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Abstract

We consider the problem of discrete-time signal
denoising, focusing on a specific family of non-
linear convolution-type estimators. Each such
estimator is associated with a time-invariant fil-
ter which is obtained adaptively, by solving a
certain convex optimization problem. Adaptive
convolution-type estimators were demonstrated
to have favorable statistical properties, see (Judit-
sky & Nemirovski, 2009; 2010; Harchaoui et al.,
2015b; Ostrovsky et al., 2016). Our first contribu-
tion is an efficient algorithmic implementation of
these estimators via the known first-order proxi-
mal algorithms. Our second contribution is a com-
putational complexity analysis of the proposed
procedures, which takes into account their statis-
tical nature and the related notion of statistical
accuracy. The proposed procedures and their anal-
ysis are illustrated on a simulated data benchmark.

1. Introduction

We consider the problem of discrete-time signal denoising.
The goal is to estimate a discrete-time complex signal ()
observed in complex Gaussian noise of level o on [—n, n]:

Yr =2r +0(r, T=-—N,...,N. (1)

Here, (; are i.i.d. random variables with standard complex
Gaussian distribution CA (0, 1), that is, Re({;) and Im(¢;)
are independent standard Gaussian random variables.

Signal denoising is a classical problem in statistical esti-
mation and signal processing; see (Ibragimov & Khasmin-
skii, 1981; Nemirovski, 2000; Tsybakov, 2008; Wasserman,
2006; Haykin, 1991; Kay, 1993). The conventional ap-
proach is to assume that = comes from a known set X with a
simple structure that can be exploited to build the estimator.
For example, one might consider signals belonging to linear
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subspaces S of signals whose spectral representation, as
given by the Discrete Fourier or Discrete Wavelet transform,
comes from a linearly transformed ¢,-ball, see (Tsybakov,
2008; Johnstone, 2011). In all these cases, estimators with
near-optimal statistical performance can be found in explicit
form, and correspond to linear functionals of the observa-
tions y — hence the name linear estimators.

We focus here on a family of non-linear estimators with
larger applicability and strong theoretical guarantees, in
particular when the structure of the signal is unknown be-
forehand, as studied in (Nemirovski, 1992; Juditsky & Ne-
mirovski, 2009; 2010; Harchaoui et al., 2015b; Ostrovsky
et al., 2016). Assuming for convenience that one must es-
timate x; on [0, n] from observations (1), these estimators
can be expressed as

B =lpxyle:=) ortnr 0<t<m; (2
TEZ

here ¢ is called a filter and is supported on [0, n] which we
write as ¢ € C,(Z), and * is the (non-circular) discrete
convolution. For estimators in this family, the filter is then
obtained as an optimal solution to some convex optimiza-
tion problem. For instance, the Penalized Least-Squares
estimator (Ostrovsky et al., 2016) is defined by

¢ € Argmin || Foy — o yll3 + Al Falelll, )
»eCn(Z)

where F,, is the Discrete Fourier transform (DFT) on C™*1,
and | - || is the £,-norm on C" . We shall give a summary
of the various estimators of the family in the end of this
section. Optimization problems associated to all of them
rest upon a common principle — minimization of the resid-
ual || F, [y — ¢ * y]||p, with p € {2, 00}, regularized via the
£1-norm of the DFT of the filter.

The statistical properties of adaptive convolution-type esti-
mators have been extensively studied. In particular, such
estimators were shown to be nearly minimax-optimal, with
respect to the pointwise loss and ¢5-loss, for signals be-
longing to arbitrary, and unknown, shift-invariant linear
subspaces of C(Z) with bounded dimension, or sufficiently
close to such subspaces as measured by the local £,-norms,
see (Nemirovski, 1992; Juditsky & Nemirovski, 2009; 2010;
Harchaoui et al., 2015b; Ostrovsky et al., 2016). We give a
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summary of statistical properties of convolution-type esti-
mators in the supplementary material.

However, the question of the algorithmic implementation of
such estimators remains largely unexplored; in fact, we are
not aware of any publicly available implementation of these
estimators. Our goal here is to close this gap. Note that
problems similar to (3) belong to the general class of second-
order cone problems, and hence can in principle be solved
to high numerical accuracy in polynomial time via interior-
point methods (Ben-Tal & Nemirovski, 2001). However, the
computational complexity of interior-point methods grows
polynomially with the problem dimension, and becomes
prohibitive in signal and image denoising problems (for
example, in image denoising this number is proportional
to the number of pixels which might be as large as 10®).
Furthermore, it is unclear whether high-accuracy solutions
are necessary when the optimization problem is solved with
the goal of obtaining a statistical estimator. In such cases,
the level of accuracy sought, or the amount of computations
performed, should rather be adjusted to the statistical per-
formance of the exact estimator itself. While these matters
have previously been investigated in the context of linear
regression (Pilanci & Wainwright, 2016) and sparse recov-
ery (Bruer et al., 2015), our work studies them in the context
of convolution-type estimators.

Notably, (3) and its counterparts have favorable properties:

- Easily accessible first-order information. The objective
value and gradient at a given point can be computed in
time O(nlogn) via a series of Fast Fourier Transforms
(FFT) and elementwise vector operations.

- Simple geometry. After a straightforward re-
parametrization, one is left with ¢;-norm penalty or
{1-ball as a feasible set in the constrained formulation.
Prox-mappings for such problems, with respect to both
the Euclidean and the “¢;-adapted” distance-generating
functions, can be computed efficiently.

- Medium accuracy is sufficient. We show that approxi-
mate solutions with specified (medium) accuracy pre-
serve the statistical performance of the exact solutions.

All these properties make first-order optimization algorithms
the tools of choice to deal with (3) and similar problems.

Qutline. In Section 2, we recall two general classes of
optimization problems, composite minimization (Beck &
Teboulle, 2009; Nesterov & Nemirovski, 2013) and compos-
ite saddle-point problems (Juditsky & Nemirovski, 2011;
Nesterov & Nemirovski, 2013), and the first-order optimiza-
tion algorithms suitable for their numerical solution. In
Section 3, we show how to recast the optimization prob-
lems related to convolution-type estimators in one of the

above general forms. We then describe how to compute
first-order oracles in the resulting problems efficiently using
FFT. In Section 4, we establish problem-specific worst-case
complexity bounds for the proposed first-order algorithms.
These bounds are expressed in terms of the quantities that
control the statistical difficulty of the signal recovery prob-
lem: signal length n, noise variance o', and parameter r cor-
responding to the ¢1-norm of the Discrete Fourier tranform
of the optimal solution. A remarkable consequence of these
bounds is that just O(PSNR + 1) iterations of a suitable first-
order algorithm are sufficient to match the statistical proper-
ties of an exact estimator; here PSNR := || F5, [2]™ . ||cc /0
is the peak signal-to-noise ratio in the Fourier domain. This
gives a rigorous characterization (in the present context)
of the performance of “early stopping” strategies that al-
low to stop an optimization algorithm much earlier than
dictated purely by the optimization analysis. In Section 5,
we present numerical experiments on simulated data which
complement our theoretical analysis'.

Notation. We denote C(Z) the space of all complex-
valued signals on Z, or, simply, the space of all two-sided
complex sequences. We call C,,(Z) the finite-dimensional
subspace of C(Z) consisting of signals supported on [0, n]:

C.(Z) ={(z;) € C(Z) : x; =0 whenever 7 ¢ [0,n]};

its counterpart C:F(Z) consists of all signals supported on
[-n,n]. The unknown signal is assumed to come from
one of such subspaces, which corresponds to a finite sig-
nal length. Note that signals from C(Z) can be naturally
mapped to column vectors by means of the index-restriction
operator |-, defined for any m,n € Z such that m < n as

2]y, € CrmH,

In particular, [-]§ and [-]?,, define one-to-one mappings
C,(Z) — C"*! and CF(Z) — C?"*L. For convenience,
column-vectors in C"*! and C2"*! will be indexed starting
from zero. We define the scaled £,,-seminorms on C(Z):

16 1l

1 n 1/p
— — P >
np - (n+1)1/» (”’+1,-Z_()xT ) ;p= 1

We use the “Matlab notation” for matrix concatenation:
[A; B] is the vertical, and [A, B] the horizontal concate-
nation of two matrices with compatible dimensions. We
introduce the unitary Discrete Fourier Transform (DFT)
operator F;, on C"*t1, defined by

]

IR 2mikt
Fal= ———Y TN o<k <n.
Fnrle \/mt_oxte){p<n+1>’ sh=n

!The code reproducing all our experiments is available online
athttps://github.com/ostrodmit/AlgoRec.
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The unitarity of F,, implies that its inverse F,* coincides
with its conjugate transpose F'. Slightly abusing the nota-
tion, we will occasionally shorten F),[z]f to F),[x]. In other
words, F,,[)] is amap C,,(Z) — C™*!, and the adjoint map
FH[x] simply sends F!![z]} to C,,(Z) via zero-padding. We
use the “Big-O” notation: for two non-negative functions
f, g on the same domain, g = O(f) means that there is a
generic constant C' > 0 such that g < C'f for any admis-
sible value of the argument; g = O(f) means that C is
replaced with C'(log™(n) + 1) for some x > 0; hereinafter
log(-) is the natural logarithm, and C is a generic constant.

Estimators. We now summarize all the estimators that
are of interest in this paper. For brevity, we use the notation

Resp () := [ Fuly — @ * ylllp- @)

Constrained Uniform-Fit estimator, given for 7 > 0 by

» € Argmin
ped, (?)

Resoo (¢), (Con-UF)

B, () = {sﬂ € Cu(@) : | Fulellh < m}

Constrained Least-Squares estimator:

$ € Argmin  1Res3();

pED, (T)

(Con-LS)

Penalized Uniform-Fit estimator:

@ € Argmin Reso (@) + M| Fu[p]]l1;
»€C,(Z)

(Pen-UF)

Penalized Least-Squares estimator:
P € Argmin 1Res3(¢) + A|F,[¢][l1.  (Pen-LS)
w€Cy (Z)

We also consider (Con-LS*) and (Pen-LS*) — counterparts
of (Con-LS) and (Pen-LS) in which 1Res3(¢) is replaced
with non-squared residual Ress (). Note that (Con-LS*) is
equivalent to (Con-LS), i.e. results in the same estimator;
however, this does not hold for (Pen-LS*) and (Pen-LS).

2. Tools from Convex Optimization

In this section, we recall the tools from first-order convex
optimization to be used later. We describe two general types
of optimization problems, composite minimization and com-
posite saddle-point problems, together with efficient first-
order algorithms for their solution. Following (Nesterov &
Nemirovski, 2013), we begin by introducing the concept of
proximal setup which underlies these algorithms.

2.1. Proximal Setup

Let a domain U be a closed convex set in a Euclidean space
E. A proximal setup for U is given by a norm || - || on E (not
necessarily Euclidean), and a distance-generating function
(d.-g. f.) w(u) : U — R, such that w(u) is continuous and
convex on U, admits a continuous selection w’(u) € dw(u)
of subgradients on the set {u € U : dw(u) # 0}, and is
1-strongly convex with respect to || - ||

The concept of proximal setup gives rise to several notions
(see (Nesterov & Nemirovski, 2013) for a detailed exposi-
tion): the w-center w,,, the Bregman divergence D, (-), the
w-radius Q-] and the prox-mapping Prox,, (-) defined as

Prox,(g) = argmin (9, €) + Du(6)}

Blockwise Proximal Setups. We now describe a specific
family of proximal setups which proves to be useful for
our purposes. Let E = RY with N = 2(n + 1); note
that we can identify this space with C"*! via (Hermitian)
vectorization map Vec,, : €+ — R2(n+1),

Vec,z = [Re(z0); Im(z0); ...; Re(zn); Im(2,)].  (5)
Now, supposing that N = k(m + 1) for some non-negative

integers m, k, let us split u = [u’;...;u™] € RN intom+1
blocks of size k, and equip R™ with the group ¢, /{5-norm:

lull == l[u |- ©6)
7=0

We also define the balls Uy (R) := {u € RN : ||Ju|| < R}.

Theorem 2.1 ((Nesterov & Nemirovski, 2013)). Given E =
RY as above, w : RN — R defined by

2/q
(m+1)@-De-9/a | Iy
wlu) = 2 > w4 7
7=0
2, m%l) : m<1,
with (§,¢) = 1 1
1+ log(m+1)’ elog(m+1)) , m > 2,

is a d.-g. f. for any ball Uy (R) of the norm (6) with w-
center u,, = 0. Moreover, for some constant C and any
R > 0and m,k € Z, w-radius of Uy (R) is bounded as

QUN(R)] < C(y/log(m +1) + 1)R. (8)
We will use two particular cases of the above construction.

(i) Case m = n, k = 2 corresponds to the ¢;-norm on
C"*1, and specifies the complex {1 -setup.
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Algorithm 1 Fast Gradient Method

Input: stepsize n > 0
u® = u,
¢ =0€ckFE
fort =0,1,...do
ur = Proxyw u,, (19')
_ _2(t42)
Tt = G+
ut_i_% = TUt + (1 — Tt)u
_t+2
gt = =5 Vf(ut-i-%)
Upyp2 = Prox,wu, (ngt)
uttl = ety 2 + (1 —7)ut
t
gt+1 = Z-,—:o gt
end for

t

(i) Case m = 0, k = N corresponds to the />-norm on
C™*!, and specifies the lo-setup (|| - ||2, 3| - 13)-

To work with them, we introduce specific norms on RYN:

lulle.p = [IVeey ull, = [[Vecyull,, p>1. (9
Note that ||- ||¢,1 gives the norm || || in the complex ¢1-setup,
while || - ||¢.2 coincides with the standard ¢-norm on RY.

2.2. Composite Minimization Problems

The general composite minimization problem has the form
min {¢(u) = f(u) + V(u)}. (10)
uelU

Here, U is a domain in E equipped with || - ||, f(u) is convex
and continuously differentiable on U, and ¥ (u) is convex,
lower-semicontinuous, finite on the relative interior of U,
and can be non-smooth. Assuming that U is equipped with
a proximal setup (|| - ||,w(+)), let us define the composite
prox-mapping, see (Beck & Teboulle, 2009), as follows:

Proxy .(g) = arggrgin {{9,€) + Du(§) +¥(§)}. (1)
S

Fast Gradient Method. Fast Gradient Method (FGM),
summarized as Algorithm 1, was introduced in (Nesterov,
2013) as an extension of the celebrated Nesterov algorithm
for smooth minimization (Nesterov, 1983) to the case of
constrained problems with non-Euclidean proximal setups.
It is guaranteed to find an approximate solution of (10) with
O(1/T?) accuracy after T iterations. We defer the rigorous
statement of this accuracy bound to Sec. 4.

2.3. Composite Saddle-Point Problems

We also consider general composite saddle-point problems:

nf max[¢(u,v) = f(u,v) +¥(u)]. (12)

Here, U C E, and V C FE, are domains in the corre-
sponding Euclidean spaces E,,, E,, and in addition V' is
compact; function f(u,v) is convex in u, concave in v, and
differentiable on W := U x V; function ¥ (u) is convex,
lower-semicontinuous, can be non-smooth, and is such that
Proxy ,(g) is easily computable. We can associate with f
a smooth vector field F' : W — E,, x E,,, given by

F([usv]) = [Vuf(u,v); =V, f (u,v)].

Saddle-point problem (12) specifies two convex opti-
mization problems: that of minimization of ¢(u) =
max,ey ¢(u,v), or the primal problem, and that of max-
imization of ¢(v) = inf,cy ¢(u,v), or the dual problem.
Under the general conditions which hold in the described
setting, see e.g. (Sion, 1958), (12) possesses an optimal so-
lution w* = [u*;v*], called a saddle point, such that the
value of (12) is ¢p(u*,v*) = ¢(u*) = ¢(v*), and u*, v* are
optimal solutions to the primal and dual problems. The qual-
ity of a candidate solution w = [u; v] can be evaluated via
the duality gap — the sum of the primal and dual accuracies:
p(u) — (v) = [¢(u) — P(u”)] + [¢(v") — S(v)].
Constructing the Joint Setup. When having a saddle-
point problem at hand, one usually begins with “partial”
proximal setups (|| - ||, wy) for U C E,, and (|| - ||v, wy)
for V C FE,, and must construct a “joint” proximal setup
on W. Let us introduce the segment U, = [u*, u,,], where
u,, 1s the u-component of the w-center w,, of W. Moreover,
folllowing (Nesterov & Nemirovski, 2013), let us assume
that the dual w-radius Q[V'] and the “effective” primal w-
radius, defined as

0, [U] := min(Q[U], Q[U.]),

are known (note that Q[U] can be infinite but §2,.[U] cannot).
We can then construct a proximal setup

lwl* = *[V]lullg + QU] [[0]I7,

13
w(w) = V] wy (u) + QU] wy (v). (13)

Note that the corresponding joint prox-mapping is reduced
to the prox-mappings for the primal and dual setups.

Composite Mirror Prox. Composite Mirror Prox (CMP),
introduced in (Nesterov & Nemirovski, 2013) and summa-
rized here as Algorithm 2, solves the general composite
saddle-point problem (12). When applied with proximal
setup (13), this algorithm admits an O(1/T") accuracy bound
after T iterations; the formal statement is deferred to Sec. 4.

3. Algorithmic Implementation

Change of Variables. When working with convolution-
type estimators, our first step is to transfer the problem to
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Algorithm 2 Composite Mirror Prox

Input: stepsize n > 0
wp = [up; vo] = wy,
fort=0,1,...do
Wy 1 = ProxXyg,w, (nF(w))
Wey1 = Proxyg w, (NF(wy, 1))
W i ot = 2 T
end for

the Fourier domain, so that the feasible set and the penaliza-
tion term become quasi-separable. Namely, noting that the
adjoint map of Vec,, : C"*1 — R2"*2 cf. (5), is given by

Vecpu = [uo; ug; i Uon] + i[us; us; ...; Uznial,
consider the transformation
u = Vec, Fr[p] b= Vec,F,[y] (14)
Note that ¢ = F![Vecllu] € €,,(Z), and hence
1Faly =y ¢]l13 = | Au — b]3,
where A : R?2"*t2 — R27*2 is defined by
Au = Vec, F, [y * FY[Vecpul] . (15)
We are about to see that all recovery procedures can indeed
be cast into one of the “canonical” forms (10), (12). More-

over, the gradient computation is then reduced to evaluating
the convolution-type operator A and its adjoint A" = AT,

Problem Reformulation. After the change of vari-
ables (14), problems (Con-LS) and (Pen-LS) take form (10):

min_[f(u) = 1[|Au—b|3] + Mullc,;,  (16)
[lulle,1 <R

where || - [|¢,p is defined in (9). In particular, (Con-LS)
is obtained from (16) by setting A = 0 and R = \/7:?,
and (Pen-LS) is obtained by setting R = co. Note that

Vf(u) = AT (Au —b).

On the other hand, problems (Con-UF), (Pen-UF),
and (Con-LS™*) can be recast as saddle-point problems (12).
Indeed, the dual norm to || - [|¢,p is || - [|e,q With ¢ = B

— 1 2
whence

max (v, Au — b);
lvlle,q<1

1Enly =y x @lllp = [[Au = bllep =

as such, (Con-UF), (Pen-UF) and (Con-LS*) are reduced to
a saddle-point problem

min max u,v) = (v, Au — b)] + A||ul|c.1,
i Hvl\c,qSl[f( ) == )+ Allulleq
(17)

where ¢ = 1 for (Con-UF) and (Pen-UF), and ¢ = 2 in case
of (Con-LS™*). Note that f(u,v) is bilinear, and one has

[vuf(uv U); vvf(ua "UH - [ATU; Au — b]

We are now in the position to apply the algorithms described
in Sec. 2. One iteration of either of them is reduced to a few
computations of the gradient (which, in turn, is reduced to
evaluating A and AT) and prox-mappings. We now show
how to evaluate operators A and AT in time O(n logn).

Evaluation of Au and ATv. Operator A, cf. (15), can
be evaluated in time O(nlogn) via FFT. The key fact is
that the convolution [y * ¢]j is contained in the first n 4 1
coordinates of the circular convolution of [y]™,, with a zero-
padded filter v = [[¢]7;0,] € C?>"*l. Using the DFT
diagonalization property, this fact can be expressed as

[y * @l =V2n + 1[Fi DyFoptply, 0<t<n,
where operator D,, = diag(Fb,[y]",,) on C*"*! can be
constructed in O(nlogn) by FFT, and evaluated in O(n).
Let P, : €21 — C™*! project to the first n + 1 coordi-
nates of C?""!; its adjoint P!! is the zero-padding operator
which complements [p]j with n trailing zeroes. Then,

Au=+2n+1-Vec,F, P, Fi D, F, PHFHVecHy,
(18)
where all operators in the right-hand side can be evaluated in
O(nlogn). Operator AT = AH can be treated in the same
manner by taking the adjoint of (18).

Computation of Prox-Mappings. It is worth mentioning
that the composite prox-mappings in all cases of interest
can be computed in time O(n); in some cases it can be done
explicitly, and in others via a root-finding algorithm. These
computations are described in the supplementary material.

4. Theoretical Analysis
4.1. Bounds on Absolute Accuracy

We first recall from (Nesterov & Nemirovski, 2013) the
worst-case bounds on the absolute accuracy in objective,
defined as €(t) := ¢(u') — ¢(u*) for composite minimiza-
tion problems, and Z(¢) := ¢(u?) — ¢(u*) for saddle-point
problems. These bounds, summarized in Theorems 4.1-4.2
below, are applicable when solving arbitrary problems of
the types (10), (12) with the suitable first-order algorithm,
and are expressed in terms of the “optimization” parameters
that specify the regularity of the objective and the w-radius.

Theorem 4.1. Suppose that f has L¢-Lipschitz gradient:

IVf(u) = Vi@« < Lpllu =o' Vu,u" €U
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where || -|| is the dual normto || -||, and let u™ be generated
by T iterations of Algorithm 1 with stepsize n = Lif Then,

(= 0 (LA1Y.

Theorem 4.2. Let f(u,v) be as in (17)%, and assume that
vector field F is Lg-Lipschitzon W =U x V:

[1F(w) = F(w')|[« < Lr[w—w'|| Yw,w' eW.
Let wT = [uT;v"] be generated by T iterations of Algo-

rithm 2 with joint setup (13) and n = Q*S[Z[[J‘]/}:F. Then,

(1) =0 (LFQ[TU]QM> .

Our next goal is to translate these bounds into the language
of “statistical” parameters such as the norm of exact estima-
tor and the peak signal-to-noise ratio in the Fourier domain,
cf. Sec. 1. Let us make a couple of observations beforehand.

The first observation concerns the proximal setups to be
used, and allows to control the w-radii. If the partial do-
main (for w or v) is an || - ||¢,2-norm ball, we will natu-
rally use the ¢s-setup in that variable. If the domain is an
I - ||c,1-norm ball, we will consider choosing between the
£1-setup which is “adapted” to the geometry of the problem,
see (Nesterov & Nemirovski, 2013), or the ¢5-setup due
to its simplicity in use. Note that in all these cases, the
partial domains either coincide with or are contained in the
balls Uy (1),Un(R) of the corresponding norms, cf. (8),
whence w-radii Q[V], Q.[U] can be bounded as follows:

QV]=0(1), QUU]=0(r/vVn+1), (19)
where
r=vn+1|Fa[g]]1 (20)

is the scaled norm of an optimal solution (note that ¥ > r).

The second observation concerns the Lipschitz constants
Ly, Lr in the chosen setups. It is convenient to define
parameters q,,, g, that take values in {2, 1} depending on
the partial setup used in the corresponding variable; besides,
let p, = qul and p, = qvqjl. Introducing the complex
counterpart of A, operator A : C"t! — C"*! given by

Algly = Fuly* F)llglg] < A= Vec, o Ao Vec,

we can conveniently express Lipshitz constants Ly, Ly in
terms of operator norms ||Al|a— s = sup|y, =1 [ A

IMIT 52 < Ly = 14115, 52 < A3,

(21)
||A||l—>oo <Lp= ||-A||qu—>pv < ”-’4”2—)2-

Now, the norm ||.A|2—,2 itself can be bounded as follows:

?For simplicity, we only state the bound for bilinear f(u,v).

Lemma 4.1. One has

[All2-2 < V204 1+ [[Fan[y]”  l|oo-

The proof of this lemma appears in the supplementary mate-
rial. Together with (19), Lemma 4.1 results in the following
Proposition 4.1. Solving (Con-LS) or (Pen-LS) by Algo-
rithm 1 with proximal setup as described above, one has

~ 72 FQn Y 71 2
-0 (CIEBIEY g
Similarly, solving (Con-UF), (Pen-UF), (Con-LS*), or (Pen-
LS*) by Algorithm 2 with proximal setup as described above,

Y (LT R

Discussion: comparison of setups. Note that Proposi-
tion 4.1 gives the same upper bound on the accuracy &(7")
irrespectively of the chosen proximal setup. This is because
we used the operator norm ||.A||s—2 as an upper bound
for Ly and /Ly while these quantities are in fact equal
to ||Allis2 or |Al15e < || All12 When one uses the
“geometry-adapted” ¢ -setup in at least one of the variables.
For a general linear operator A on C"*! the gaps between
|l A]l2—2 and the latter norms can be as large as v/n + 1 or
n + 1, hence one might expect the bound of Proposition 4.1
to be loose. However, intuitively A is “almost” a diagonal
operator — it would as such is we worked with the circular
convolution. Hence, we can expect its various || - ||4—p
norms in (21) to be mutually close (in the case A = diag(a)
they all coincide with ||a||o). This heuristic observation
can be made precise:

Proposition 4.2. Assume that 0 = 0, and x € C(Z) is
(n+ 1)-periodic: x; = Xr—p_1,7 € Z. Then, one has

[All00 = VR + 1 Fy[2]]| oo

4.2. Statistical Accuracy and Complexity Bounds

In this section, we first characterize the statistical accuracy
of adaptive recovery procedures, defined as the absolute
accuracy €, sufficient for the corresponding approximate
estimator ¢ to admit the same, up to a constant factor, the-
oretical risk bound as the exact estimator @. The exact
meaning of “risk bound” here depends on the estimator
in consideration: for uniform-fit estimators it is the bound
on the pointwise loss that was proved in (Harchaoui et al.,
2015b), and for least-squares estimators it is the bound on
the £5-loss proved in (Ostrovsky et al., 2016). The next two
results state that statistical accuracy, defined in this sense,
can be chosen as o for uniform-fit procedures, and o-?r? for
least-squares procedures. The arguments, provided in the
supplementary material, closely follow those in (Harchaoui
et al., 2015b) and (Ostrovsky et al., 2016).
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Theorem 4.3. An gx-accurate solution %)
to (Con-UF) with 7 = r, or to (Pen-UF) with

A = 160\/(n +1) (1+1log (%)), in both cases
with €, = O(or), with prob. > 1 — 0 satisfies

Cor?y/1+ log ("TH)
d < n+1 ' &4

|Tn — [@*yln| < NCES

While Theorem 4.3 controls the pointwise loss for uniform-
fit estimators, the next theorem controls the ¢5-loss for least-
squares estimators. To state it, we recall that a linear sub-
space S of C(Z) is called shift-invariant if it is an invariant
subspace of the lag operator A: [Az], = 2,1 on C(Z).

Theorem 4.4. Assume that x belongs to a shift-invariant
subspace S with dim(S) < n. Then, an e.-accurate
solution ¢ to (Con-LS) with ¥ = r or to (Pen-LS) with

A =8V20%/n+1 (2 + log (@)) , in all cases with
£. = O(0?r?), with prob. > 1 — § satisfies

Co (n /1+log ("TH) + dim(S))

n+1

HJ} - 35 * y”n,Q <
(25)

Complexity Bound. Combining Theorems 4.3—4.4 with
Proposition 4.1, we arrive at the following conclusion: for
both classes of estimators, the number of iterations 7, of
the suitable first-order algorithm (Algorithm 1 for the least-
squares estimators and Algorithm 2 for the uniform-fit ones)
that guarantees accuracy ¢, with high probability satisfies

T = O (| Fanly)"]loc/0) = O (PSNR+ 1) (26)

Here, PSNR := | Fy,[z]", |l /0 is the peak signal-to-
noise ratio in the Fourier domain, and we used the unitary
invariance of the complex Gaussian distribution. Moreover,
if it is known that the signal is sparse in the Fourier domain,
that is, S is spanned by s complex exponentials e’“*7 with

frequencies on the grid, wy, € %, Jje Z}, we can write
PSNR = O(SNRy/s) (27)

where SNR = ||z]|,,,2/0 is the usual signal-to-noise ratio.

Discussion: different ways of solving (Con-LS). Note
that Algorithm 2 can be used to solve problems (Con-
LS*) and (Pen-LS*) with non-squared residual by reduc-
ing them to (composite) saddle-point problems as shown
in Sec. 3. Hence, when solving (Con-LS) we have two
alternatives: either to solve it directly with Algorithm 1,
or to solve instead the equivalent problem (Con-LS*) with
Algorithm 2. Note that the complexity bound (26) only
holds when Algorithm 1, and we can guess that this way of
treating (Con-LS) is more beneficial. Indeed, whenever the

log(e)

log (Tfast )

IOg(Tfast) IOg(T)

Figure 1: “Phase transition” for Algorithm 1. The different
slopes correspond to (29) and (30).

optimal residual Resy () is strictly positive, attaining accu-
2 for (Con-LS) is equivalent to attaining accuracy

racy o2r*
2.2
L rather than e, = or, for (Con-LS*), where

Res. ()’
Resa () is the optimal residual. Using Proposition 4.1, the

number of iterations of Algorithm 2 to guarantee that is
_ Resy (@)
(o2

Exx =

Tyu = “O(PSNR + 1).

Potentially, this is much worse than (26) since Resa () is
expected to scale as the /5-norm of the noise, i.e. ov/n + 1.

One curious property of Algorithm 1 in the present context
is its fast O(1/T?) convergence in terms of the objective
of (Con-LS*). This fact, although surprizing at a first glance
since the objective of (Con-LS*) is non-smooth, has a simple
explanation. Note that in case of (Con-LS), (22) becomes

72 || Fanly]™, |12
T) . (28)

Dividing by Resa () + Resa (@) > 2Res2($), we obtain

Res3(¢) ~ Res}(@) = O (

5 (1Pl
R 2)—Ress () =0 —————=1], (29
es2(¢) — Resa(9) < Res (3)12 > (29)
i.e. O(1/T?) convergence for (Con-LS*) if Resa($) > 0.
Moreover, this bound is crucial to achieve (26), since (26)
is exactly what is required for the right-hand side of (29) to
2.2

be upper-bounded by €. = 5o—t—c

Finally, note that for small 7', the O(1/7"2) bound (29) is
dominated by the O(1/T") bound

Resa(9) - Resa() =0 (12222 o

which is obtained from (28) by putting Resy () into the
right-hand side and taking the square root. Hence, we can
expect to see the faster O(1/T2) convergence after
Tl F2n(y]” 1 llo

Res ()

iterations of Algorithm 1, as graphically shown in Fig. 1.

Thst = (3D
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Relative accuracy
True error

Figure 2: Relative accuracy, left, and {-loss ||F), [z —
&(T) * y]||0o» right, vs. iteration for approximate solutions
to (Con-UF) by Algorithm 2 in Coherent-8 with SNR = 16.

-
o
N

-
o

Relative accuracy

—CMP-t,
.. CMP-(5-Gap

1 10" 102

Figure 3: Relative accuracy vs. iteration for (Con-UF), left,
and (Con-LS*), right, in scenario Coherent-4 with SNR = 4.
Dotted: accuracy certificates, see (Nemirovski et al., 2010).

5. Experiments

In this series of experiments, our goal is to demonstrate
the effectiveness of the approach and illustrate the theoret-
ical results of Sec. 4. We estimate signals coming from
an unknown shift-invariant subspace S, implementing the
following experimental protocol. First, a random signal
[0} ...; xy] With n = 100 is generated according to one
of the scenarios described below (s is a parameter in both
scenarios). Then, z is normalized so that ||[x]% |2 = 1, and
corrupted by i.i.d. Gaussian noise with a chosen level of
SNR = (0y/n)~!. A number of independent trials is per-
formed to ensure the statistical significance of the results.

e In scenario Random-s, the signal is a harmonic oscilla-
tion with s frequencies: z; = >, _, aie™*+’. The fre-
quencies are sampled uniformly at random on [0, 27/,
and the amplitudes uniformly on [0, 1].

e In scenario Coherent-s, we sample s pairs of close
frequencies. Frequencies in each pair have the same
amplitude and are separated only by % - 0.1 DFT
bin — so that the signal violates the usual frequency
separation conditions, see e.g. (Tang et al., 2013).

For constrained estimator we set 7 = 2 dim(S) as suggested
in (Ostrovsky et al., 2016) for two-sided filters. Note that
dim(S) = s in Random-s and dim(S) = 2s in Coherent-s.

Proof-of-Concept. In this experiment, we study estima-
tor (Con-UF) in scenarios Random-16 and Coherent-8. We

run a version of CMP (Algorithm 2) with adaptive stepsize,
see (Nesterov & Nemirovski, 2013), plotting the relative
accuracy of the corresponding approximate solution (1),
that is, ¢(7") normalized by the optimal value of the resid-
ual Res., ($), versus T. We also trace the true estimation
error as measured by the ¢,,-loss in the Fourier domain,
| Fy 2 — (T *y] || oo - Two joint proximal setups are consid-
ered: the full ¢5-setup composed from the partial £5-setups,
and the full ¢;-setup composed from the partial ¢;-setups.
To obtain a proxy for ¢, we recast (Con-UF) as a second-
order cone problem, and run the MOSEK interior-point
solver (Andersen & Andersen, 2013); note that this method
is only available for small-sized problems. We show upper
95%-confidence bounds for the convergence curves.

The results of this experiment, shown in Fig. 2, can be sum-
marized as follows. First, we see that the complexity of the
optimization task grows with SNR as predicted by (23). Sec-
ond, provided that the number of frequencies is the same,
there is no significant difference between scenarios Ran-
dom and Coherent for the computational performance of
our algorithms (albeit we find Coherent to be slightly harder,
and we only show the results for this scenario here). We also
find, somewhat unexpectedly, that the /5-setup outperforms
the “geometry-adapted” setup in earlier iterations; however,
the performances of the two setups match in later iterations.

Overall, we find that the first 100 iterations result in 100%
relative accuracy, i.e.. Resoo (9) < 2Resqo (). In fact, from
the analysis of uniform-fit estimators in the proof of The-
orem 4.3 we can derive the bound Res..(3) = O(or),
implying that the conditions of Theorem 4.3 are met for ¢.
As such, we can predict that further optimization is redun-
dant. This is empirically confirmed: the true error begins to

plateau after no more than 100 iterations.

Convergence and Accuracy Certificates. Here we illus-
trate the convergence of FGM (Algorithm 1) and CMP (Al-
gorithm 2), including the case of (Con-LS*) where both
algorithms can be applied and thus compared. We work in
the same setting as previously, but this time also study (Con-
LS*) for which we compare the recommended approach via
Algorithm 1 and the alternative approach via Algorithm 2 as
discussed in Sec. 4.2. The results are shown in Fig. 3. We
empirically observe O(1/T") convergence of Algorithm 2
when solving (Con-UF), as well as O(1/T?) convergence
of Algorithm 1 when solving (Con-LS*), after a certain
threshold as predicted by (29)—(31). In addition to accu-
racy curves, we plot upper bounds on them obtained via the
technique of accuracy certificates, see (Nemirovski et al.,
2010) and the supplementary material. Such bounds can be
used for early stopping of the algorithms once the desired
accuracy has been attained.

Additional experiments are presented in the supplementary
material.
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