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Sequential Therapeutic Response Modeling for
Tumor Treatment Using Computational Hybrid

Control Systems Approach
Wasiu Opeyemi Oduola, Xiangfang Li, Chang Duan, Lijun Qian, and Edward R. Dougherty

Abstract—Objective: Tumorigenesis is due to uncontrolled cell
division arising from mutations and alterations in the prolif-
erative controls of the cell population. The fight against tumor
growth and development has often relied on combination therapy
which has been acclaimed as one of the main standards of care in
cancer therapeutics and prevention of drug-related resistances.
The toxicity of the combinatorial drugs raises a significant
concern whenever patients take two or more drugs concurrently
at the maximum tolerated dose. A promising solution in tumor
treatment involves the administration of the drugs in an alter-
nating or sequential fashion rather than a simultaneous manner.
In this work, we investigate how feasible such an approach is
from a mathematical perspective and propose a switched hybrid
control systems framework.
Methods: We explore the response of tumor cells dynamics
to sequential drugs administration with the aid of a time-
dependent switching strategy. A transit compartmentalized model
is employed to describe the tumor cells progression to death.
Results: The design of the time-based drug switching logic
ensures the proliferating tumor cells are repressed.
Conclusions: Simulation results are provided using the tumor
growth dynamics with sequential drugs intake to demonstrate
the effectiveness of the proposed method in reducing the tumor
size.
Significance: This work is the first attempt to provide a switched
hybrid control systems framework on sequential drug adminis-
tration to biomedical researchers and clinicians.
Index Terms— Cancer Treatment, Combination Therapy, Math-
ematical Modeling, Sequential Drug Intake, Switched Hybrid
Control System

I. INTRODUCTION

Tumor growth and development is due to uncontrolled
cell division arising from mutations and alterations in the
proliferative controls and regulation mechanisms of the cell
population. The tumor cells may grow uncontrollably to a
size of about one million cells and they may metastasize
by invading the surrounding tissues. Several cancer treatment
methods are based on combination therapy in which patients
take two or more drugs that target the tumor cells. The
mechanism of action of those drugs is such that they function
in a cooperative fashion to interrupt specific phase of the cell
reproduction cycle [1]. Additionally, it is a widespread belief

W. O. Oduola, X. L. Li, L. Qian are with the Dept. of ECE, Prairie View
A&M University, Email: woduola, xili, liqian@pvamu.edu; C. Duan is with
the Dept. of ME, Prairie View A&M University, Email: chduan@pvamu.edu;
E. R. Dougherty is with the Dept. of ECE, Texas A&M University, Email:
edward@ece.tamu.edu

This research work is supported by the US National Science Foundation
award 1238918, 1464387, 1736196, and the Texas A&M University System
Chancellor’s Research Initiative (CRI).

that combinatorial targeted therapy is one of the most effective
treatment options for tackling several solid tumors. Targeted
drug therapeutics in the treatment of tumors has substantially
improved the patients’ survival rates, but the additive toxicity
of combination drugs could be counterproductive if not care-
fully taken into consideration [2]. Hence, a crucial step in the
direction of an effective and personalized cancer treatment is
to comprehend the effects of drug combinations on the tumor
growth dynamics and design the drug administration to reduce
toxicity.

Toxicity is largely a function of reduced immune system
performances of the patients, bodyweight losses, pains and
some other side-effects encountered by patients. Drug toxicity
is one of the main concerns whenever combinations of drug
agents are administered concurrently at the maximum tolerated
dose (MTD) [3]. For example, Metastatic Renal Cell Carci-
noma (mRCC) therapies are focusing on agents that block tu-
mor and vascular growth pathway [4]. In such case, the cancer
drug Sunitinib is directed to inhibit the vascular endothelial
growth factor receptor (VEGFr) while Temsirolimus blocks
the mammalian target of rapamycin (mTOR). Temsirolimus
and Sunitinib are agents that are certified by the US Food and
Drug Administration (USFDA) for the treatment of mRCC.
However, toxicity increases whenever patients take such drugs
at the same time. The hope is that such drugs can be safely
taken sequentially at full doses with reduced toxicity [4]. In
this work, we attempt to investigate the problem of sequential
drug administration from a mathematical modeling point of
view, using switched hybrid system control modeling frame-
work.

Mathematical models can help in enhancing the effective-
ness of combinatorial targeted therapy and maintaining toler-
able toxicity levels by providing a systematic way to design
drug treatment schedules. Thus, they can result in intuitive
and insightful mechanisms on how to efficaciously reduce the
tumor size while limiting the toxicity to the population of nor-
mal cells. Several computational and mathematical modeling
frameworks have been proposed in studying the growth of
tumor cells and the corresponding response of tumor cells to
different types of treatment. Such models have been used to
study tumor growth and tumor-induced neovascularization [5],
effect of tumors’ micro-environment on tumor development
[6] and the impact of the heterogeneity of metabolism on
tumor growth, progressions and effects of treatments [7].
Continuous and discrete mathematical models have been used
to investigate tumor angiogenesis and vessel-based networks
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Fig. 1. Predictive therapeutic system modeling

[8]. One of the main objectives of these models is to provide
a way to develop new prediction on future experimental
guidelines, precision medicine and developing new therapeutic
methods to block invasive tumor cells [6]. They are equally
vital to the understanding of the mechanisms of drug actions
and designing better and effective drugs [2].

The overall iterative steps towards an effective and mathe-
matically predictive sequential therapeutic modeling is shown
in Fig. 1. The prior knowledge of the system will point towards
the appropriate mathematical model that can capture the se-
quential drug design paradigm with respect to the available
biological information. There may be need to estimate the
parameters of the chosen mathematical model and to quantify
the efficacy and toxicity associated with the treatment plan.
Validation of the model is based on further experimental or
clinical data that helps in checking the prediction accuracy and
performance of the designed therapeutic schedule. This study
examines a mathematical modeling framework that focuses on
the response of proliferating tumor cells to sequential drugs
administration by casting the problem as a switched hybrid
control system. The proposed model is analyzed using the
time-dependent switching method. The switching function is
designed such that it guarantees the stability of the system and
the reduction of proliferating tumor cells when the drugs are
administered sequentially.

The tumor model and problem formulation is detailed in
Section II. Section III discusses the time-dependent drug
switching mechanism. Simulation case studies are presented
in Section IV. Section V contains additional discussion and
Section VI provides the conclusion of the paper.

II. TUMOR MODELING WITH SEQUENTIAL DRUG
TREATMENT

The computational systems biology modeling framework
is applicable in studying the response of tumor cells to se-
quential drug treatment. One approach involves using dynamic
switched hybrid system modeling to study the drug anti-
tumor effects from a sequential drug treatment perspective.
The process starts with the generation of a quantitative model

Fig. 2. The sequential drug administration paradigm

of biological systems, then by integrating pharmacology-
related data pertinent to the target systems, one can build a
new computational hybrid system modeling structure under
sequential drug perturbations. The sequential drug intake is
such that the patient takes one drug for a certain period of
time followed by a period of rest before switching to the next
drug and another period of rest and so on as shown in Fig. 2.
This is to ensure that the toxicities of the drugs are tolerable
and not adding up.

The traditional way to calculate anticancer drug dosage is by
a normalization of the dose to body surface area (BSA), which
is usually calculated from the patient’s weight and height [9];
however, this has been shown to be inadequate [10]. For
instance, BSA-based dosing is linked with significant variabil-
ity in plasma levels by as high as 100 folds [10], and such
variabilities are a main contributor to therapeutic failure and
toxicity [9]. The problem becomes more pronounced when
multiple drugs are taken simultaneously at the MTD. Thus,
a systematic approach that facilitates quantitative thinking to
sequential drug treatment is required. It is our belief that with
the aid of the modeling structure proposed in this paper and a
refined model by iterative processes with the experimentalists
(See Fig. 1), the proposed methodology is potentially able to
provide better recommendation for sequential drug adminis-
tration in clinical practice.

A. Tumor Growth Modeling with Switched Systems

Tumor study has provided a fertile foundation for math-
ematical models. Several computational tumor growth mod-
eling frameworks that reflect various paradigms have been
reported in the body of knowledge. Tumor growth curves are
described using empirical models that employ mathematical
equations but they lack thorough mechanistic descriptions
of the hidden physiological process. Originally, mathematical
models were adapted in conceptualizing the simple exponen-
tial tumor growth and development [11]. Afterwards, sigmoid-
based formalisms such as Gompertz, Verhulst and logistic
mathematical models were used for describing the reduced
growth in later stages after the tumor cells outgrow their blood
supply, thereby inducing central necrosis [12]. A shortcoming
of these classes of mathematical models is the associated
difficulty in predicting the modification to the tumor growth
dynamics under drug perturbations.

On the other hand, functional modeling frameworks are
focused on understanding biological processes underlying the
growth of tumor cells using mechanistic descriptions. Such
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modeling approaches need a number of assumptions that
involve cell cycle kinetics (quiescent vs. proliferating cells)
and biochemical processes, like those based on immunological
and/or anti-angiogenic responses [13]. Due to the biological
complexity being captured, functional models are associated
with a much higher number of model parameters in compari-
son with empirical models. The problem is even more compli-
cated when considering the treatment effect with anti-cancer
drugs because of the incomplete knowledge of the mechanisms
of drug-agent action in vivo. Thus, it is usually problematic
to maintain an appropriate balance between functional and
empirical models.

The model in this paper is built on a system of ordinary
differential equations (ODEs) that link the sequential treatment
to the tumor growth model using switched control system.
The tumor growth without drug treatment is expressed by an
exponential growth phase followed by a linear growth phase.
Since the proliferating cells make up a large portion of the
neoplastic tissue, whenever a drug is administered, the rate of
tumor growth reduces proportionally to both the number of
proliferating tumor cells and the concentration of drugs [14],
[15]. This study therefore proposes a model that dynamically
links tumor progression and drug effect, whereby switched
hybrid control system is used in accommodating tumor pro-
gression and sequential therapeutic response. We specifically
modify the tumor growth modeling approach proposed in [15],
[16] to switched hybrid control system model in order to
account for the tumor growth dynamics at various phases
and enhance it with the sequential drug perturbation model
shown in Fig. 2. The biological setup is similar to those
found in [15], [16]. The perturbed and unperturbed growth
modeling frameworks are developed in modeling the dynamics
of tumor growth with sequential drug treatment and without
treatment.

B. Unperturbed Tumor Growth Model - Without Drug Intake

In the case of unperturbed growth model, tumor growth
modeling is formulated based on an exponential growth stage
followed by a linear growth stage. We propose a switched
hybrid control system modeling approach to account for the
dynamics of tumor growth in different phases. The model is
as follows:

ẇu = αwus
−(wu, θw) + βs+(wu, θw) (1)

where wu represents the unperturbed tumor weight, α and
β are both model parameters that define the rates of growth
exponentially and linearly. s+(.) denotes the unit step function
that is expressed as follows:

s+(x, θ) =

{
0 x < θ

1 x ≥ θ , (2)

s−(.) = 1 - s+(.), and θw is the threshold value that cor-
responds to the instance at which the tumor growth dynamics
switches from exponential to linear growth. The continuity of
the differentiation in equation (1) can be guaranteed at θw
by setting θw = β/α. Due to recent advancement in tumor
growth models, the tumor growth features might entirely differ

in different situations. The modeling framework proposed
based on switched hybrid control system can be extended to
incorporate more complex scenarios, for instance, more growth
phases with varying growth rates.

C. Perturbed Tumor Growth Model - With Drug Intake

In the unperturbed modeling dynamics, the assumption is
that all tumor cells are proliferating. In the perturbed model,
the expectation is that the tumor cells that are being affected
by the drugs stop proliferating and go through various phases
distinguished by the progressive degree of damages and they
die eventually [14], [16]. With sequential drug treatment, the
following transit compartmentalized model is employed to
describe the cells progression to death. For two drugs taken
sequentially, i = {1, 2}:

ẋ1 = αix1s
−(wp, θw) + βi

x1
wp
s+(wp, θw)− γui x1 (3)

ẋ2 = γui x1 − k1x2 (4)

ẋ3 = k1(x2 − x3) (5)

... (6)

ẋn = k1(xn−1 − xn) (7)

wp =
n∑
j=1

xj (8)

x1(0) = w0 (9)

x2(0) = x3(0) = . . . xn(0) = 0 (10)

where w0 denotes the tumor weight at the inoculation time
(t = 0) while wp denotes the total tumor weight, which is the
addition of cells in the different phases. x1 denotes the fraction
of proliferating tumor cells within the total tumor weight
wp with sequential drug treatment. x1(t) will pass through
exponential growth followed by linear growth in identical
manner to the unperturbed tumor growth model. αi and βi
represent the respective growth parameters of the model. Since
not all the tumor cells are proliferating, the rate of linear
growth is reduced by the ratio of the proliferation cells to
the total tumor cells x1/wp. Where γui , i = {1, 2}, represents
the drug effect coefficients. It is assumed that the drugs target
the proliferating cells. The damaged cells go through n phases
distinguished by the progressive degree of damages with rate
constant k1. The weight of tumor cells that die each time is
denoted by k1xn.

It is observed that the changes in the number of all the cells
with drug treatment is dominated by the changes in the number
of proliferating cells. Hence, one can focus the analysis on
the number of proliferating cells. The growth stage is thus
decoupled into two phases based on the weight of tumor [14],
[16]. Whenever the tumor weight is less than the threshold
value, x1 < θw, the system dynamics with sequential drug
intake, i = {1, 2}, is as given in equation (11). For instance,
suppose that wp < θw, then the following are the matrices for
sequential drug treatment when the first and second drugs are
respectively administered sequentially:
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ẋ=Aix, i=1,2. (11)

where

A1=











α1s(wp,θw)+β1
s+(wp,θw)

wp
γu1 0 0 ... 0

γu1 k1 0 ... 0
0 k1 k1 ... 0
... 0

...
... 0

0 0 0 k1 k1











x=










x1
x2
x3
...
xn










A2=











α2s(wp,θw)+β2
s+(wp,θw)

wp
γu2 0 0 ... 0

γu2 k1 0 ... 0
0 k1 k1 ... 0
... 0

...
... 0

0 0 0 k1 k1











x=










x1
x2
x3
...
xn










A1=










α1−γ
u
1 0 0 ... 0

γu1 −k1 0 ... 0
0 k1 −k1 ... 0
... 0

...
... 0

0 0 0 k1 −k1










,

A2=










α2−γ
u
2 0 0 ... 0

γu2 −k1 0 ... 0
0 k1 −k1 ... 0
... 0

...
... 0

0 0 0 k1 −k1










.

Comment1.Itcanbeobservedthattheeigenvaluesofmatrix
Ai,i={1,2},arethediagonalterms,αi−γ

u
i,−k1,−k1,

...,−k1.Sincek1isapositiveconstant,αi−γ
u
icompletely

determinesthesolution.Thus,foreffectivedrugs,αi<γ
u
i,

andmatrixAihasnegativeeigenvalues.Thisimpliesthatthe
numberofcellsinallthephaseswillreduce.Ontheother
hand,wheneverαi>γ

u
i,theveryfirsteigenvalueofAiwill

bepositiveandthesolutionswillbeexponentiallygrowing.
Thus,thenumberofcellsinallthephaseswillbedependent
uponthedynamicsoftheproliferatingcellsx1.

III.TIME-DRIVENSWITCHINGDESIGNANDSTABILITY
ANALYSISFORTUMORGROWTHDYNAMICSWITH

SEQUENTIALDRUGADMINISTRATION

Thissectionfocusesondesigningtheswitchingofthe
drugstobeadministeredsequentiallytotargetandrepressthe
proliferatingtumorcells.Thisisotherwiseknownasglobal
asymptoticstability.Switchedhybridsystemsarecomposed
ofdifferenceequationsordifferentialequationsandacorre-
spondingrulethatcapturestheswitchingmechanismbetween
them[17],[18].Switchedsystemscouldconsistofstablesub-
systems[19],unstablesub-systems[20]ora mixofboth
unstableandstablesub-systems[21].Thestabilityanalysis
andswitchingdesignforeachcaseisdifferent.Theswitching
approachemployedinthisstudyisknownasthetime-based
switchingmechanisminwhichallthesub-systemsorsystem
modesarestablebasedonthematricesofthetumorgrowth
dynamics.

Comment2. Fortumorgrowthdynamicswithorwithout
drugintake,stabilityofthesub-systemsiscontingentupon
theassumptionthat,foreachsub-system,thoughtheweight
oftheproliferatingcellscouldbelargeyetitdoesnotgrow
outofboundastimet→ ∞,duetospaceandnutrition
limitations.

A.Time-drivenSwitchingDesignforTumorGrowthDynamics

Fortumorgrowthdynamicswithsequential(orswitched)
drugsintakeandhavingallthesub-systemsasbeingasymp-
toticallystable,theapproachin[19]ismodifiedtoaidthe
analysisoftheswitchinglogicdesignandasymptoticstability
ofsuchsystems.Geromeletal[19]investigatedthestability
analysisforcontinuous-timeswitchedlinearsystemswithsta-
blesub-systemsbyderivingtheminimumdwell-timeneeded
forthesystem’sstability.Theanalysisisbasedontheexistence
ofaclassofquadraticLyapunovfunctionthatisnotrequired
todecreaseuniformlyateachswitchinginstantasacondition
foritsstability. Werepresentpiece-wiseLyapunovfunction
asVσ(x).Ateveryswitchinginstant,toboundtheincrement
oftheLyapunovfunction,itisrequiredthat,Vi(x)≤µVj(x)
whereµ>1andi,jaresub-system’sindexbeforeandafter
theswitching.

Forswitchedhybridsystemsinwhichthesub-systemsare
stable,thedwelltimeconstraintdependsontheideathatatthe
instantofswitching,thepotentialincrementsoftheLyapunov
functionsarebeingcompensatedforbythedecrementofthe
Lyapunovfunctionswithinthedwelltime.Thereisequally
therelaxedconditionsontheLyapunovfunctionsthatatevery
switchinginstanttk,thesequenceV(x(tk))fork=0,...,
∞,convergesuniformlytozero.

Comment3. TheLyapunovfunctionisusedtoderivethe
condition(s)whichensuresthatacertaindrugintakeinterval
orthedrugdwell-timeisquiteeffectivetodrivethetumor
sizetoadesiredweight,Thatis,todrivethetumorgrowth
dynamicstoadesiredsteadystate.

Consideringthefollowingswitchedclosedlooptumor
growthsystem,

ẋ(t)=(A+Bησ(t))x(t)+Cσ(t)ν(t) (12)
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The state is represented by x ∈ Rn and ν(t) is the outward
disturbance. σ(t) is the time-based switching rule and it is de-
pendent on the presence or absence of the drug of interest and
therefore selects the appropriate sub-system’s sequence from
among the available Np defined as {Ai, Bi, Ci}, i ∈ I[1, Np].
The sub-systems are assumed to be stable.

The paper uses the following standard notation: The set of
real m×n matrix is Rm×n, Sn×n represents real, symmetric
n× n matrix, and Sn×n+ denotes positive-definite matrices. I
denotes the identity matrix with the appropriate dimensions.
The transpose of a vector or matrix is represented as (’).
For integers k1, k2, with k1 < k2, we express I[k1, k2] =
{k1, k1 + 1, · · · , k2}.

Definition 1. The switching rule σ is said to have a dwell
time (DT) τD if tk+1 − tk ≥ τD, ∀k where tk, tk+1 denotes
the successive instants of switching.

Comment 4. The dwell time can be interpreted as the smallest
interval of time between two successive drug administrations
that ensures the tumor weight ultimately decays to a desired
equilibrium weight when the drugs are administered sequen-
tially.

B. Stability Analysis Based on Time-Driven Switching

The multiple quadratic Lyapunov function is:

Vi(x) := xTPiqx, iq ∈ I[1, Np], (13)

where Piq > 0. The active sub-system’s index is iq .
Each sub-system has a Lyapunov function associated with it.
The MLF must form a converging sequence to guarantee the
stability of the switched system.

There has to be restrictions on the switching signal σ(t)
when switching between the sub-systems, to ensure the sta-
bility of the system. Fig. 3(a) illustrates that the stability
of the underlying sub-systems does not guarantee that the
switched system will be stable unless with a carefully designed
switching sequence that ensures the MLF Vi(x) converges
uniformly to zero or forms a decreasing sequence. Fig. 3(b)
shows that it is possible to have unstable sub-systems with a
switching signal that guarantees the stability of the switched
system. Thus, the stability of switched systems is heavily
dependent on the dynamics of each of its sub-systems as well
as the nature of the switching signals.

The objective of the proposed drug switching mechanism
is to obtain the minimum dwell time T ∗ > 0 that ensures
the asymptotic stability of the equilibrium point of the tumor
growth system in equation (12). In other words, asymptotic
stability is guaranteed if σ(t) is not changed for a period
of time t ≥ T ∗. The following proposition is modified from
Geromel et al [19] that provides a theorem characterizing an
upper bound on T ∗ as a feasible solution to the problem.

Proposition 1. [19]. Assume that for some T > 0, there exists
positive-definite matrix Pi ∈ Sn×n+ , i ∈ I[1, Np] such that

(Ai +Biησ)
′Pi + Pi(Ai +Biησ) < 0 ∀i = 1, ..., Np (14)

Fig. 3. Vector field trajectory for different switching sequences based on
the multiple Lyapunov function (MLF). (a) Switching between two stable
subsystems resulting in an overall unstable system because the MLF Vi(x)
forms a diverging sequence (b) Switching between two unstable subsystems
resulting in a stable system because the MLF Vi(x) converges uniformly to
zero or forms a decreasing sequence

e(Ai+Biησ)
′TPje

(Ai+Biησ)T − Pi < 0 ∀i 6= j = 1, ..., Np
(15)

Hence in accordance with the dwell-time switching mech-
anism σ(t) with tk+1 − tk ≥ T , the switched system (12) is
said to be globally asymptotically stable.

The proof is provided in appendix A. An upper bound for
the minimum dwell-time T ∗ is determined from the optimum
solution to the optimization problem [19]:

T ∗ = inf
T>0, P1>0, . . ., PNp>0

{ T :

(Ai +Biησ)
′Pi + Pi(Ai +Biησ) < 0,

e(Ai+Biησ)
′TPje

(Ai+Biησ)T − Pi < 0 ∀i 6= j = 1, ..., Np}

(16)

Comment 5. The equations (14), (15) and (16) provide
the constraints on the modeling parameters of the tumor
growth dynamics as well as the smallest drug administration
interval (dwell-time) that guarantees the proliferating cells are
repressed as time t → ∞. This implies the conditions for
which the total tumor weight is reduced to a certain weight
with a particular sequential drug administration schedule.

Comment 6. The mathematical framework provided assumes
that a time factor (alternately or sequentially) is critical in
allowing the body to react appropriately to toxicity. This is
because a patient typically requires a few days of rest between
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cancer drugs. But the drug effects are usually cumulative (for
skin, kidney, liver, heart, brain etc.) depending on the drugs
administered.

IV. SIMULATION CASE STUDIES

We examine simulation of the tumor model with sequential
drug intake employing a sequential administration of two
drugs using MATLAB/SIMULINK based on the tumor growth
dynamics provided in section II and the analytical results
obtained in section III.

A. Results for Tumor Models with Sequential Drug Intake

To validate the proposed time-based switching algorithm
on the sequential drug treatment for tumor cells, we carry
out numerical simulation using estimated and pre-defined
parameters similar to those in [16]. The numerical results
are focused on the detailed transit compartment model given
from Eqs. (3) to (7). The cells that are affected by action of
the sequential drugs stop proliferating and go through four
different phases, x1, x2, x3 and x4 that are distinguished by
progressive degrees of damages. x1 represents the fraction of
proliferation tumor cells affected by the sequential drugs. wp
denotes the total tumor weight. The model parameters [16]
are αi = 1.0, βi = 0.2, k1 = 1.0, θw = 40, x1(0) = w0,
x2(0) = x3(0) = . . . xn(0) = 0.

Fig. 4(a) shows the drug switching signal. A, B, C, D are
the first four drug switching points and Fig. 4(b) depicts the
quantitative characterization of the decay of tumor cells under
sequential drug intake. The figure also shows some of the
sequential drug switching points A, B, C and D similar to
Fig. 4(a). The points indicate the time instances at which
the treatment changes from the first drug to the second drug
and vice versa. The tumor cells initially grow exponentially,
then the weight of the proliferating tumor cells declines
progressively as the drugs are taken sequentially. The change
in number of proliferating cells x1 follows identical pattern
with the change of the total tumor weight and both group
of cells are reduced effectively. The sequential drug intake
also reduced the tumor size effectively to approximately 40%
after about ten switching instances between the two drugs. It
is observed that the entire tumor begins to grow slower and
ultimately decreased and reached steady tumor weight.

Fig. 4(c) and Fig. 5 respectively show the quantitative
characterization of the decay of tumor cells under simulta-
neous drug intake and tumor weight comparison between the
sequential and simultaneous drug intake methods. The obser-
vation is that even though the sequential drug intake option
reduces toxicity, it takes a little longer than the simultaneous
counterpart to reduce the tumor weight to a given percentage.
This appears to be a tradeoff between toxicity reduction and
length of treatment time.

V. FURTHER DISCUSSION

The difficulty usually encountered in cancer treatment is due
to the heterogeneity of the cell population, their complexity
and the microenvironment. It also makes it difficult to translate
research advancements in molecular biology and cancer cell

(a)

(b)

(c)

Fig. 4. The drug switching function and response of tumor cells under
sequential and simultaneous drug intake. (a) The drug switching signal, e.g.,
A, B, C , D are the first four switching points. (b) Quantitative characterization
of the decay of tumor cells under sequential drug intake and the corresponding
switching points A, B, C, D. (c) Quantitative characterization of the decay of
tumor cells under simultaneous drug intake.
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Fig. 5. Quantitative characterization of the response of tumor cells by
comparing sequential versus simultaneous drug intake

biology into viable cancer treatments. Thus, there is a need for
multidisciplinary efforts that can integrate drug information
with drug therapeutics response models and cellular and
molecular biological information using computational systems
biology framework and experimental methodologies. This will
include efficient mathematical modeling at the drug develop-
ment phase, integrating pre-clinical and clinical information,
effective in silico modeling approach, translation to clinical
practice, collaboration among medical, science, engineering
professionals and other related fields. Computational systems
biology has emerged as a viable tool in modeling drug
therapeutics and cancer biology. This tool helps to functionally
understand the interactions existing between the diseases and
the drugs and it signals a switch from the traditional “black
box” methodology to a more rational design and functional
approach. This work is a step in the direction of integrating
drug information with drug therapeutics response models and
cellular and molecular biological information using computa-
tional systems biology framework. The mathematical model
proposed in this study could accelerate the design of better
sequential treatment options that drive the weight of the tumor
cells to a more desirable size.

First line therapeutics is often able to reduce the tumor
size by a certain percentage but the accompanying cells
death create a fierce evolutionary dynamics used in select-
ing the resistant clones. Second to fourth line therapeutics
are usually ineffective, thus tumor progression happens very
rapidly because the resistance mechanism of the cells broad-
ens in a progressive manner [22]. Hence the importance of
an effective treatment regimen cannot be overemphasized.
There is the need to design optimal treatment schedules that
can limit toxicity, enhance clinical trials pathway for new
anti-cancer agents and accelerate progress towards precision
healthcare [23], [24]. As a consequence of the increase in
toxicity level associated with combination therapies, clinical
trials and studies that focus on sequential drug administration

are being investigated by various research teams. One of the
key findings from the clinical trials is that toxicity (at the
MTD) is less when the cancer drugs are taken sequentially
as contrasted with simultaneous or concomitant intake of the
anti-cancer drugs [25]–[27]. Therefore, sequential treatment
methods are potentially lowering toxicity on one hand, and
providing a way to optimally deliver single-drug therapy and
improve the quality of patient’s life [28]. A good review
of clinical trials providing a comparison between sequential
regimen and combination therapy is presented by Miles et
al [28]. Additional reviews of clinical trials and pre-clinical
evidences supporting each approach are provided by Felici et
al [29].

The growth of tumor cells are usually modeled using dis-
crete, continuous or hybrid computational modeling method-
ologies. The continuous modeling frameworks are the obvi-
ously appropriate candidate for modeling large-scale systems.
Since they have the ability to describe large-scale behaviors of
the growth and development of tumor cells at a very little com-
putation cost; but the main shortcoming is that they tradeoff
the resolutions of individual cells, especially when attribute of
the cell varies over small spatial and temporal scales. Discrete
modeling methods provide spatial and temporal depictions of
individual cells in addition to the cell to cell relations. A
major shortcoming of discrete modeling framework is that
the computational cost required is directly proportional to the
number of cells under consideration. This limitation restricts
such modeling framework to cases where the number of cells
is very small. Hybrid modeling methods exploit the merits of
both discrete and continuous modeling methods. They have
the ability to capture the stochasticity that may be associated
with the system being considered. They have a wide appeal
for modeling tumor growth dynamics under drug perturbations
since the dynamics of biological systems are typically non-
linear, have highly varying regulatory constraints, and maintain
a broad range of control mechanisms. In the tumor growth
dynamics example, we utilized the widely accepted ODE
modeling frameworks which are commonly used in modeling
tumors.

Combinatorial therapeutics is widely believed to be the
standard of care in preventing the mutations of genes and
resistance of drugs. The multiple drugs administered in at-
tacking the tumor cells function synergistically in disrupt-
ing specific stages of the cell reproduction cycles [1]. The
merits of this treatment type includes the enhancement of
patient’s compliance resulting from the reduced number of
administrations, reduction in drugs doses with accompanying
decrease in toxicity to healthy tissues, synergy or additive
impacts of drug interaction and overcoming or delaying the
resistances due to multiple drugs. The strength of combination
therapy one of the motivations behind various combinatorial
therapeutic research studies [1]. They equally inspired us to
investigate such treatment paradigm mathematically for tumor
cells and from a sequential drug administration point of view.
The control theory analytics presented in this paper provides
a computational tool with potential applications to sequential
treatment for variety of tumor types as a means to reduced
toxicity and enhancement of patients’ quality of life.
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A couple of challenges are associated with the proposed
modeling methodology. The first is that the proposed model
is general and not specific to a particular type of tumor. This
may create difficulty in parameterization and validation with
experimental data obtained from distinct tumor cells. In spite
of this challenge, the modeling framework has the potential
to improve the quality of cancer therapeutics that may be
geared towards personalized medicine. Another issue is that
assuming that the effects of the drugs will not overlap may be
unrealistic [1]. A good understanding of the drugs’ biological
half-life may assist in a schedule of the sequential drug intake
in such a way that the toxic effects of one drug would have
reduced substantially before administering the second drug.
For example, a traditional tyrosine kinase inhibitor typically
has a prolonged half life that causes a continuous inhibition of
the targets and this must be taken into account when designing
the drug switching. Worthy of note is the approach adopted
in [4] in which one of the drugs is administered for a given
time period (e.g., 4 weeks) then accompanied by a lengthy
period of rest (2 weeks), then the second drug is similarly
administered to ensure that the toxic effects of the drugs do not
overlap. For best result, modeling structure should be chosen
based on the underlying mechanisms of drugs actions.

The state space modeling framework used hitherto is based
on the assumption that the dynamics of the tumor cells
are time-invariant. Realistically, biological systems involve
many diverse but interconnected processes, that are dynamical,
non-linear, random and may occur at several temporal and
spatial scales [30]. However, a totally non-linear continuous
modeling structure of biological systems may be too large and
complex for analyses and simulations. A method to partially
handle this problem is by the extension of the current time-
dependent switching algorithm to consider randomness in the
analysis provided in Section III-A. It is expected that, despite
the challenges listed, the promising result obtained from the
sequential therapeutic modeling provides a progressive step
towards a pre-clinical model and help in supporting the
decision making processes in the therapeutic planning stage.
It is vital to note that all system models have their limitation,
inclusive of system modeling frameworks in oncology: simple
system models can give us insight and they can intuitively
describe existing data, but simple models are faced with the
issue of over-simplification and omission of critical variables;
conversely, it is ordinarily difficult fitting functional models to
experimental data because over-parametrization can only be
averted if additional “microscopic” observation is available.
Therefore, constructing multiscale computation-intensive and
predictive models that is linked to biological-based evidence
and parameterized with biomedical data will certainly be very
crucial. Advanced experimental technologies and computa-
tional methodologies can be applied mutually in a synergistic
fashion to address some of the aforementioned issues.

VI. CONCLUSIONS

This study is an attempt to provide a systematic way of elu-
cidating the evolution of tumor growth and its interactions with
sequential drug treatment. It provides a quantitative model of

sequential (switched) intake of the drugs and how to design an
appropriate treatment schedule in combination therapy to avoid
high toxicity while still repressing the proliferating tumor
cells. Analytical results are derived for the sequential drugs
administration and validated by simulations. The sequential
drug intake based on time-driven switching function is linked
with tumor cells growth dynamics to evaluate the effectiveness
of such therapeutic strategy from a mathematical modeling
perspective. The design and analysis provided are based on
multiple Lyapunov function and Linear Matrix Inequalities
(LMI). For linear approximations of the models, closed-form
solutions of the time-based switching rule and hence the
sequential (switched) administrations of the drugs are ob-
tained. This is one of our first attempts towards mathematical
modeling of sequential drug effects for cancer treatment.
The sequential drug intake framework proposed is flexible
enough to accommodate various models of tumor growth.
However, with more complex models, analytical results may
be unattainable.

Experimental data suggests that maximum tolerated dose
for combinatorial therapeutic drugs differ from that of mono-
therapy drugs where the drugs are administered in a sequential
or individual manner [25]–[27] and the toxicity of multiple
combination of drugs is higher than those of single drug
therapy. The mathematical model provided in this study is
focussed on such investigations as in [25]–[27]. It is already
shown that drug-related toxicity is lower in the sequential
treatment regime as compared with simultaneous drug admin-
istrations [4]. Future work aims to investigate the extension
of the current time-driven switching strategy to analyzing the
stability of tumor models with built-in stochasticity and other
external constraints when the drugs are given sequentially.
This is to ensure that the model gets as close as possible
to what obtains in wet lab experiment on tumor models
with drug consideration and it will involve collaboration with
experimental and clinical professionals.

APPENDIX A
PROOF OF PROPOSITION

Proof: The proposition is proved based on the analysis
of the stability of switched systems by utilizing the multiple
Lyapunov function framework. The objective is to get the
minimum dwell time T ∗ > 0 existing between drug iadminis-
tration that ensures the asymptotic stability of the equilibrium
point of equation (12) based on the time-driven switching
function,

σ = iq ∈ I[1, Np], t ∈ [tk, tk+1) (17)

Let τ = tk+1 − tk with τ ≥ T > 0. At the time instant
t = tk+1, the time-driven switching function changes to

σ(t) = jq ∈ I[1, Np] (18)

Examine equation (14), the differential of the Lyapunov
function V (x) = x′Piqx along an arbitrary trajectory of
equation (12) satisfies

V̇ (x) = x′ [(Ai +Biησ)
′Pi + Pi(Ai +Biησ)] x < 0 (19)
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This means that there exists a positive scalar λ > 0 and µ > 0
satisfying

||x(t)||2 ≤ µe−λ(t−tk)V (x(tk)) ∀t ∈ [tk, tk+1) (20)

Also, by considering inequality (15), we have

V (x(tk+1)) = x(tk+1)
′Pjx(tk+1) (21)

= x(tk)
′[e(Ai+Biησ)

′τPje
(Ai+Biησ)τ ]x(tk)

< x(tk)
′[e(Ai+Biησ)

′τkPie
(Ai+Biησ)τk ]x(tk)

< x(tk)
′Pix(tk)

< V (x(tk))

Inequality (15) is satisfied due to the fact that for each τk =
τ − T ≥ 0, the following inequality holds

e(Ai+Biησ)
′τkPie

(Ai+Biησ)τk ≤ Pi (22)

The outcome is that there exists α ∈ (0, 1) such that

V (x(tk)) ≤ αkV (x0) ∀k (23)

Equations (20) and (23) ensures the asymptotic stability of
the equilibrium solution of equation (12).
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