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Abstract—Despite the recent advancements in glycemic control
for diabetic patients, the realization of an automated closed-
loop artificial pancreas is still a challenge. The purpose of this
research is to develop an integrated control system for in silico
closed loop administration of insulin for Type 1 diabetic patients
based on patients’ medical record and real-time control-relevant
data. The proposed system consists of a virtual patient model
from the online AIDA diabetes simulator, a neural network
predictor trained on patients’ data for feedback purposes, and
a Proportional-Integral Controller and data logging nodes. The
virtual patient takes into account the delayed and time-varying
insulin and carbohydrate absorption rate associated with the
existing subcutaneous insulin delivery and complex glucose
metabolism, respectively. The neural network predictor was
trained using 23 features including semi-static and dynamic data,
with built-in knowledge of all available past blood glucose levels.
Then the controller calculates the infusion bolus to be delivered
by the insulin pump. Extensive simulations are performed and
it is shown that the neural network predictor has less Root-
Mean-Square error than the currently used continuous glucose
monitors, which takes measurement from the interstitial fluid.
Simulation results also demonstrate that our proposed data-
driven closed loop system for glycemic control can effectively
regulate the blood glucose level of Type 1 diabetic patients
without hypoglycemic excursions, and with no preset instruction
on meal ingestion.
Index Terms— Diabetes, Blood Glucose Prediction, Insulin Pump,
Neural Network, Glycemic Control.

I. INTRODUCTION

Diabetes is a disease that causes hyperglycermia (high blood
glucose level) due to patient’s difficulty in producing insulin -
a hormone for converting glucose to energy which invariably
regulate blood glucose level (BGL). The goal of the U.S.
National Science Foundation’s Smart and Connected Health
Program is to develop solutions focused on well-being rather
than disease [1]. Consequently, this work proposes a novel
computational solution aimed at improving diabetic patient’s
well-being.

Whereas Type 1 diabetes (T1D) is characterized by absolute
lack of insulin, Type 2 (T2D) is characterized by insulin
resistance and relative lack of insulin. Lifelong treatment is
required by both T1D and T2D patients [2]. The focus of this
work is on T1D. T1D can neither be prevented nor cured but
it can be treated effectively by external insulin infusion to
regulate the BGL [3]. However, a challenge in insulin therapy

is how to tailor insulin regimen to individual patient’s need
and with respect to insulin sensitivity and lifestyle [2].

Kadish developed the first insulin pump in 1964 and
Biostator et. al made the first computerized insulin delivery
device in the early 1980. However, early insulin pumps were
impractical because they were too large, not precise and have
other technical limitations [4]. The first commercial pump
was made in 1983, but patients have to take finger-prick
glucose measurements several times a day in order to adjust
insulin doses, which led to the development of Continuous
Glucose Monitors (CGMs) [5]. A challenge with CGMs is
their inaccuracy, with average absolute error being 12.8mg/dL
or higher depending on the type of monitor. This is partly
because the time lag before systemic glucose concentration
change appears in the interstitial fluid has been estimated to
be 4 - 26 minutes [6]. Even with good calibration, there can
be 15% to 20% error [7], and latest improvement has been
marginal. Another limitation is the required re-calibration due
to loss of sensitivity over time. Although the use of insulin
pumps and CGMs reduces the patient’s burden concerning
BGL management, those devices work in open-loop fashion,
which still require patient’s interpretation and manual com-
pensation for metabolic disturbances. Hence, the closed-loop
control of BGL is still an open problem. The rest of the paper
is organized as follows: Section II is a review of related work.
Section III presents the system architecture. Blood glucose
prediction model and performance are described in Section IV.
Section V describes the glycemic control design and insulin
delivery technique. Simulation results are presented in Sec-
tion VI. Section VII concludes the paper.

II. RELATED WORK

There have been several efforts aimed at applying control
algorithms to blood glucose regulation using physiological
models that describes the glucose-insulin dynamics in di-
abetic patients but those models do not provide accurate
representation as they are over-simplified and are replete with
assumptions that is unsuitable for real-life application. A fuzzy
logic controller with insulin pump in the loop for glucose
level regulation of the Bergman model was proposed in [8].
However, it was assumed that patients would not ingest meal
for eight hours after the application of the insulin pump, BGL
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can be accurately measured, and the insulin absorption pattern
was over-simplified. Hence, performance of the controller
to real patient may drastically deviate from the simulation
result presented. The authors of [9] proposed a model-based
control strategy for blood glucose regulation of the Bergman
patient model using parametric programming. Assumptions
for this strategy include widely spaced meal intake, over-
simplified insulin absorption pattern and directly measurable
BGL. The simulation of a Proportional Derivative (PD) and
Proportional Integral Derivative (PID) control of Hovorka
patient model was presented in [10]. Insulin absorption pattern
was included in the model, and five meals of varying boluses
were considered. However, it took more than 12 hours for the
BGL to reach target value. A PID control strategy with insulin
feedback to regulate blood glucose level was presented in [11],
where supplemental carbohydrates were needed to correct
hypoglycemia due to pharmacokinetic (PK) delay relating to
subcutaneous delivery of insulin. An empirical algorithm for
overnight blood glucose regulation based on hourly blood glu-
cose measurement was proposed by [12], where the patients’
meal intake during the day were tightly controlled in order to
minimize venous BGL excursion based on the insulin therapy.
The authors of [13] studied the feasibility of the Medtronic
MiniMed external physiological insulin delivery system in
youth with type 1 diabetes. They concluded that overnight
closed-loop control performance was better than day time due
to no meal disturbance and proposed an additional premeal
priming bolus of insulin to improve postprandial glycemic
excursions caused by peak plasma insulin action occurring 1
to 2 hours after insulin delivery. The mean relative absolute
deviation of the sensor from the venous blood glucose was
13.2 +/- 10.9%, and there is concern relating to the risk of
hypoglycemia.

It is also pertinent to note that machine learning techniques
have been applied to predict hypoglycemic (low blood glucose
level) excursions in [3] and [14]. The authors of [15] and [16]
used the AIDA simulator data to train a Support Vector Ma-
chine (SVM) and Recurrent Neural Network (RNN) models
respectively for BGL prediction to help patients take counter-
measures against impending hyper- or hypo-periods.

An artificial pancreas is a closed - loop system consist-
ing of synthetic components working as a substitute for
endocrine pancreas [17]. But major technical problems in
the development of a fully integrated closed - loop system
include sensor drift, inaccuracy of the interstitial fluid glucose
measurement taken by the CGM, the time lag and pattern
of carbohydrate absorption, and peak insulin action occurring
at about 1 to 2 hours after infusion with variability among
patients [17], [18], [19]. The BGL for non-diabetic adults are
less than 140mg/dL two hours after meal but does not go below
70mg/dL [20]. A practical approach to mitigate the reported
technical challenges in order to achieve appropriate glycemic
control is the subject of this research.

Figure 1: Data-Analytic-Enabled Blood Glucose Control
Model

III. SYSTEM ARCHITECTURE

In this work, an integrated closed-loop system for automatic
insulin administration has been proposed. It consists of a vir-
tual patient [21], a time-shifted neural network (NN) predictor,
data logging nodes, and a PI controller to compute appropriate
insulin boluses by the insulin pump. The system is described
in Figure 1.

The target BGL is denoted by g, whereas ĝ denotes the
BGL observation from the NN predictor, and u is the insulin
infusion command. The NN predictor takes patients’ semi-
static data, as well as dynamic data and command signal from
the insulin pump to compute BGL that will be reached at a
future time for feedback purpose. This framework takes into
account the delayed, continuous and time-varying action of the
insulin associated with the subcutaneous insulin delivery route
and provides a means to not only obtain better observation than
the existing glucose monitors but also future measurements.

IV. BLOOD GLUCOSE PREDICTION

The free online AIDA diabetes simulator [22] was used to
generate data which was prepared with built-in past BGL infor-
mation. Data set-up, neural network training and performance
evaluation are described in the subsections below.

A. Data Set-up

The training data has 23 features that can be categorized as
semi-static and dynamic for a prediction window of 9 hours.
The semi-static data are the weight, renal threshold of glucose,
creatinine clearance rate, hepatic insulin sensitivity, peripheral
insulin sensitivity, initial plasma insulin level, and initial blood
glucose level, which are denoted as wt, rtg, ccr, sh, sp, pb,
and g0 respectively. The dynamic data are the sampling time,
sampled blood glucose levels before the end of prediction
window, up to three carbohydrate intake along with ingestion
time within the prediction horizon, and the four infusion
boluses by the insulin pump, which are denoted as ts, g1,
g2, g3, g4, g5, m1, m1t, m2, m2t, m3, m3t, u1, u2, u3, and
u4. There were 2,100 sample data generated, which represents
300 blood glucose profile for 9 hours simulation. Knowledge
of BGL history was built into the data as part of the features
to enhance prediction performance. Each dynamic input vector
precedes the current time step. A sampling rate of 90 minutes
was selected to compensate for the delayed and time-varying
subcutaneously-injected insulin action, which peaks between
1 and 2 hours. A shorter rate could lead to hypoglycemia
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asinsulinisadministeredbeforethelastinfusioncouldtake
effect.Alargerratewasnotselectedsothatglucoseabsorption
andincreaseduetomealingestion,whichcouldbemultiple,
canbecounter-actedingoodtime.Fourregular-typeinsulin
infusionwereappliedatthesamplingrate,anduptothree
random-sizemealcanbeingested.

B.PredictorModelandTraining

Thecomplexnatureofglucose metabolismandinsulin
delivery,aswellasdata-intensivemanagementofdiabetes
makesmachinelearningmodelsattractivefordescribinghid-
denprocesses.Feedforwardneuralnetworkmodeldescribedin
(1)and(2)wasemployedbutwithknowledgeofpastpredictor
outputsbuiltintotheinputdataasdescribedintheprevious
subsection.

ĝ(l+1)n (k)=f(x(l+1)n )(k) (1)

x(l+1)n (k)=w(l+1)n (k)̂gl(k)+b(l+1)n (k) (2)

whereldenoteslayer,ndenotesunitorneuron,andkisthe
timestep.̂glistheoutputvectorfromlayerl,xlistheinput
vectorintolayerl,wlnaretheweightsfromlayerl 1tounit
noflayerl,andblarethebiasesfromlayerl 1totounit
noflayerl.

Atwo-layerneuralnetwork model wastrained with8
hiddenneuronsusingtheNeuralNetwork(NN)toolboxin
MATLAB.Consideringtheheuristicthatthenumberofsample
datashouldbe10timeslargerthantheweightdimension
andexperimentingwithdifferentnumberofhiddenneurons,
itwasobservedthat8hiddenneuronswasoptimalforour
application.Also,thebuilt-inpastBGLknowledgeinour
dataset-upprovidesuniqueperformanceimprovementforour
application.Levenberg-Marquerdtalgorithm[23],[24],[25]
wasusedfortraining,whichisconsideredafasteralgorithm
thanthestandardback-propagationalgorithm,anddatasplit-
tinginto70%training,15%validation,and15%testingwas
performedby’dividerand’function.

C.PerformanceEvaluation

ThepredictorperformancewasmeasuredusingtheRoot
MeanSquareError(RMSE),andtheoutputversustarget
regressioncoefficient(R).ThegoalistoobtainanRMSEthat
isclosertozerorelativetothemagnitudeofthepredicted
valuesandacorrelationcoefficientthatiscloserto1.As
showninFigure2,thetraining,validationandtestingMean
SquareError(MSE)were20,29,35respectively.Hence,the
RMSEswere4.5,5.4,and5.9mg/dLrespectively,whereas,
thecurrentlyusedcontinuousglucose monitordeviatesby
15%to20%fromtheactualbloodglucosevalues[7].Also,
duetothesimilarcharacteristicsofthevalidationandtesterror
curves,thereisnosignificantoverfitting.Theregressionplots
inFigure3showedgoodfitsbetweenthepredictedoutputs
andthetargetswithhighRvalues.

Figure2:NeuralNetworkPredictorPerformance

Figure3:NeuralNetworkPredictorOutputVersusTarget
Regression

D.JustificationforUsingtheAIDAsimulator

ThereasonsforadoptingtheAIDAonlinesimulator[22]
utilizedingeneratingpatient’sdataare:1)Realpatients’data
aredifficulttoobtainduetoprivacyandethicalissues.2)
Experimentsonhumansubjectiscostlyandtime-consuming.
3)Largedatasetcanbegeneratedbythesimulator.4)Greater
flexibilitycanbeachievedasspecificscenarioscanbesim-
ulated.Furthermore,theBritishDiabeticAssociation(BDA)
conductedanindependentassessmentbasedonfeedbackfrom
internalassessorsaswellashealth-careprofessionals.Fol-
lowingafairlyaccurateratingbyhealth-careprofessionals,
theBDAdecidedtocataloguethesimulatorintheBDA’s
health-careprofessionalbrochure[26].Moredetailsaboutthe
simulatormodelandlimitationssuchasnoncaptureofstress,
exercise,alcohol,etc.arereportedin[27]and[28].
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V.GLYCEMICCONTROLDESIGNANDINSULINDELIVERY

APIcontrollerwasdesignedtocomputethecontrolcom-
mandfortheappropriateinsulindoseatpredefineddiscrete
times.Thiscontrollerissuitingtoourapplicationasitdoes
notrequirethemathematicaldescriptionofthecomplexphys-
iologicalprocessesrelatingtoBGLinthebodytocomputethe
controlcommand.Theinsulininfusioncommandisafunction
ofthedifferencebetweenthetargetglucoselevelandthe
observationasdescribedin(3).

u(k)=






Kpe(k) ifk=0

Kp[ê(k)+
∆t

τI
(e(0)+

k
i=1 ê(i))]ifk=1

(3)

e(k)=g ĝ(k) (4)

ê(k)=g ĝ(k+τ) (5)

TheProportionalgain(Kp)andtheintegralgain(
Kp
τI
)are

thetunableparameters.∆tisthesampletime,kisthecurrent
timestep,andτisthepositivetimeshift.BGLobservation
wastime-shiftedby30minutestocapturethelong-termeffect
ofthetime-varyinginsulinactionduetosubcutaneousinsulin
deliveryforamoreeffectivecontrolaction.Hence,e(k)is
theerrorbetweentheBGLtargetandpredictoroutputatthe
currenttimestep,whereasê(k)istheerrorbetweentheBGL
targetandpredictoroutputataspecifiedfuturetime.The
initialBGLobservationwasnottime-shiftedastherewas
priorinfusion,andinvariablynoactiveinsulinaction.The
proportionalgainadjuststheinsulindeliverywithrespectto
theerrorsignal,whiletheintegralgainadjustsinsulindelivery
withrespecttothesumofallpasterrors.Thederivativeterm
wasnotusedastherateofchangeofBGLovertimefluctuates
withmealdisturbanceandinsulininfusion.
ThegoalofthecontrolleristomaintaintheBGLwithin

70mg/dLand140mg/dLtwohoursaftermealingestionas
typicalfornon-diabeticpatientsin[20].Thedesignwasdone
using MATLABtoolbox.Bytuningthecontrolparameters,
optimalperformancewasobtainedwithKp=-0.078andτI=
-0.00015.Thepredictor,controller,andsensornodeswere
integratedasshowninFigure4.Thesystemwasimplemented
insilicousing MATLABSimulinkwithpredictoroutputs
havingRMSEof5.9mg/dLrelativetothevirtualpatient.
Existingsubcutaneousinsulindeliverymodeaswellasrandom
mealintakepatternwasconsideredinthiswork.Therefore,the
existinginsulinpumpscanbeeasilyutilizedandpatientshave
thefreedomtoembraceanymealpatternoftheirchoice.The
integratedsystemwasabletodynamicallyandautomatically
setinsulininfusionwithouthypoglycemicexcursions.

VI.SIMULATIONRESULTS

Inordertoprovetheeffectivenessandrobustnessofoursys-
tem,thecontrollerperformanceforfivepatientswithdiverse
medicaldetailsandmealingestionpatternsweresimulated
asfollows.Thevariableswereselectedinawaytopresent

Figure4:IntegratedSystemModel

diversesituationthatthesystemmayencounterinpracticeas
showninTableI.

Case1representsapatientwithrelativelylargeweight
andlargecarbohydrateingestionpattern, whereasCase2
isapatientwithmediumweightandmediumcarbohydrate
ingestionpattern. Apatient withsmall weightandsmall
carbohydrateingestionwasdescribedbyCase3whileCase4
depictsapatientwithlargeweightandmediumcarbohydrate
ingestion.Finally,Case5characterizeapatientwithsmall
weightbutlargecarbohydrateingestion.Otheressentialpatient
vitalsareprovidedinTableI.

Figure5showedthatthecontrolsystemwasabletokeep
thebloodglucoselevelbetween70mg/dLand140mg/dLtwo
hoursaftermealingestion,whichisconsistentwiththestan-
dardofAmericanDiabeticAssociation[20]fornon-diabetic
patients.Basedonthegenerateddatafrom[22],ourcontrol
systemachievedthegoalofnormo-glycemiatilltheendof
thesimulationwithouthyper-or-hypoglycemicexcursionsin
allcasesthatmaybeencounteredinpracticeasshowninsub
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Table I: Patients’ Semi-static Data and Meal Ingestion Pattern

wt(lb) rtg(mg/dL) ccr(mL/min) sh sp m1(g) m1t(min) m2(g) m2t(min) m3(g) m3t(min)
Case 1 191 176 120 0.8 0.8 39 30 57 120 63 245
Case 2 152 160 90 0.5 0.7 35 32 43 120 55 255
Case 3 128 121 82 0.3 0.8 28 50 23 135 39 240
Case 4 240 192 120 0.5 0.5 36 37 29 155 43 252
Case 5 101 150 100 0.7 0.8 41 40 53 142 67 265

(a) Case I (b) Case II

(c) Case III (d) Case IV

(e) Case V

Figure 5: Control Sytem Performance for Five Diverse Virtual Patients.

figures (a) to (e), despite varying patients’ medical data and
random meal intake pattern. This pre-clinical simulation set up

yields results in a fraction of time required for clinical trials
and can help to guide clinical experiments.
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VII. CONCLUSION

Pharmacokinetic (PK) models of diabetic patients utilizes
a theoretical number of compartments to describe elimination
and absorption kinetics which may not provide enough accu-
racy for effective control studies. An integrated approach has
been presented in this work by employing machine learning
techniques. Specifically, a neural network predictor has been
trained to describe the complex glucose-insulin relationships
for Type 1 Diabetic patients. The predictor performance was
shown to be better than that of implanted sensors which are
affected by the body’s immune response and delayed diffusion
of the glucose from the blood to the subcutaneous tissue.
Outputs from the predictor was fed back to the controller to
compute insulin boluses for the virtual patient. The simulation
results showed that the designed control system can effectively
administer insulin automatically irrespective of the patient’s
meal intake pattern, and the proposed simulation framework
is a time and cost effective tool for guiding clinical studies
towards the development of artificial pancreas. The presented
approach can be extended to Type 2 diabetes and it is expected
that even better results can be obtained by utilizing more data
samples. Further research will require real-patient data and
consideration of other factors that may influence blood glucose
level such as stress, exercise, etc., as well as in vivo testing of
the control strategy.
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