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HIGH-DIMENSIONAL CHANGE-POINT DETECTION
UNDER SPARSE ALTERNATIVES

By FARIDA ENIKEEVA™TS AND ZAID HARCHAOUT®
Université de Poitiers’, University of Washington®, and IITPS

We consider the problem of detecting a change in mean in a
sequence of high-dimensional Gaussian vectors. The change in mean
may be occurring simultaneously in an unknown subset components.
We propose a hypothesis test to detect the presence of a change-point
and establish the detection boundary in different regimes under the
assumption that the dimension tends to infinity and the length of
the sequence grows with the dimension. A remarkable feature of the
proposed test is that it does not require any knowledge of the subset
of components in which the change in mean is occurring and yet
automatically adapts to yield optimal rates of convergence over a
wide range of statistical regimes.

1. Introduction. Consider a sequence of n independent d-dimensional
Gaussian vectors X" = (Xy,...,X,,) with a possible change in mean at an
unknown location 7 € T,

(1) X1:9+A(971{Z>T}+§Z, i=1,...,n

where (&)1<i<n are i.i.d. random vectors drawn from N(0, 1;), A, € R,
6 € R% and T = {1,...,n— 1} is the set of possible change-point locations.
Our goal is to propose a hypothesis test for the change-point problem

Ho: A6,=0 against Hp: I 7 & T such that A6, # 0.

Under the null hypothesis Hg, there is no change in mean, that is A6, = 0.
Under the alternative Ha, a change in mean occurs at a location 7 € T, that
is A6, # 0. The change occurs in exactly p coordinates of the mean vector
6 that correspond to the support supp(A#f,) of the jump vector A, € R%
Neither the change-point 7, nor the set supp(A#,) nor its dimension p €
{1,...,d} are known. We will test the hypothesis of no change in mean
against this composite alternative.
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Change-point problems with multivariate Gaussian observations have re-
ceived a lot of attention for decades. The usual setting assumes that the
change occurs in all components. Then the problem is studied in a classical
asymptotic regime, that is by letting the number of observations n grow
to infinity while the dimension of the vector d remains fixed. We refer the
reader to, e.g. [27, 4, 10, 7, 11, 20] for a review.

We consider the problem in a high-dimensional double-asymptotic set-
ting, where both the number of observations and their dimension grow to
infinity. Such a setting is particularly appropriate for recent instances of
change-point problems that arise in real-world applications where observa-
tions are typically high-dimensional — for example, in biostatistics [30, 32],
in network traffic data analysis [23], in multimedia indexation [14], and in
astro-statistics [6, 24]. In all these applications, one is interested in detect-
ing change-points in relatively short sequences of observations (say, n = 100)
whose dimension can be high (say, d = 10%). However, in these applications,
prior information suggests that the change is likely to occur only in a small
subset of components. Therefore, the effective dimension of the change-point
problem is actually the dimension of supp(Af;), instead of d. Thus the
statistical problem is potentially tractable even for observations living in a
high-dimensional ambient space [15].

Korostelev and Lepski [21] studied high-dimensional change-point prob-
lems in the white noise framework. The change is assumed to occur simul-
taneously in all components, that is p = d. The authors propose an asymp-
totically minimax estimator of the change-point location, under double-
asymptotics with the Euclidean norm ||Af||2 — oo as d — oco. See also [28§]
for an early treatment of a related problem. Recently, Xie and Siegmund
[31] considered a problem similar to ours from a methodological point of
view. In [31], a Bayes-type test statistic is proposed, where the authors in-
troduce a mixture model that hypothesizes an assumed fraction of changing
components.

In this work, we establish the detection boundary for the change-point
problem under sparse alternatives. The detection boundary is an asymp-
totic condition on the norm of Af, defining the minimax separability of the
hypotheses Hy and Hp. It depends on the location of the change-point and
on the number of changing components p. The proposed test is based on
two test statistics: a linear statistic, that considers all components simul-
taneously, and a scan statistic that searches for a change over all possible
combinations of changing components. Although the latter problem has a
combinatorial structure that seems challenging at first sight, we show that
the scan test statistic can actually be computed efficiently, in almost linear
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time with respect to the dimension of the problem. We derive the minimax
separation rate of our test, prove that it is adaptive to the unknown set
of changing components, and establish that it is rate-optimal in the high
sparsity regime.

2. Statement of the problem. We first consider the problem of test-
ing the hypothesis of no change against the alternative of a change in mean
at a given location 7 in exactly p components. We will later describe the
test that is adaptive to the case of unknown p and 7.

We use the following notation throughout the text: M(d, p) stands for the
collection of all subsets of {1,...,d} of cardinality p, and M stands for the
set of all possible subsets of {1,...,d} . We denote by II,,v the projection
of a vector v € R? onto a subspace indexed by m € M. The location of
a change is parametrized by t € T, where T = {1,...,n — 1}. For two
sequences x4 and yg we write xg < yq if z4/yqs — ¢ € R\ {0} as d — oc.

Both the null and the alternative hypotheses can be simply formulated
in terms of the norm of the jumps of the mean vector A6, so that we have
no change if the norm of the jumps is zero, ||Af.| = 0. In what follows || - ||
denotes the Euclidean norm. We say that the change occurs at location 7,
if the norm of the jumps at location 7 satisfies ||Af.|| > r for some r > 0.

Define the set O,[r] = {v € V;,d : |lv|| > r}, where Vpd is the subspace of
R?-vectors with exactly p non-zero components

d
Vpd ={v=(e1v1,...,6qvq) : vj € R, g; € {0,1}, Zsj = p}.
j=1

Recall the notation 7 = {1,...,n—1} and denote by D the set {1,...,d}.

We consider two general problems based on model (1).

(P1) Testing a change in exactly p € D unknown components of the mean
at a given location 7 € T:

Ho: A0, =0 against Hp: A0, € Opr],

where r > 0 may depend on 7, p, d, and n.
(P2) Testing the presence of a change in an unknown number of components
p € D that occurs within the time interval 7 = {1,...,n —1}:

Hop: A0, =0 against Hp: 37 € T : such that A0, € O[r],

where O[r] = |J ©p[r]. Note that » might depend on 7, p, d and n
peD
as well, 7 = r(7,p,d,n). To keep the notation as light as possible, we

omit the explicit dependence on these parameters and simply write r.
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Note that Problem (P1) corresponds to a two-sample testing problem [22],
with a difference in mean lying on a subset of changing components and equal
variance; see [9] for a review of recent works on this topic.

A test ¢ = ¥(X") is a measurable function of observations from model (1)
taking values in {0, 1}. We say that there is a change if ¢(X") = 1.

Let Py ¢ be the measure corresponding to the null hypothesis case of no
change in mean and Pag. 9 be the measure corresponding to the case of a
Af, change in mean at location 7. The parameter § € R? is a nuisance
parameter and we will see that the errors of our test do not depend on it.
For any test v, define the type I error as

a(y) = sup Pog{t) = 1}.

0eRd

The type II errors for Problems (P1) and (P2) are respectively defined as

B, Oplr], 7) = sup Pao,0{t =0}
(0,40, )ERx O[]

and

B* (1, O[r]) = sup sup P g, o{10 = 0} = sup sup B(¢, Op[r], 7).
TET (0,40;)ERIXO[r] T€T peD

Define the global testing errors [19] for the two problems:

(W, Oplr], 7) i= a(¥) + B, By[r], 7),
V¥, Olr]) := a(P) + B°(¢, Ofr]).

We could also define the global testing error as a linear combination of the
two errors (¢, Op[r], 7) = a(y) + sB(¥, ©plr],7) with s > 0. The results
of the paper will still hold in the case where s does not depend on the
dimension d. Choosing the error weights to be dependent on the sparsity
index p might be useful in applications. However, the thresholds for the
tests will be different from those ones proposed in the present paper.

We make the following Assumptions (A1-A2-A3) on the asymptotic be-
havior of n, d, p, and 7. Throughout the paper, the asymptotics of p and n
are parametrized by d, where d — oo. The asymptotic of the location 7 is
naturally parametrized by n, which, in turn, depends on d.

(A1) The number of observations n > 1 can be fixed or grow with the vector
dimension, n = n(d) — oo as d — oc.

(A2) The number of components with a change is sufficiently large

p—oo and p/d—0 as d— oo.
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(A3) For Problem (P2), we need an additional assumption, namely that
logn

sup ——— — 0, d— oc.
peD P IOg(d/p)

Thus, we have log(np)/log (z) — 0 and logn/p — 0 as d — oo if (A2)
holds. Therefore the number of observations n cannot be too large.

We consider an asymptotic setting where both the number of observations
n and the dimension d are growing. Therefore the rates we shall establish de-
pend also on the dimension d. We choose here to parameterize the quantities
involved in the asymptotics with respect to d in order to model real-world
problems where the dimension of the observations can be large. For example,
in the problem of simultaneous segmentation of several genomic profiles [30],
the length of a profile n can be of order n &~ 10% — 103 nucleotides, while the
number of profiles d can be of order d ~ 10*.

REMARK 1. If p depends on d via a sparsity coefficient 5 € (0,1), p <
d'=B, then Assumption (A2) is satisfied. We shall distinguish between the
cases of high sparsity, B € (1/2,1) and low sparsity, 5 € (0,1/2]. Later we
shall see why B = 1/2 defines a boundary between two sparsity regimes (see
Remark 6 after Theorem 2).

We are interested in the minimax separation conditions for problems (P1)
and (P2). The question is how far from the origin the sets O,[r] and O[r]
should be in order to separate the hypotheses Hy and Hp in problems (P1)
and (P2), respectively. For any v € (0, 1), the sequence ry is called a minimaz
separation rate [16, 20] for problem (P1) if

(i) there exists a constant C* > 0 and a test ¢* such that VC' > C*
lim supy(¢*, ©p[Cral, 7) < ;

d—o0

(ii) there exists a constant Cy > 0 such that VC' < C, and for any test 9
lim inf (¢, ©p[Crqgl, 7) > 7.
d—o00

Conditions (i)-(ii) are respectively upper and lower bounds on the minimax
testing error; we refer to [19, 20, 3, 12] for further discussion about these
definitions. A testing procedure ¥* is minimazx rate-optimal if conditions (i)
and (ii) hold. Note that the constants and the rate-optimal test may depend
on the given overall significance level v. We can similarly define the detection
boundary conditions for problem (P2).

By abuse of notation we shall always denote by v both the global testing
error and the overall significance level of the test.
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3. Testing procedure. Let us first define the following d-dimensional
process describing the change in mean at time ¢t € T,

t

@) Zu(#) = w<12){—n1_tix> teT.

i=1 i=t+1

The tests we propose for problems (P1)-(P2) are based on two y2-type test
statistics, which we shall refer to as linear statistic and scan statistic.
The linear statistic is given by

_Za)]? ~d
rm

For each fixed p € D the scan statistic is defined as

(3) Liin(t) teT.

[EYAOI —p}
4 LP.,(t)= ma , teT.

For any fixed ¢, the components of the process Z,,(t) are standard Gaussians.
Thus under the null hypothesis, the statistic ||I1,,Z,(t)||?, m € M(d,p) has
a X% distribution with mean p and variance 2p. To make the test statistics
in (3) and (4) defined at the same scale, we divide the squared norm of the
process Zy(t) by its standard deviation under the null hypothesis. Note that
the normalization is critical in a high-dimensional setting.

REMARK 2. Assume that A0, € V& and let m € M(d,p) be a given
subset of p components with a change at the location 7. The choice of the
test statistics based on Zy(t) is motivated by the generalized likelihood ratio
test. We have

max L6, A6,;X™)
(6,A0,)EREXIT,,, R4
max £(6,0; X")
HeRr?
where L£(0,A0;;X"™) is the likelihood of the parameters 0 and A, given the
observations X".

(5) log

1
= §||HmZn(7')||2>

3.1. Known number of components with a change and known t. The
proposed decision rule for Problem (P1) is based on the combination of two
tests

/IIZ}; = wlln v wgcanv
with
wlin = ]—{Llin(T) > H}, wgcan = 1{Lgcan(7-) > Tp}
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The thresholds H and 7}, should be set in such a way that the global risk
error (¢, Op[r], 7) is asymptotically less than a given global significance
level v as d — co. Theorem 1 answers this question, and provides a guideline
to set the corresponding thresholds depending on d (and henceforth on p and
n). For any significance level o we could set the thresholds for the two tests
using the quantiles of the corresponding x? distributions:

a3 -a)-d ag(l-a/()-»
B R S R

where a; + a5 = «a, oy, ay > 0. However, such a strategy results in a com-
putational burden for the scan test, since the quantiles of such a high order
could be difficult to compute precisely even for moderate values of d. We
propose instead the following formulas for the thresholds

(6) H:1/2log;l+\/glog;l,
0 el el

obtained using concentration inequalities for the norm of a d-dimensional
Gaussian vector [5].

H =

REMARK 3. The scan statistic Yhan and the linear test statistic ¥y
behave differently depending on the sparsity level. In the case of high sparsity,
B € (1/2,1), the scan test outperforms the linear test, since the scan statistic
searches for a change over all possible subsets of components. Basically,
as we will see later, the scan test can detect a change with much smaller
magnitude than the linear test. In the case of high sparsity, its minimaz
separation rate is faster than the one of the linear test.

However, in the case of moderate sparsity, § € (0,1/2], the linear one
has a faster detection rate. In other words, averaging statistical information
across all vector components is more effective than a full search over all pos-
sible combinations of components. Therefore, the proposed test statistic 1,
gets the “best of both worlds”, performing well in both the moderate sparsity
and the high sparsity regimes. The case of no sparsity p = d is also covered
by these two tests that become identical in this case.

3.2. Adaptation to unknown number of components with a change. For
Problem (P2), the proposed adaptive decision rule is, again, based on the
combination of two tests

w* = wﬁn \ w:can'
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Here, the linear test iy} maximizes the test statistic with respect to all
possible locations of the change-point

i1 {0 1}

The corresponding threshold H* providing the significance level a; is now
given by

1 2 1
(8) H* = logd—i-(l—i-e)\/QIOg+(1+6)\/710g,
Qe d Qe

log(1 +¢) 2logd
9 = _ = .
) o= BUE o 2

For a given significance level oy, the scan statistic is now defined as

1
(10) Lscan(T) = r;leag( E Igle%).( L}socan (t)

1 {IIHmZn(t)H2 —p}7

= Imax —— Imax max
pED Tp,n teT meM(d,p) \2p

where

o e[ [ ()]

Note that the threshold T}, is built in the scan test statistic. In order to

make the test adaptive to unknown p, we have to compare the values of the

statistic rtna7>_< LEean(t) with T, »n for all p € D. The threshold 7T}, ,, penalizes
€

the number of combinations of indexes in M(d,p) as well as the length of
the sequence. The adaptive scan test is defined as

N 1
stcan =1 {I;‘?DX% Iglea% L:gcan(t) > 1} :
Again, for any overall significance level o = o; 4+ as, we derive the thresh-
olds (8) and (11) for the two tests using concentration inequalities [5]; see
the proof of Lemma 3 for details.

REMARK 4. At first sight, the scan statistic may seem difficult to com-
pute, since it involves a combinatorial search which could be computationally
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hard. Recent work [1] considered several general classes of problems where
scan statistics are computationally hard to compute. However, in our prob-
lem, it turns out that the scan statistic can be efficiently computed in almost
linear-time with respect to the dimension of the problem. Indeed, we have

A L Za()|* —p 1 B2
meM(d,p) /2p = \/%(Z[Zn ®)] p),

j=1
where [Zy(Lj) (t)]? are the ordered squared components of the vector Z,(t):

(ZPD WP > (ZPOF > - > 20 @)

n

Thus the computational complezity of the adaptive test statistic is O(ndlogd).
Computation relies on sorting the squared components of vectors Zy(t) for
eacht € T.

REMARK 5. Again, the proposed adaptive test statistic 1™ covers moder-
ate and high sparsity cases. This is reflected by our theoretical results in The-
orems 3—4, which show that the proposed adaptive test statistic is minimax-
optimal and rate-adaptive with only a logarithmic loss. The simulations in
Section 5 corroborate our theoretical results.

4. Main results.

4.1. Upper and lower bounds on minimaz testing error in problem (P1).
We shall first derive the rate of testing rq for the test 7. In the high sparsity
case, we calculate the testing risk constant of our test (detection boundary
condition (i)). Next, we shall prove that for the same minimax separation
rate r4 yet with a different constant the detection boundary condition (ii)
holds. The minimax separation rate for Problems (P1) and (P2) depends on
the location of the change-point via the function

(12) hr) = (1= 1),

n n

which commonly arises in change-point problems; see [11] for details.

The following theorem gives the upper bound for the test ¢, in prob-
lem (P1). The upper boundary conditions (13) and (14) correspond, respec-
tively, to the linear test 1y, and to the scan test 1lcan.

THEOREM 1. Let v € (0,1). Assume that Assumptions (A1)—(A2) hold
and r = r(d) satisfies either

2
(13) lim inf 7"

min 7 > 4(10g[2/'7])1/2
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or

> 2

2
(14) lim inf —T)
d—oo plog(d/p)
Let o € (0,7) be a given significance level, oy = v/2 and as € (0,7/2) be
such that oy + as = a. Let 9y, be a test with H and T}, be defined as in (6)-
(7). Then a(yy) < o and limsup B(yy, ©p[r],7) < v — . Moreover, for the

d—00

test ¥y we have lim sup (1, Op[r], 7) < 7.
d—o0

The following theorem establishes the lower bound on the minimax testing
error in problem (P1) and the minimax separation rates that provide the
separability conditions between the hypotheses.

THEOREM 2. Assume that p < d'~% as d — oo and Assumption (A1)
holds. For any v € (0,1) and for any test v

liminf y(¢, ©p[r], 7) >~
d—o0

if r =r(d) satisfies one of the following conditions:

7’277, T
(15)  lmsup j’g)gﬂloguwl—v)z) for B € [0,1/2),

2
(16) 1121%1)]% <2- ; for Be (1/2,1).

Note that the result of Theorem 2 is valid even for the non-sparsity case of
p = d components with a change. Since both scan and linear tests coincide
in this case, Theorem 1 will be valid under assumption (13) only. We can
find the corresponding constant when 8 = 1/2 as well; see Section 4.3 and
the proof of Lemma 5 in Supplement A.

REMARK 6. Theorems 1 and 2 give the detection boundaries for two
sparsity regimes. In the case of moderate sparsity when 3 € (0,1/2) (and in
the no-sparsity case p = d) it is the linear test that can detect a change if (13)
holds. On the other hand, there is no test that can detect a change if (15) is
satisfied. Thus the minimax separation rate for the moderate sparsity case
is of order (Vd/(nh(T)))/2. In the case of high sparsity, B € (1/2,1),
the scan test can detect a change under the condition (14). There is no
test that can detect a change if (16) holds. Thus the separation rate is
(plog(d/p)/(nh(7))Y/? for the case of high sparsity. Note that in this case the
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linear test fails if (13) is not satisfied. Roughly speaking, since plog(d/p) <
\Vd, the scan test is able to detect a smaller change in mean than the linear
test can detect. On the contrary, in the case of moderate sparsity, the linear
test can detect a change of order d'/*//nh(t), whereas the scan test can-
not. Thus the theorem establishes the boundary between high and moderate
sparsity regimes, B = 1/2. We refer to [3] for further discussion.

REMARK 7. Consider the problem of comparing the means of two d-
dimensional Gaussian vectors. This problem is equivalent to the problem of
testing a change at T = 1 in a sequence of n = 2 wvectors X1, Xs defined
in (1). This problem is equivalent to testing p non-zero components in the
mean of a Gaussian vector Zy(1). A related problem were previously consid-
ered by Baraud [3] and by Ingster and Suslina [18]. For the latter problem, we
recover in (15)—(16), a detection boundary which is similar to the one given
in [3]. The quantity 2—1/8 in (16) coincides with the key quantities arising
in the problem of classification of a Gaussian vector with p < d*~? non-zero
components in the mean [17] and in the problem of detection [18, 16]. Bu-
tucea and Ingster [8] obtained similar results for the problem of detection of
a sparse submatriz of a noisy matriz of growing size.

4.2. Adaptation. The following theorem gives the upper bound for the
adaptive test ¥* = ¢ V ¥l

THEOREM 3. Assume that Assumptions (A1-A3) hold and r = r(d)
satisfies either

2
(17) linm inf min —— A7)

e >/2
d—oo TET dlog(dlogn)

or

2
h
(18) lim inf min min ——21)_ 5 o
d—oo T€T peD plog(d/p)

Let o be a given significance level and ay, g > 0 such that o + as = a and

the thresholds H and T), be defined as in (8) and (11). Then a(¢*) < a and
limsup 5*(¢*, ©[r]) < a. Moreover, for any v € (0,1) there exists an adap-

d—o0
tive test * such that its risk of testing is at most v, lim sup v*(¢*, O[r]) < ~.

d—o0

The lower bound follows directly from Theorem 2.



12 F. ENIKEEVA AND Z. HARCHAQOUI

THEOREM 4. Assume that (A1) holds. Let vy € (0,1). If there exist 19 €
T and py € D, po =< d* 50 as d — co such that

T 2’:’};0) < /2log(UL T A=) for foe[0,1/2)

and ) hro)
. r“nh(m 1
limsup ——FF—~ <2 — — or Bop e (1/2,1),
P oTog(dpe) <2 By 10 € (/21

then lign inf y* (¢, ©[r]) >~ for any test .
—00

REMARK 8. Theorems 3—j show that in the case of adaptation to an un-
known p the scan test achieves the minimaz-optimal rate of convergence with
no loss compared to the minimax separation rate. The linear test achieves a
rate with a \/log(dlogn) loss compared to the minimazx separation rate.

4.3. Discussion: detection boundary and rates. Suppose that the change
size in each component is constant, Af; = aq,1{j € m} for m € M(d,p).
Thus the squared norm of the jumps of the vector mean || Af,||? equals pa?
if we have p components with a change. The detection boundary conditions
can now be written in terms of the asymptotic behavior of the jump size
aqn- Recall that p < d'=8 where 3 € [0,1) is the sparsity coefficient.

In the case of high sparsity we can express the detection boundary con-
dition in the following way. Suppose that ay, = Cy[logd/(nh(7))] Y2 Then
the detection is impossible if limsup Cy < (26—1)"/2. If liginf Cq > (28)Y2,

[ee]

d—o0

then we can always detect a change by applying the scan test. We see that
there is a gap between the constants but they do not depend on ~.

In the case of moderate sparsity, 8 € [0,1/2), the detection boundary is
of the form afl,ndl/z_ﬁnh(v') = 1. Indeed, in this case ||A6,|? =< dl_ﬁaé,n,
the upper bound of error is attained by the linear test (see Theorem 1) and
the lower bound follows from Theorem 2. There is a gap between the upper
and the lower bound constants that are equal, respectively, to 2log(2/~)'/*
and (2log(1 + 4(1 — 7)?))/4. We see that in case of the moderate sparsity,
the constants at the minimax separation rate depend on the overall testing
level ~. If 8 = 1/2 and pd~Y2 — K for some constant K > 0, the lower
bound constant will also depend on K (see the proof of Lemma 5). It will
satisfy

[C*(E)]

1 2
Siez— = 1+1log [Klog(l 41— 7) )] .
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In the case of unknown p, the scan test is adaptive to § with the same rate
[log d/(nh(7))]'/2. For the linear test we have a loss in the boundary of order
[log(dlog n)] 2 We conjecture that the loglogn loss cannot be improved.

The main results on the detection boundaries are gathered in the table.

high sparsity, 8 € (1/2,1) moderate sparsity, 8 € [0,1/2)
o 1/2 s—1/2\1/2
boundary ag,n = Cq (%) agn = Cq (%)
upper bound liminf Cq > /28 lim inf Cy > 2(log(2/7))"/*
d— oo d—roo
lower bound limsupCy < /28 —1 limsup Cq < (2log(1 4+ 4(1 — 7)2))1/4
d—o0 d— o0

5. Simulations. We perform a simulation study to evaluate the em-
pirical behavior of the proposed test statistics, depending on the number
of observations n, the sparsity index p, the renormalized size of the jumps
| A0-||/\/p, and the dimension d. We consider several situations depending
on the sparsity level: the change in mean in all components (p = d), the case
of moderate sparsity (p > v/d), and the case of high sparsity (p < V/d).
We show the dependence of the power of the tests ¥*, ¢} and 9,, on
the sparsity index  (Figure 1) and on the size of jumps (Figures 2-4). We
also propose and evaluate two strategies for calibrating the proposed test
statistics.

We perform 500 replications and report results averaged over all replica-
tions. The significance level is set to o = 0.05. In all simulations we use the
properly scaled 1 —a/(2n) quantile of the y2-distribution for the calibration
of the linear test at level a/2. We use the 1 — «/(2d) empirical quantiles of
the statistics Itnez%gc LEan(t), p=1,...,d under Hy to calibrate the scan test

at level /2. More precisely, we use these quantiles instead of T}, in the

adaptive scan test %, =1 {r;lea’g( Tplm max LEean(t) > 1}.

5.1. Fized change size, growing dimension. We generate n = 100 inde-
pendent Gaussian vectors X;, ¢ = 1,...,n, with independent components
with a change in mean in p = 5 components. The dimension d varies from 5
to 200 while p = 5 is fixed so that the sparsity index 8 decreases as d — oo.
The change location is fixed at 7 = n/2 or at 7 = n/4 (Figure 1 on the left
or right). The vector of a change in mean A6, has 5 non-zero components
with absolute values \AOZ| = 0.6, j € m, where the subset of the change
support m € M(d,p) remains fixed as d is growing. More precisely, we set
the first p = 5 changing components, m = {1,...,p}, we vary the dimension
d > p by adding the next d — p components of the mean vector that do not
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change. Figure 1 compares the power of the linear adaptive test vy , the

[|A6,]>=1.8, p =5, 7 =50 [|A6.]>=1.8, p =5, 7 =25

moderate sparsity:

moderate sparsity:

el B(07) P
i
pr P> Vd

--1-8

[ transition zone:
prVd

Power of the test
Power of the test
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p<Vd
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FIG 1. Power of three tests for n = 100, p = 5, || A8.||> = 1.8. The change point is T = 50
on the left graph and T = 25 on the right graph.

scan adaptive test ¥, , and the final test ¢* (in red color) for two cases
of the change-point location. First, we see that the power is greater if the
change is in the middle (left graph). The scan test performs better in the
high sparsity case, whereas the power of the linear test is higher in the mod-
erate sparsity case. In the transition zone p =~ v/d, both tests have similar
power. The difference in the power of the two tests for d = 5,...,10 is not
very large. This is due to the fact that the chosen norm of the change is
quite large for a rather small dimension, so both tests can detect the change
easily.

5.2. Growing change size, fized dimension. We also generate n = 100
independent d-dimensional Gaussian vectors X;, ¢ = 1,...,n with indepen-
dent components. The dimension of X; is set to d = 100 and remains fixed.
We run simulations in three sparsity regimes, p = 3, 10, 50 that correspond
to the case of the high sparsity (p = 3), the transition zone (p = 10) and the
case of the medium sparsity (p = 50). The absolute value of the change in
mean at each component was the same for each changing vector component,
Vi € m, m € M(d,p), |A0%| = 6 > 0. The norm of the change is then equal
to ||A0-| = d,/p. We make ¢ vary from 0.1 to 0.8. The set m is fixed for
each of the three sparsity regimes.

In Figure 2, we report the empirical power of the three tests depending
on § = ||Af;||/,/p. We observe that the detection boundary constant, which
is proportional to || A6, increases as p decreases. In the high sparsity case
(p = 3), we observe that the test based on the scan statistics outperforms
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the linear test. On the other hand, in the moderate sparsity case (p = 50),
the linear test works better than the scan statistic test. In the transition

\\\\\
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Fi1G 2. Power of the tests for n = 100, d = 100, 7 = 25 for different sparsity regimes and
fized change size § = || AB-||//p in p coordinates.

zone, p = 10, the linear test is slightly better, but we see that both tests
contribute to the performance of the final test ¢*.

5.3. Two calibration strategies. We will now compare the powers of the
tests for two calibration strategies of the scan test. The first calibration
strategy consists in using the simulated quantiles of level 1 — a//(2d) of the
process rgg}_{ LEcan(t) under Hy instead of the thresholds 7T}, ,,. These quantiles

are the quantiles of the norm of the maximum of a centered normalized
discrete d-dimensional Brownian bridge,

p
d 1 ;
Itnea‘,.;.( Llsycan (t): Itfgzi E 2[67]1 (t)]2 —-p under H,

j=1

where 5%(1&), j=1,...,d is a normalized discrete Brownian bridge defined
in (21). The second calibration strategy consists in calibrating the scan test
using the theoretical quantiles. Instead of T}, ,, given by (11) we used the
following approximate version:

N de 2 2nd
= [ 2] - 2],

where we used the bound log (z) < plog(de/p) and omitted the second-
order terms of T),,. The linear test vy is always calibrated by using the
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appropriately normalized quantile of level 1 — a/(2n) of the x? distribution
instead of H*.

In Figures 3 and 4 we present the results of simulations for n = 1000,
d = 100 and for n = 100, d = 1000, respectively. In both cases, the change
occurs in the middle of the observation interval, 7 = n/2. We consider the
cases of high sparsity (p = 1), no sparsity, (p = d), and the intermediate case
when p ~ v/d. The absolute value of the change in mean at each component
was the same for each changing vector component: Vj € m, m € M(d,p),
|A02| = § > 0. The norm of the change is then equal to ||Af,|| = &,/p. We
make § vary from 0 to 0.8 in the case of d = 100, n = 1000 and from 0 to 2
in case of d = 1000, n = 100. The set m is fixed for each of the three sparsity
regimes.

We can see from Figure 3 that the threshold T, gives satisfactory re-
sults. In the cases of no sparsity and medium sparsity, the powers of both
scan tests with empirical and theoretical calibration are quite comparable
(blue and black dashed lines correspond to the empirical and theoretical
thresholds, respectively). The red and magenta colors show the power of the
corresponding test ¢* = 5V i,

T [ P ——
09l { nb sparsityy/ § xx" o
H [ H .. . b 2.3 -
i ip=100 {f iintermediate zone o
0.8+ i/ * kd R
' p=10 & 7

- 0.7 x,' g —_1- ﬁ(ﬁ’ﬂn )
3 g 1= B (Yl )
506 J I A 1= " (Vean )
505 ¥ ¥
) ; K
£04 # y
o x
[ s ¥

03 ; 5%

¥ ;
0.2 § high sparsity
0.1 p=1
0 | | | | J
0.3 0.5 0.6 0.7 0.8

04
[ 20-11/+/P

Fic 3. Power of the test for n = 1000, d = 100, 7 = n/2 for p = 1,10,100. The red
and magenta markers show the power of the final adaptive test V™ = i, V Yican for the
empirical and theoretical thresholds, respectively.

In Figure 4, where the dimension d is large, we can see that the lin-
ear test is much less powerful when the sparsity is high, in contrast to the
lower-dimensional setting considered in Figure 3. We refer the reader to Sup-
plement A for the results in the case of moderate sparsity where p = 900 as
well as to the results in the case of known p and 7.

Estimation of thresholds for the scan statistics using Monte—Carlo simu-
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F1a 4. Power of the test for n =100, d = 1000, 7 = n/2 for p = 1,50. In red and magenta
colors the power of the proposed test 1™ is presented for the empirical and theoretical

thresholds, respectively.

lations suffers from the curse of dimensionality, since for a fixed accuracy the
required number of Monte—Carlo replications will grow with the dimension d.
Thus the theoretical thresholds can be attractive options in high-dimensional

settings.

5.4. Type I errors. We present empirical type I errors in Figure 5 for the
case of the adaptive test. The dimension d varies from 100 to 750 and the
sequence length is n = 100. The thresholds are set empirically, the level of
the test is a = 0.05. We plug in theoretical quantiles of the X?l distribution
in the threshold of the linear test, H* = (qxﬁ(l —5) — d)//2d. We use
the empirical quantiles instead of the thresholds T},, in the scan test as
described in the previous subsections. We can notice that the type I error

o
=3
E

Type I error
=) <)
=] 1=}
) v

o
=}

=3

]
750

|
100 200 300 400 4 500 600 700

Fic 5. Empirical type I error of the adaptive tests for n = 100, d = 100, ..., 750
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of the final decision rule v is about two times smaller than the declared
level of the test a.. Indeed, the thresholds are conservative, since we use the
Bonferroni procedure. Next, we can see that the empirical type I error of
the linear test is almost always greater than the one of the scan test. This
is explained by the fact that for any p the threshold 7}, ,, of the scan test is
greater than the threshold of the linear test. Thus, the scan test tends to
not reject the null hypothesis even if the linear test rejects it. In general, the
scan test will be useful to detect a change in a small number of components,
since in this case its detection boundary (14) is smaller than the one of the
linear test (13).

Finally, we would like to mention that both tests can be also calibrated
by the empirical quantiles of the corresponding limiting processes. This can
potentially increase the power of the test since the type I error will get closer
to the significance level.

6. Application to real data. We present two illustrations of the method
on real data. The first example is classical. We apply the sliding window ver-
sion of our testing procedure to the problem of simultaneous segmentation
of comparative genomic hybridization (CGH) profiles. The second example
comes from astrophysics. We apply our method to the detection of distant
galaxies.

6.1. CGH data segmentation. Comparative genomic hybridization (CGH)
is a technique to obtain the number of copies of genes in a DNA profile. The
number of copies of certain genes can vary in a tumor cell with respect to
a normal cell. This phenomenon is called copy-number variation. The task
consists in finding which regions of DNA contain this elevated or lowered
copy number for each particular type of tumor.

We consider a publicly available dataset of bladder tumor profiles [29].
This dataset contains d = 57 bladder tumor samples. Each profile is a se-
quence of 2385 relative quantities of DNA that describe the copy number
variation. The problem is to test whether there is a simultaneous change in
copy numbers of some of 57 profiles as well as to estimate the location of the
change. We remove the observations corresponding to the sex chromosomes
as suggested in [30] since the sex mismatch between the patients leads to
less reliable results. We also remove the vectors containing outliers for more
than 9 patients at the same position on the chromosome. The final dataset
contains N = 2041 observations recorded from 22 chromosomes for each
patient.

The problem clearly fits our framework, since the change in the number of
copies does not necessarily occur for all profiles. Moreover, the CGH profiles
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are independent. A profile is usually modeled by a piecewise constant re-
gression with independent Gaussian errors [25]. Thus we observe a sequence
of d-dimensional vectors y; modeled by

K—-1
yi:0+ZA0i1{7k<i§Tk+1}+§i, ’iZl,...,N,
k=0

where 6 and Af; are the unknown means of the relative DNA quantities
and their changes, respectively, & ~ N(0,X) are independent with a diag-
onal covariance matrix Y and the 75 are the unknown copy-number change
locations, k =0,..., K — 1.

We apply a sliding window version of the proposed testing procedure
to estimate the change-points. The data is normalized before applying our
method: we divide each column y; by its empirical standard deviation calcu-
lated for each profile. We suppose that after this normalization the data can
be modeled by the model (1) within any window of a fixed size h. For a given
significance level «, we test whether there is a change over a sliding window
of size h. We use simulated quantiles as the thresholds for both tests for
n = h observations. If the change is detected within the interval (u,u + h],
we estimate the change-point as

T = arg u+11;1§1§xu+h{max (Llin(t), Lscan(t)) }

Figure 6 summarizes the results of this analysis. The black piecewise con-

Log-ratio

ol
S
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5

1314 15 16 17 18 1920 2122

Chromosome

Fia 6. Simultaneous segmentation of d = 57 CGH profiles of length n = 2041. The profiles
of different patients are shown in different colors. The black line corresponds to the scaled
norm of the mean multiplied by the sign of the highest profile mean of the segment.

stant line shows the scaled estimated norm of the mean || A6;+6||2/v/d within
each segment (7y, T11], multiplied by the sign of the largest empirical mean
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within the segment. We have chosen this quantity as a reference value to
graphically represent the size and the direction of the change in mean in the
profiles since we cannot plot the mean changes in all the profiles.

The experimental results are quite similar to the segmentation results
obtained in [30]. The sliding window size is fixed to h = 40, the significance
level is set to aw = 0.05 and both tests were calibrated at the level «/2.
We present only 20 profiles in the figure although the estimation was done
using all 57 profiles. Vertical lines show the chromosome borders. The results
are satisfactory. The method can quickly detect a change in a small subset
of components of a high-dimensional vector. Higher robustness to outliers,
which occur in such data, could be an interesting improvement to consider
in future work.

6.2. Detection of distant galaxies. The data we consider here represents
the spectra of galaxies obtained by the Multi-Unit Spectroscopic Explorer
(MUSE) [2]. The data collected with the MUSE instrument is massive hyper-
spectral data cubes of up to 4000 images of 300 x 300 pixels, where each
image corresponds to a certain wavelength.

The data we consider in this paper was provided by expert astrophysi-
cists. First, the simulations of astronomical scenes are run. Then, the result-
ing simulations are processed by applying the MUSE Instrument Numerical
Model. We therefore have three cubes of data of size 100 x 100 x 3600. Each
cube represents the real value of the linear spectra s, the observed value y
and the noise variance Y. More precisely, we observe d-dimensional vectors,
d = 3600, modeled by

vij = sij +eij,  (4,7) € A,

where (i,7) € A are spatial coordinates, A is indexed by {1,...,100}2,
sij € R? is the spectral column, and gij ~ N(0,%;;) are independent for all
(i,j) € A. The covariance matrices ¥;; are diagonal, with components [afj]Q
k =1,...,d. The mean of the signal-to-noise ratio y;;/s;; over the spectra
is shown in Figure 7. The data is sparse with respect to the spectral values
as well as with respect to the spatial coordinates.

The goal is to detect the presence of the galaxies using the information
about their spectra; see [26, 24] for some recent work on this topic. The data
is renormalized by dividing the coordinates of each observation by the corre-
sponding standard deviation afj provided by the astrophysicists. We suppose

)

that within a small window the new data z;; := Ei_jlyij follow model (1)
for any fixed i or j. For each fixed spatial coordinate ¢ € {1,...,100}
we test the hypotheses of no change in mean in each contiguous couple
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F1Gc 7. The mean signal-to-noise ratio over 3600 spectral values.

a =0.001

a =0.01 a=0.05

Fic 8. The results of testing for a = 0.001,0.005,0.01,0.05. The detected galazies are
shown in white.

of vectors x;; and ;;11, 7 = 1,...,99. Thus we test a change-point at
(1,7) € {1,...,100} x {1,...,99}. The same tests are performed for each
fixed j € {1,...,100}. We say that the galaxy is detected at (i,j) € A if one
of the tests, column-wise or row-wise, has detected the change in mean (we
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use only one test for the coordinates (i,100) and (100, 5)). The results are
shown in Figure 8 for the significance levels a = 0.001, 0.005,0.01, 0.05.

To get the overall significance level «, both tests are calibrated at level
a/4, column-wise and row-wise. We use the theoretical thresholds for the
scan test at g = a/4 and the thresholds based on the chi-squared distri-
bution quantiles g,z (1 — a/4) for the linear test. Comparing the results
with Figure 7, we can see that the locations of six galaxies are detected.
However, the test fails in the presence of faint signals. A possible approach
to increase the power of the test is to take into account the simultaneous
change in variance. We refer the reader to [26] for some other methods as
well as for the details about the MUSE instrument data.

7. Conclusion. We have proposed a test for a change in mean of a
sequence of high-dimensional Gaussian vectors under the assumption that
the change occurs in a subset of components of unknown size p of the mean
vector. The proposed test is based on a combination of two basic tests, the
linear test and the scan test. The test is adaptive to the unknown sparsity
index p. The obtained detection boundary conditions provide a correct mini-
max separation rate up to a constant. The constant in the lower bound of the
minimax testing error matches the constant that appears in related testing
and classification problems. The constant in the upper bound could poten-
tially be improved. In the case of high-sparsity, a method based on higher
criticism [12] could be worthwhile investigating. The proposed approach can
be readily extended to the case of unknown equal variance across compo-
nents.

APPENDIX A: UPPER BOUNDS
First, using (2) we reduce the model (1) to the model
(19) Zn(t) = —A0-pn(t) +&0(t), teT,
where T = {1,...,n — 1},

(20) fin(£) = t(nn— t) <Z:;1{t <7}+ %1{75 > T}).

and &,(t) = (£L(1),...,€3(t))T are Gaussian vectors with A(0, 1) dependent
components given by

(21) éﬁ;(t)zw/ﬁ (Zf{—iZfﬁ), j=1,....d.
i=1 i=1

Note that the process 5% (t), t € T is a discrete normalized Brownian bridge.
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A.1. Upper bound for Problem (P1). The proof of Theorem 1 is
based on the following two lemmas proven in Supplement A.

LEMMA 1. Let a be a given significance level and the thresholds H and
T, be defined in (6) and (7), where oy + as = o, oy, s > 0. Then the type

I error a(1py) is smaller than a.

In the next lemma we derive the conditions on r that allow us to control
the the Type II error.

LEMMA 2. Letp € D and 7 € T be given and oy, a5 € (0,1) be given
significance levels of the linear and the scan test, respectively.

1. Let B; € (0,1) be given. Assume that there exists a A € (0,1) such that

r2nh(r) 1 1/2 111/2 \/5 1 1
(22) (1-N=20 2 [2log;l} [2103; BJ +4/2 (10g log ﬂz>

Then B(Wiin, Op[r], 7) < By for the linear test Yy, of level ay.

2. Let Bs € (0,1) be given. Assume that there exists a A € (0,1) such that

r2nh(7) 171/2 171/2 \/7 1 1
1- > |2log — 2log — — | log — 1
(-N=75 = 2o |+ 2oz ] p<0gas+ Og&)
de de1/2
(23) +/2p <log+[loge} )
p p

Then B(Yan, ©p[r], T) < Bs for the scan test Ylhcan of level .

Now using these lemmas we can prove the theorem.
Proof of Theorem 1. Lemma 1 implies that a(¢;) < a if H and T, are
chosen as in (6) and (7). On the other hand,

B0 Oplr), 7) < min(B(trin, Oplr], 7), B(dan, Oplr),T) ).

Note that if r satisfies (22) or (23) with the corresponding significance levels

o and ag, then the type II error of the test ¢ is smaller than min(8;, ;).

We have to show that (22) and (23) are satisfied if (13) and (14) hold true.
Consider the linear test. Inequality (22) becomes

r2nh(T) 2 < 1712 1 1/2> 2 ( 1 1>
N > T [log al} + [log 51] —1—7\/&(1_/\) loga log 5)
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Taking A = logd/ V/d we obtain that the right-hand side of this inequality
tends to 2(y/— log a; + +/—log §;) which is minimal for oy = §; = /2 under
the constraints 0 < a; + 8 < ~. If condition (13) is satisfied, then the
above inequality holds true for sufficiently large d given that oy = 3 = /2.
Applying Lemma 2 we obtain dli_)rn B(in, Op[r], 7) < /2.

o

For the scan test, set A = 1/,/p. Then A — 0 as d — oo, since p — oo as
d — oo by Assumption (A2). We can rewrite (23) as follows,

r“nh(r) / /
plog?é/p) 2 X mo;w/p) @%;T K [IO%I >

+ 2 (10 i lo 1)
(1 Nplog(d/p) \ Bas A BB,

e1l/
e ( g+ [l ] > |

Taking into account Assumption (A2), we can also see that /plog(d/p) — oo
and log(d/p) — oo. Thus Vag, S € (0, 1) the above inequality holds if

r2nh(T)
plog(d/p) ~
which follows from condition (14). Take fs € (0, min(y — «, 5;)). Then

dli_)rgo[a(w;) + By, Op[r], 7)] < i + as +min(B, Bs) < 7. u

>2+40(1), d— oo,

A.2. Upper bound for Problem (P2). The proof of the upper bound
in the adaptive case is similar to the proof in the case of known p and 6.
The detailed proofs can be found in Supplement A.

LEMMA 3. Let 0 < e <n—1. The thresholds of the linear and scan test
are given by

2logn \/7 2logn \/E
(24) He = (1+8)\/210g[04110g ] (1+¢) dlg[allog(l—i—g)}_F6 2’

2np 2np
(25) T, = [210 f 7

where a; + as < «, aj, a5 > 0. Then a(y

LEMMA 4. Let a5 and o be given significance levels for the linear and the
scan test, respectively. Recall that T is the true change-point. Let 5; € (0,1)
and Bs € (0,1) be given.
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1. Assume that V1T € T there exists a A € (0,1) and an € > 0 such that

1/2log \[mg
(26) —i—(l—i—s)\/;log 1+E\/210g+5\/>

where o is defined in (9). Then S5, Olr],I) < B for the linear test

Wi, of level ag.
2. Assume that Vp € D and V1 € T there exists a A € (0,1) such that

h
(1-2X) 'rn 1/21g+\/>log+1/210g—|— \/>10g
Bs Bs
2 d
(27) + v/2log(2np?) + \/>log (2np?) +/2p log——i—UQplog;e.

Then B(Yk . n, O[r], I) < Bs for the adaptive scan test 1)

scan

(1=X)

of level a.

Proof of Theorem 3. As in the proof of Theorem 1, we can easily see
that if the thresholds are chosen as in (8) and (10), then the type II error
of the adaptive test is smaller than «,

80", 8lr], ) < min(B(th, O], 1), B(tieans O], ) < mina, ) <

Thus we need to show that the conditions of Lemma 3 are satisfied if the
assumptions of Theorem 3 hold.

Let us start with the scan test. Lemma 3 implies that for 7}, chosen
as in (11), the type I error of the test is bounded by as, if r satisfies (27)
Vp € D. Rewrite the latter inequality as

(28)
r2nh(r) \/log at \/log o1 log 2= + A" log -
2p log(d/p) v/plog(d/p) 1-X  plog(d/p)

F =07 [+ og(@/p)] ] - [(log(@/p) ™+ (1 -+ log(a/m) ]

_1 [log(2np?) 12 _ log(2np?) v
+ (1 — )\) 1 |:plog(d/p):| : (log(d/}?)) 12 + (plog(d/p)> '

Set A = 1/,/p. Note that A — 0 as d — oo. Taking into account Assump-
tion (A2), we can also see that ,/plog(d/p) — oo, log(d/p) — oo and the
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first three terms of the above inequality tend to 0 for any ag, 8s € (0,1).

Assumptions (A3) and (A2) imply for all p € D
log(np?) _ logn 2logp

plog(d/p) ~ plog(d/p) = plog(d/p)

therefore the last term tends to 1 as d — oo. If condition (18) is satisfied,

then Vr € T and Vp € D

r2nh(T)

2plog(d/p)

Therefore inequality (28) holds for any Af, € O[r], Vr € T and Vp € D,

and the scan test’s type II error is smaller than (s, dli_>ngo B(Wkan, ©lr]) < Bs.

— 0, d— oo,

>1+4+o0(1), d— oc.

Let us now turn to the linear test. Rewrite the inequality (26) as follows

rabr) 1 [ 11 21
Vad —1-AVT%E TV g

1\ 1/2
it feg L (B} 4y +€\/g
1AV %0, d 2

Set A = 1/v/d and ¢ = /2logd/d. Then the threshold H. becomes H*
defined in (8). Note that for d > 2 we have 0 < ¢ < 1. We have the following
inequalities

(29)

loge — e <loglog(1+¢) <loge

implying the asymptotic loglog(l + ¢) < —logd as d — oo. Using this
inequality we can show that

1 1
log — =log — + loglogn — loglog(1 + ¢)
a 7!

&€
2logd 1
d 2

1 1 1
< log — + loglogn + log2 — = loglogd + = logd.
o 2 2
Thus, we will have a loss of rate of order y/log(v/dlogn) in the detection
boundary. Indeed, the first two terms in (29) are asymptotically constant if

A =1/vd and d — co. The third term is of order \/log log n + log v/d since

n,d — oco. The last one equals y/logd. Thus, (26) is satisfied for sufficiently
large d, if for any 7 € T

2
lim inf rnh(7) >
d—oo /2dlog(dlogn)

This proves the theorem. |
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APPENDIX B: PROOF OF THE LOWER BOUND

Proof of Theorem 2. We have to show that under conditions of Theo-
rem 2 for any v € (0,1) there exist a constant C, > 0 such that V C' < C,

Hul)f 7(1/]7 GP[CTd]u T) > v, d — 0.
The classical approach to the construction of lower bounds in testing prob-
lems with sparsity goes back to the works of [19]. We also refer to [3] for the
non-asymptotic analysis of the related problem of testing non-zero coordi-
nates in a Gaussian vector.

Recall that we observe the sequence X" = (X1,..., X,,) of d-dimensional
random vectors

X, =0+ A0,1{i>7}+&, i=1,....n

with a possible change at the location 7 € 7. Let us define the following
class of mean vectors # and the changes A#:

.
Oylr 7] = {(9,A9T) eR™: 0= fé(lfﬁ), A0, =6, 6 VI CRY, 6] = r}.

Note that if (6, A0;) € @g[r, 7], then A6, € ©,[r]. Recall the definition of
type II error for problem (P1):

B, Oplr],7) = sup Pap, 017 = 0}.
(0,10, )€R4x O, [r]

Define the type II error for the alternatives that belong to the class @g [, T]:

B, 0%, 7]) = sup  Pag o{vp =0}
(0,407)€03[r,7]

Let Pr, be a prior distribution on the set @g[r, 7] and Py be the prior
corresponding to the case of no change in mean and zero means before and
after the change: 6 = 0 in the definition of @g [r, 7]. Using the standard lower
bound machinery (see, e.g., [19]), we have

inf (4, ©,[r], ) = inf (a(w) + B, O, [r]. 7))
> inf (a(v) + 4, ©)[r,7)))
> 1 |[Br — Poll
_1- %EO\L‘M(X”) 1

1 " 1/2
>1- §(E0£3r7r( )_ 1) / )
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where || - |1 denotes the total variation norm and L, ,(X") = dgpﬂ’,f(’)" (X™)
is the corresponding likelihood ratio. The second inequality follows from
Proposition 2.11 of [19]. The third inequality is true if the measure Py, is
absolutely continuous with respect to Py, and the last one follows from the
Cauchy—Schwarz inequality.

The prior Py, is the mixture of priors on ©9[r,7] C V, and on the set

Vl')d = U IL,R? where m is uniformly distributed over M(d, p) according
meM(p,d)

to the measure 7. Define the prior Py, , on the set @g [r, 7] NIL,RY by letting

r .
where €™ = (e7",...,€]') is a random vector with components
om +1, j7em
! 0, j¢m

such that P{e]' = 1} = P{e]’ = —1} = 1/2, j € m and P{]* = 0} = 1,
j ¢ m. Note that ||¢™||> = p, therefore ||§]|*> = r? and the prior is well
defined. Thus, the likelihood ratio is given by

. AN APy
)= (1) X S
p meM(d,p) 0

To prove the lower detection bound, we need to show that lién inf y(¢, ©plr],7) >
—00

~ for any test ¥. Using the above lower bound inequality, we can see that it
remains to show that limsup Eo[£Z . (X™)] <1+ 4(1 —~)? if (15) and (16)

—00
are satisfied. The proof of this statement is given in Lemma 5. |

LEMMA 5. Let conditions (15) and (16) of Theorem 2 be satisfied for
some v € (0,1). Let L ,(X") be the likelihood ratio that corresponds to
the uniform prior on the subset of coordinates m € M(d,p) and the prior
distribution Py, . defined in (30). Then

lim supEo[[,iﬂ,(Xn)] <144(1—7)2

d—o0
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “High-dimensional change-point
detection under sparse alternatives”
(doi: COMPLETED BY THE TYPESETTER; .pdf). The supplementary
material [13] contains omitted proofs and some additional simulation results.
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