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a b s t r a c t

Origami, the ancient art of paper folding, has evolved into a design framework of a wide variety of
engineering systems such as deployable structures and architected cellular materials. The fundamentally
three-dimensional folding is not only a capable tool to generate shape transformation, but also a powerful
platform to program sophisticated elastic properties. This study investigates themulti-stability character-
istics of a stacked origami cellular solid consisting of multiple Miura-ori sheets, specifically focusing on a
dual-cell chain structure. Experiment results indicate that folding imposes a unique kinematic constraint
between the two adjacent bistable origami cells, which can significantly increase the energy barrier of
the extensional switch from one stable state to another without notably increasing the barrier of the
opposite switch, creating an asymmetric barrier. We formulate a geometric mechanics model to examine
the underlying physical principles of the observed asymmetric behaviors, and demonstrate the potentials
to strengthen this asymmetric energy barrier and to achieve a static mechanical diode effect. That is,
the multi-stable origami could be easily compressed via switching between different stable states, but
demand a large external force to be extended. Since such diode effect has the potential to rectify reciprocal
loads into unidirectional deformation, the results of this study can become the building blocks for origami
solids with novel functionalities.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-stable materials and structures – characterized by the
coexisting elastic energy minima within their deformation range
– have garnered extensive interests recently because they can
provide a wide spectrum of adaptive functions. To begin, their ca-
pability of remaining at different configurations without external
aids makes them immediately appealing for the use in shape mor-
phing and actuation [1–4]. Secondly, multi-stable materials and
structures can exhibit different mechanical properties at different
stable equilibria (or states), thus one can strategically switch them
among their stable states for performance tuning. Stiffness [5–8]
and auxetic property [9] adaptation have been demonstrated by
this strategy. Furthermore,multi-stability can also lead to highper-
formance dynamic functions [10], including vibration control [11–
14], energy harvesting [15–17], and robust sensing [18,19]. Es-
pecially, a chain-like structure consisting of many bistable ele-
ments connected in series can achieve strain-rate-independent
and recoverable impact energy absorption [20–25], deterministic
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deformation sequence [26], and even non-reciprocal wave prop-
agation [27,28]. Therefore, incorporating multi-stability is one of
the most promising and powerful strategies for creating adaptive
structures and functional materials.

Despite the vast variety in these multi-functional structures
and materials, the underlying mechanisms of multi-stability are
similar. Most of the current systems are built upon either curved
bistable beams or their close relatives such as pre-stressed bilayer
shells and axially constrained springs. The deformation mecha-
nism of the curved beams is planar, and the corresponding bista-
bility is evident only in one direction (aka. one-dimensional). Such
simplicity permits the rapid application of established tools for
mechanics analysis, performance evaluation, and reliable fabrica-
tion. However, it is also a significant limiting factor in terms of the
overall potentials. Although space-filling lattices were assembled
based on the curved beams [23,29], their overall stability charac-
teristics remain essentially the same. Evolution to a truly three-
dimensional system may serve as a platform through which we
would discover new multi-stability characteristics and function-
alities that are not available in the lower-dimensional systems.

To address this gap, we explore the utilization of origami, a fun-
damentally three-dimensional shape transformation mechanism,
as the underlying architecture of multi-stable materials and struc-
tures. Developed in Asia approximately four centuries ago, origami
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Fig. 1. The concept of multi-stable cellular solid based on stacked origami. (a) Stacking and connecting translational periodic origami sheets, such as the classic Miura-ori,
can form a space filling architecture; (b) prescribed differences in the crease torsional stiffness can generate bistability in each unit cell; and (c) stacked origami consisting
of many unit cells can possess multiple stable states with different internal configurations, which can be switched via different actuation mechanisms.

is the art of folding paper into decorative shapes and geome-
tries [30]. Over the last several decades, this craftsman art quickly
evolved into a sophisticated framework for designing and fabri-
cating engineered systems such as deployable aerospace struc-
tures [31], kinetic architectures [32–34], self-folding robots [35–
37], and biomedical devices [38,39]. Especially, origami sheetswith
a translational periodic morphology can be stacked and connected
to form an architected cellular solid with mechanical properties
dominated by the kinematics of folding [40–48]. Such a stacked
origami cellular solid (referred as stacked origami in what follows)
is essentially a three-dimensional assembly of the ‘‘unit cells’’,
which consist of two different origami sheets (Fig. 1(a)). With
compatible crease designs, the unit cells and the overall stacked
origami can be rigid-foldable [42,47], meaning that their folding
can be simplified into rigid panels rotating around the crease lines.
Therefore, the overall elastic properties of the stacked-origami can
be characterized based on the torsional stiffness of the crease lines.
In particular, if the crease torsional stiffness of the two constituent
origami sheets differ notably, bistability will occur (Fig. 1(b)) [49].
As a result, the stacked origami can exhibit many stable states with
different internal folding configurations (Fig. 1(c)).

Multi-stability has been investigated in single Origami sheets
[50–53], but the stacked origami in this study is unique in that
it exhibits unique stability properties that are not observed in
lower-dimensional systems [54]. In this letter, we report an exper-
imental examination and in-depth investigation of the unortho-
dox asymmetric energy barrier: the folding-induced kinematic
constraint between adjacent unit cells can significantly increase
the energy barrier of switching from one stable state to another,
without imposingnotable changes to energy barrier of the opposite
switch. As a result, the stacked origami is relatively easy to be
compressed via switching but requires a much larger force to be
extended. Furthermore, we show that such asymmetric behavior
can be strengthened to a static mechanical diode effect. Results
of this study can potentially open up new avenues toward multi-
functional materials and structures that are capable of motion
rectifying and wave propagation control.

The following sections of this Letter will (1) briefly review the
origin of bistability in a single origami unit cell; (2) present exper-
imental observations on the asymmetric behavior when switching
between two stable states; (3) examine the underlying physical
principles of the asymmetric energy barrier and the potential to
achieve static diode effect; (4) discuss the correlations between the
asymmetric energy barrier and origami design.

2. Bistability of the unit cell

The unit cell shown in Fig. 2(a) is the fundamental element to
achievemulti-stability. Its external geometries can be fully defined
by two types of parameters [42]. One is the geometric designs pa-
rameters of the constituent Miura-ori sheets including the crease
lengths (ak and bk) and sector angle (γk), where the subscript k
(=‘I’ or ‘II’) denotes the sheets I and sheet II, respectively. The
other type of parameters is the folding angle θk, defined as the
dihedral angles between the facets and the x-y reference plane.
The rigid-folding condition is satisfied when bI = bII, aI cos γI =

aII cos γII, and cos θI tan γI = cos θII tan γII [42,49]. In this way, we
can assume that the origami facets are rigid and the creases act
like hinges with prescribed torsional stiffness. Moreover, folding
of the unit cell is a one-degree-of-freedom mechanism so that we
can use the sheet I folding angle θI (denoted simply as θ in what
follows) as the independent variable to describe the overall folding
process. Such seemingly simple assumption is indeed capable of
revealing the underlying physical principles behind many folding-
induced, nonlinear elastic properties without unnecessary com-
plexities [41,55–57]. Denoting ϕi as the dihedral opening angles of
the creases shown in Fig. 2(a), and Ki as the corresponding crease
torsional stiffness, the total elastic potential energy of the unit cell
is a summation of the individual crease energy so that

Π =
1
2

5∑
i=1

Ki
(
ϕi − ϕo

i

)2
, (1)

where ϕi are functions of folding angle θ :

sin
ϕ2

2
=

cos θ√
1 − sin2θsin2γI
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ϕ4

2
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sin γII

sin
ϕ2

2
, (3)

and ϕ1 = π − 2θ , ϕ3 = π − 2cos−1
(
tan γIItan−1γI cos θ

)
,

ϕ5 = cos−1
(
tan γIItan−1γI cos θ

)
− θ. ϕo

i in Eq. (1) are the crease
opening angles corresponding to the stress-free stable state (θ =

θo) at which no creases are subject to deformation. Ki in Eq. (1)
can be calculated as K1 = 2kIbI, K2 = 2kIaI, K3 = 2kIIbI, K4 =

2kIIaII, and K5 = 4kcbI, where kI, kII, and kc are the torsional
stiffness per unit length of the sheet I crease, sheet II crease, and the
connecting crease, respectively. The numerical constants in these
stiffness expressions denote the number of creases that have the
same opening angle in a unit cell.
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Fig. 2. Bistability of the unit cell in the stacked origami architecture. (a) The external geometry of a unit cell, where the dihedral opening angle ϕi plays an important role
in achieving elastic bistability; and the spine angle ψ is related to the kinematic constraints between two adjacent unit cells (introduced in Section 4). (b) Elastic potential
energy landscapes of two different unit cells based on two different stress-free folding angles θ0 . The two stable states, denoted by solid circles, will be denoted as state ‘1’ if
it has a concave shape, and state ‘2’ otherwise. (c) The force–displacement curves of the two unit cell under displacement control (top) and force control (bottom), the two
critical forces (Fe and Fc ) of the two cells are highlighted. The shaded region in (b) and (c) represents the admissible deformation range based on rigid folding assumptions.

The external length of the unit cell is also a functions of θ :

L = aI sin γI

⎛⎝√
tan2γII

tan2γI
− cos2θ − sin θ

⎞⎠ . (4)

The change in potential energy Π with respect to the unit
cell length (L) is illustrated in Fig. 2(b). Because of the nonlinear
geometric correlations among the folding angle (θ), crease opening
angles (ϕi), and the external dimension (L), the effective stiffness
of the unit cell is highly nonlinear even though its constituent
creases is assumed to be linearly elastic in torsion. The double
potential energy wells, which are the defining characteristics of a
bistable system, start to show up as the crease torsional stiffness
of the sheet II (kII) becomes sufficiently larger than kI and kc,
or the stress-free folding angle (θo) deviates away from 0◦ [49].
Fig. 2(b) illustrates the elastic energy landscapes of two different
origami unit cell designs that differ in their stress-free folding
angles (θ0 = −60◦, 60◦) but share the same geometric and crease
stiffness designs: aI = bI, aII = 1.25aI, γI = 60◦, kI = kc,
and kII = 20kI. Unless otherwise noted, all of the following case
studies in this Letter are based on these design parameters, and
interested readers can refer to our previous publication for an in-
depth study on the design criteria of obtaining bi-stability [49]. If
the stress-free stable state is designed to have a concave shape
(θo > 0), the other stable one will be convex, and vice versa.
For clarity we denote the concave stable equilibrium as state ‘1’
and the convex equilibrium as state ‘2’ (Fig. 2(b)). The corre-
sponding reaction force–displacement curves of the unit cells can
be calculated as the variation of energy Π with respect to the
changes in cell length (displacement control), i.e., F = dΠ/dL =

(dΠ/dθ) (dL/dθ)−1 (Fig. 2(c)). In these force–displacement curves,
two values are important for this study: they are the magnitudes
of extension force Fe and the compression force Fc at the critical
configurationswhere negative stiffness occurs. They are the critical
forces required to trigger the snap-through switches of the unit cell
if a force control is applied (Fig. 2(c)). Here the subscript ‘‘e’’ and ‘‘c’’
denote the extension and compression, respectively. Note that the
individual unit cell already show asymmetric bistability in terms
of their potential energy well depths and widths, as well as the
magnitudes of critical forces Fe and Fc . However, we will show that
the asymmetry reported in this Letter possesses fundamentally
different origin and properties.

Two origami unit cells prototypes are fabricated to experi-
mentally verify the bistability. The origami facets are water jet
cut individually, according to the geometric designs in the case
studies in Fig. 2, from 0.25 mm thin stainless-steel sheets. They
are pasted to a 0.13 mm thick adhesive-back ultra-high molecular
weight (UHMW) polyethylene film to form individual Miura-ori
sheets. Then twoMiura-ori sheets are connected by adhesive films
to form a complete origami unit cell. By this construction, the
facet material is significantly stiffer than crease material to en-
sure rigid-foldability. 0.01 mm thick, pre-bent spring-steel stripes
are pasted to the creases corresponding to dihedral angles ϕ4 to
provide high torsional stiffness K4, thus imparting bistability to
each unit cell (Fig. 3). The two unit cell prototypes are fabricated
with different amount of spring-steel stripes, and the measured
force–displacement relationships are shown in Fig. 3. Although
quantitative discrepancies exist between the experiment results
and the analytical predictions shown in Fig. 2(c), the qualitative
relationship between the critical forces at snap-through configu-
rations are consistent. That is, F PA

e < F PB
e and F PA

c > F PB
c ,where the

superscripts ‘‘PA’’ and ‘‘PB’’ denote the two prototypes of unit cell.
Such relationships between critical forces dictate the switching
behaviors andmechanical diode effects discussed in the following.

3. Experimental observation of the asymmetric energy barriers
in dual-cell chains

We then conducted two different sets of tests to investigate the
force–displacement relationships of chain-like structures consist-
ing of the two unit cell prototypes. In the first set, the two cells are
connected by a rigid rod so they behave like two bistable elements
simply connected in series with a balanced internal force, this
setup is essentially the same as in the previous studies of bistable
chain structures [20–25]. In the second set of tests, however, the
two cells are connected directly along their zig-zag crease lines
by adhesive films, this setup is consistent with the staked origami
construction shown in Fig. 1. Herewe arrange cell A to be always on
the top. In both sets, five tension and compression load cycles are
conducted, in which the dual-cell chain is first extended from the
‘‘concave-concave’’ (i.e. ‘1-1’) stable state to the ‘‘convex-convex’’
(i.e., ‘2-2’) state, and then compressed back to the ‘1-1’ state (the
two numbers in the ‘i-j’ notations represent the stable states of cell
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Fig. 3. Measured force–displacement curves of the two unit cell prototypes. Five
displacement-controlled tests are repeated for each cell, the solid curves are the
averaged results, and the shaded bands represent the standard deviations. Insets
show the photos of a cell at states ‘1’ and ‘2’, and illustrate the construction of the
unit cell, where (i) is the steel facets, (ii) is the pre-bent spring-steel stripes, (iii) is
the creases made of plastic film, and (iv) is the additional rectangular steel plates
and 3D-printed connectors for connecting with the universal testing machine.

A and cell B, respectively). Displacement control with a constant
crosshead speed (10 mm/min) is used in these tests.

Fig. 4(a) shows the averaged extension and compression test
data. The dual-cell chain, regardless of the inter-cellular connec-
tion, possesses four stable states: ‘1-1’, ‘2-1’, ‘2-2’ and ‘1-2’. How-
ever, test results show that only the first three of them can be
reached via displacement control at the two ends of the chain
(Fig. 4(b, c)). The differences in the critical forces of a single cell
(i.e. F PA

e , F
PA
c , F

PB
e , and F PB

c ) can explain the absence of the ‘1-2’
stable state in the tests. During extension, the top cell A always
‘‘bulges out’’ first because its corresponding critical force for snap-
out deformation (F PA

e ) is lower than that of bottom cell B (F PB
e )

(Fig. 3), incurring a switch sequence of ‘1-1’→‘2-1’→‘2-2’. During
compression, the bottom cell B always ‘‘nests in’’ first because its
critical force for snap-in deformation (F PB

c ) is lower than that of top
cell A (F PA

c ), incurring a switch sequence of ‘2-2’→‘2-1’→‘1-1’. The
above switches are evidenced by the negative slopes in the force–
displacement curves (i.e., negative stiffness).

Despite exhibiting the same switching sequence between stable
states, the two sets of tests show a significant difference in terms of
the magnitudes of critical force for switching, especially between
the ‘2-1’ and ‘2-2’ stable states. The critical force corresponding
to the extensional ‘2-1’→‘2-2’ switch is considerably higher in
the film connected tests (i.e. F F

e > FR
e in Fig. 4); however, the

critical forces corresponding to the opposite ‘2-2’→‘2-1’ switch
are similar between the two types of inter-cellular connections.
Here the superscript ‘‘R’’ and ‘‘F’’ represent the rod-connected and
film-connected tests, respectively. More specifically, in the film-
connected dual cell chain, the ratio of the critical forces F F

e /F
F
c =

7.21,while in the rod-connected chain FR
e /F

R
c = 3.42.

Since the only difference between the two sets of tests is the
connection between the two bistable cells, the observed differ-
ences in critical forces imply that the film connection can sig-
nificantly increase the potential energy barrier for the extension
switch from ‘‘2-1’’ to ‘‘2-2’’, however, it does not impose any
notable changes to the energy barrier of the opposite compression
switch. This surprising asymmetric behavior necessitates an in-
depth examination on the underlying physical principles, which is
discussed in the following sections.

4. Origin of the asymmetric energy barriers and the potential
of achieving static diode effect

The two different types of inter-cellular connection generate
fundamentally different deformation mechanisms. With the rod
connection, the deformations of constituent bistable cells are inde-
pendent with respect to each other, as long as the internal forces
between them are balanced. However, with the film connection,
deformations of the unit cells are instead directly coupled due to a
kinematic constraint from the zig-zag connecting creases. Define
a ‘‘spine’’ angle ψ = 2 tan−1 (cos θ tan γI) corresponding to the
connecting creases (Fig. 5(a)). If the rigid-folding assumptions are
strictly followed (i.e. rigid origami facets and hinge-like creases),
the spine angle associated to the zig-zag crease should be identical
between the two cells during the entire folding process so that

ψA
= ψB. (5)

As a result, the folding angles of the two unit cells are not indepen-
dent but rather follow the relationship:

θA = ±θB. (6)

This relationship implies that folding of the ideally rigid dual-
cell chain possesses only one degree-of-freedom for folding, and
the corresponding admissible deformations are restricted to the
two paths shown in Fig. 5(b), where the total length of the dual-cell
chain Lt = LA + LB. The two unit cells have the same folding angle
on one path (‘‘a-b’’), or the opposite folding angles on the other
path (‘‘c-d’’). These two paths meet at the point of θA = θB = 0,
where the bottom sheets (i.e., Miura-ori sheets I) in both cells are
flat (position ‘‘o’’ in Fig. 5(b, c)).

However, close observations on the dual-cell prototypes sug-
gests that such ideal rigid-folding constraint cannot be fully
achieved due to fabrication errors and crease compliance. For a
more in-depth examination on the experiment observations, we
relax the constraint condition in Eq. (5) by allowing the spine
angles of the two cells to mismatch. In this way, the admissible
deformation of the dual cell chainwould be able to cover the entire
parallelogram in Fig. 5(b). However, such mismatch will induce
extra constraint energy

Π∗
=

1
2
k∗bI

(
ψA

− ψB)2, (7)

where k∗ is an equivalent stiffness per unit length associated to the
strength of the deformation coupling from the zig-zag connecting
creases. The total energy Π t of the dual cell chain is therefore the
combination of the elastic crease folding energyΠ (defined in Eq.
(1)) andΠ∗ so that

Π t
= ΠA

k +ΠB
k +Π∗. (8)

The effective magnitude of k∗ is related to many factors such as
the stacked origami construction method and the material used.
It is worth emphasizing that, the interest of this study is not on
the accurate calculation of k∗, but rather on how the changes in the
magnitude of k∗ can influence the overall elastic behaviors of the
dual-cell chain. In this way, we can obtain the physical insights on
how this kinematic constraint originated from folding induces the
asymmetric behaviors observed in the experiment.

We first study a special case that the effective stiffness k∗ is
zero, i.e., there is no constraint between the spine angles ψA and
ψB so that the two unit cells are simply connected in series. Such
case is consistent with the rod-connected tests. Fig. 6 plots the
energy landscape and the force–displacement curves based on (Eq.
(8)), where the designs of the two unit cells are the same as in
the case studies shown in Fig. 2. The energy contour map in Fig.
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Fig. 4. Tension and compression tests on dual-cell chain prototypes with different types of connection between the two bistable cells. (a) Force–displacement curves of the
two sets of tests based on displacement-controlled method. The solid and dashed curves are the averaged test results, and the shaded bands are the standard deviations.
Photos of the rod-connected test (b) and the film-connected test (c) shows three stable states (‘1-1’, ‘2-1’, and ‘2-2’).

Fig. 5. Kinematics of a dual-cell chain. (a) Assembling two unit cells together requires equal spine angles between these two:ψA
= ψB . (b) Due to this kinematic constraint,

folding configurations of the two cells are not independent, and they must lie on the two paths of admissible deformations in terms of their lengths. The parallelogram is
the range of admissible deformations without the kinematic constraints from the connecting creases; and the shaded regions are physically unachievable. (c) Illustrations
of different folding configurations along the two kinematic paths.

6(a) shows two ‘‘potential energy paths’’ found by identifying the
energy minima corresponding to a given total chain length Lt.
Among the two paths, one connects three stable states ‘1-1’, ‘2-1’,
and ‘2-2’. Therefore, if the dual-cell chain is initially settled at any
one of these three stable states, extending or compressing the dual-
cell chain can switch it to any other two states. The reaction forces
associated to such switches, calculated as the derivative of the
total energyΠ t with respect to the change in overall chain length
Lt, is shown in Fig. 6(c). This subplot represents the quasi-static
response of this dual-cell chain based on displacement control.
Fig. 6(d) represents the responses based on force control, showing
the chain deformation corresponding to prescribed external forces
as well as the multiple ‘‘snap-through’’ behaviors occurring at the
onset of elastic instability. Here, similar to the notation in exper-
iments, we denote Fe as the required extension force to achieve
snap-through from the ‘2-1’ state toward the ‘2-2’ state, and Fc
as the required compression force to achieve the opposite snap-
through. In this particular case, the energy path that includes the
‘1-2’ stable state is disconnected from others. Therefore, the dual-
cell chain cannot be extended or compressed to the ‘1-2’ state by
displacement control at the both ends,which is consistentwith our
experimental observation. To avoid unnecessary complexities, this
path will be omitted in the following study.

As the equivalent constraint stiffness k∗ increases, the energy
landscape of the dual cell chain changes accordingly (Fig. 7, first
two rows). If the constraint stiffness is large enough (e.g. k∗/kI =

320 in Fig. 7(c), kI is the crease torsional stiffness per unit length

of the Miura-ori sheet I), the multi-stability characteristics of the
overall dual-cell chain become fundamentally different: the origi-
nally continuous energy path that connects the three stable states
splits into two separate ones. Such a split occurs between the ‘2-1’
and ‘2-2’ states, and the two separated paths can overlapwithin the
same range of total chain length, thus creating the asymmetric en-
ergy barrier. Starting from the stable ‘2-1’ state, when the dual-cell
chain is monotonically extended by displacement control, it will
deform by following the energy path until the position ‘p’ shown
in Fig. 7(d), then it will jump to the other energy path at position
‘q’. During this jump, the internal folding configuration of the dual
cell chain and the reaction force will change significantly even
though the total chain length changes little. On the other hand,
if the dual-cell chain is compressed monotonically from the ‘2-2’
stable state, it will deform to a different position ‘r ’ before jumping
to ‘s’. Note that such jumps are achievedwith displacement control
rather than force control so they are different from the previously
discussed ‘‘snap-through’’ in Fig. 6(d). As the equivalent constraint
stiffness k∗ increases, the energy barrier of deforming from ‘2-
1’ stable state to ‘p’ configuration increases significantly (∆Ee in
Fig. 7(b) and (c), second row); however, the energy barrier of the
opposite switch from ‘2-2’ to ‘r ’ does not change as much (∆Ec
in Fig. 7(b) and (c)). Hence, when with a relatively large value
of k∗, the energy barrier of extension from states ‘2-1’ to ‘2-2’
significantly outstrips that of the opposite switch (i.e.∆Ee ≫ ∆Ec),
generating the strong asymmetry. Moreover, the energy barrier of
the switch between the ‘1-1’ and ‘2-1’ states does not change sig-
nificantly since the potential energy path between these two states
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Fig. 6. The energy landscape and corresponding reaction force of a sample dual-
cell chain assuming k∗ is zero. (a) Total energy contour, the darker the color the
lower the energy. Solid curves denote the potential energy paths, which are the
energy minima at a given total chain length; and the dashed line correspond to
energy maxima. The gray shaded regions are physically unachievable. (b) The total
energy landscape along the energy path that connects the three stable states.
(c) Reaction force–displacement relationship based on the displacement control
method. (d) Force–displacement relationship based on the force control method.
Note the contour legend of (a) also applies to Figs. 7 and 9.

remain continuous, and it remains significantly smaller than ∆Ee.
As a result of the aforementioned asymmetrical energy barriers,
the external force required to switch the dual cell chain from the
stable ‘2-1’ state toward ‘2-2’ state also increases significantly as
k∗ increases (Fe in the third row of Fig. 7). However, the required

compression force to switch the dual-cell chain from ‘2-2’ back
toward ‘2-1’ state does not increase as much and is much lower
than Fe (Fc in the third row of Fig. 7, Fe ≫ Fc).

In our experiment, the film-connection apply a stronger con-
straint on the relative folding between the two unit cells than the
rod-connection, which can be characterized as an increase of the
effective stiffness k∗. Therefore, the theoretical analyses above can
qualitatively explain the asymmetric behaviors observed in the ex-
periments, especially regarding the critical forces for compression
and extension switch. The consistency between experiment and
analysis also validates that the spine angles and the equivalent
constraint energy can effectively reveal the underlying physical
principles.

Our analytical investigation elucidates the importance of the
three-dimensional nature of origami folding. The kinematic con-
straint discussed in (Eqs. (5)–(7)) is a result of the coupling be-
tween unit cell length change in z-axis and the connecting creases
displacement along x and y-axes at the boundary between two
cells. Thus, the 3D deformation of the unit cells plays the key role
in achieving asymmetric energy barrier.

Another important observation from our analytical examina-
tion is the correlation between the asymmetric energy barriers and
the strength of the kinematic constraint from the connecting zig-
zag creases. As k∗increases, the ratio of both ∆Ee/∆Ec and Fe/Fc
increases (Fig. 8(a, b)). Note that if k∗ is sufficiently large, the
potential energy paths calculated by the equivalent energy model
(Eq. (8)) will converge to the deformation paths based on the ideal
rigid-folding assumption (i.e. ψA

= ψB). One can thus deduce
that a sufficiently strong kinematic constraint between the two
adjacent unit cells can effectively create a diode effect, so that the
dual cell chain can be easily compressed via switching from ‘2-2’ to
‘2-1’ stable states, but demand a large force to be extended by the
opposite switch (Fig. 8(b)).

Fig. 7. The energy contours (first row), energy landscapes (second row), and the corresponding reaction forces (third row) change fundamentally with the increase of
effective constraint stiffness k∗: (a) k∗/kI = 40, (b) k∗/kI = 80, and (c) k∗/kI = 320. (d) Blow-up view of the energy landscapes in (c) that the potential energy path between
‘2-1’ and ‘2-2’ splits and overlaps.
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Fig. 8. Potentials to achieve a static mechanical diode effect. (a) The energy paths corresponding to increasingly large k∗ values: k∗/kI = 800 and k∗/kI = 4 × 104 . Solid
lines are potential energy paths corresponding to the energy minima. The dash-dotted lines are the deformation path based on ideal-rigid folding assumption (ψA

= ψB ,
Fig. 4(b)). (b): Relationships between the critical forces (Fe , Fc ) and strength of the folding induced kinematic constraints (k∗). Results are from the equivalent model defined
by Eq. (8). Fe increases monotonically with k∗ while Fc remains almost unchanged.

Harnessing nonlinear elastic properties to achieve diode-like
mechanical behaviors is an increasingly important subject of
research [58–61]. In particular, it has been shown that multi-
stable structures and materials with carefully designed micro-
architectures can achieve unidirectional acoustic [62] and elas-
tic [27,28]wave propagation. However, previous studies have been
focusing on dynamic responses involving wave propagation, while
static diode effect is still a nascent topic [63]. The reported asym-
metric energy barriers from the multi-stable origami provides a
pathway to achieve strong and static diode effect. This effect can
rectify reciprocal external forces into unidirectional deformations,
which can open new possibilities for developing multi-functional
metamaterials and structures.

5. Further case studies

Results from the previous sections are based on one particular
example of dual-cell chain design where θAo = 60◦ and θBo = −60◦

so that FA
e < FB

e and FA
c > FB

c . Choosing different origami designs
in terms of the stress-free folding angles, crease stiffness, and
Miura-ori geometry can generate fundamentally different energy
contours and force–displacement relationships, yet the asymmet-
ric energy barriers and static mechanical diode effect can still be
evident. For example, one can choose the stress free folding angles
of the two cells to be θAo = −60◦ and θBo = −70◦ so that there are
still four stable states but FA

c < FB
c . Such a difference in the critical

force relationships can lead to a different switching sequence.
The energy contours, energy landscapes, and force–displacement
relationship of this dual cell chain based on different k∗ values are
shown in Fig. 9. When k∗

= 0, there exist two potential energy
paths, each connecting two stable states (Fig. 9(a)). Therefore, as
the dual-cell chain ismonotonically extended or compressed based
on displacement control, it will jump between the two energy
paths. For example, starting from the ‘1-1’ state, monotonically
extending the dual-cell chain will make it follow the path of
‘1-1’→ ‘2-1’→p →q →‘2-2’. On the other hand, monotonically
compressing the dual-cell chain from the ‘2-2’ state will make
it follow the path of ‘2-2’→ ‘1-2’→r →s →‘1-1’ (first two rows
of Fig. 9(a)). As k∗ increases to a critical value, the energy path
connecting the ‘1-2’ and ‘2-2’ states splits into two separate ones,
and the jump between different potential energy paths become
quite complex. For example, when k∗/kI = 320 as in Fig. 9(d),
monotonic extension from the ‘1-1’ state will follow the path of
‘1-1’→ ‘2-1’→p →q →‘2-2’; monotonic extension from the ‘1-2’
state will follow the path of ‘1-2’→p∗

→q →‘2-2’; and monotonic
compression from the ‘2-2’ state will follow the path of ‘2-2’→u
→v →r →s →‘1-1’, where the ‘1-2’ state will be skipped.

Nonetheless, as k∗increases, the required extension force to
switch the dual-cell chain from either ‘1-2’ or ‘2-1’ state to the ‘2-2’
state increases significantly, while the compression force required
for the opposite switches does not increase much so that Fe1 ≫

Fc, Fe2 ≫ Fc (third row of Fig. 9). Here Fe1 corresponds to the
required extension force for extensional ‘2-1’ → ‘2-2’ switch, and
Fe2 corresponds to the required extension force for extensional ‘1-
2’→ ‘2-2’ switch. Thus the newly uncovered asymmetric energy
barrier and the static diode effects at these two stable states are
still evident even with the different dual-cell chain design.

6. Summary and discussion

This study reports and examines a folding-induced, asymmetric
energy barrier in a multi-stable stacked origami cellular solid.
The origami unit cell – consisting of two Miura-ori sheets with
different geometric designs and crease stiffness – can be bistable
due to the nonlinear relationships between the crease rotation
and the overall folding. These bistable cells can be assembled into
a cellular solid that possesses multiple stable states with differ-
ent internal folding configurations. The zig-zag shaped connect-
ing creases between adjacent unit cells can couple their three-
dimensional folding deformations, imparting a unique kinematic
constraint that does not exist in the lower dimensional bistable
mechanisms. Experiment observation on dual-cell chains reveal
that this kinematic constraint can increase the energy barrier of
the extension switch between certain stable states without signif-
icantly changing the barrier of the opposite compression switch,
incurring a unique asymmetry. We formulate an analytical model
to examine the underlying principles by introducing equivalent
constraint stiffness, which is associated with the spine angle mis-
match at the connecting creases between two adjacent cells. Our
analyses revealed that a sufficiently large constraint stiffness can
fundamentally alter the energy landscape of the dual cell chain
and introduce the asymmetric energy barrier. Analytical results
also imply that, via strengthening the kinematic constraint, we
can achieve a static mechanical diode effect. Therefore, if many
origami cells are assembled into a cellular solid, it could be easily
compressed via switching between certain stable states, but de-
mand a large external force to be extended. This kind of static diode
effect can be harnessed formany novel applications such asmotion
rectifying and wave propagation control.
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