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Abstract

We consider the problem of discrete-time signal

denoising, focusing on a specific family of non-

linear convolution-type estimators. Each such

estimator is associated with a time-invariant fil-

ter which is obtained adaptively, by solving a

certain convex optimization problem. Adaptive

convolution-type estimators were demonstrated

to have favorable statistical properties, see (Judit-

sky & Nemirovski, 2009; 2010; Harchaoui et al.,

2015b; Ostrovsky et al., 2016). Our first contribu-

tion is an efficient algorithmic implementation of

these estimators via the known first-order proxi-

mal algorithms. Our second contribution is a com-

putational complexity analysis of the proposed

procedures, which takes into account their statis-

tical nature and the related notion of statistical

accuracy. The proposed procedures and their anal-

ysis are illustrated on a simulated data benchmark.

1. Introduction

We consider the problem of discrete-time signal denoising.

The goal is to estimate a discrete-time complex signal (xτ )
observed in complex Gaussian noise of level σ on [−n, n]:

yτ := xτ + σζτ , τ = −n, ..., n. (1)

Here, ζτ are i.i.d. random variables with standard complex

Gaussian distribution CN (0, 1), that is, Re(ζτ ) and Im(ζτ )
are independent standard Gaussian random variables.

Signal denoising is a classical problem in statistical esti-

mation and signal processing; see (Ibragimov & Khasmin-

skii, 1981; Nemirovski, 2000; Tsybakov, 2008; Wasserman,

2006; Haykin, 1991; Kay, 1993). The conventional ap-

proach is to assume that x comes from a known set X with a

simple structure that can be exploited to build the estimator.

For example, one might consider signals belonging to linear

1SIERRA Project-Team, INRIA Paris, Paris, France
2Department of Statistics, University of Washington, Seattle, USA.
Correspondence to: <dmitrii.ostrovskii@inria.fr>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

subspaces S of signals whose spectral representation, as

given by the Discrete Fourier or Discrete Wavelet transform,

comes from a linearly transformed `p-ball, see (Tsybakov,

2008; Johnstone, 2011). In all these cases, estimators with

near-optimal statistical performance can be found in explicit

form, and correspond to linear functionals of the observa-

tions y – hence the name linear estimators.

We focus here on a family of non-linear estimators with

larger applicability and strong theoretical guarantees, in

particular when the structure of the signal is unknown be-

forehand, as studied in (Nemirovski, 1992; Juditsky & Ne-

mirovski, 2009; 2010; Harchaoui et al., 2015b; Ostrovsky

et al., 2016). Assuming for convenience that one must es-

timate xt on [0, n] from observations (1), these estimators

can be expressed as

x̂ϕt = [ϕ ∗ y]t :=
∑

τ∈Z

ϕτyt−τ 0 ≤ t ≤ n; (2)

here ϕ is called a filter and is supported on [0, n] which we

write as ϕ ∈ Cn(Z), and ∗ is the (non-circular) discrete

convolution. For estimators in this family, the filter is then

obtained as an optimal solution to some convex optimiza-

tion problem. For instance, the Penalized Least-Squares

estimator (Ostrovsky et al., 2016) is defined by

ϕ̂ ∈ Argmin
ϕ∈Cn(Z)

1

2
‖Fn[y − ϕ ∗ y]‖22 + λ‖Fn[ϕ]‖1, (3)

where Fn is the Discrete Fourier transform (DFT) on Cn+1,

and ‖ · ‖p is the `p-norm on Cn+1. We shall give a summary

of the various estimators of the family in the end of this

section. Optimization problems associated to all of them

rest upon a common principle – minimization of the resid-

ual ‖Fn[y − ϕ ∗ y]‖p, with p ∈ {2,∞}, regularized via the

`1-norm of the DFT of the filter.

The statistical properties of adaptive convolution-type esti-

mators have been extensively studied. In particular, such

estimators were shown to be nearly minimax-optimal, with

respect to the pointwise loss and `2-loss, for signals be-

longing to arbitrary, and unknown, shift-invariant linear

subspaces of C(Z) with bounded dimension, or sufficiently

close to such subspaces as measured by the local `p-norms,

see (Nemirovski, 1992; Juditsky & Nemirovski, 2009; 2010;

Harchaoui et al., 2015b; Ostrovsky et al., 2016). We give a



Efficient Algorithms for Adaptive Signal Denoising

summary of statistical properties of convolution-type esti-

mators in the supplementary material.

However, the question of the algorithmic implementation of

such estimators remains largely unexplored; in fact, we are

not aware of any publicly available implementation of these

estimators. Our goal here is to close this gap. Note that

problems similar to (3) belong to the general class of second-

order cone problems, and hence can in principle be solved

to high numerical accuracy in polynomial time via interior-

point methods (Ben-Tal & Nemirovski, 2001). However, the

computational complexity of interior-point methods grows

polynomially with the problem dimension, and becomes

prohibitive in signal and image denoising problems (for

example, in image denoising this number is proportional

to the number of pixels which might be as large as 108).

Furthermore, it is unclear whether high-accuracy solutions

are necessary when the optimization problem is solved with

the goal of obtaining a statistical estimator. In such cases,

the level of accuracy sought, or the amount of computations

performed, should rather be adjusted to the statistical per-

formance of the exact estimator itself. While these matters

have previously been investigated in the context of linear

regression (Pilanci & Wainwright, 2016) and sparse recov-

ery (Bruer et al., 2015), our work studies them in the context

of convolution-type estimators.

Notably, (3) and its counterparts have favorable properties:

- Easily accessible first-order information. The objective

value and gradient at a given point can be computed in

timeO(n log n) via a series of Fast Fourier Transforms

(FFT) and elementwise vector operations.

- Simple geometry. After a straightforward re-

parametrization, one is left with `1-norm penalty or

`1-ball as a feasible set in the constrained formulation.

Prox-mappings for such problems, with respect to both

the Euclidean and the “`1-adapted” distance-generating

functions, can be computed efficiently.

- Medium accuracy is sufficient. We show that approxi-

mate solutions with specified (medium) accuracy pre-

serve the statistical performance of the exact solutions.

All these properties make first-order optimization algorithms

the tools of choice to deal with (3) and similar problems.

Outline. In Section 2, we recall two general classes of

optimization problems, composite minimization (Beck &

Teboulle, 2009; Nesterov & Nemirovski, 2013) and compos-

ite saddle-point problems (Juditsky & Nemirovski, 2011;

Nesterov & Nemirovski, 2013), and the first-order optimiza-

tion algorithms suitable for their numerical solution. In

Section 3, we show how to recast the optimization prob-

lems related to convolution-type estimators in one of the

above general forms. We then describe how to compute

first-order oracles in the resulting problems efficiently using

FFT. In Section 4, we establish problem-specific worst-case

complexity bounds for the proposed first-order algorithms.

These bounds are expressed in terms of the quantities that

control the statistical difficulty of the signal recovery prob-

lem: signal length n, noise variance σ2, and parameter r cor-

responding to the `1-norm of the Discrete Fourier tranform

of the optimal solution. A remarkable consequence of these

bounds is that just Õ(PSNR+1) iterations of a suitable first-

order algorithm are sufficient to match the statistical proper-

ties of an exact estimator; here PSNR := ‖F2n[x]
n
−n‖∞/σ

is the peak signal-to-noise ratio in the Fourier domain. This

gives a rigorous characterization (in the present context)

of the performance of “early stopping” strategies that al-

low to stop an optimization algorithm much earlier than

dictated purely by the optimization analysis. In Section 5,

we present numerical experiments on simulated data which

complement our theoretical analysis1.

Notation. We denote C(Z) the space of all complex-

valued signals on Z, or, simply, the space of all two-sided

complex sequences. We call Cn(Z) the finite-dimensional

subspace of C(Z) consisting of signals supported on [0, n]:

Cn(Z) = {(xτ ) ∈ C(Z) : xτ = 0 whenever τ /∈ [0, n]} ;

its counterpart C±
n (Z) consists of all signals supported on

[−n, n]. The unknown signal is assumed to come from

one of such subspaces, which corresponds to a finite sig-

nal length. Note that signals from C(Z) can be naturally

mapped to column vectors by means of the index-restriction

operator [·]nm, defined for any m,n ∈ Z such that m ≤ n as

[x]nm ∈ C
n−m+1.

In particular, [·]n0 and [·]n−n define one-to-one mappings

Cn(Z) → Cn+1 and C±
n (Z) → C2n+1. For convenience,

column-vectors in Cn+1 and C2n+1 will be indexed starting

from zero. We define the scaled `p-seminorms on C(Z):

‖x‖n,p :=
‖[x]n0‖p

(n+ 1)1/p
=

(
1

n+ 1

n∑

τ=0

|xτ |p
)1/p

, p ≥ 1.

We use the “Matlab notation” for matrix concatenation:

[A;B] is the vertical, and [A,B] the horizontal concate-

nation of two matrices with compatible dimensions. We

introduce the unitary Discrete Fourier Transform (DFT)

operator Fn on Cn+1, defined by

[Fnx]k =
1√
n+ 1

n∑

t=0

xt exp

(
2πikt

n+ 1

)
, 0 ≤ k ≤ n.

1The code reproducing all our experiments is available online
at https://github.com/ostrodmit/AlgoRec.
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The unitarity of Fn implies that its inverse F−1
n coincides

with its conjugate transpose FH
n . Slightly abusing the nota-

tion, we will occasionally shorten Fn[x]
n
0 to Fn[x]. In other

words, Fn[·] is a map Cn(Z) → Cn+1, and the adjoint map

FH
n [x] simply sends FH

n [x]
n
0 to Cn(Z) via zero-padding. We

use the “Big-O” notation: for two non-negative functions

f, g on the same domain, g = O(f) means that there is a

generic constant C ≥ 0 such that g ≤ Cf for any admis-

sible value of the argument; g = Õ(f) means that C is

replaced with C(logκ(n) + 1) for some κ > 0; hereinafter

log(·) is the natural logarithm, and C is a generic constant.

Estimators. We now summarize all the estimators that

are of interest in this paper. For brevity, we use the notation

Resp(ϕ) := ‖Fn[y − ϕ ∗ y]‖p. (4)

• Constrained Uniform-Fit estimator, given for r ≥ 0 by

ϕ̂ ∈ Argmin
ϕ∈Φn(r)

Res∞(ϕ), (Con-UF)

Φn(r) :=

{
ϕ ∈ Cn(Z) : ‖Fn[ϕ]‖1 ≤ r√

n+ 1

}
;

• Constrained Least-Squares estimator:

ϕ̂ ∈ Argmin
ϕ∈Φn(r)

1

2
Res22(ϕ); (Con-LS)

• Penalized Uniform-Fit estimator:

ϕ̂ ∈ Argmin
ϕ∈Cn(Z)

Res∞(ϕ) + λ‖Fn[ϕ]‖1; (Pen-UF)

• Penalized Least-Squares estimator:

ϕ̂ ∈ Argmin
ϕ∈Cn(Z)

1

2
Res22(ϕ) + λ‖Fn[ϕ]‖1. (Pen-LS)

We also consider (Con-LS∗) and (Pen-LS∗) – counterparts

of (Con-LS) and (Pen-LS) in which 1

2
Res22(ϕ) is replaced

with non-squared residual Res2(ϕ). Note that (Con-LS∗) is

equivalent to (Con-LS), i.e. results in the same estimator;

however, this does not hold for (Pen-LS∗) and (Pen-LS).

2. Tools from Convex Optimization

In this section, we recall the tools from first-order convex

optimization to be used later. We describe two general types

of optimization problems, composite minimization and com-

posite saddle-point problems, together with efficient first-

order algorithms for their solution. Following (Nesterov &

Nemirovski, 2013), we begin by introducing the concept of

proximal setup which underlies these algorithms.

2.1. Proximal Setup

Let a domain U be a closed convex set in a Euclidean space

E. A proximal setup for U is given by a norm ‖·‖ onE (not

necessarily Euclidean), and a distance-generating function

(d.-g. f.) ω(u) : U → R, such that ω(u) is continuous and

convex on U , admits a continuous selection ω′(u) ∈ ∂ω(u)
of subgradients on the set {u ∈ U : ∂ω(u) 6= ∅}, and is

1-strongly convex with respect to ‖ · ‖.

The concept of proximal setup gives rise to several notions

(see (Nesterov & Nemirovski, 2013) for a detailed exposi-

tion): the ω-center uω , the Bregman divergence Du(·), the

ω-radius Ω[·] and the prox-mapping Proxu(·) defined as

Proxu(g) = argmin
ξ∈U

{〈g, ξ〉+Du(ξ)} .

Blockwise Proximal Setups. We now describe a specific

family of proximal setups which proves to be useful for

our purposes. Let E = RN with N = 2(n + 1); note

that we can identify this space with Cn+1 via (Hermitian)

vectorization map Vecn : Cn+1 → R2(n+1),

Vecnz = [Re(z0); Im(z0); ...; Re(zn); Im(zn)]. (5)

Now, supposing that N = k(m+ 1) for some non-negative

integers m, k, let us split u = [u0; ...;um] ∈ RN into m+1
blocks of size k, and equip RN with the group `1/`2-norm:

‖u‖ :=

m∑

j=0

‖uj‖2. (6)

We also define the balls UN (R) := {u ∈ RN : ‖u‖ ≤ R}.

Theorem 2.1 ((Nesterov & Nemirovski, 2013)). GivenE =
RN as above, ω : RN → R defined by

ω(u) =
(m+ 1)(q̃−1)(2−q̃)/q̃

2c̃



m∑

j=0

‖uj‖q̃2



2/q̃

(7)

with (q̃, c̃) =





(
2, 1

m+1

)
, m ≤ 1,(

1 + 1
log(m+1) ,

1
e log(m+1)

)
, m ≥ 2,

is a d.-g. f. for any ball UN (R) of the norm (6) with ω-

center uω = 0. Moreover, for some constant C and any

R ≥ 0 and m, k ∈ Z+, ω-radius of UN (R) is bounded as

Ω[UN (R)] ≤ C(
√
log(m+ 1) + 1)R. (8)

We will use two particular cases of the above construction.

(i) Case m = n, k = 2 corresponds to the `1-norm on

Cn+1, and specifies the complex `1-setup.



Efficient Algorithms for Adaptive Signal Denoising

Algorithm 1 Fast Gradient Method

Input: stepsize η > 0
u0 = uω
g0 = 0 ∈ E
for t = 0, 1, ... do

ut = ProxηΨ,uω
(ηgt)

τt =
2(t+2)

(t+1)(t+4)

ut+ 1

3

= τtut + (1− τt)u
t

gt =
t+2
2 ∇f(ut+ 1

3

)

ut+ 2

3

= ProxηΨ,ut
(ηgt)

ut+1 = τtut+ 2

3

+ (1− τt)u
t

gt+1 =
∑t
τ=0 gt

end for

(ii) Case m = 0, k = N corresponds to the `2-norm on

Cn+1, and specifies the `2-setup (‖ · ‖2, 1

2
‖ · ‖22).

To work with them, we introduce specific norms on RN :

‖u‖C,p := ‖Vec−1
n u‖p = ‖VecH

nu‖p, p ≥ 1. (9)

Note that ‖·‖C,1 gives the norm ‖·‖ in the complex `1-setup,

while ‖ · ‖C,2 coincides with the standard `2-norm on RN .

2.2. Composite Minimization Problems

The general composite minimization problem has the form

min
u∈U

{φ(u) = f(u) + Ψ(u)} . (10)

Here, U is a domain inE equipped with ‖·‖, f(u) is convex

and continuously differentiable on U , and Ψ(u) is convex,

lower-semicontinuous, finite on the relative interior of U ,

and can be non-smooth. Assuming that U is equipped with

a proximal setup (‖ · ‖, ω(·)), let us define the composite

prox-mapping, see (Beck & Teboulle, 2009), as follows:

ProxΨ,u(g) = argmin
ξ∈U

{〈g, ξ〉+Du(ξ) + Ψ(ξ)} . (11)

Fast Gradient Method. Fast Gradient Method (FGM),

summarized as Algorithm 1, was introduced in (Nesterov,

2013) as an extension of the celebrated Nesterov algorithm

for smooth minimization (Nesterov, 1983) to the case of

constrained problems with non-Euclidean proximal setups.

It is guaranteed to find an approximate solution of (10) with

O(1/T 2) accuracy after T iterations. We defer the rigorous

statement of this accuracy bound to Sec. 4.

2.3. Composite Saddle-Point Problems

We also consider general composite saddle-point problems:

inf
u∈U

max
v∈V

[φ(u, v) = f(u, v) + Ψ(u)] . (12)

Here, U ⊂ Eu and V ⊂ Ev are domains in the corre-

sponding Euclidean spaces Eu, Ev, and in addition V is

compact; function f(u, v) is convex in u, concave in v, and

differentiable on W := U × V ; function Ψ(u) is convex,

lower-semicontinuous, can be non-smooth, and is such that

ProxΨ,u(g) is easily computable. We can associate with f
a smooth vector field F :W → Eu × Ev , given by

F ([u; v]) = [∇uf(u, v);−∇vf(u, v)].

Saddle-point problem (12) specifies two convex opti-

mization problems: that of minimization of φ(u) =
maxv∈V φ(u, v), or the primal problem, and that of max-

imization of φ(v) = infu∈U φ(u, v), or the dual problem.

Under the general conditions which hold in the described

setting, see e.g. (Sion, 1958), (12) possesses an optimal so-

lution w∗ = [u∗; v∗], called a saddle point, such that the

value of (12) is φ(u∗, v∗) = φ(u∗) = φ(v∗), and u∗, v∗ are

optimal solutions to the primal and dual problems. The qual-

ity of a candidate solution w = [u; v] can be evaluated via

the duality gap – the sum of the primal and dual accuracies:

φ(u)− φ(v) = [φ(u)− φ(u∗)] + [φ(v∗)− φ(v)].

Constructing the Joint Setup. When having a saddle-

point problem at hand, one usually begins with “partial”

proximal setups (‖ · ‖U , ωU ) for U ⊆ Eu, and (‖ · ‖V , ωV )
for V ⊂ Ev, and must construct a “joint” proximal setup

on W . Let us introduce the segment U∗ = [u∗, uω], where

uω is the u-component of the ω-center wω of W . Moreover,

folllowing (Nesterov & Nemirovski, 2013), let us assume

that the dual ω-radius Ω[V ] and the “effective” primal ω-

radius, defined as

Ω∗[U ] := min(Ω[U ],Ω[U∗]),

are known (note that Ω[U ] can be infinite but Ω∗[U ] cannot).

We can then construct a proximal setup

‖w‖2 = Ω2[V ] ‖u‖2U +Ω2
∗[U ] ‖v‖2V ,

ω(w) = Ω2[V ]ωU (u) + Ω2
∗[U ]ωV (v).

(13)

Note that the corresponding joint prox-mapping is reduced

to the prox-mappings for the primal and dual setups.

Composite Mirror Prox. Composite Mirror Prox (CMP),

introduced in (Nesterov & Nemirovski, 2013) and summa-

rized here as Algorithm 2, solves the general composite

saddle-point problem (12). When applied with proximal

setup (13), this algorithm admits anO(1/T ) accuracy bound

after T iterations; the formal statement is deferred to Sec. 4.

3. Algorithmic Implementation

Change of Variables. When working with convolution-

type estimators, our first step is to transfer the problem to
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Algorithm 2 Composite Mirror Prox

Input: stepsize η > 0
w0 := [u0; v0] = wω
for t = 0, 1, ... do

wt+ 1

2

= ProxηΨ,wt
(ηF (wt))

wt+1 = ProxηΨ,wt
(ηF (wt+ 1

2

))

wt+1 := [ut+1; vt+1] = 1
t+1

∑t
τ=0 wτ

end for

the Fourier domain, so that the feasible set and the penaliza-

tion term become quasi-separable. Namely, noting that the

adjoint map of Vecn : Cn+1 → R2n+2, cf. (5), is given by

VecH
nu = [u0; u2; ...; u2n] + i[u1; u3; ...; u2n+1],

consider the transformation

u = VecnFn[ϕ] b = VecnFn[y] (14)

Note that ϕ = FH
n [VecH

nu] ∈ Cn(Z), and hence

‖Fn[y − y ∗ ϕ]‖22 = ‖Au− b‖22,

where A : R2n+2 → R2n+2 is defined by

Au = VecnFn
[
y ∗ FH

n [VecH
nu]
]
. (15)

We are about to see that all recovery procedures can indeed

be cast into one of the “canonical” forms (10), (12). More-

over, the gradient computation is then reduced to evaluating

the convolution-type operator A and its adjoint AH = AT.

Problem Reformulation. After the change of vari-

ables (14), problems (Con-LS) and (Pen-LS) take form (10):

min
‖u‖C,1≤R

[
f(u) := 1

2
‖Au− b‖22

]
+ λ‖u‖C,1, (16)

where ‖ · ‖C,p is defined in (9). In particular, (Con-LS)

is obtained from (16) by setting λ = 0 and R = r√
n+1

,

and (Pen-LS) is obtained by setting R = ∞. Note that

∇f(u) = AT(Au− b).

On the other hand, problems (Con-UF), (Pen-UF),

and (Con-LS∗) can be recast as saddle-point problems (12).

Indeed, the dual norm to ‖ · ‖C,p is ‖ · ‖C,q with q = p
p−1 ,

whence

‖Fn[y − y ∗ ϕ]‖p = ‖Au− b‖C,p = max
‖v‖C,q≤1

〈v,Au− b〉;

as such, (Con-UF), (Pen-UF) and (Con-LS∗) are reduced to

a saddle-point problem

min
‖u‖C,1≤R

max
‖v‖C,q≤1

[f(u, v) := 〈v,Au− b〉] + λ‖u‖C,1,
(17)

where q = 1 for (Con-UF) and (Pen-UF), and q = 2 in case

of (Con-LS∗). Note that f(u, v) is bilinear, and one has

[∇uf(u, v);∇vf(u, v)] = [ATv;Au− b].

We are now in the position to apply the algorithms described

in Sec. 2. One iteration of either of them is reduced to a few

computations of the gradient (which, in turn, is reduced to

evaluating A and AT) and prox-mappings. We now show

how to evaluate operators A and AT in time O(n log n).

Evaluation of Au and ATv. Operator A, cf. (15), can

be evaluated in time O(n log n) via FFT. The key fact is

that the convolution [y ∗ ϕ]n0 is contained in the first n+ 1
coordinates of the circular convolution of [y]n−n with a zero-

padded filter ψ = [[ϕ]n0 ; 0n] ∈ C2n+1. Using the DFT

diagonalization property, this fact can be expressed as

[y ∗ ϕ]t =
√
2n+ 1 [FH

2nDyF2nψ]t, 0 ≤ t ≤ n,

where operator Dy = diag(F2n[y]
n
−n) on C2n+1 can be

constructed in O(n log n) by FFT, and evaluated in O(n).
Let Pn : C2n+1 → Cn+1 project to the first n + 1 coordi-

nates of C2n+1; its adjoint PH
n is the zero-padding operator

which complements [ϕ]n0 with n trailing zeroes. Then,

Au =
√
2n+ 1 · VecnFnPnF

H
2nDyF2nP

H
n F

H
n VecH

nu,
(18)

where all operators in the right-hand side can be evaluated in

O(n log n). Operator AT = AH can be treated in the same

manner by taking the adjoint of (18).

Computation of Prox-Mappings. It is worth mentioning

that the composite prox-mappings in all cases of interest

can be computed in time O(n); in some cases it can be done

explicitly, and in others via a root-finding algorithm. These

computations are described in the supplementary material.

4. Theoretical Analysis

4.1. Bounds on Absolute Accuracy

We first recall from (Nesterov & Nemirovski, 2013) the

worst-case bounds on the absolute accuracy in objective,

defined as ε(t) := φ(ut)− φ(u∗) for composite minimiza-

tion problems, and ε(t) := φ(ut)− φ(u∗) for saddle-point

problems. These bounds, summarized in Theorems 4.1–4.2

below, are applicable when solving arbitrary problems of

the types (10), (12) with the suitable first-order algorithm,

and are expressed in terms of the “optimization” parameters

that specify the regularity of the objective and the ω-radius.

Theorem 4.1. Suppose that f has Lf -Lipschitz gradient:

‖∇f(u)−∇f(u′)‖∗ ≤ Lf‖u− u′‖ ∀u, u′ ∈ U



Efficient Algorithms for Adaptive Signal Denoising

where ‖·‖∗ is the dual norm to ‖·‖, and let uT be generated

by T iterations of Algorithm 1 with stepsize η = 1
Lf

. Then,

ε(T ) = O

(
LfΩ

2
∗[U ]

T 2

)
.

Theorem 4.2. Let f(u, v) be as in (17)2, and assume that

vector field F is LF -Lipschitz on W = U × V :

‖F (w)− F (w′)‖∗ ≤ LF ‖w − w′‖ ∀w,w′ ∈W.

Let wT = [uT ; vT ] be generated by T iterations of Algo-

rithm 2 with joint setup (13) and η = Ω[V ]
Ω∗[U ]LF

. Then,

ε(T ) = O

(
LFΩ∗[U ]Ω[V ]

T

)
.

Our next goal is to translate these bounds into the language

of “statistical” parameters such as the norm of exact estima-

tor and the peak signal-to-noise ratio in the Fourier domain,

cf. Sec. 1. Let us make a couple of observations beforehand.

The first observation concerns the proximal setups to be

used, and allows to control the ω-radii. If the partial do-

main (for u or v) is an ‖ · ‖C,2-norm ball, we will natu-

rally use the `2-setup in that variable. If the domain is an

‖ · ‖C,1-norm ball, we will consider choosing between the

`1-setup which is “adapted” to the geometry of the problem,

see (Nesterov & Nemirovski, 2013), or the `2-setup due

to its simplicity in use. Note that in all these cases, the

partial domains either coincide with or are contained in the

balls UN (1), UN (R) of the corresponding norms, cf. (8),

whence ω-radii Ω[V ],Ω∗[U ] can be bounded as follows:

Ω[V ] = Õ(1), Ω∗[U ] = Õ
(
r/
√
n+ 1

)
, (19)

where

r =
√
n+ 1‖Fn[ϕ̂]‖1 (20)

is the scaled norm of an optimal solution (note that r ≥ r).

The second observation concerns the Lipschitz constants

Lf , LF in the chosen setups. It is convenient to define

parameters qu, qv that take values in {2, 1} depending on

the partial setup used in the corresponding variable; besides,

let pu = qu
qu−1 and pv = qv

qv−1 . Introducing the complex

counterpart of A, operator A : Cn+1 → Cn+1 given by

A[ϕ]n0 = Fn[y ∗ FH
n [ϕ]

n
0 ] ⇔ A = Vecn ◦ A ◦ VecH

n,

we can conveniently express Lipshitz constants Lf , LF in

terms of operator norms ‖A‖α→β := sup‖ψ‖α=1 ‖Aψ‖β :

‖A‖21→2 ≤ Lf = ‖A‖2qu→2 ≤ ‖A‖22→2,

‖A‖1→∞ ≤ LF = ‖A‖qu→pv ≤ ‖A‖2→2.
(21)

Now, the norm ‖A‖2→2 itself can be bounded as follows:

2For simplicity, we only state the bound for bilinear f(u, v).

Lemma 4.1. One has

‖A‖2→2 ≤
√
2n+ 1 · ‖F2n[y]

n
−n‖∞.

The proof of this lemma appears in the supplementary mate-

rial. Together with (19), Lemma 4.1 results in the following

Proposition 4.1. Solving (Con-LS) or (Pen-LS) by Algo-

rithm 1 with proximal setup as described above, one has

ε(T ) = Õ

(
r2‖F2n[y]

n
−n‖2∞

T 2

)
. (22)

Similarly, solving (Con-UF), (Pen-UF), (Con-LS∗), or (Pen-

LS∗) by Algorithm 2 with proximal setup as described above,

ε(T ) = Õ

(
r‖F2n[y]

n
−n‖∞

T

)
. (23)

Discussion: comparison of setups. Note that Proposi-

tion 4.1 gives the same upper bound on the accuracy ε(T )
irrespectively of the chosen proximal setup. This is because

we used the operator norm ‖A‖2→2 as an upper bound

for Lf and
√
LF while these quantities are in fact equal

to ‖A‖1→2 or ‖A‖1→∞ ≤ ‖A‖1→2 when one uses the

“geometry-adapted” `1-setup in at least one of the variables.

For a general linear operator A on Cn+1 the gaps between

‖A‖2→2 and the latter norms can be as large as
√
n+ 1 or

n+ 1, hence one might expect the bound of Proposition 4.1

to be loose. However, intuitively A is “almost” a diagonal

operator – it would as such is we worked with the circular

convolution. Hence, we can expect its various ‖ · ‖q→p

norms in (21) to be mutually close (in the case A = diag(a)
they all coincide with ‖a‖∞). This heuristic observation

can be made precise:

Proposition 4.2. Assume that σ = 0, and x ∈ C(Z) is

(n+ 1)-periodic: xτ = xτ−n−1, τ ∈ Z. Then, one has

‖A‖1→∞ =
√
n+ 1‖Fn[x]‖∞.

4.2. Statistical Accuracy and Complexity Bounds

In this section, we first characterize the statistical accuracy

of adaptive recovery procedures, defined as the absolute

accuracy ε∗ sufficient for the corresponding approximate

estimator ϕ̃ to admit the same, up to a constant factor, the-

oretical risk bound as the exact estimator ϕ̂. The exact

meaning of “risk bound” here depends on the estimator

in consideration: for uniform-fit estimators it is the bound

on the pointwise loss that was proved in (Harchaoui et al.,

2015b), and for least-squares estimators it is the bound on

the `2-loss proved in (Ostrovsky et al., 2016). The next two

results state that statistical accuracy, defined in this sense,

can be chosen as σr for uniform-fit procedures, and σ2r2 for

least-squares procedures. The arguments, provided in the

supplementary material, closely follow those in (Harchaoui

et al., 2015b) and (Ostrovsky et al., 2016).
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