning tree of matches
is built, the minimum spanning tree is expanded to form
strongly consistent loops (determined from pairwise geom-
etry between images in the loops) in the match graph. Fi-
nally, community detection is used to densify the match-
ing graph efficiently given the match graph structure after
strongly consistent loops are added.

Our approach, GraphMatch, is of similar spirit to the
method of Shen ef al. because it also considers visual sim-
ilarity and match graph connectivity priors. Shen’s algo-
rithm, however, aims to find the fewest number of matches
possible that provide a strong loop consistency in the under-
lying matching graph while still yielding high quality recon-
structions. Thus, they attempt to find a minimal stable set of
edges that yield high quality reconstructions. GraphMatch,
on the other hand, aims to accelerate the search for valid
matches to be as efficient as possible (by minimizing the
number of “bad” image pairs tested) so that as many good
matches may be found as efficiently as possible. By find-
ing as many valid matches as possible, GraphMatch is able
to avoid disconnected reconstructions that plague alterna-
tive methods due to weak or missing connectivity [47] and
recover more cameras in the resulting SfM reconstruction
(c.f. Fig. 6). Indeed, our algorithm typically is able to re-
cover 80-90% of the total good matches found by the base-
line in just a fraction of the time. Further, GraphMatch uses
simple-yet-effective priors that yield an easy-to-implement
and efficient algorithm.

3. Finding Image Pairs with Informative Priors

The task of finding all geometrically verified, matching
image pairs in a large database of [V images can be posed as
the problem of discovering a matching graph. In this graph,
vertices represent images, and edges exist when pairs of im-
ages contain a sufficient number of geometrically verified
feature matches.

The brute force approach leads to poor performance for
large N because of its O(N?) complexity. However, it
is possible to obtain high quality reconstructions by using
approximate matching algorithms that only use subsets of
potential edges [41]. These approximate methods are ex-
tremely useful for large-scale SfM applications when they
discover a large percentage of edges quickly.

4.5 1.
I Match

N Non-match

4.0

3.5 0.8
3.0

0.6|
2.5

PDF
CDF

2.0
0.4

1.5

1.0 0.2

0.5

00 02 04 06 08 10 1.2 1.4 00 02 04 06 08 10 1.2 1.4
Score Score

(a) Vocabulary Trees Scores PDF (b) Vocabulary Trees Scores CDF
Figure 2. Probability density functions (PDFs) and cumulative
distribution functions (CDFs) of geometrically-verified matching
image pairs (edges) and non-matching image pairs (non-existing
edges) as a function of Vocabulary Tree scores. The support of the
PDFs and CDFs of valid and non-existing edges overlap signifi-
cantly.

The complexity of finding suitable image pairs with ap-
proximate methods depend on the density of the match-
ing graph. The lower the density (or higher the sparsity),
the more challenging for algorithms to find image pairs.
To alleviate this issue, existing SfM pipelines use Voc.
trees as a way to generate image pairs with a high simi-
larity score. Unfortunately, the image representation that
Voc. trees use provides limited information about match-
ing image pairs. This is confirmed by observing the dis-
tributions of the Voc. trees similarity scores for matching
and non-matching image pairs of several large-scale photo
collections: NYC LIBRARY, MONTREAL NOTRE DAME,
MADRID METROPOLIS, ALAMO, TOWER OF LONDON,
ROMAN FORUM. We can observe in Fig. 2 that the dis-
tributions of Voc. trees similarity scores for matching and
non-matching image pairs overlap significantly. The larger
the separation between these distributions, the more useful
information to find matching image pairs.

For our algorithm, we begin exploring better priors for
edge-finding by studying metrics for global image similar-
ity. In particular, we tested VLAD [20] and Fisher vec-
tors [33, 35]. As Fig. 3 shows, we found that Fisher scores
gave us the best separation between the distributions of
edges and non-edges, meaning that they provide better guid-
ance towards sampling edges. While the fisher vector is ef-
fective, other priors like PAIGE [37] may be used.

For our second prior, we were inspired by query-
expansion [10] and the PatchMatch algorithm [4], which
has been very successful in image processing tasks [5, 12].
PatchMatch accelerates the process of finding matching
image patches with a clever, two-stage algorithm. First,
it randomly samples the correspondence field by testing
each patch in the first image with a random patch in the
source. Then, the propagation step will exploit the few good
matches that the sampling step found to generate new corre-

spondences. The basic idea of propagation is that neighbor-
ing patches in the first image usually correspond to neigh-
boring patches in the second image. Therefore, this stage
propagates good matches throughout the image. The algo-
rithm then iterates, repeating the sampling and propagation
stages until the approximate correspondence field between
the two images is quickly discovered.

In this work, if two vertices A and B are neighbors (i.e.,
are connected by an edge in the graph), we hypothesize that
the neighbors of B might also be neighbors for A and vice-
versa. Indeed, in practice we see that this is the case (see
Fig. 4), where we show the distributions for edges and non-
edges as a function of the modified graph distance between
the vertices. This fact makes sense for graphs in structure-
from-motion applications, where vertices that share an edge
usually represent images that are captured in close spatially
proximity, and therefore tend to have commonality with
other images that are also in close proximity because of spa-
tial coherence.

Given these two priors, we propose to use them in an al-
ternating algorithm we call GraphMatch. Unlike existing
StM pipelines that execute a sampling-like step using Voc.
trees followed by a query-expansion step, GraphMatch iter-
atively executes a sampling-and-propagation steps until the
current matching graph satisfies certain criteria.

4. Proposed Algorithm: GraphMatch

Like PatchMatch, GraphMatch has two main steps: sam-
pling and propagation. The purpose of its sampling stage
is to find previously unexplored matching pairs, which will
connect regions of the graph that had not been connected be-
fore. Unlike PatchMatch, rather than exploring completely
at random, we guide our search towards candidate edges
that are more likely to be valid by using the Fisher-distance
prior discussed in the last section. The propagation step in
GraphMatch aligns well with a query-expansion step and
serves a similar purpose to the one in PatchMatch. The goal
of the propagation step is to exploit current matching image
pairs to discover new matching pairs.

There are some fundamental differences between Patch-
Match and GraphMatch. For example, in PatchMatch
the neighborhood of each patch is clearly defined by the
parametrization of the underlying pixel grid of an image.
However, in the graph discovery case, it is not clear what
the “neighborhood” of a vertex is, especially since the graph
has not been fully discovered. Therefore, inspired by the
query-expansion, GraphMatch uses all the current, direct
neighbors of a vertex (i.e., the set of vertices that currently
share a valid edge with the vertex) as the potential neigh-
borhood of candidates that will be tested for more matches.
Unlike query-expansion, however, GraphMatch identifies
the candidate image pairs to test, ranks them based on their
Fisher distances, and selects a subset as the pairs to geomet-

1. 3. 1

=

[Match
5 I Non-match 0.l 2.5 0.8 0.8
2.0 el
0.6 0.6 £ 0.6
w w w w Y
o a o 1.5 a °
a o a o |72
0.4 0.4 g 0.4
1.0 =
o0 02 02 — Fisher
. 0.5 : : — VLAD
— VocTrees|
0. 0.8 0. 0.
.0 02 04 06 08 1.0 1.2 1.4 16 .0 02 04 06 08 1.0 1.2 1.4 16 .0 0.5 1.0 1.5 2.0 .0 0.5 1.0 15 2.0 .0 0.2 0.4 0.6 0.8 1.0
Score Score Score Score False edge rate
(a) VLAD PDF (b) VLAD CDF (c) Fisher PDF (d) Fisher CDF (e) ROC Curves

Figure 3. PDFs ((a) and (¢)) and CDFs ((b) and (d)) of edges and non-edges over scores of VLAD ((a, b)) and Fisher ((c, d)). The overlap
between the PDFs of the edges and non-existing edges corresponding to Fisher and VLAD scores is less than that of the Voc. Trees scores.
The ROC curves shown in Fig. (e) confirm this. The curves corresponding to Fisher (blue) and VLAD (green) are above of the curve
corresponding to Voc. Trees scores (red). Also, Fig. (e) shows that Fisher scores tend to be better than VLAD scores for predicting edges
when the false edge rate is less tha 0.4. Consequently, Fisher scores are the best prior for edge prediction considering a low false edge rate.

1.0,

I Match 1.
0.8 N Non-match
0.8
0.6|
w L
= 0 0.6
a O
0.4
0.4}
0.2
0.2
0.0 [IS —

2 4 6 8 10 12 14 16 18 20
Graph distance
(a) Probability Mass Function (PMF)

Figure 4. Probability Mass Functions (PMFs) and CDFs for edges
and non-edges as a function of a modified graph distance between
every pair of vertices (A, B) in the graph. If no edge exists betwen
A and B, we simply use their normal graph distance (number of
edges in their shortest path). But if an edge exists, we remove it
before computing their graph distance (otherwise it would always
be ‘1’). The PMF plot (a) shows that (A, B) are much more likely
to share an edge when the distance is 2 (i.e, they have a neighbor
in common), which constitutes the foundation of the propagation
step in GraphMatch. The CDFs plot (b) shows that non-matching
pairs have a higher modified graph distance since its CDF (red
curve) grows slower than that of the matching pairs (blue curve).

0 100 200 300 400 500 600 700 800 900
Graph distance
(b) Cumulative Distribution Function (CDF)

rically verify. Thus, the propagation step in GraphMatch
combines cues from the current state of the matching graph
and image similarity priors.

Another fundamental difference between GraphMatch
and PatchMatch, is that PatchMatch finds a single corre-
spondence for a given query patch. In contrast, in the graph
discovery case, each image can have multiple matching im-
ages. Thus, GraphMatch generalizes PatchMatch in this
sense by adjusting the sampling and propagation algorithms
to test multiple images in the same iteration, and allow each
image to have multiple matches.

In the following subsections, we describe the different
stages of our algorithm in detail, which takes in as input a
large collection of images I = {I3, ..., Iy} and outputs an
approximate connectivity graph G. Complete pseudocode

can be found in the supplementary material.

4.1. Pre-processing

The GraphMatch algorithm first pre-computes SIFT fea-
tures [25] for all IV images in the collection to be used
later on for the geometric verification process. Unlike ex-
isting SfM pipelines that use Voc. trees to represent images
and measure image similarity, GraphMatch uses Fisher vec-
tors [33, 35]. It uses them for the following reasons: 1)
outperform Voc. trees-image-based representations for im-
age retrieval [34]; 2) require only a single clustering pass
instead of several passes as in Voc. trees; 3) reveal more
discriminative information about matching image pairs than
Voc. trees as shown in Fig. 2.

A fundamental difference between Voc. trees-based im-
age matchers and GraphMatch is that Voc. trees-based
methods compute the tree using a large database of im-
age features (e.g., SIFT) and several clustering passes in
an offline stage. In contrast, GraphMatch only uses the in-
put photo-collection to compute image representations via
Fisher vectors as part of the same SfM pipeline. Thus, af-
ter computing the local image features of the input photo
collection, GraphMatch proceeds to compute a Fisher vec-
tor for every image. To do so, GraphMatch first constructs
a database of image features by taking a random sample
of features for every image in the photo collection. Then,
it estimates the cluster priors, diagonal-covariance matri-
ces, and centroids that parametrize the Gaussian Mixture
Model (GMM) [29]. Note that the GMM parameter estima-
tion phase is the only clustering pass to the data in Graph-
Match. Using the estimated GMM, GraphMatch computes
a Fisher vector for every image in the input photo collec-
tion using a Fisher-vector encoder. GraphMatch uses the
efficient and multi-threaded GMM estimator and Fisher en-
coder included in the V1Feat [45] library.

Once every image has its Fisher vector, GraphMatch
computes a distance matrix between every pair of images.
To compute this matrix efficiently given its O(N?) com-

plexity, GraphMatch exploits the symmetry in the matrix
(i.e., d(A, B) = d(B, A)), avoids computing the distance
of an image with itself, and computes the matrix in paral-
lel. Consequently, GraphMatch ends up computing half the
matrix quickly by using multi-threaded schemes. The dis-
tance estimation only involves subtracting two vectors of
4096 floats and taking the dot product of the result with
itself. We observed in our experiments that this matrix eval-
uation takes at most 3% of the total matching time, and it is
not a bottleneck in our approach. The clustering approach
in [15] can be leveraged to further decrease the complexity
of this step.

Finally, the last step of the pre-processing stage uses the
Fisher distances to create a list for every image that ranks
all other images based on proximity to the given image. In
our case, images at the beginning of the list have smaller
Fisher distances (are closer or similar) to the image in ques-
tion. GraphMatch implements this ranking step also using
efficient multi-threaded schemes. Once the algorithm has
completed the pre-processing step, it begins the main body
of the algorithm, which iterates between a sampling step
and a propagation step and continues until no sampling and
propagation has occurred.

4.2. Sampling Step

The sampling step attempts to find connections between
new regions in the graph by testing new potential edges.
In the original PatchMatch algorithm this testing was done
at random, but in our case we find that the Fisher distance
prior (see Fig. 3) helps guide the sampling and improves the
efficiency of the algorithm by increasing the probability that
edges are found.

In order to sample based on Fisher distance, Graph-
Match uses the ranked lists for every image that were pre-
computed in the pre-processing step and pulls a fixed num-
ber of candidate images from each list at every iteration to
be used for sampling. The number of images to be pulled is
controlled by two parameters: MAXTESTSFORSAMPLING,
which controls the maximum number of times GraphMatch
can test an image before it stops sampling altogether, and
NUMBERSAMPLEITERATIONS, which governs the maxi-
mum number of iterations for which it does sampling. The
number of samples for each image per iteration is simply
set by the division of these two numbers.

Note that GraphMatch only samples from a vertex if it
has less than MAXNUMNEIGHBORS, which is part of our
termination criteria. However, this vertex can still be chosen
to sample to (e.g., if it is high on another vertices sampling
list). Once the list of sampling pairs has been computed for
all vertices in the graph, GraphMatch passes it to a function
that will test each one for edges using geometric verifica-
tion. Those that are found to have edges are added to the
graph and to a data structure that tracks all neighboring ver-

— our method
— propagation only (with random sampler)
— sample only (with Fisher vector)

o o o
FS Y ®

fraction of edges discovered

o
N

0.0/

200 400 600 800 1000 1200 1400 1600 1800
time (seconds)

Figure 5. The fraction of discovered edges for GraphMatch with
different configurations: 1) GraphMatch with sample and propa-
gation stages on (blue); 2) GraphMatch with only the sampling
stage (green); and 3) GraphMatch with only propagation stage
(red). GraphMatch with both stages on outperforms the other two
configurations. GraphMatch leverages the information from both
stages to discover edges quickly.

140

I Bascline

Voc tree [l BRIAD [l Graph Match
120

100

80

#Cameras

60

400

20

: Montreal Roman NYC Vienna
Taj Mahal Al
! Notre Dame Forum Library amo cathedral

Figure 6. Number of cameras reconstructed for each method for
all scenes in Table 1. GraphMatch consistently reconstructs most
cameras and is very close to baseline.

tices for each image. Furthermore, the vertices tested are
removed from the ranked lists of the appropriate vertices so
they are not tested again.

4.3. Propagation Step

The goal of the propagation step is to identify new edges
by leveraging the spatial coherence normally found in the
matching graphs for SfM and image similarities computed
via Fisher vectors. The propagation step loops over every
pair of vertices with known edges in graph G. Given a pair
A and B that share an edge, the propagation step takes the
top ranked neighbors of B (based on their Fisher distance)
and tests them against A and vice-versa. Note that Graph-
Match propagates only from vertices that have less than
MAXNUMNEIGHBORS for our termination criterion. The
number of vertices selected to propagate from each neigh-
bor is given by the parameter NUMTOPROPAGATE.

images # recon Position Error (m) Time (min) Speed Up
Dataset graph density Alg. cameras # edges } avg. [[median [% pre [[match | recon | total H match [overall %
1497 baseline 576 63,474 - - 0 696.62 38.81 754.62 1x 1x
TAI MAHAL voc. tree 413 9,368 0.04 0.03 10.04 37.39 53.60 109.23 12.80 % 6.91 %
0.0437 BRIAD 319 21,332 0.04 0.03 10.04 26.98 13.14 58.19 15.79x 12.97 x
: ours 615 48,949 0.03 0.02 0.87 41.78 57.62 108.54 14.02x 6.95 x
2208 baseline 486 33,836 - - 0 1556.23 51.30 1643.39 Ix Ix
MONTREAL N.D. voc. tree 431 18,060 0.08 0.07 18.35 56.66 37.16 123.04 18.44 x 13.36 x
0.0100 BRIAD 430 8,241 0.06 0.03 18.35 32.51 52.50 113.82 25.77x 14.44 x
: ours 460 31968 0.06 0.05 1.39 48.90 48.62 109.65 26.01 x 14.99 x
2364 baseline 1247 52,155 - - 0 1839.29 58.78 1939.45 1x 1x
ROMAN FORUM voc. tree 951 15,795 0.67 0.56 20.48 91.88 71.50 196.11 15.03 % 9.89 X
0.0159 BRIAD 452 26,730 0.03 0.02 20.48 61.47 35.68 129.37 19.96 x 14.99 x
. ours 1142 50,216 0.12 0.09 1.39 78.80 52.81 145.04 20.35 x 13.37 x
2550 baseline 261 15,241 - - 0 1065.78 24.98 1119.26 Ix Ix
NYC LIBRARY voc. tree 232 7,639 3.82 2.28 20.18 56.94 18.37 107.18 12.25% 10.44 x
0.0039 BRIAD 135 4,327 4.18 2.76 20.18 39.44 9.02 80.03 15.30x 13.99 x
: ours 245 13,427 421 3.11 1.40 41.46 24.53 78.82 20.09 x 16.67 x
2915 baseline 726 62,793 - - 0 2506.32 85.31 2646.70 1x 1x
ALAMO - voc. tree 573 19,932 0.21 0.08 27.64 73.37 4493 160.47 22.04x 16.49 x
0.0122 BRIAD 251 12,490 0.20 0.10 27.64 41.28 6.33 89.25 30.64 x 29.66 X
. ours 648 50,943 0.13 0.04 1.61 61.29 65.82 143.04 33.07 x 18.50 x
6288 voc. tree 273 10,578 - - 117.36 450.80 20.05 624.96 - -
VIENNA CATHEDRAL BRIAD 242 17,578 - - 117.36 216.60 22.94 389.75 - -
0.004 ours 794 79,394 - - 3.37 367.58 44.28 450.60 - -

Table 1. Results of timing and camera positions errors for different algorithms on different scenes. Note the preprocessing time does not

include time to extract the sift features.

5. Experiments

We implemented GraphMatch in C++ using the Theia
SfM [43] library’s API, and incorporated it into Theia’s re-
construction pipeline. All experiments were run on a ma-
chine with 128 GB of RAM, 2.6 TB of storage space using
SSDs, and 2x Intel Xeon at 2.60GHz each with 8 cores.
Since both our implementation and Theia library use multi-
threading, we launched our SfM pipeline using 32 threads.

The experiments were performed using datasets formed
from internet photo collections obtained from crawling
Flickr [46]. These photo collections pose interesting chal-
lenges to the SfM pipelines because their size ranges from
1497 — 15685 and the density of the underlying matching
graph (i.e., the number of good matches out of all possible
image pairs) ranges from 0.04 to less than 0.004. As dis-
cussed in Section 3, the density determines the chances for
an algorithm to find image pairs. The lower the density, the
more challenging to find image pairs, and vice-versa.

We compare our approach to the brute-force method (the
baseline), the commonly used Voc. trees method, and the
building Rome in a day (BRIAD) matching scheme which
implements a Voc. trees followed by a query-expansion. We
compare their timings for pre-processing, matching, and to-
tal reconstruction. In addition, we measure the reconstruc-
tion quality using the discovered matching graph by com-
puting the number of recovered cameras, number of edges
in the matching graph (i.e., good matches), and in most
cases the mean and median distances of the cameras po-
sitions to their corresponding camera positions computed
with the baseline method. For the baseline method, we used
the multi-threaded brute-force (exhaustive search) imple-
mentation provided by Theia. For Voc. Tree-based methods

(plain Voc. trees and BRIAD), we used a pre-computed and
publicly available tree ! with 1 million visual words, and
indexed each dataset using the multi-threaded COLMAP
StM [38] library. Also, BRIAD retrieved £k = 40 NN for
each image while Voc. tree method use £ = 120. The tim-
ings for the pre-processing phase of Voc. trees-based meth-
ods only consider the time for creating the image index,
since we use a pre-computed tree. In BRIAD, we executed
four times the query-expansion as suggested by Agrawal et
al. [3]. We did not consider the pre-emptive method by
Wu [47], since Schonenberger et al. [37] reported that Voc.
trees outperform such a pre-emptive method.

The results of each method can be seen in Table 1.
Among the approximate methods (i.e., BRIAD and Voc.
trees), our algorithm achieves the highest reconstruction
quality. This is because it recovers the highest number of
cameras and the highest number of edges in the matching
graph; see #recon-cameras and #edges columns and Fig. 6.
Our algorithm recovers a great number of cameras and is the
most comparable to that of the baseline. Thus, GraphMatch
is able to consistently find more edges than Voc. Tree-
based methods because our algorithm is much more effi-
cient than Voc. trees at finding good image pairs to match.
This leads to more stable SfM reconstructions with longer
feature tracks and better visual coverage [44]. This can be
seen in the Taj Mahal dataset, where the Voc. Tree method
recovers very few edges and is only able to reconstruct 68%
of the number of cameras with respect to the baseline. See
supp. material for results on more datasets.

We also computed the efficiency of the four algorithms
as the ratio between the number of found matching image
pairs and the total number of tested image pairs. The aver-

Ihttp://people.inf.ethz.ch/jschoenb/colmap/

Figure 7. Reconstructions of three large datasets, from left to right: VIENNA CATHEDRAL (6,288 images), PICADILLY (7,351 images),

TRAFALGAR (15,685 images).

age efficiency of the baseline was 0.021, which is exactly
the same as the average density for all scenes as expected.
The average efficiency for Voc.Trees-based methods was
slightly higher at 0.08, and ours was 0.27 (nearly 10x more
than baseline). Furthermore, we broke down the efficiency
by stage for our algorithm. We found that the sampling step
was 0.08 efficient, while the propagation step was 0.37 ef-
ficient. The fact that nearly one third of the edges tested
by propagation are valid given that the average density of
all the scenes is around 0.021 underscores the importance
of our propagation step. To understand the effect of itera-
tively alternating sampling and propagation steps, we mea-
sured the fraction of edges discovered over time with both
stages alternating each other, with only sampling stage on
and with only propagation stage on. As shown in fig. 5, our
alternating scheme discovers edges better. Thus, both steps
complement each other to boost the edge discovery.

To study whether a trained Voc. trees per datasets could
improve its performance, we trained Voc. trees for the
dataset TA] MAHAL and ROMAN FORUM. We found that
the matching efficiency and reconstruction quality remained
basically the same. It reconstructed 422 and 975 cameras
respectively, while the tree from COLMAP reconstructed
413 and 951 cameras. The training time for these two
datasets was 0.9 and 1.5 hours, respectively. This brings the
total pre-processing time to 1.1 and 1.8 hours, respectively,
while fisher vectors required only 0.9 and 1.4 minutes to
train for the same datasets, respectively; an approximately
70x speedup compared to Voc. Trees. This suggests that
training the Voc. Tree on specific scenes is not a good op-
tion for large-scale SfM, especially when compared to the
proposed approach.

To assess the reconstruction quality of large-scale photo
collections using GraphMatch, we reconstruct three addi-
tional datasets: VIENNA CATHEDRAL (6288 images), PI-
CADILLY (7531 images), and TRAFALGAR (15685 images).
The SfM pipeline with our algorithm required the follow-
ing reconstruction timings: PICADILLY in 9.7 hours (esti-
mated 163.6 hours with the baseline) and TRAFALGAR in
16.0 hours (estimated 835.4 hours with the baseline). For
more results and analysis please see the supp. material.

6. Conclusion

In this paper, we have presented a novel algorithm called
GraphMatch for image matching in structure-from-motion
pipelines that use scene priors to efficiently find high qual-
ity image matches. It iteratively searches for image matches
with a “sample-and-propagate” strategy similar to that of
PatchMatch [4, 5]. During the sampling stage, we use priors
computed from Fisher vector [33, 35] distances between im-
ages to guide the search for image pairs which are likely to
match. Inspired by the query-expansion step [3], the prop-
agation stage exploits local connectivity and image similar-
ities to find new matches based on neighbors of the cur-
rent matches. This strategy is able to efficiently discover
which image pairs are most likely to yield good matches
without requiring an offline training process. Our experi-
ments show that GraphMatch achieves the highest number
of recovered cameras and the highest efficiency (i.e., the ra-
tio between the matching image pairs and number of pairs
tested), while maintaining equivalent speed-ups compared
to that of Voc. tree-based methods without considering the
time of the tree construction. Consequently, GraphMatch
becomes an excellent algorithm for discovering the match-
ing graph efficiently in large-scale SfM pipelines without
requiring an expensive offline stage for building a Voc. tree.

While our method is effective, it has a few limitations:

1. Optimal parameter tuning. Our method has four pa-
rameters that were optimized over some datasets, and
we have not found theoretically the best parameters for
each datasets; and

2. Image representation to guide the sampling stage.
GraphMatch uses Fisher vectors and are effective.
However, there may be other methods more suitable
for this task (e.g., PAIGE [37]).

Nevertheless, GraphMatch is effective for efficient image
matching in structure-from-motion pipelines.

Acknowledgments. This work was supported in part by
NSF grants 11S-1321168, 1IS-1342931, 1IS-1619376 and
1IS-1657179. The authors would like to thank Atieh Taheri,
who worked on an early version of the algorithm and con-
ducted some preliminary experiments.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,
S. M. Seitz, and R. Szeliski. Building Rome in a day. Com-
munications of the ACM, 54(10):105-112, 2011. 1, 2

S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle
adjustment in the large. In Proc. of the European conference
on computer vision, 2010. 1

S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and
R. Szeliski. Building Rome in a day. In 2009 IEEE 12th
international conference on computer vision, pages 72-79.
IEEE, 2009. 1,7, 8

C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algo-
rithm for structural image editing. ACM Trans. Graph.,
28(3):24:1-24:11, July 2009. 2,4, 8

C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized PatchMatch correspondence algo-
rithm. In Proceedings of the 11th European Conference on
Computer Vision Conference on Computer Vision: Part IlI,
ECCV’10, pages 29-43, Berlin, Heidelberg, 2010. Springer-
Verlag. 4, 8

M. Bujnak, Z. Kukelova, and T. Pajdla. 3d reconstruction
from image collections with a single known focal length. In
2009 IEEE 12th International Conference on Computer Vi-
sion, pages 1803-1810. IEEE, 2009. 1

A. Chatterjee and V. Madhav Govindu. Efficient and robust
large-scale rotation averaging. In Proceedings of the IEEE
International Conference on Computer Vision, pages 521—
528,2013. 1

J. Cheng, C. Leng, J. Wu, H. Cui, H. Lu, et al. Fast and
accurate image matching with cascade hashing for 3d recon-
struction. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, 2014. 1

O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman.
Total recall: Automatic query expansion with a generative
feature model for object retrieval. In Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on, pages
1-8. IEEE, 2007. 1

O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman.
Total recall: Automatic query expansion with a generative
feature model for object retrieval. In 2007 IEEE 11th In-
ternational Conference on Computer Vision, pages 1-8, Oct
2007. 2,4

D.J. Crandall, A. Owens, N. Snavely, and D. P. Huttenlocher.
Sfm with mrfs: Discrete-continuous optimization for large-
scale structure from motion. /EEFE transactions on pattern
analysis and machine intelligence, 35(12):2841-2853, 2013.
1

S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and
P. Sen. Image Melding: Combining inconsistent images us-
ing patch-based synthesis. ACM Trans. Graph., 31(4):82:1—
82:10, July 2012. 4

V. Fragoso, P. Sen, S. Rodriguez, and M. Turk. EVSAC:
Accelerating Hypotheses Generation by Modeling Matching
Scores with Extreme Value Theory. In Proc. of the IEEE
International Conference on Computer Vision, 2013. 1

(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

V. Fragoso, C. Sweeney, P. Sen, and M. Turk. ANSAC:
Adaptive Non-Minimal Sample and Consensus. In Proc. of
the British Machine Vision Conference, 2017. 1

J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson,
R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazeb-
nik, et al. Building Rome on a cloudless day. In European
Conference on Computer Vision, pages 368-381. Springer,
2010. 1,6

V. M. Govindu. Robustness in motion averaging. In Asian
Conference on Computer Vision, pages 457-466. Springer,
2006. 1

R. Hartley, K. Aftab, and J. Trumpf. L1 rotation averaging
using the weiszfeld algorithm. In Computer Vision and Pat-
tern Recognition (CVPR), 2011 IEEE Conference on, pages
3041-3048. IEEE, 2011. 1

J. Heinly, J. L. Schonberger, E. Dunn, and J.-M. Frahm. Re-
constructing the world* in six days*(as captured by the ya-
hoo 100 million image dataset). In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition, 2015. 1

T. K. Ho. The random subspace method for constructing
decision forests. /IEEE transactions on pattern analysis and
machine intelligence, 20(8):832-844, 1998. 3

H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-
ing local descriptors into a compact image representation.
In Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, pages 3304-3311. IEEE, 2010. 2, 4
N. Jiang, Z. Cui, and P. Tan. A global linear method for
camera pose registration. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages 481-488,
2013. 1

K. Kanatani and C. Matsunaga. Closed-form expression for
focal lengths from the fundamental matrix. In Proc. 4th
Asian Conf. Comput. Vision, volume 1, pages 128—133. Cite-
seer, 2000. 1

S. Lloyd. Least squares quantization in pcm. /EEE transac-
tions on information theory, 28(2):129-137, 1982. 1

D. G. Lowe. Object recognition from local scale-invariant
features. In Computer vision, 1999. The proceedings of the
seventh IEEE international conference on, volume 2, pages
1150-1157. Ieee, 1999. 3

D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91-110, 2004. 1, 5

D. Martinec and T. Pajdla. Robust rotation and translation
estimation in multiview reconstruction. In 2007 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1-8. IEEE, 2007. 1

P. Moulon, P. Monasse, and R. Marlet. Global fusion of rela-
tive motions for robust, accurate and scalable structure from
motion. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 3248-3255, 2013. 1

M. Muja and D. G. Lowe. Scalable nearest neighbor algo-
rithms for high dimensional data. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 36(11):2227-2240,
2014. 1

K. P. Murphy. Machine learning: a probabilistic perspective.
MIT press, 2012. 5

(30]

(31]

(32]

(33]

(34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

D. Nister and H. Stewenius. Scalable recognition with a vo-
cabulary tree. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06),
volume 2, pages 2161-2168. IEEE, 2006. 1, 3

A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International
Jjournal of computer vision, 42(3):145-175, 2001. 1, 2

0. Ozyesil and A. Singer. Robust camera location estima-
tion by convex programming. In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition, pages 2674—
2683, 2015. 1

F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In 2007 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1-8. IEEE,
2007. 2,4,5,8

F. Perronnin, Y. Liu, J. Sdnchez, and H. Poirier. Large-scale
image retrieval with compressed fisher vectors. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 3384-3391. IEEE, 2010. 5

F. Perronnin, J. Sdnchez, and T. Mensink. Improving
the Fisher kernel for large-scale image classification. In
European conference on computer vision, pages 143-156.
Springer Berlin Heidelberg, 2010. 2,4, 5, 8

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1-8. IEEE, 2007. 1

J. L. Schonberger, A. C. Berg, and J.-M. Frahm. Paige:
pairwise image geometry encoding for improved efficiency
in structure-from-motion. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1009-1018, 2015. 3,4,7,8

J. L. Schonberger and J.-M. Frahm. Structure-from-motion
revisited. In Proc. of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2016. 1,7

T. Shen, S. Zhu, T. Fang, R. Zhang, and L. Quan. Graph-
based consistent matching for structure-from-motion. In
European Conference on Computer Vision, pages 139-155.
Springer, 2016. 3

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world
from internet photo collections. International Journal of
Computer Vision, 80(2):189-210, 2008. 1

N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for
efficient structure from motion. In Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1-8, jun 2008. 3

H. Stewénius, S. H. Gunderson, and J. Pilet. Size mat-
ters: exhaustive geometric verification for image retrieval
accepted for eccv 2012. In Computer Vision-ECCV 2012,
pages 674—687. Springer, 2012. 1

C. Sweeney, T. Hollerer, and M. Turk. Theia: A fast and
scalable structure-from-motion library. In Proceedings of the
23rd ACM international conference on Multimedia, pages
693-696. ACM, 2015. 7

C. Sweeney, T. Sattler, T. Hollerer, M. Turk, and M. Polle-
feys. Optimizing the viewing graph for structure-from-
motion. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 801-809, 2015. 1,7

[45]

[46]

[47]

A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable
library of computer vision algorithms. In Proceedings of the
18th ACM international conference on Multimedia, pages
1469-1472. ACM, 2010. 5

K. Wilson and N. Snavely. Robust global translations with
IDSfM. In Proc. of the European Conference on Computer
Vision, 2014. 1,7

C. Wu. Towards linear-time incremental structure from mo-
tion. In 2013 International Conference on 3D Vision-3DV
2013, pages 127-134. IEEE, 2013. 1,3, 7

