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Generalized Gaussian Mechanism
for Differential Privacy

Fang Liu

Abstract—Assessment of disclosure risk is of paramount importance in data privacy research and applications. The concept of
differential privacy (DP) formalizes privacy in probabilistic terms and provides a robust concept for privacy protection. Practical
applications of DP involve development of DP mechanisms to release data at a pre-specified privacy budget. In this paper, we
generalize the widely used Laplace mechanism to the family of generalized Gaussian (GG) mechanism based on the I, global
sensitivity of statistical queries. We explore the theoretical requirement for the GG mechanism to reach DP at prespecified privacy
parameters, and investigate the connections and differences between the GG mechanism and the Exponential mechanism based on
the GG distribution. We also present a lower bound on the scale parameter of the Gaussian mechanism of (e, §)-probabilistic DP as a
special case of the GG mechanism, and compare the utility of sanitized results in the tail probability and dispersion between the
Gaussian and Laplace mechanisms. Lastly, we apply the GG mechanism in three experiments and compare the accuracy of sanitized
results in the [, distance and Kullback-Leibler divergence, and examine the prediction power of a SVM classifier constructed with the

sanitized data relative to the original results.

Index Terms—Probabilistic differential privacy, I, global sensitivity, privacy budget, Laplace mechanism, Gaussian mechanism

1 INTRODUCTION

HEN releasing information publicly from a database
or sharing data with collaborators, data collectors are
always concerned about exposing sensitive personal infor-
mation of individuals who contribute to the data. Even with
key identifiers removed, data users may still identify a par-
ticipant in a data set such as via linkage with public infor-
mation. Differential privacy (DP) provides a strong privacy
guarantee to data release without making assumptions
about the background knowledge or behavior of data
intruders (adversaries) [1], [2], [3]. For a given privacy bud-
get, information released via a differentially private mecha-
nism guarantees no additional personal information of an
individual in the data can be inferred, regardless how much
background information adversaries already possess about
the individual. DP has spurred a great amount work in the
development of differentially private mechanisms to release
results and data, including the Laplace mechanism [1], the
Exponential mechanism [4], [5], the medium mechanism
[6], the multiplicative weights mechanism [7], the geometric
mechanism [8], the staircase mechanism [9], the Gaussian
mechanism [10], and applications of DP for private and
secure inference in a Bayesian setting [11], among others.
In this paper, we unify the Laplace mechanism and the
Gaussian mechanism in the framework of a general family,
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referred to as the generalized Gaussian (GG) mechanism. The
GG mechanism is based on the [, global sensitivity (GS) of
queries, a generalization of the [; GS. We demonstrate the
nonexistence of a scale parameter that would lead to a GG
mechanism of pure e-DP in the case of p # 1 if the resulis to be
released are unbounded, but suggest the GG mechanism of
(¢, §)-probabilistic DP (pDP) as an alternative in such cases.
For bounded data we introduce the truncated GG mechanism
and the boundary inflated truncated GG mechanism that
satisfy pure e-DP. We investigate the connections between
the GG mechanism and the Exponential mechanism when
the utility function in the latter is based on the Minkowski
distance, and establish the relationship between the sensitiv-
ity of the utility function in the Exponential mechanism
and the [, GS of queries. We then take a closer look at the
Gaussian mechanism (the GG mechanism of order 2), and
derive a lower bound on the scale parameter that delivers
(¢, 8)-pDP. The bound is tighter than the bound for satisfying
(¢, 8)-approximate DP (aDP) in the Gaussian mechanism [10],
implying that less noise is injected in the sanitized results in
the former. We compare the utility of sanitized results, in
terms of the tail probability and mean squared errors (MSE),
via the Gaussian mechanism and the Laplace mechanism.
Finally, we run 3 experiments on the mildew, Czech, and
adult data, sanitizing the count data via the Laplace mecha-
nism, the Gaussian mechanisms of (e, §)-pDP and (e, §)-aDP,
respectively. We compare the accuracy of sanitized results in
terms of the /, distance and Kullback-Leibler divergence from
the original results, and examine how sanitization affects the
prediction accuracy of support vector machines constructed
with the sanitized data in the adult experiment.

The rest of the paper is organized as follows. Section 2
defines the I, GS and presents the GG mechanism of
(¢,8)-pDP, and the truncated GG mechanism and the
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boundary inflated truncated GG mechanism that satisfy pure
e-DP. It also connects and differentiates between the GG
mechanism and the Exponential mechanism when the utility
function in the latter is based the Minkowski distance.
Section 3 takes a close look at the Gaussian mechanism of
(¢,8)-pDP, and compares it with the Gaussian mechanism of
(€,8)-aDP. It also compares the tail probability and the disper-
sion of the noises injected via the Gaussian mechanism and
the Laplace mechanism. Section 4 presents the findings from
the 3 experiments. Concluding remarks are given in Section 5.

2 GENERALIZED GAUSSIAN MECHANISM

2.1 Differential Privacy (DP)

DP was proposed and formulated in Dwork et al. [1] and
Dwork [12]. A perturbation algorithm R gives e-DP if for all
data sets (x, x’) that differ by one individual (d(x,x’) = 1), and
all result subsets Q C Y to query s () denotes image of R),

|log (%)‘ <e )

where € > 0 is the privacy “budget” parameter. s refers to
queries about data, we also use it to denote the query results
(unless stated otherwise, the domain of the query results is
the set of all real numbers). d(x,x') = 1 is often defined in
two ways in the DP community: x and x’ are of the same
size and differ in exactly one record (row) in at least one
attributes (columns); and x has one less (more) record than
x’ and is the same as X' otherwise. Mathematically, Eqn. (1)
states that the probabilities of obtaining the same query
result perturbed via R are roughly the same regardless of
whether the query is sent to x or X. In layman’s terms, DP
implies the chance that the information about an individual
will be disclosed based on the perturbed query result is
very low since the query result would be about the same
with or without the individual in the data. The degree of
“roughly the same” is determined by the privacy budget e.
The lower ¢ is, the more similar the probabilities of obtain-
ing the same query results from x and x’ are. DP provides a
strong and robust privacy guarantee in the sense that it
does not assume anything regarding the adversaries’ back-
ground knowled ge and behaviors.

In addition to the “pure” e-DP in Eqn. (1), there are softer
versions of DP, including the (¢, §)-approximate DP [13], the
(e,8)-probabilistic DP [14], the (¢, §)-random DP (rDP) [15],
and the (e, t)-concentrated DP (cDP) [16]. In all the relaxed
versions of DP, one additional parameter is employed to
characterize the amount of relaxation on top of e. Both
(¢,8)-aDP and (e, 8)-pDP reduce to e-DP when § = 0, but are
different with respect to the interpretation of 8. In (¢, §)-aDP,

Pr(R(s(x)) € Q) < e*Pr(R(s(X)) € Q) +4; )
while a perturbation algorithm R satisfies (e, §)-pDP if
(o (PRG() € @) |
g (1 g(Pr(R(s(x’)) eQ))‘ ) 5w

that is, the probability of an output generated by R belong-
ing to the disclosure set is bounded below &, where the dis-
closure set contains all the possible outputs that leak
information for a given privacy budget e. The fact that
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probabilities are within [0, 1] puts constraints on the values
of ¢, Pr(R(s(x’) € @), and § in the framework of (¢, §)-aDP.
By contrast, (e,8)-pDP seems to be less constrained and
more intuitive with its probabilistic flavor. When § is small,
(¢,8)-aDP and (¢, 8)-aDP are roughly the same. (¢,8)-rDP is
also a probabilistic relaxation of DP, but differs from
(¢,8)-pDP in that the probabilistic relaxation is with respect
to data generation. In (¢, 7)-cDP, the privacy cost is treated
as a random variable, the expectatlcm of which is ¢, and
Prob(the actual cost > 6> a is bounded by e~ (*/7°/2
(¢, 7)-cDP, similar to (e, 8)-pDP, relaxes the satisfaction of
DP with respect to R and is broader in scope.

2.2 [, Global Sensitivity

Definition 1 (I, Global Sensitivity). For all (x,x) that is
d(x,x") =1, the l,-global sensitivity of a query set s with r ele-
ments is

Ap = max [ls(x) - s(X)[|,
dxd)=1
1/p 4)
= max (Z|"’k(") — sp(x )|P) for integer p > 0.

xx
dxx)=1 =1

A, is the maximum difference measured by the Minkowski
distance in query results s between two neighboring data set
x,x" with d(x,x’) = 1. The sensitivity is “global” since it is
defined for all possible data sets and all possible ways that x
and x’ differ by one. The higher A, is, the more disclosure
risk there is on the individuals from releasing the original
query results s. The [, GS is a key concept in the construction
of the generalized Gaussian mechanism in Section 2.

The I, GS is a generalization of the /; GS [1], [12] and the
I3 GS [10]. The “difference” between s(x) and s(x’) measured
by A, is the largest among all A, for p > 1 since that
[Isll,+s < sll, for any real-valued vector s and @ >0. In

addition, A, is also the most “sensitive” measure given that
the rate of change with respective to any s;. is the largest
among all p > 1. When s is a scalar, A, = A, for all p > 0.
When s is multi-dimensional, an easy upper bound for I,
GS Ay is 57 Ary, the sum of the [; GS of each element £ in
s, by the triangle inequality. Lemma 2 gives an upper bound
on A, for a general p that includes p =1 as a special case
(the proof is provided in Appendix A), which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2018.2845388.

1
Lemma 2 (Upper Bound for A)). (Z};:l A{"k) o is an upper
bound for A,, where Ay, is the I GS of sj.

The upper bound given in Lemma 2 can be conservative
in cases where the change from x to X’ does not necessarily
alter every entry in the multidimensional s. For example,
the I, GS of releasing a histogram with r bins is 1 (if
d(x,x’) =1 is defined as x’ is one record less/more than x).
In other words, the GS is not r'/? even though there are r
counts in the released histogram, but is the same as in
releasing a single cell because removing one record only
alters the count in a single bin.

It is obvious that each element s; in s for k=1,...,r
needs to be bounded to obtain a finite A,. The most extreme
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Fig. 1. Density of GG distributions.

case is that the change from x to X' makes s; jump from
one extreme to the other, implying the range of s; can be
used as an upper bound for A;;, which, combined with
Lemma 2, leads to the following claim.

Claim 3 (Upper Bound for A, for Bounded Statistics).
Denote the finite bounds for statistic s by [c, cu] The
GS for s is Ax < ¢ — ey and the GS for s = {s;},, . is

A, < (5 (em — cro))'.

2.3 Generalized Gaussian Distribution

The definition of the GG mechanism is based on the GG
distribution GG(p,b,p) with location parameter ju, scale
parameter b > 0, shape parameter p > 0. The probability
density function (pdf) is

f(xlu,b,p) = 261“&—1) CXP{ - (Im - ”I)p}.

The mean and variance of x are p and b’I'(3/p)/T'(1/p),
respectively (I'(t) = [;° z''e "dz is the Gamma function).
When p =1, the GG dlStl'lbutiUl"l is the Laplace distribution
with mean p and variance 2b%; when p = 2, the GG distribu-
tion becomes the Gaussian distribution with mean 0 and
variance b? /2.

Fig. 1 presents some examples of the GG distributions at
different p. All the distributions in the left plot have the
same scale b = /2 and location 0, and those in the right plot
have variance 1 and location 0. When the scale parameter is
the same (the left plot), the distributions become less spread
out as p increases, and the Laplace distribution (p = 1) looks
very different from the rest. When the variance is the same
(the right plot), the Laplace distribution is most likely to
generate values that are close to the mean, followed by the
Gaussian distribution (p = 2).

24 GG Mechanism of -DP

Query s needs to bounded to calculate the I, GS, but the
bounding requirement does not necessarily goes into for-
mulating the GG distribution for the GG mechanism in the
first place. A well-known example along these lines is the
Laplace mechanism, which employs a Laplace distribution
with support (—o0,00), though its scale parameter b = A, /e
requires s to be bounded for A; to be calculated. We thus
first examine the GG mechanism of eDP with the domain
for sanitized s} defined on (—o0,00)". Bounding s* before its
release can be incorporated in a post-hoc manner after being
generated from the GG mechanism.
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Eqn. (5) presents the GG distribution from which sani-
tized s* would be generated to satisfy e-DP given the origi-
nal s, assuming that b exists.

£(s*) o< exp{=([is* — 51l /6)}
o [T exel-(st ~ /o) “

- klj%lfﬁexp{ —(Isk — s#l/b)"}

Claim 4 (Nonexistence of b to Achieve e-DP for p # 1).
There does not exist a lower bound on b when p # 1 for
the GG distribution in Eqn. (5) that generates s* with
e-DP. When p =1, the lower bound on b that leads to
e-DP is e 1A,.

Appendix B, available in the online supplemental mate-
rial, lists the detailed steps that lead to Claim 4. In brief, to
achieve e-DP, we would solve for b from the inequality
b (S DG sk — sif” AL + A7) < ¢ (Bqn. B4), which
depends on the random GG noises {e, = s} — Sk}p_y. ., €
(—00,00)". In other words, there does not exist a noise-free
solution on b, unless p = 1 in which case the inequality no
longer involves the noise terms and the GG mechanism
reduces to the familiar Laplace mechanism of e-DP. We pro-
pose two approaches to fix the problem and achieve DP
through the GG mechanism. The first approach leverages
the bounding requirement for s and builds the requirement
into the GG distribution in the first place to get a lower
bound on b and generate s* with e-DP, assuming that s* and
s share the same bounded domain (Section 2.5). The second
approach still employs the GG distribution in Eqn. (5) to
sanitize s, but satisfying (e, §)-pDP instead of the pure e-DP
(Section 2.6). The sanitized s* can be bounded in a post-hoc
manner, as needed.

2.5 Truncated GG Mechanism and Boundary
Inflated Truncated GG Mechanism of «-DP

Definition 5 (Truncated Generalized Gaussian Mecha-
nism). Denote the bounds on query result s by [cio, Cp1lj—y, ;-
For integer p > 1, the truncated GG mechanism T? gene-

rates s*€[cy, crly—y . . by drawing from the truncated GG
distribution

f(s *|cm4914cu,‘v‘k:1 \T)

_ H "(ep exp{ (Is;. — sel/b(e)"} (6)
Im—nllbe))”]ﬂ['p (Isk—cwol/b(€))")’

where y is the lower incomplete gamma function and the scale
parameter b is a function of

1/p
b(e) > (2e—1 (z > ®)lew — el A +A;;)) )

k=1 j=
Proposition 6. The truncated GG mechanism T satisfies
e-differential privacy.

The proof of e-DP of 77 is given in Appendix C, available
in the online supplemental material. 7% perturbs each
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element in s independently; thus Eqn. (6) involves the prod-
uct of r independent density functions. Though the closed
interval [crg, cia] 18 used to denote the bounds on s, Defini-
tion 6 remains the same regardless of whether the interval is
closed, open, or half-closed since the GG distribution is
defined on a continuous domain. If s; is discrete in nature
such as counts, post-hoc rounding on perturbed sj can be
applied. The lower bound on b in Eqn. (7) depends on A,.
We may apply Lemma 2 and set A7 at its upper bound

> k-1 A7 to obtain a lower bound on b
T p o 1/p
b> (26—1 (z > Ol — cm|P_JA{‘k)) : (®)
k=1 j=1

Definition 7 (BIT Generalized Gaussian Mechanism).
Denote the bounds on query result si by [cy,cm] for k=
1,...,r. For integer p > 1, the boundary inflated truncated
(BIT) GG mechanism BE sanitizes s by drawing perturbed s*
from the following piecewise distribution

f('low < 51 < e, VE=1,...,7)
T st =cry) I(st=cry)
=H{pkk mqk =Ck1
k=1

(p exp{(Js - su/b(e))f’})“““""* o }

(9

2(e)Tp ")

where py = Pr(s} < cxo;sk,2,b) =5~ v[p™", (Isk — crol /b)]
(QF(p_l))_l and g, =Pr(s} > cu;sp,p,b) = % — y[p_l (lex—
skl /b)1(20(p™")) ™", b(e) indicates that the scale parameter b
is a function of €, y is the lower incomplete gamma function, I
is the gamma function, and 1() is the indicator function that
equals 1 if the argument in the parentheses is true, 0 otherwise.

In a nutshell, the BIT GG mechanism replaces out-of-
bound values with the boundary values and keeps the
within-bound values as is, leading to a piecewise distribu-
tion. This is in contrast to the truncated GG mechanism
which throws away out-of-bound values.

For the BIT GG mechanism to satisfy eDP, we need to
solve for a lower bound b as a function of e from

o J_f(s*|cm§s;gckl,Vk=1,...,r)J<E (10)
|F(s™lew < s S, Vh=1,...,7)| =~

where s* = {s;} and s* = {s}’} are the sanitized results
from data x and x' that are d(x,x’) =1, respectively. The
lower bound given in Eqns. (7) and (8) can be used when
the output subset @ is a subset of (e, c11) X -+ X (¢, 1)
(open intervals). However, when Q is {sy = Vk=1,...,
r} and {sy=cu VEk=1,...,r}, respectively, there are no
analytical solutions for b in either Eqns. (11) or (12)

T 1/2 =y, (3 — er) /) @0 (7)) |

lo 7l <e (11)
¢ H 1/2 -y (01, (5} — cio) /b)) @ (p~1)) |
m1/2 =y, (s — c) /D)) (20(p™Y) |

lo e. (12)

e\l e ey < ¢ P

The most challenging situation in solving for b is when Q is
a mixture set of (ci,cm), cro, and cp for different k =
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1,...,7. In summary, the BIT GG mechanism is not very
appealing from a practical standpoint given the difficulty in
solving for b, though in theory such b exists to achieve e-DP.

26 GG Mechanism of (¢, )-pDP

The second approach for obtaining a lower bound on the
scale parameter in Eqn. (5) when p > 2 is to employ a soft
version of DP. Proposition 8 presents a solution on b that
satisfies (¢, §)-pDP.

Proposition 8 (GG Mechanism of (e, §)-pDP). If the scale
parameter b in the GG distribution in Eqn. (5) satisfies

r p-1 o
Pr (Z ZG)ISE _ SkIP—JA{‘k > bPe — Aﬁ) < 8, (13)
=1 j—1

then the GG mechanism satisfies (e,8)-pDP when p > 2.

The proof is straightforward. Specifically, rather than set-
ting the left side of Eqn. (B.4) <¢, we attach a non-zero
probability of achieving the inequality, that is, Pr(Eqn.
(B4) < €) > 1— 4, leading to Eqn. (13). The (¢,8)-pDP does
not apply to the Laplace mechanism (p = 1) in the frame-
work laid out in Proposition 8. When p=1, Eqn. (B.1)
becomes bt Y7 |lex] — lex + dil| < 071 X0h |dil < b7MA,
which does not involve the random variable s*; in other
words, as long as b™*A,; < ¢, the pure eDP is guaranteed.

Proposition 8 does not list a closed-form solution on b as
it is likely that only numerical solutions exist in most cases.
Given that s} is independent across k=1,...,r, a; =
Zf;% (§)|si — 5P A{‘ ; a function of sj, is also independent
across k. Therefore, the problem becomes searching for a
lower bound on b where the probability of a sum of r inde-
pendent variables (ai, ... ,a,) exceeding b — Ale is smaller
than 4. If there exists an analytical CDF for ) _;_, ai, an ana-
lytical solution on b can be obtained, such as when p =2
(see Section 3); when p > 2 we only manage to obtain the
distribution function for (§)|s} — siff 7 A{‘k, but not for a; or
> p_jai at the current stage. A relatively simple case is
when the elements of statistics s are calculated on disjoint
subsets of the original data, thus removing one individual
from the data only affects one element out of r, A; =
A, = Ay p, leading to the Corollary 9. A special case of Cor-
ollary 9 is when the query is a histogram, A; =4, =
Ay =1, and the lower bound b for (¢,8)-pDP can be
derived from Pr(3_%_, (§)[ey 77 > bPe) < 8.

Corollary 9 (Lower Bound for b with Disjoint Queries).
When elements in s are based on non-overlapping disjoint
subsets of the data, the lower bound on b satisfies
Pr(3 -0 (5)sp —swl”’ALw > bPe) < & in the GG mechanism
of (¢,8)-DP, where k' = argmax;A, ;.

The proof of Corollary 9 is trivial. With disjoint
queries, only one element in s is affected by changing x to
x' (if the definition x has one more/less record than x' is
used) while the remaining elements in Eqn. (B.2) in
Appendix B, are 0, and Eqn. (B2) =b"73"% ,()lew |
dy|” <1677 35 (lew [ Ay

Numerical approaches can be applied to obtain a lower
bound on b when closed-form solutions are difficult to
attain. Fig. 2 depicts the lower bounds on b at different p



LIU: GENERALIZED GAUSSIAN MECHANISM FOR DIFFERENTIAL PRIVACY

€=01;6=001
786.5

70
1|

lower bound for b
30 50
L
m
"
1
{=1
o
o
n
o
8 i
L
af

T .5, .01
4 8.1 £=05; =005
e 75— 2%
=
T T T T T T T 1
2 4 2 4 2 4 2 4

Fig. 2. Numerical lower bound on b from Corollary 8.

and (e, 8) obtained via the Monte Carlo approach. We set
Ay at 1, 0.1, 0.05 for k =1,2,3, respectively and applied
Lemma 2 to obtain an upper bound on A,. As expected, the
lower bound on b increases with decreased e and decreased
8 (reduced chance of failing the pure e-DP). In addition, b
increases with p to maintain (¢,8)-pDP in the examined
scenarios.

s* sampled from the GG mechanism of (e, 8)-pPD in
Eqn. (5) ranges (—oo, 00). To bound s*, we may apply a post
processing procedure such as the truncation and the BIT
procedure [17]. The truncation procedure throws away the
out-of-bounds values and only keeps those in bounds while
the BIT procedure sets the out-of-bounds values at the
bounds. If the bounds are global and do not contain any
data-specific information, then neither post-hoc bounding
procedures will leak the original information or compro-
mise the established (¢, §)-pDP.

2.7 Connection Between GG Mechanism and
Exponential Mechanism

Let S denote the set containing all possible outputs.

The exponential mechanism [4] releases s* with probability

(14

1(s7) = exp (s b 3 ) (A

to ensure eDP. A(x) is a normalizing constant that
equals to ) . .sexp(u(s*|x)z5) or Jores exp(u(s®|x) 55)ds”,
depending on whether S is a countable/discrete sample
space, or a continuous set, respectively. u is the utility
function and assigns a “utility” score to each possible
outcome s* conditional on the original data x, and
A, = max, v gxx)-16es [u(s*[x) — u(s*[x’)| is the maximum
change in the utility score across all possible output s*
and all possible data sets x and x’ that are d(x,x') =1.
From a practical perspective, the scores should properly
reflect the “usefulness” of s*, which, for example, can be
measured by the similarity between perturbed s* and
original s for numerical s. The closer s* is to the original
s, the larger u(s*|x) is, and the higher the probability of
releasing s* is.

The Exponential mechanism can be conservative (See
the online Supplementary Materials), in the sense that the
actual privacy cost is lower than the nominal privacy bud-
get ¢ or more than necessary amount of perturbation is
injected to preserve e-DP. Despite the conservativeness, the
Exponential mechanism is a widely used mechanism in DP
with its generality and flexibility as long as the utility func-
tion u is properly designed.

751

When u is defined as the negative pth power of the
pth-order Minkowski distance between s* and s, that is,
u(s*|s) =—||s* —s|[Z, the Exponential mechanism generates
perturbed s* from the GG distribution

f(s”[s) = (A(s)) exp( —[ls" —s]|
el
gk S, _
) [Texe(-520) = [T 6GGow b0
with A(s)=(p~'2bI'(p~!)) and ¥ =2A,¢'. For bounded

data s; € [cw, ci] for k=1,...,r, the Exponential mecha-
nism based on the GG distribution is

* __ Sklp
m), (16)

F(s'ls* € leo,eal) = (A(s) HB,L exp( Isk

where By = Pr(s} € [ex, cx]) is calculated from the pdf
GG (s, b, p). Compared to the truncated GG mechanism in
Definition 6, the only difference in the Exponential mecha-
nism in Eqn. (16) is how the scale parameter b is defined. b
depends on the GS of s (4,) in GGM while it is a function of
the GS of the utility function u (A,) in the Exponential mech-
anism. While both mechanisms lead to the satisfaction of
e-DP, the one with a smaller b at the same ¢ is preferable.
The magnitude of b in each case depends on the bounds of s
and p, in addition to A, or A,. Though not a direct compari-
son on b, Lemma 10 explores the relationship between A,
and A, with the hope to shed light on the comparison of &
(the proof is provided in Appendix D, available in the
online supplemental material).

Lemma 10. Relationships between A, and A, Let [cy, ¢
denote the bounds on sy fork = 1,...,r,and u = —||s* —s||?.

a) Whenp=1,A, <A,

b) Whenp =2, A,u < 221;;:1 Al,klckl — le.

o) When p>3,A,<3 Y% (%)max{|ol,|cu [} VAT,
where AY) = max, v yx)-1|(5(0)7 = (s:(x))| is
the I GS of (si.)’.

As a final note on the GG-distribution based Exponen-
tial mechanism, we did not use the negative Minkowski
distance directly as the utility function due to a couple
of potential practical difficulties with this approach.
First, A, can be dlfﬁculty to obtain. Second, f(s*)ocexp
{~(Zit 15t — skP")Pe (2A,)7}, does not appear to be
associated with any known distributions (except when
p=1), and additional efforts are required to study the
properties of f(s*) and to develop an efficient algorithm
to draw samples from it.

3 GaussiAN MECHANISM

A special case of the GG mechanism is the Gaussian mecha-
nism when p=2 that draws s; independently from a
Gaussian distribution with mean s;, and variance o* = b?/2
fork=1,...,n

Applying Eqn. (6) with b defined in Eqns. (7) and (8), we
can obtain the truncated Gaussian mechanism of e-DP for
bounded s € [C]_(}, C]_]_] X X [C.,{}, C.,-]_]
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(5°18) = [ T{ (@(curs 1,0%) — B(csas 1,0%) ™
k=1

d(st;p = s, 0° = 62/2)}, where
b > 2¢7! (2 Ickl - leAl,k -+ Ag)
k=1

> 2¢e7! Z(2|ck1 — cpo|Ar i + Aik):
k=1

where ¢ and @ are the pdf and the CDF of the Gaussian distri-
bution, respectively. An analytical solution on the lower
bound of b for the Gaussian mechanism of (¢, §)-pDP is pro-
vided in Proposition 11 (the proof is available in Appendix E,
available in the online supplemental material).

Proposition 11 (Lower Bound on b for Gaussian Mecha-
nism of (¢, §)-pDP). The lower bound on the scale parameter
b for the Gaussian mechanism of (e,8)-pDP is b > 27271 Ay

(v (@7'(3/2))" + 2¢ - @7'(5/2)).

The lower bound can also be expressed in the standard
deviation of the Gaussian distribution o = b/V/2,

o> (26)—152(\/@—1 (8/2))” + 2¢ — qu(a/z)). a7
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Fig. 4. Ratio on the tail probabilities p, : p, (the gray curves represent the
unlikely cases where p; and p: are < 107%).
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The pDP lower bound given in Eqn. (17) is different from
the lower bound

o > € 'Ayc, with e € (0,1) and ¢ > 2In(1.25/8). (18)
in Dwork and Roth [10] for (¢,8)-aDP (Eqn. (2)). The pDP
bound in Eqn. (17) is tighter than the aDP bound in
Eqn. (18) for the same set of (¢,8) (the interpretation of § in
pDP and aDP is different, but the DP guarantee is roughly
the same when § is small). In addition, the pDP bound does
not constrain € to be < 1 as required in the aDP bound.
Fig. 3 compares the two lower bounds at several € € (0,1)
and & € (0,0.5). As observed, the ratio in the lower bound
between aPD and pDP is always < 1 for the same (g, §). The
smaller e is, or the larger § is, the smaller the ratio is and the
larger the difference is between the two bounds.

Dwork and Roth [10] list several advantages of the
Gaussian noises. For example, the Gaussian noise is a
“familiar” type of noise as many noise sources in real life
can be well approximated by Gaussian distributions; and
the sum of multiple Gaussian variables is still a Gaussian.
So how does a Gaussian mechanism (e, §)-pDP compare to
the Laplace mechanism of DP in terms of the accuracy of
sanitized results? We answer this question by examining
the dispersion and mean squared error (Proposition 12) and
the tail probability (Figs. 4 and 5) of the sanitize results.

Proposition 12 (Precision of Sanitized s* in Gaussian
Mechanism of (¢,8)-pDP and Laplace Mechanism of
€-DP). Between the Gaussian mechanism of (¢,8)-pDP and the
Laplace mechanism of e-DP for sanitizing a statistic s, when
8 < 2®(v/2)~0.157, the wariance of the injected Gaussian
noise is always greater than the variance of the Laplace noise.

The proof is provided in Appendix F, available in the
online supplemental material. If the associated Laplace distri-
bution and the Gaussian distribution have the same location
parameter, a larger variance implies a larger MSE of the
injected noise. Proposition 12 suggests that there is more dis-
persion in the perturbed s* released by the Gaussian mecha-
nism of (¢,8 < 0.157)-pDP than the Laplace mechanism of
€-DP. In other words, if there are multiple sets of s* released
via the Gaussian and the Laplace mechanisms respectively,
then the former sets would have a wider spread than the lat-
ter. Since (e,8)-pDP provides less privacy protection than
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e-pDP, together with the larger MSE, it can be argued that the
Laplace mechanism is superior to the Gaussian mechanism
(which is also reflected in the 3 experiments in Section 4).
It should be noted that § < 0.157 in Proposition 12 is a
sufficient but not necessary condition. In other words, the
Gaussian mechanism may not be less dispersed than the
Laplace mechanism when § > 0.157. Furthermore, since §
needs to be small to provide sufficient privacy protection in
the setting of (¢, 8)-pDP, it is very unlikely that § as large as
> 0.157 will be used in practical applications. Also noted is
that the setting explored in Proposition 12, where the focus is
on examining the precision (dispersion) of a single perturbed
statistic given specific privacy parameters when the sample
size of a data set is public, is different from the work on
bounding sample complexity (required sample size) to reach
a certain level of a statistical accuracy in perturbed results
with e-DP or (¢ 8)-aDP [18] (refer to Section 5 for more
discussions).

The tail probability is p; = Pr(e; > [t]) = exp(—[t|e/A;) in
the Laplace distribution and p, = Pr(es > |t]) = 2®(—|t|/ o)
in the Gaussian distribution, where e; and e; are the noise
terms from the Laplace distribution and the Gaussian distri-
bution respectively, and o is given in Eqn. (17); the location
parameters in both are 0. Since the CDF ®() does not have a
close-formed expression, we examine several numerical
examples to compare p; and p; (Fig. 4). We set € to be the
same (0.1, 1, 2, respectively) between the two mechanisms
and examine § = (1%, 5%, 10%, 20%) for the (¢, 5)-pDP Gauss-
ian mechanism. If the ratio p; : p; is < 1, it implies that the
Laplace mechanism is less likely to generate more extreme s*
compared to the Gaussian mechanism at the same specifica-
tion of e. We should focus on the meaningful case where noise
[t| has a non-ignorable chance to occur in either mechanism.
We used cutoff 107%; that is, either p, > 107* or p, > 107*
(other cutoffs can be used, depending on how “non-igno-
rable” is defined). Itis interesting to observe that after the ini-
tial take-off at 1 at |¢| = 0, the ratio continues to decrease until
hitting the bottom and then bounds back with some cases
eventually exceeding 1 at some value of [t|. The smaller e or &
is, the longer it takes for the bounce-back to occurs. The obser-
vation suggests that the Laplace mechanism could have a
higher likelihood of generating s* that are far away from s
compared to the Gaussian mechanism.

From a different perspective, Fig. 5 examines and com-
pares the privacy cost € between the two mechanisms when
they yield the same tail probability. Specifically, it shows the
calculated e, value associated with the Gaussian mechanism
of (e, 8)-DP for a given § that yields Pr(e; < |t|]) =Pr(e; <
[¢]) for the Laplace mechanism of e;-DP. If theratioe; : e < 1
at some [t| and a somewhat small ignorable §, it implies the
same tail probability can be achieved with less privacy cost
with the Gaussian mechanism compared to the Laplace mech-
anism. Fig. 5 suggests that the more relaxation of DP allows
(ie., the larger § is) at a given |[t|, the smaller e, is (relative to
baseline ¢;), which is expected as the € and § together deter-
mine the noise released in the Gaussian mechanism.

4 EXPERIMENTS

We run three experiments on the mildew data set, the Czech
data set, and the Census Income data set (a.k.a. the adult
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data). The mildew data contains information of parental
alleles at 6 loci on the chromosome for 70 strands of barley
powder mildew[19]. Each loci has two levels, yielding a very
sparse 6-way cross-tabulation (22 cells out of the 64 are non-
empty with low frequencies in many other cells). The Czech
data contains data collected on 6 potential risk factors for cor-
onary thrombosis from 1841 workers in a Czechoslovakian
car factory [19]. Each risk factor has 2 levels (Y or N).
The cross-tabulation is 6-way with 64 cells, the same as the
mildew data, but the table is not as sparse with the large n
(only one empty cell). The adult data was extracted from the
1994 US Census database to yield a set of reasonably clean
records that satisfy a set of conditions[20]. The data set is
often used to test classifiers to predict whether a person
makes over 50 K a year. We used only the completers (with-
out missing values on the attributes) in the adult data
and then split them to 2/3 training (20,009 subjects) and 1/3
testing (10,005 subjects).

In each experiment, we run the Laplace mechanism of
e-DP, the Gaussian mechanism of (g, §)-pDP presented in
Section 3, and the Gaussian mechanism of of (e, §)-aDP [10]
to sanitize count data. We examined €=0.5,1,2 and
8 =10.01,0.05,0.1,0.25. To examine the variation of noises,
we run 500 repeats and computed the means and standard
deviations of the [; distances between the sanitized and the
original counts and the Kullback-Leibler (KL) divergence
between the empirical distributions of the synthetic data and
the original data over the 500 repeats. In addition, we tested
the GG mechanism of order 3 (p = 3) in the mildew data, and
compared the classification accuracy of predicting the
income outcome via the support vector machines (SVMs)
trained with the original data and the sanitized data, respec-
tively in the adult experiment. The KL distance was calcu-
lated using the KL..Dirichlet command in R package
entropy. The SVMs were trained using the svm command
inR package e1071.In all experiments, A, = 1 for all p since
the released query is a histogram and the bin counts are
based on disjoint subsets of data. The scale parameters of the
Laplace mechanism and the Gaussian mechanisms were
obtained analytically (A;e~! for Laplace, Eqn. (17) for pDP-
Gaussian, and Eqn. (18) for aDP-Gaussian); a grid search and
the MC approach were applied to obtain the lower bound b
for GGM-3 via Corollary 9. In the mildew and Czech experi-
ments, we sanitized all bins in the histograms, including the
empty bins, assuming all combinations of the 6 attributes in
each case are practically meaningful (in other words, the
empty cells are sample zeros rather than population zeros).
In the adult data, there are 14 attributes and ~1.944 x 10'®
bins in the 14-attribute histogram, a non-ignorable portion of
which do not make any practical sense (e.g., a 90-age works
> 80 hours per week). For simplicity, we only sanitized the
17,985 nonempty cells in the training data, understanding
this might not be the best practice from a privacy protection
perspective. In all 3 experiments, After the sanitization, we
set the out-of-bound synthetic counts < 0 at 0 and those
> natn, respectively, and normalized the counts to sum up
to the original sample size n, assuming n itself is public or
does not carry privacy information.

The results are given in Figs. 6 to 12. In Figs. 6, 8 and 10,
the closer the points are to the identity line, the more similar
are the original and sanitized counts. The Laplace sanitizer
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Fig. 6. Sanitized versus original cell counts in the mildew data.

is the obvious winner in all 3 cases, producing the sani-
tized counts closest to the original with the smallest [
error and KL divergence, followed by a similar perfor-
mance from the Gaussian mechanism of (¢, §)-pDP (and
GGM-3 of (¢,8)-pDP in the mildew data); the Gaussian
mechanism of (e,8)-aDP is the worst performer. Specifi-
cally, in the mildew experiment, the performance of the
Laplace sanitizer and the Gaussian mechanism of
(¢,8)-pDP is similar when e =2 or § > 0.1. The [; error
and the KL divergence seem to decrease more or less in a
linear manner as e increases from 0.5 to 1 to 2, while the
impact of § seems to have less a profound impact on the
[, error and the KL divergence. In the Czech experiment,
the sanitized counts approach the original counts more
quickly than in the mildew data with increased e and §,
but there is significantly more variability for small € (0.1);
and the [, error and the KL divergence decrease in a dras-
tic fashion from e = 0.5 to 1 and much more slowly from

.'KLEE: © Gausslan-pDP

& Gaussian-aDP

GGM3-pDP

60 80 100
|

7

L1 error

o

8 :
= o — N
H .
-
]

o
epsilon 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2
delta(%) 1 1 1 5 5 5 10 10 10 25 25 25

Fig. 7. |, Distance and KL divergence between sanitized and original
counts in the mildew data.
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e = 1 to 2. The differences in the results between the mil-
dew and the Czech experiments can be explained by the
difference in n. In the adult experiment, Fig. 12 suggests
the prediction accuracy via the SVMs built on sanitized
data is barely affected compared to the original accuracy
regardless of the mechanism. There are some decreases in
the accuracy rates from the original, but they are largely
ignorable (on the scale of 0.25 to 1 percent), even with the
variation taken into account. In addition, the Gaussian
mechanism of (g, §)-aDP, though being the worst in pre-
serving the original counts measured the [; distance and
KL divergence, is no worse than the two Gaussian mecha-
nisms in the SVM prediction.
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Fig. 9. [; Distance and KL divergence between sanitized and original
counts in the Czech data.
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5 DiscussiON

We introduced a new concept called the [, GS, and unified
the Laplace mechanism and the Gaussian mechanism in the
family of the GG mechanism. For bounded data, we dis-
cussed the truncated and the BIT GG mechanisms to
achieve e-DP. We also proposed (¢, §)-pDP as an alternative
paradigm to the pure e-DP for the GG mechanism of order
p = 2. We showed the connections and distinctions between
the GG mechanism and the Exponential mechanism when
the utility function is defined as the negative pth-power of
the Minkowski distance between the original and sanitized
results. We also presented the Gaussian mechanism as
an example of the GG mechanism and derived a lower
bound for the scale parameter of the associated Gaussian
distribution to achieve (¢, §)-pDP. The bound is tighter than
the lower bound for the Gaussian mechanism of (e, §)-aDP.
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Fig. 11. [; Distance and KL divergence between sanitized and original
counts in the adult data.
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Fig. 12. Prediction accuracy in testing data via SVMs trained on sani-
tized and original data in the adult data.

We compared the tail probability and the dispersion of the
noise generated via the Gaussian mechanism of (e, §)-pDP
and the Laplace mechanism, and applied the two mecha-
nisms in three real-life data sets.

The examination on the tail probability and dispersion of
the sanitized results in the Gaussian mechanism in Section 3
has a different focus from, though related to, the work on
bounding the sample complexity that examines the required
sample size n to reach a certain level of accuracy « for sani-
tized results with (¢, §)-privacy guarantee for count queries
[18], [21], [22]. « is quantified using the worst case accuracy
l, the average accuracy [y, or the tail probability and the
MSE of the released data, among others in the DP literature.
Specifically, the work on sample complexity focuses on
bounding n given € (and ) and «, while the results in Sec-
tion 3 focus on the accuracy and precision of sanitized
results given e (and §) and n. If the biases of the sanitized
results (relative to the original results) generated from the
two mechanisms are the same, a larger precision is equiva-
lent to a smaller MSE.
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