
6

A Logical Analysis of Framing for Specifications with Pure

Method Calls

ANINDYA BANERJEE, IMDEA Software Institute

DAVID A. NAUMANN and MOHAMMAD NIKOUEI, Stevens Institute of Technology

For specifying and reasoning about object-based programs, it is often attractive for contracts to be expressed
using calls to pure methods. It is useful for pure methods to have contracts, including read effects, to support
local reasoning based on frame conditions. This leads to puzzles such as the use of a pure method in its own
contract. These ideas have been explored in connection with verification tools based on axiomatic semantics,
guided by the need to avoid logical inconsistency, and focusing on encodings that cater for first-order auto-
mated provers. This article adds pure methods and read effects to region logic, a first-order program logic that
features frame-based local reasoning and provides modular reasoning principles for end-to-end correctness.
Modular reasoning is embodied in a proof rule for linking a module’s method implementations with a client
that relies on the method contracts. Soundness is proved with respect to conventional operational semantics
and uses an extensional (i.e, relational) interpretation of read effects. Applicability to tools based on SMT
solvers is demonstrated through machine-checked verification of examples. The developments in this arti-
cle can guide the implementations of linking as used in modular verifiers and serve as a basis for studying
observationally pure methods and encapsulation.
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1 INTRODUCTION

Consider a class Cell, each instance of which holds an integer value, and these methods.

method get(): int

method set(v: int) ensures self.get() = v

A. Banerjee was partially supported by the U.S. National Science Foundation (NSF). D. A. Naumann was partially supported
by NSF awards CNS-1228930, CCF-1649894, and CNS-1718713. M. Nikouei was partially supported by NSF awards CNS-
1228930 and CCF-1649894. Any opinion, findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the NSF.
Authors’ addresses: A. Banerjee, IMDEA Software Institute, Edificio IMDEA Software, Campus Montegancedo s/n, 28223
Pozuelo de Alarco’n, Madrid, Spain; email: anindya.banerjee@imdea.org; D. A. Naumann and M. Nikouei, Stevens Institute
of Technology, Castle Point onHudson, Hoboken, NJ 07030-5991; emails: naumann@cs.stevens.edu, snikouei@stevens.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 0164-0925/2018/05-ART6 $15.00
https://doi.org/10.1145/3174801

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 6. Publication date: May 2018.

https://doi.org/10.1145/3174801
mailto:permissions@acm.org
https://doi.org/10.1145/3174801


6:2 A. Banerjee et al.

Consider the following client code, in a Java-like programming notation:

var c, d: Cell; c := new Cell; d := new Cell; c.set(5); d.set(6); assert c.get() = 5.

We would like to prove the asserted postcondition, by reasoning that the state read by c.get() is
disjoint from the state written by d.set(6). One problem is how to make sense of specifications that
invoke methods, like get in the assertion and in the postcondition of set. Another problem is how
to specify frame conditions, for sound “local” reasoning about disjointness of effects, even in the
presence of method calls in specifications. This article aims to solve these problems in a way that
can be used in verification tools based on automated theorem provers for first-order logic (FOL)
and proved sound with respect to standard operational semantics of programs.
A frame condition is the part of a method’s contract that says what part of the state may be

changed by an invocation of the method. Frame conditions make it possible to retain a global
picture while reasoning locally: If a predicate, say c.get()=5, can be asserted preceding a method
call, say d.set(6), then it still holds following that call—provided that the locations on which the
predicate depends are disjoint from those that may be written according to the method’s frame
condition. This obvious and familiar idea is remarkably hard to formalize in a way that is useful for
sound reasoning about programs acting on dynamically allocated mutable objects (even sequential
programs, to which we confine attention here). The challenges include how to precisely describe
locations a method may write and to describe the locations on which a predicate depends (its read
effect or “footprint”), without violating abstraction boundaries. The challenge illustrated by the
example is that the predicate may itself involve a method call.
There are practical benefits to using programmed methods in postconditions, like get in the

example, as well as in preconditions and in frame conditions. This seems sensible provided that
they are pure in the sense of having no observable effects other than reading and are terminating
so there is a definite value. The idea is that such a method is computing a function and can be used
as such in reasoning, with well-known benefits of functional and data abstraction. One may call it
a pun, akin to the fundamental pun of Hoare logic: treating program variables as logical variables.
The puns make it possible for specifications to be expressed in notation close to the programming
language, making it more accessible to engineers [22].
Prior work on pure methods has addressed termination of pure methods. Versions of the Java

Modeling Language (JML) [35] allow a pure method to be called in its own postcondition, but
decreasing a measure, the same requirement as for recursive calls in the body of a method being
proved to terminate [25]. Pure method calls are also useful in frame conditions, again leading to
apparent recursion, for which it is challenging to determine sound reasoning principles.
Pure methods can lead to unsatisfiable specifications. For example, naïve use of the pure method

specification

method f(x: int): int ensures result = f(x)+1

could lead to inconsistencies like the formula f(x) = f(x)+1. This example is ruled out by the re-
quirement to decrease a measure. But the formula result ∗ result = x does not call f at all; yet,
as a postcondition, it too is unsatisfiable for some values of x. For purposes of runtime assertion
checking, it is clear that care must be taken with recursive calls in postconditions. But for purposes
of static verification, the potential for unsatisfiable postconditions does not itself necessitate that
a pure method call in its own postcondition must decrease a measure. Indeed, the postcondition
result = f(x) is benign.
Prior work on pure methods focused on verification-condition generation (VC-gen), usually

taking axiomatic semantics for granted rather than defining and proving soundness with respect
to operationally grounded program semantics (see References [22, 25, 54, 59] and others in
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Fig. 1. Example: Cell.

Section 12). The prior work focused on methodological considerations and on encodings that
work effectively with SMT solvers. In these works, assumed specifications are encoded as axioms.
The linking together of verifications for individual methods is embodied procedurally, in the
implementation of the verification tool. This can lead to misunderstandings about what is
assumed and what is proved. The intricacies of dealing with heap structure, framing, and purity
have led to soundness bugs in implemented verification systems (as reported in Heule et al. [31])
as well as intricate restrictions on VCs without clear semantic justification.
This article provides a foundational account, by way of a conventional program logic that caters

for SMT solvers by reasoning about framing using ghost state and standard FOL, and that is proved
sound with respect to a standard operational semantics. Our account focuses on proof rules for

linking the implementation of an interface (that is, collection ofmethod specifications) with a client
that relies on that interface. A notion akin to Kassios’ “self-framing” frame conditions [33], used
for reasoning about preservation of disjointness, emerges as important for reasoning about read
effects. Our account shows that some restrictions in prior work are unnecessary. The restriction to
decrease a measure in recursive calls is disentangled and justified directly in terms of a linking rule.

1.1 Approach: First Steps

Suppose the internal representation of Cell objects consists of an integer field value. The frame
condition for set could say it writes self.value. We use the term “frame condition” to include read
effects, which are important for framing assertions that call pure methods; for example, get reads
self.value. With respect to the client code (at the beginning of Section 1), the frame condition
for the call d.set(6) would allow the postcondition of c.set(5), that is, the predicate c.get() = 5,
to be framed over the call d.set(6), yielding the desired assertion. But such specifications expose
the internal representation. They would preclude, for example, an alternative implementation that
uses, instead of integer field value, a pointer to a list of integer arrays (to represent big numbers).
Better specifications appear in Figure 1, using ghost state to describe the notional “footprint”

of each instance of Cell, and postconditions from which the client can deduce disjointness of the
representations of c and d. Ghost state is a mutable instrumentation added for reasoning but not
affecting concrete program state. Use of ghost state for footprints is a key part of the “dynamic
frames” approach [33] used in some prior work on framing and pure methods [38, 59].
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Fig. 2. Composite example (adapted from RLI).

Our specification is based on a type rgn, short region. A region is a set of object references.
The value of field self.foot is thus a set of references and self.foot‘value denotes the locations of
the value fields of those objects. (The notation ‘value forms an image expression.) For example,
in a state where the value of self.foot is the set {p,q}, the set of locations denoted by self.foot
‘value is the set {(p, value), (q, value)}. In the sequel, we write such pairs as p.value and q.value.
The keyword any abstracts over field names: the notation self.foot‘any denotes all fields of those
objects. In a frame condition, it is the l-value—locations—that are denoted. Some other works based
on dynamic frames use location sets directly [10, 33, 59], but we follow Reference [8] in describing
location sets in terms of fields (or data groups) and regions, because locations are not first-class
values in Java-like languages (by contrast with, say, C).
The specification of get is an example of a pure method in its own postcondition. For an example

of one in its own frame condition, we could replace the ghost field foot by region-valued method
footpm. The read effect of footpm might be footpm()‘any, making it “self-framing” [33]. Figure 2
has a more interesting example with pure method calls in a precondition as well as in a frame
condition.
The specifications of get and set are abstract, in the sense that they are consistent with many

interpretations of the function get. For example, get could return self.value+7 as long as set stores
v-7. Client code should respect the abstraction, that is, be correct with respect to any interpre-
tation. On the other hand, a given implementation (for example, implementing get and set by
returning/setting self.value) is correct only if we interpret its specifications the right way.
By contrast with this simple example, practical applications of pure methods pose the challenge

of reasoning about observational purity, that is, benign side effects on encapsulated data represen-
tations, an old problem [32]. There are many examples, including memoization, lazy initialization,
and path compression in Union-Find structures, which involve allocation of fresh objects and mu-
tation of existing ones. Prior work has addressed an aspect of that challenge, namely “weakly pure”
methods that allocate and even return fresh objects, though not modifying pre-existing locations.
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1.2 Summary of Contributions

—We provide a logic for object-based programs with dynamic allocation, featuring state-
dependent expressions in frame conditions that include both read and write effects for
commands. The proof rules include a frame rule and rules for linking of pure and impure
methods with their clients. The implementations of pure methods are commands that may
be recursive and may write local variables.

—We provide semantics for the judgment of correctness under hypotheses, where specifica-
tions (pre, post, and frame) can refer to pure methods that can also be called in code. The key
notion of partial context interpretation enables us to explain and disentangle restrictions in
prior work.

—A relational semantics is used for read effects of commands, directly capturing the exten-
sional meaning of dependency. A key finding is the necessity of “framed reads” to enable
state-dependent read effects to be composed in sequence just as write effects are.

—Soundness is proved in detail, directly in terms of a standard small-step semantics.
—We explain the attractive idea of weak purity, which has been explored in prior works. Our
analysis sheds light on why weak purity has turned out to be difficult to get right, which
may explain why it has fallen out of favor.

—Case studies are presented, to show how the logic relates to verification tools based on
VC-gen.

This article may serve as a foundation to guide the investigation of programming methodologies
for early detection of unsatisfiable specifications or for other concerns—but this is not a method-
ological investigation. The examples are crafted to explain technical points, not to argue for or
against uses of pure methods, dynamic frames, or anything else. Although the logic may serve
as a foundation for soundness of a VC-generator, there are many engineering considerations and
comprehensive discussion of VC-gen is beyond the scope of this article.
A preliminary version [6] of this article appeared in a conference, but major changes have been

made to the semantics and core definitions. The examples have now been fully verified using SMT
solvers, weak purity is considered, and detailed proofs are provided.

Contextual Remarks. The approachwe take is motivated by the challenge of observational purity,
although that is not the focus of this article. The term “benevolent side effect” was introduced
by Hoare in seminal work [32] on data abstraction and the hiding of invariants on encapsulated
data representations. Hiding is important for modular reasoning, but difficult to achieve in the
presence of sharedmutable objects. Separation logic provides elegant and effective reasoning about
framing and hiding [47], but at the cost of going beyond FOL for assertions. In a semantic account
of observational purity for mutable objects, Naumann [46] confirmed the close connection with
encapsulation, but it remains an open problem to develop a program logic supporting observational
purity for object-based programs.
In prior work, we developed region logic (RL) [8], a Hoare logic for sequential object-based

programs, using standard FOL for assertions: the logic supports reasoning via explicit footprints
captured in frame conditions, as in Figure 1. RL provides a frame rule for local reasoning, based on
frame conditions of methods and a subsidiary judgment for framing of formulas. The frame rule
expresses that a predicate continues to hold after a method call, provided the locations on which
it depends are disjoint (separated) from the locations that are writable according to the frame
condition. In addition to ordinary frame conditions, the logic formalizes encapsulation boundaries
for modules by expressing separation between hidden state of a module and client visible state,
so that hidden module invariants are not falsified by client interaction. This idea is captured in a
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second-order frame rule for linking method implementations with clients, hiding invariants [5],
inspired by a similar rule for separation logic by O’Hearn et al. [47].
Read effects of commands are a relational property [17], so one approach to framing of pure

methods would be to use a general relational logic [15, 45, 61]. In ongoing work, we adapt RL to
a relational version [7], with the eventual aim to formalize observational purity in terms of the
hiding of effects. In the present article, we study an ordinary (“unary”) logic, extending RL with
read effects and pure method calls in specifications. For brevity, we refer to the key papers on RL
as RLI [8] and RLII [5].

1.3 Approach: Linking and Partial Interpretations

The primary judgment expresses correctness of a program under hypotheses about methods it
may call. The judgment is written in the following form:

Φ ; ψ � C : P � Q [ε]. (1)

Please ignoreψ for now; it is discussed in due course. The judgment in Display (1) says that under
precondition P , command C does not fault; if it terminates, its final state satisfies Q and the com-
putation’s effects are allowed by the frame condition, ε . This conclusion is under hypothesis Φ, a
list of method specifications called the method context. What’s new in this article, beyond RL, are
read effects in ε and Φ, and pure methods used in Φ, P ,C,Q, ε , and specified in Φ.1

One approach to formalizing the semantics of (1) goes by quantifying over all correct imple-
mentations of the methods specified by Φ, that is, considering behavior of C when linked with
any correct implementation. Our transition semantics uses an environment for let-bound meth-
ods; calling a let-bound method results in execution of the body found in the method environment.
So this approach could be realized by considering all environments that also provide bodies for
methods in the hypothesis context. In this approach, the proof of soundness for the linking rule is
almost immediate, and semantics only needs to be defined for complete programs. In this article,
we have found it convenient to take a slightly different approach that streamlines much of the
technical development. We quantify not over implementations but over possible interpretations,
that is, possible denotations of the implementations. For purem, an interpretation φ (m) is a func-
tion: it applies to a state and an argument value, and returns a value. For impurem, φ (m) applies
to a state and an argument value, and can return a set of states; a call to m takes a single step,
nondeterministically choosing any of those states. The semantics of (1) quantifies over all φ such
that φ (m) conforms to the specification Φ(m) for eachm in dom (Φ).
To link a client C with implementation B of a methodm used byC , we wantC to be correct for

all interpretations of the method context Φ, which includes a specification for m. But reasoning
about B can use a particular interpretation form. For example, a client of Cell should be correct
with respect to any interpretation, including the one where get returns self.value+7. By contrast,
the expected implementations of get and set are correct only with respect to the interpretation
that returns self.value.
An interpretation might be given directly, as a mathematical definition provided by the pro-

grammer. Or it might be derived from the code as it is in work on VC-gen for pure methods, where
pure methods have been restricted to a simple form to ensure that the derived interpretation is
not inconsistent (see Section 12). We treat interpretations semantically to focus on their use rather

1Read effects have several applications, including compiler optimizations [17]. In this article, we do not need read effects
for the bodies of impure methods. Nonetheless, we use the single judgment form Equation (1) for all commands. This loses
no generality, because there is a maximally permissive read effect, and it is convenient because our syntax allows arbitrary
commands for the bodies of pure methods.
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than how to obtain them (except in Section 9). We impose no restrictions on the code of pure
methods, beyond purity of effect. We do restrict specifications in a method context, to preclude
cyclic dependencies between pure methods used in each others’ preconditions.
The role ofψ in the judgment form (1) is to provide what we call a “partial candidate interpreta-

tion” for zero ormore of the puremethods inΦ. The semantics of (1) quantifies not over all interpre-
tations φ that satisfy Φ, but only those which in addition agree withψ where it is defined. That is,
ψ (m) = φ (m) ifψ is defined onm. In the rule of consequence and other rules involving assertions,
reasoning can assume both the specifications inΦ and the partial interpretationψ of pure methods.
Soψ is a key part of the linking rule, which we sketch here in simplified form.2 For this discussion,
we elide effects. We consider a single method m, specified as Θ =̂m : (x :T , res:U )R � S , and ψ
with dom (ψ ) = {m}, in the rule

Φ,Θ; � C : P � Q Φ,Θ;ψ � B : R � res =m(x ) ψ |= Φ,Θ

Φ; � letm(x :T ):U = B inC : P � Q
. (2)

A clientC is linked with the implementation B of a pure methodm. The verification ofC is under
the hypothesis of some specifications Φ,Θ, which include the specification Θ of m as well as an
ambient library Φ. The partial candidate is empty in the judgment for C , which means that C is
correct with respect to any interpretation φ of all the methods in Φ,Θ. The verification condition
for B also has hypothesis Φ,Θ for methods, including m, that may be called in B or used in its
specification, and B must be correct with respect to any interpretation of the methods in Φ, but
only the fixed interpretation ψ of m. The linking rule discharges the hypothesis Θ about m by
providing an implementation B for it.
Reasoning under inconsistent hypotheses leads to vacuous conclusions. If the hypotheses in (1)

include an unsatisfiable specification for some pure method, there will exist no interpretations
and so by definition the judgment is vacuously true. Indeed, this issue is already present with
impure methods. If it is impossible to establish postcondition S , then the only implementations B
are those that diverge. For the example with postcondition res = f (x ) + 1, one can use the rule to
prove correctness of B that simply calls f (x ) recursively. Of course it diverges.
There are several reasons a specification may be unsatisfiable. For example, the precondition

can preclude the postcondition (e.g., x ≥ 0 � x < 0), the frame condition may conflict with the
rest (e.g., true � y = 0 with empty frame condition), or the postcondition may be unsatisfiable
for deep mathematical reasons. In practice, it may be helpful to deploy heuristic checks to detect
unsatisfiable specifications, but complete checks are not feasible.
Clearly, we do not want divergent expressions in formulas. The interpretation ψ (m) must be a

total function (at least on inputs satisfying the precondition ofm). It is not necessary for its def-
inition to be derived from B; indeed, a useful implementation B may use loops and mutable local
variables, whereasψ (m) could be expressed in convenientmathematical notation.What is required
by the rule is that terminating executions of B yield the result defined by ψ (m); that is postcon-
dition res =m(x ). In addition, the condition ψ |= Φ,Θ in (2) requires that under the assumptions
Φ, the partial candidate ψ does satisfy its specification Θ. (It cannot be written ψ |= Θ, because
specification Θ may refer to pure methods in Φ.) Notice that the judgment for B does not explicitly
require it to establish the postcondition S ; to whatever extent the definition of ψ is derived from
the code B, one will in fact reason about B—including its termination—to establish ψ |= Φ,Θ. Be-
cause prior work focused on using B both as executable code and as interpretation, and on VC-gen
in which linking is not made explicit declaratively, potential divergence and unsatisfiability were
studied in terms of consistency of axioms (see Sections 9 and 12).

2Rules with similar structure are called recursion rules in the textbook of Apt et al. [3].
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Rule (2) addresses uses of pure methods for abstraction, wherein the actual interpretation ψ is
not made visible to the client. This is appropriate for complicated or encapsulated data represen-
tations and application-specific functionality. By contrast, some prior work addresses situations
where the interpretation is defined by an expression that is meaningful (and in scope) in the con-
text of the client. We can account for that as the variation of (2) in which the judgment for C is
replaced by

Φ,Θ;ψ � C : P � Q . (3)

This makes the definition ofm “transparent” by allowing the use ofψ in reasoning about C . Note
that if ψ (m) is expressible in terms of the ambient logical theory as some function f , then it can
also be made visible with a postcondition S that implies res = f (x ). So we consider rule (2) to have
primary importance.
Finally, there is a linking rule that accounts for how an interpretation may be derived from an

implementation. The idea is to replace in (2) the premise for B by something like Φ,Θ; � B : R � S ,
withoutψ , and to ensure somehow that B terminates without error from states that satisfy R. This
is achieved by augmenting the specification in the premise for B—but not in the hypothesis for
client C—with conditions that ensure recursive calls decrease a measure.

1.4 Outline

Section 2 formalizes the programming language, specifications, and definedness formulas derived
from specifications.
Section 3 takes the first step towards defining semantics by defining the semantics of expressions

and formulas parameterized on the interpretation of pure methods. This is needed to dodge a
potential circularity: we interpret judgment (1) by quantifying over correct implementations, but
correctness is defined with respect to the meaning of specifications—and methods occur in the
specifications. Aiming for a foundation for verification tools for first-order programs using SMT
solvers, we want to break the circularity and thus avoid fixpoint constructions for the semantics
of specifications and correctness judgments. To avoid circularity, Section 3 defines the semantics
of expressions and formulas in terms of an arbitrary “candidate interpretation”; it is not required
to satisfy any specifications, and even allows fault (�) as an outcome, so the semantics of formulas
is three-valued. This serves to define, in Section 5, what it means for a candidate interpretation to
satisfy its specifications, and thus to define the semantics of (1).
Section 4 formalizes an extensional semantics of read effects, adapting the standard relational

notion of dependency. For deterministic programs and partial correctness, this has a simple form
sometimes called termination-insensitive noninterference. For C to read only certain locations
means the following. Consider execution of C from each of two states σ ,σ ′ that agree on the
values in those locations. If both executions terminate, the corresponding final states τ ,τ ′ agree
on any locations written or freshly allocated by C .
Nondeterminacy is allowed for impure methods, to cater for allocation. Conceptually, an allo-

cator depends on a hidden state that is not visible at the level of source code; for a faithful model,
we allow it to be nondeterministic. This does not really complicate the technical development. The
semantics of read effects involves relating pairs of executions, for which purpose we need to deal
with differences in allocation behavior. We do this using bijective renamings (“refperms” in the
sequel) in a standard way [4]. The semantics of read effects ensures that correct interpretations
are quasi-deterministic in the sense that the only nondeterminacy is due to allocation.
Section 5 completes the semantics of the correctness judgment (1). ForC verified under hypoth-

esis Φ that specifies pure methodm called inC or used in the specification ofC , linking discharges
the hypothesis as explained in Section 1.3. Using the notion of correct interpretation, we also define
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what it means for a judgment to be healthy in the sense that its formulas and effect expressions
do not depend on pure methods outside the preconditions of those methods. Healthy formulas
satisfy the usual two-valued semantics of FOL, which justifies their use in SMT-based verifiers.
Healthiness is formulated in terms of definedness predicates derived syntactically from formulas
(in Section 2) as in prior work on VC-gen.
The semantics of (1) embodies what is sometimes called modular correctness [36]. It requires

thatC never calls a pure or impure method of Φ outside its precondition. This becomes explicit in
soundness proofs for linking rules.
Section 6 defines two subsidiary judgments used in the proof rules. The subeffect judgment ex-

presses that one effect is subsumed by another. The framing judgment expresses a bound on the
footprint or read effect of a formula: its semantics is that the formula is not falsified by state up-
dates that are outside its footprint—and that is the essence of framing. The footprint of a formula
is derived from the read effects specified for the pure methods on which the formula may depend.
What is important about the subsidiary judgments is their semantics, which is amenable to di-
rect checking using an SMT solver. However, we also give proof rules for deriving the subsidiary
judgments.
Section 6.3 explicates a notionwe call framed reads, which is similar to the notion of self-framing

that Kassios introduces for reasoning about separation for freshly allocated objects (Section 12). It
turns out that this property is important for reasoning about read effects of commands. Although
the extensional semantics of a read effect involves two executions, the readable locations are des-
ignated by an effect expression that is interpreted in one of the initial states. That asymmetry
can be problematic for composing the effects of commands in sequence, but the asymmetry goes
away if the locations on which the effect expression depends are themselves deemed readable.
The requisite definitions and results are delicate and were perhaps the most difficult part of our
investigation.
Section 7.1 gives the proof rules for the program correctness judgment. Section 7.2 gives exam-

ples showing the need for framed reads. Surprisingly, it is untenable to require framed reads in
all program judgments, as explained in Section 7.1. Section 7.3 is a worked example highlighting
features of the proof system.
Section 8 proves the main theorem: soundness of the rules. The soundness proofs are intricate,

especially for the linking rules, because they are proved directly in terms of small-step operational
semantics.3 Soundness for read effects is especially challenging because it involves reasoning about
the interpretation of effect expressions in two executions.
Section 9 discusses a variant linking rule that caters to deriving an interpretation from the im-

plementation of a pure method.
Section 10 demonstrates the suitability of our approach for use in SMT-based tools, and explains

informally how the logic in this article relates to VC-gen. We report on the verification of the Cell
(Figure 1) and Composite (Figure 2) implementations, together with their clients, using the Why3
verification system.4

Section 11 considers weak purity, which allows allocation but not mutation of existing locations.
Section 12 discusses related work, and Section 13 concludes. Appendix A provides some addi-

tional proofs, and develops the theory of quasi-determinacy as needed to prove soundness of the
linking rule for impure methods.

3Small-step semantics is essential for the FOL-based form of dynamic frames and encapsulation used in RLII and in planned
future work on observational purity.
4Why3 is at why3.lri.fr. Our case studies are at www.cs.stevens.edu/∼naumann/pub/readRLWhy3.tar.
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2 PROGRAMS, SPECIFICATIONS, AND DEFINEDNESS FORMULAS

Figure 2 illustrates features of our programming and specification notations, by way of the Com-
posite pattern, a well-known verification challenge problem [1, 18, 53]. A Comp is a node of a tree,
other nodes of which may be accessible to clients. The methods are deliberately under-specified,
for expository purposes. To verify the implementations, some invariants are needed, as discussed
later (Section 10).
Here is an example client:

var b, c, d: Comp; var i: int; ... i := d.getSize(); b.add(c); assert i = d.getSize();

Aside from the primitive data types int and rgn, the language features class types whose values
are object references. Dereferencing is implicit, as in languages like Java. The command b.add(c)
faults if the value stored in b is null; otherwise it invokes method add on the referenced object,
passing the argument c—itself a reference—by value.
To prove the postcondition asserted in the example client, we want to frame the formula i =

d.getSize() over the call b.add(c). The frame condition of add(x) says it is allowed to write self.chrn,
x.parent, and the size field of the ancestors of self. In method set (Figure 1), we use ‘any to ab-
stract from field names, but here size is appropriate to make visible in the interface. That is the
purpose of the specpublic annotation [35] in Figure 2: chrn, size, and parent can appear in inter-
face specifications but are private in the sense that client code can neither read nor write these
fields. By contrast, we do not really want to expose field chrn. A good solution would be to use a
data group [42] to abstract from it. However, the data group any is not appropriate in this case,
because it would encompass self.parent and self.size, which are not written by method add. The
frame condition would be less precise using self.anc()‘any. To avoid formalizing data groups in
this article, we simply mark self.chrn as specpublic. See RLI for more discussion of this facet of
information hiding.5

To reason using the frame rule, we establish a subsidiary judgment written

� rd i,d,d .size frm i = d .дetSize (),

which says the formula i = d .дetSize () depends only on the values of i , d , and d .size . The rules for
framing let us establish this judgment based on the specification of дetSize . The frame rule also
requires us to establish validity of a so-called separator formula. This formula is determined from
the frame of the formula and from the write effect of add. The function ·/. generates the separator
formula and is defined by recursion on syntax. Please note that ·/. is not syntax in the logic; it’s
a function in the metalanguage that is used to obtain formulas from effects. In the example, we
compute ε ·/. (rd i,d,d .size ), where ε is the write effect of add. The computed formula is the
disjointness {d} # b.anc(), which says the singleton region {d } is disjoint from the set of ancestors;
equivalently, d � b.anc(). The disjointness needs to hold following the elided part of the example
client above.
In general, η ·/. ε is a formula that implies that the locations writable according to ε are disjoint

from the locations readable according to η (see Lemma 6.6).
In this article, we are concerned with pure methods that are implemented and used in code.

In the case of anc, the implementation iteratively or recursively traverses parent pointers. The
chosen specification avoids the use of descendants, in contrast to RLI or Reference [53].

5Owing to the postcondition specified for getSize, the assignment i:=d.getSize() establishes both i=d.getSize() and i=d.size.
One can frame i=d.size over the call b.add(c) to establish assertion i=d.size, which is a reasonable specification given that
size is specpublic. But the point is to have a simple example of a pure method in a specification.
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Fig. 3. Programming language, highlighting additions to RLII. Take careful note of categories E,G, F .

2.1 Programs

Figure 3 gives the grammar of programs. It is taken from RLII, with three additions providing for
pure methods: a command for linking a result-returning method with its client, and method calls
as expressions. These have a single parameter and a single method to streamline the technical
development, but the generalization to multiple parameters and methods is straightforward and
used in examples. We use over-line notation to indicate multiple elements, e.g.,T for a list of types.
Assume given a fixed collection of classes. A class has a name and some typed fields. We do

not formalize dynamic dispatch or even associate methods with classes; so the term method is just
short for procedure, and a class amounts to a named record type. Distinct classes have distinct
field names.6 The letters T ,U ,V are used for types and B,C,D for commands. The letters E, F ,G
are only used for their respective categories in Figure 3.
Values of type K are references to objects of class K (including the improper reference null).

Value of type rgn are sets of references of any type. Typing rules ensure there are no dangling
references in reachable states.7 Aside from allocation and dereference, the only operation on ref-
erences is equality test. Dereference occurs in the load and store commands x := y. f and x . f := y,
which we call field access and field update. It can also occur due to image expressions, in the form
x := F where x : rgn. For example x := {y}‘f readsy. f in states wherey � null; it sets x to∅when
y = null. We make the semantics precise in Section 3.2.
Please note that x . f is not an expression; rather, it is part of the syntax of the primitive field

access/update commands. It is also part of the syntax of the points-to predicate x . f = E, introduced
later. Null dereference is not a cause for faults in the semantics of formulas.
The linking construct, letm(x :T ):U = C inC ′, designates thatm returns a result of typeU . Calls

ofm are expressions. We refer to result-returning methods as pure, that being their intended use in
this article. However, neither the typing rules nor the operational semantics restricts their effects.
Purity is imposed, later, in terms of specifications and proof rules. The body C is executed in a
state with both x and the distinguished variable res, the latter initialized to the default value for
type U . The final value of res is the value of the call expression. The other linking construct,

6Owing to the simple model of classes, the notation G ‘any can be defined as shorthand for G ‘f where f is the list of all
field names. In a richer model with visibility restrictions, one would use a notion like data groups [42].
7A fine point: To avoid complications in the substitutions used in some proof rules, we require that in any call m (z ) of an
impure method, the variable z does not occur free in the relevant specifications. Similarly, in a call y :=m (z ) of a pure
method, we require that y, z do not occur free in the relevant specifications. This minor technicality is formalized in RLI/II
by partitioning the set of variable names into so-called Locals and others; that way, the restriction can be expressed without
reference to specifications. For clarity in this article, we simply ignore the issue.
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Fig. 4. Typing rules for commands.

letm(x :T ) = C inC ′, designates thatm may be impure; such methods are called in the command
formm(x ). Both constructs bindm in C ′ and bind x andm in C .
Typing contexts, ranged over by Γ, are finite maps, written in conventional form, except for a

slightly unusual notation for pure methods. For example, x : T ,m : (y:U ),p : (y:U , res:V ) declares
state variable x , impure method m, and pure method p. The judgment Γ � E : T means that E is
syntactically well-formed (swf) and has typeT . The judgment Γ � C means that commandC is swf.
Most of the typing rules are straightforward and omitted. For expressions, here are three rules of
note:

Γ � F : T Γ(m) = (x :T , res:U )

Γ �m(F ) : U
,

Γ � E : K

Γ � {E} : rgn
, and

Γ � G : rgn ( f :K ′) or ( f :rgn) is in Fields(K )

Γ � G‘f : rgn
.

If Γ � G : rgn then Γ � G‘f : rgn for any field name f of region or reference type. In case f : K , the
value of G‘f is the set of f -values of objects in G. In case f : rgn, the value of G‘f is the union of
the f -values.
For commands, the typing rules are in Figure 4. The rules are designed to restrict assignments

so there are only two ways method calls occur in commands:m(z) for impurem and y :=m(z) for
purem. This loses no generality but streamlines the formalization. (For example, it avoids the need
to define small-step semantics of method calls in expressions.) An additional restriction on method
bodies B, that they are let-free, simplifies the transition semantics.8 A typing rule is given for a
single pure method, and another rule for a single impure one, for readability. For a let that binds
several methods simultaneously, the typing rule checks the body of each method in the context of
all the method signatures, to allow mutual recursion.

8Its consequence is that we are not fully modeling a module system, because any library in scope for a method is also in
scope for its clients. The same restriction is imposed in RLII.
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For simplicity, the program syntax does not include designation of ghost code as such. In the
examples, anything of type rgn can be considered ghost state, and we sometimes use the keyword
ghost for emphasis. A modern analysis of ghost code is provided by Filliatre et al. [26].

2.2 Specifications

The syntax of formulas is standard:

P ::= E = E | x . f = E | G ⊆ G | (∀x : K ∈ G · P ) | (∀x : int · P ) | P ∧ P | P ∨ P | ¬P .
We write Γ � P to express that P is swf in context Γ, and omit the straightforward typing rules.
The points-to predicate x . f = E, adapted from separation logic, says x is non-null and the f

field of the referenced object is equal to the value of E. (The only change from RLI Section 4.2
is that now E can have pure method calls.) The formula ∀x : K ∈ G · P quantifies over all non-
null references of type K in G. For disjointness of regions, it is convenient to write G # H for
G ∩ H ⊆ {null}. Note that for f of type region, there is no primitive x . f = G; but that can be
desugared as {x }‘f ⊆ G ∧G ⊆ {x }‘f .

Effect expressions are given by

ε ::= rdx | rdG‘f | wrx | wrG‘f | ε, ε | (empty).

For brevity, we use the term effect for effect expressions throughout the article, though we also use
“effect” informally to refer to actual computational effects.
We abbreviate a compound effect wrx , rdx as rwx and we often treat compound effects as

sets rather than lists. We use identifiers ε,η,δ for effects, and P ,Q,R, S for formulas. Note that, by
contrast, E, F ,G are used for different kinds of expressions (as in Figure 3). Finally, we write wrx . f
to abbreviate wr {x }‘f .
Effects must be swf for the context Γ in which they occur: rdx and wrx are swf if x ∈ dom(Γ);

rdG‘f , and wrG‘f are swf if Γ � G : rgn. By contrast with the typing rule forG‘f as an expression,
which requires the type of f to be a reference type or rgn, we need no restriction on the type of f
in the context of an effect. That is because, in effect,G‘f refers to the expression’s l-value, that is,
the locations it designates.
The function writes(ε ) discards all but the write effects, for example, writes(wrx , rdy,wrz) =

wrx ,wr z. Similarly, reads(ε ) is the read effects in ε .
Specifications for impure methods take the form (x :T )R � S [η]. For pure methods, they take

the form (x :T , res:U )R � S [η]. Here R is the precondition, S the postcondition, and η the effects. It
is in the following that we restrict pure methods to have no side effects except possibly divergence.

Definition 2.1 (swf Specification). For these specifications to be swf in context Γ, η must not
include wrx or rdx . Moreover, R and η must be typable in Γ,x :T . Postcondition S must be typable
in Γ,x :T , for the impure form, or Γ,x :T , res:U , for the pure form. Finally, for a pure method, there
must be no write effects in η.

It is standard in Hoare logic to disallow writes to the parameter, in order for postconditions to
refer to initial parameter values. Although the body of a pure method will write res, the semantics
is a return value, not an observable mutation of state. As a design choice, we require that the
specification not include rdx (for parameter x ), though it may include effects that refer to x , for
example, rd {x }‘f . In the semantics the argument value is handled specially. In the proof rules for
method call, read effects are included for the argument expression. In the proof rules for linking,
the premise for the method body does include rdx .
For simplicity, we do not formalize specification-only variables (logical constants) in specifi-

cations. A sound formalization of specification-only variables has been worked out in RLII, and
should carry over to the present setting.
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As mentioned in Section 1, for purposes of ordinary framing there is no need to track read
effects of impure methods. However, they are needed for commands used in the body of a pure
method. (They are also needed for reasoning about observational purity and data abstraction.) For
simplicity, the formalism in this article makes no distinction, that is, it tracks read effects for all
methods and commands. This loses no generality, because in any context Γ there is a read effect
that imposes no restriction: rd vars(Γ), rd alloc‘any. The distinguished variable alloc is explained
in the next section.
A method context Φ is a finite map from method names to specifications. We are interested in

specifications that may refer to global variables declared in some typing context Γ that is method-

free, that is, dom (Γ) ⊆ VarName. Moreover, specifications in Φ are allowed to refer to any of the
pure methods inΦ; the specification ofp may have calls top in its postcondition and effect, orp and
m may refer mutually to each other—subject to the restriction that calls in preconditions of pure
methods must exhibit acyclic dependency. To make this restriction precise, we define a relation ≺Φ

on names of pure methods:m′ ≺Φ m iffm′ occurs in the precondition of Φ(m), form,m′ specified
in Φ as pure methods.

Definition 2.2 (Syntactically Well-Formed Context). A context Φ is swf in Γ provided that:

—Γ is method-free,
—the transitive closure, ≺+Φ, is irreflexive, and
—each specification is swf in the context Γ, sigs(Φ).

Here sigs extracts the types of methods. For example, let Φ0 be m : (x :T )R � S [η], p :
(y:V , res:U )P � Q [ε]. Then sigs(Φ0) is m : (x :T ), p : (y:V , res:U ). Note that we use a comma to
separate disjoint contexts.
An example of swf context is given by the specifications of дet and set from Figure 1, and

another is given by the specifications of add , дetSize , and anc from Figure 2. (To be precise, the
specifications need to include self as an explicit parameter, and in both cases a constructor method
can be added.)
Although we do not formalize modules per se, the linking constructs model linkage of a client

to a set of methods that implement an interface. Definition 2.2 has an interesting consequence
for linking. Pure method specifications can make mutually recursive reference to each other, and
specifications of pure methods can refer to pure methods, but specifications of pure methods can-
not refer to impure ones. In addition, for a pure method implementation to satisfy its specification,
it cannot invoke any impure methodm (unless them’s specification has no writes, in which case
callingm is useless). So any verifiable linkage can be written in the form

letp0 (x0:T0):U0 = B0 ; . . . ; pk (xk :Tk ):Uk = Bk in

letm0 (y0:V0) = C0 ; . . . ; mn (yn :Vn ) = Cn inD,
(4)

where the impure bodies Ci can call both pure and impure methods. This enables us to formulate
separate proof rules for linking of pure and impure methods.
At this point, we have all but one of the ingredients to define what it means for a correctness

judgment Equation (1) to be swf. What is missing is the partial candidate interpretation ψ , to be
defined in Section 3.

2.3 Definedness

Sound proof rules for correctness judgments prevent a pure method from being applied outside
its precondition, to avoid the need to reason about undefined or faulty values. To this end, we use
definedness formulas [24], see Figure 5. The idea is that in states where df (P ,Φ) holds, evaluation
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Fig. 5. Definedness formulas for expressions, formulas, and effects in swf method context Φ.

of P does not depend on values of pure methods outside their preconditions. We use the notation
Px

F
for capture-avoiding syntactic substitution of F for x .
Although the clause for df (m(F ),Φ) refers to a method specification that may refer to another

pure method in its precondition, df is well-defined, owing to the requirement that ≺+Φ is irreflexive
(and dom (Φ) is finite, so this is well founded). It is straightforward to show that if Γ � P , then its
definedness formula is well-formed in the same context, that is, Γ � df (P ,Φ).
For example, let Φ have specification9 div6by : (x :int, res:int)x � 0 � res = 6/x [ ]. Let P be

y � 0 ∧ div6by (y) > 3. Then df (P ,Φ) is valid because

df (P ,Φ)
= df (y � 0,Φ) ∧ (y � 0⇒ df (div6by (y) > 3,Φ))
= y � 0⇒ df (div6by (y) > 3,Φ)
= y � 0⇒ df (div6by (y),Φ)
= y � 0⇒ df (y � 0,Φ) ∧ y � 0
= y � 0⇒ y � 0.

A definedness formula may itself include calls to pure methods. For example, if Φ also has m :
(x :int, res:int)x � 0 ∧ div6by (x ) > 5 � true [] then df (m(y) =m(y),Φ) has conjuncts including
y � 0 and div6by (y) > 5.
An expression or formula is considered well-formed if its definedness formula is valid, in addi-

tion to it being swf (see Definition 5.5). To define validity, we need semantics.

3 SEMANTICS OF EXPRESSIONS, FORMULAS, AND PROGRAMS

Recall that we aim to interpret hypothetical correctness judgments by quantifying over all inter-
pretationsφ that conform to the hypotheses. To define what it means forφ (m) to conform, we need

9Note that any method is allowed to read its parameter(s) and write res, but these effects are not supposed to be included
in the specification, so the effect for div6by is empty.
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semantics of expressions, formulas, and effects—and these depend on the meaning of pure method
calls. To break this circularity, we define in this section a notion of candidate interpretation, and
define the semantics of formulas and expressions with respect to any candidate interpretation φ.

3.1 Preliminaries

Assume given an infinite set Ref of reference values including a distinguished “improper reference”
null. We use o and occasionally p to range over non-null references. A Γ-state is comprised of a
global heap and a store; We refrain from giving a complete concrete representation but instead
describe the interface. The store is a type-respecting assignment of values to the variables in Γ.
Note that if σ is a Γ-state then it is a vars(Γ)-state, where vars drops methods and retains only
variables. Letters σ ,τ ,υ range over states.
There is a distinguished variable, alloc : rgn, updates of which are built into the program se-

mantics. Code cannot assign alloc; this restriction is imposed by the typing rules (Figure 4). The
semantics of new updates alloc so that in any state it holds the set of all allocated references and
does not contain null. We are generally concerned with contexts Γ that include alloc.
Treating alloc as a program variable, albeit with special semantics and restricted use, helps

streamline the semantic developments and it makes for an expressive assertion language. The
main use of alloc in program proofs is for reasoning about freshness, and for practical purposes it
may be advisable to use a special notation for freshness.
We write σ (x ) for the value of variable x in state σ , and Vars(σ ) for the variables of σ (this

is called Dom(σ ) in RLI/II). We write o. f for a non-null reference o paired with field name f
(that is, a heap location), and σ (o. f ) to look up field f of the object referenced by o in the heap.
We write [σ | x :v] to update variable x to value v , write [σ + x :v] to extend σ with additional
variable x , and write [[Γ]] for the set of Γ-states. For o a non-null reference that is allocated in σ ,
we write Type(o,σ ) for the class of the object it references, and otherwise Type(o,σ ) is undefined.
In contexts where σ (x ) cannot be null, we abbreviate σ (σ (x ). f ) as σ (x . f ). Write [[T ]]σ for the set
of values of typeT in stateσ . Thus, [[int]]σ = Z and [[K]]σ = {null} ∪ {o |o ∈ σ (alloc) ∧ Type(o,σ ) =
K }. Besides states, the faulting outcome � is used for runtime errors (null-dereference), and also to
signal precondition violations (described later). These are not considered to be values or states. In
RLII,� is written fault and a notational distinction ismade between runtime error and precondition
violation.
As the basis for semantics of expressions and formulas, we define the notion of candidate Γ-

interpretation, for a given typing context Γ. A candidate interpretation θ is, roughly, a mapping
on the method names in Γ such that if Γ(m) = (x : T , res : U ), then θ (m) is a function such that for
any T -value t and state σ , θ (m) (σ , t ) is a U -value or �. This notion reflects that value-returning
methods are intended to be pure. If Γ(m) = (x : T ), then θ (m) is a function such that for any T -
value t and state σ , θ (m) (σ , t ) is a set of states possibly including �. These conditions are made
precise below, by giving θ (m) a dependent type.10

For states σ ,τ , to express that τ is possible after σ , we say τ succeeds σ , and write σ ↪→ τ , pro-
vided that σ (alloc) ⊆ τ (alloc) and σ is compatible with τ in the sense that Type(o,σ ) = Type(o,τ )
for all o ∈ σ (alloc).

Definition 3.1 (Candidate Interpretation, Partial Candidate). For a typing context Γ, a candidate

Γ-interpretation θ is a mapping from the method names in Γ such that

(pure) if Γ(m) = (x : T , res : U ) then θ (m) is a function of type
(σ ∈ [[Γ]]) × [[T ]]σ → ([[U ]]σ ∪ {�})

10We say “function”, and use symbol→, for total functions. We use the notation (σ ∈ [[Γ]]) × [[T ]]σ for dependently type
pairs, that is, pairs (σ , v ) such that σ is in [[Γ]] and v is in [[T ]]σ .
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Fig. 6. Semantics of selected program and region expressions, for state σ and candidate interpretation θ .
The �-strict let-binder is used: ‘let v = X in Y ’ denotes � if X denotes �. Here ⊕ is in {=,+, . . . } and ⊗ is in
{∪,∩, \}. Also, DeclClass( f ) is the class in which f is declared.

(impure) if Γ(m) = (x : T ) then θ (m) is a function of type
(σ ∈ [[Γ]]) × [[T ]]σ → P([[Γ]] ∪ {�}) such that σ ↪→ τ for all σ , t ,τ with τ ∈ θ (m) (σ , t ).

For method contextΦ that is swf in typing context Γ, a candidate Φ-interpretation is just a candidate
(Γ, sigs(Φ))-interpretation.
A partial candidate Φ-interpretation, or just partial candidate, is a θ defined on some but not

necessarily all of the pure methods in Φ, satisfying condition (pure) for each m on which θ is
defined.

Note that a candidate Φ-interpretation is defined on pure methods in Φ and acts on Γ-states. To
avoid confusion, please note that a candidate Γ-interpretation is a mapping on the method names
in dom (Γ), which acts on Γ-states, which are vars(Γ)-states. The term “candidate Φ-interpretation”
elides the typing context Γ for Φ; and in that case the interpretation is defined on methods in Φ
acting on Γ-states since for Φ to be swf in Γ implies that Γ is method-free.

Definition 3.2 (swf Correctness Judgment). A correctness judgment takes the form Φ;ψ �Γ C :
P � Q [ε], whereψ is a partial candidate for Φ. The judgment is swf iff Φ is swf in Γ andC, P ,Q, ε
are all swf in Γ, sigs(Φ). We often elide Γ.11

3.2 Semantics of Expressions, Formulas, and Commands

The denotation of an expression in context Γ � F : T in candidate Γ-interpretation θ and state σ is
written [[Γ � F : T ]]θσ and defined straightforwardly. See Figure 6, where we write [[F ]] for short.
Note that

[[Γ � E : T ]]θ ∈ (σ ∈ [[Γ]]) → [[T ]]σ ∪ {�}.
The second line in Figure 6 is for applicationm(F ) of a pure method: evaluate F to get a value v ,
then apply the function θ (m) to the pair (σ ,v ).
The semantics is designed to cater for convenient reasoning with regions used as ghost code. In

particular, the semantics of image expressionG‘f never faults unless due to method calls inG. For
example, in a state where x is null, the value of {x }‘f is simply the empty set. (See RLI for more
discussion.)

11In RLII, methods are allowed in Γ in this situation and in subsequent definitions like Definition 5.2. This is a technicality
that facilitates proof of the program linking rule, the premise judgment of which may be applied to sub-traces involving
let-bound methods and intermediate states with extended typing contexts. RLII is extremely careful about typing of such
configurations, at the cost of extra generality of definitions and lemmas such as Definition 4.3, which may be applied to
intermediate configurations. Here we gloss over this uninteresting fine point.
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Fig. 7. Formulas: three-valued semantics, [[Γ � P]]θσ ∈ {true, false,�} where σ ranges over Γ-states. Typing
context is elided in most cases. As in Figure 6, the �-strict let-binder is used.

Fig. 8. Two-valued semantics of formulas. These clauses hold when σ |=θ df (P ,Φ) (Lemma 5.3).

Using the semantics for expressions, the three-valued semantics of formulas is defined in Fig-
ure 7. The satisfaction relation |=Γ

θ
is defined by

σ |=Γ
θ P iff [[P]]θσ = true. (5)

Later, we show that when the definedness formulas hold, the usual two-valued clauses hold for
|=Γ

θ
(see Figure 8 and Lemma 5.3).
Strictly speaking, the semantic definitions go by induction on typing derivations. For clarity, we

elide typing contexts when they can be inferred from context. Here is why that is safe to do. The
typing rules admit addition of extra variables, for example, if Γ � E : T and x � dom (Γ) then Γ,x :
U � E : T . Furthermore, for Γ,x :U -state σ , we have [[Γ,x : U � E : T ]]θσ = [[Γ � E : T ]]θ (σ �x ).
If φ (m) = θ (m) for all pure methodsm, then

σ |=φ P iff σ |=θ P for all σ , P . (6)

because the semantics of formulas does not depend on impure methods.

Implicit Coercion. In the semantics of expressions and commands, candidate interpretations are
applied to states with more variables than the ones in scope for method context Φ. For clarity, we
implicitly coerce the interpretations to such states, as follows. Suppose Φ is swf in Γ and θ is a
candidate Φ-interpretation. So each θ (m) acts on Γ-states (that is, elements of [[Γ]]). Suppose Γ′ ⊇
Γ, declaring additional variables xs . If m is pure, then for σ ∈ [[Γ′]] define θ (m) (σ ,v ) = θ (m) (σ �
xs,v ). Here σ �xs has the same heap as σ but the store is defined only on dom (Γ). This coercion is
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Fig. 9. Transition rules, parameterized by a candidate interpretation θ . New (σ ,o,K ,v ) extends σ by adding
o to alloc and by mapping o to a K-record with field values v and type K . Requires o � σ (alloc).

implicitly used in the semantic clause form(F ) in Figure 6, and in the transition rules fory :=m(z)
in Figure 9.
For impurem, which returns a state, the coercion is slightly more complicated. Let us write σ + s

for a Γ′-state where s is the valuation of the extra variables xs and σ is a Γ-state. Define

θ (m) (σ + s,v ) = {τ + s | τ ∈ θ (m) (σ ,v )} ∪ {� | � ∈ θ (m) (σ ,v )}.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 6. Publication date: May 2018.



6:20 A. Banerjee et al.

The extra variables remain, unchanged, in the non-� case. This coercion is implicitly used in the
transition rules form(z) in Figure 9.

Transition Semantics. The transition relation depends on a candidate interpretation θ , for calls

of pure and impure methods specified in the method context. The transition relation
θ�−→ is defined

in Figure 9, for arbitrary candidate interpretation θ .
The transition semantics is defined for configurations of the form 〈C, σ , μ〉, where μ is a

method environment, that is, a mapping from method names to bodies of the form (x :T .C ) or
(x :T , res:U .C ). This caters for streamlined notation but requires that we disallow re-declaration
of method names. The transition rules for let use the notation for extension of a mapping; this
works because, by an invariant due to typing, the bound method cannot already be in the envi-
ronment.
The control state in a configuration can be an extended command, that is, possibly containing

end-markers. The end-marker elet(m) causes m to be removed from the method environment;
ecall(x , . . .) and evar(x , . . .) cause some local variables to be removed from the state. In this article,
we gloss over fine points concerning extended commands, in particular typing of intermediate
configurations, for which see RLII. Apropos the rules for sequence, we identify skip;C with C .
The call of a let-bound method m executes the body μ (m) with variables renamed to avoid

clashes with the calling context. We call this an environment call. In case of a pure method, the call
takes the form y :=m(z) and there is some extra bookkeeping to assign the final value of res (or
rather, a fresh instance thereof) to y. Note that in addition to the designated variable res, we use
similarly named variables like res′.
We use the term context call for calls to methods that are in the interpretation θ rather than in

the environment μ. For such a pure method call y :=m(z), the transition semantics takes a step
that assigns to y a value that could also be written as [[m(z)]]θσ (see Figure 6). The transition
semantics of a callm(z), for impurem in θ , takes a single step to a final state (or �) given by θ (m).
In proofs later, we rely on several straightforward properties of the transition semantics. For

example, if Γ � C and θ is a candidate interpretation of Γ, then for any σ and suitable μ, 〈C, σ , μ〉
has at least one successor under

θ�−→ unless C is skip or a call to an impure method. This can be
checked by inspection of the transition rules. In case of an impure method callm(z), it is possible
that, even if σ satisfies the precondition, the set θ (m) (σ ,σ (z)) is empty.
For a pure method call y :=m(z) that is a context call, the only effect is to assign y. If it is an

environment call, there may well be other modifications of state because the transition semantics
executes the body like any other command.

4 SEMANTICS OF EFFECTS

This section lays groundwork for defining, in Section 5, correct interpretations and the seman-
tics of correctness judgments. The key notion, called allowed dependence, provides a sequentially
composable formulation of dependency for read effects in frame conditions. It is defined using a
notion of “agreement” that also plays a role in the framing of formulas.
A location is either a variable name x or a heap location12 comprised of a reference o and field

name f . We write o. f for such pairs. For any state σ , define the set of all locations by

locations(σ ) = Vars(σ ) ∪ {o. f | o ∈ σ (alloc) ∧ f ∈ Fields(Type(o,σ ))}.
Define rlocs(σ ,θ , ε ), the locations denoted by read effects of ε in σ (using θ ), by

rlocs(σ ,θ , ε ) = {x | ε contains rdx } ∪ {o. f | ε contains rdG‘f with o ∈ [[G]]θσ }.

12In RLI/II the term “location” is used differently: it means heap location.
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For write effects, define wlocs mutatis mutandis. Note that rlocs(σ ,θ , ε ) = rlocs(σ ,θ , reads(ε )) and
likewise for wlocs. Here θ is any candidate interpretation of the typing context, left implicit, for ε
and σ .
Write effects constrain what locations may be updated, between an initial and a final state.

Definition 4.1 (Allows Change, σ→τ |=θ ε). Let effect ε be swf in Γ, let σ and τ be Γ-states and
let θ be a candidate interpretation (for some Φ that is swf in Γ). Say ε allows change from σ to τ
under θ , written σ→τ |=θ ε , iff σ ↪→ τ and

(a) for every y in dom(Γ), either σ (y) = τ (y) or y is in wlocs(σ ,θ , ε ),
(b) for every o ∈ σ (alloc) and every f in Fields(Type(o,σ )), either σ (o. f ) = τ (o. f ) or o. f is

in wlocs(σ ,θ , ε ).

In (b), region expressions in ε are interpreted in the initial state because frame conditions need
only report writes to fields of pre-existing objects and not freshly allocated objects. Define the
written, pre-existing locations by

written(σ ,τ ) = {x | σ (x ) � τ (x )} ∪ {o. f | o. f ∈ locations(σ ) ∧ σ (o. f ) � τ (o. f )}.
Then σ→τ |=θ ε iff σ ↪→ τ and written(σ ,τ ) ⊆ wlocs(σ ,θ , ε ).

Read Effects and Allowed Dependence. Read effects constrain what locations the outcome of a
computation can depend on. Dependency is expressed by considering two initial states that agree
on the set of locations deemed readable, though they may differ arbitrarily on other locations.
Agreement between a pair of states needs to take into account variation in allocation, as the
relevant pointer structure in the two states may be isomorphic but involve differently chosen
references.
Let π range over partial bijections on Ref \ {null}. Write π (p) = p ′ to express that π is defined

on p and has value p ′. A refperm from σ to σ ′ is partial bijection π such that

—dom(π ) ⊆ σ (alloc) and rng (π ) ⊆ σ ′(alloc)
—π (p) = p ′ implies Type(p,σ ) = Type(p ′,σ ′) for all p,p ′

Define p
π∼ p ′ to mean π (p) = p ′ or p = null = p ′. Extend

π∼ to a relation on integers by i π∼ j iff
i = j. For reference setsX ,Y , defineX

π∼ Y iff π restricts to a bijection betweenX andY . The image
of refperm π on location setW is written π (W ) and defined for variables and heap locations by

x ∈ π (W ) iff x ∈W o. f ∈ π (W ) iff (π−1 (o)). f ∈W . (7)

In words: variables map to themselves, and a heap location p. f is transformed by applying π to
the reference p.

Definition 4.2 (Agreement on a Location Set, Lagree). For a setW of locations, and π a refperm
from σ to σ ′, define

Lagree(σ ,σ ′,π ,W ) iff
∀x ∈W · σ (x )

π∼ σ ′(x ) ∧
∀(o. f ) ∈W · o ∈ dom(π ) ∧ σ (o. f )

π∼ σ ′(π (o). f ).

As noted earlier, an important example of a location set is that denoted by a read effect. We
often instantiateW by rlocs(. . .), as in the following key definition of what it means for two states
to agree on the locations denoted by a read effect:

Definition 4.3 (Agreement on Read Effects, Agree). Let ε be an effect that is swf in Γ. Consider Γ-
states σ ,σ ′. Let π be a partial bijection. Let θ be a candidate interpretation (for someΦ that is swf in
Γ). Say σ and σ ′ agree on ε modulo π , written Agree(σ ,σ ′, ε,π ,θ ), iff Lagree(σ ,σ ′,π , rlocs(σ ,θ , ε )).
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As an abbreviation, define Agree(σ ,σ ′, ε,θ ) = Agree(σ ,σ ′, ε,π ,θ ), where π is the identity on
σ (alloc) ∩ σ ′(alloc).
Agreement on some rdG‘f (modulo π ) implies that σ (G ) ⊆ dom (π ). However, it is important to

note that agreement on rdG‘f does not imply [[G]]θσ
π∼ [[G]]θσ ′. For example, letG be the single-

ton {x } of reference variable x and consider states where σ (x ) = o, σ ′(x ) = o′, σ (o. f )
π∼ σ ′(π (o). f )

but π (o) � o′.
Agreement on location sets has a kind of symmetry:

Lagree(σ ,σ ′,π ,W ) implies Lagree(σ ′,σ ,π−1,π (W )) for all σ ,σ ′,π ,W . (8)

By contrast, Definition 4.3 of agreement on read effects is left-skewed, in the sense that it refers
to the locations denoted by effects interpreted in the left state. So agreement on read effects does
not in general exhibit a symmetry property like Equation (9). For example, consider these states,
written in suggestive notation:

σ = [alloc:{o,p}, r :{o}, o. f :3, p. f :4] σ ′ = [alloc:{o,p}, r :{o,p}, o. f :3, p. f :5]. (9)

We have Agree(σ ,σ ′, id, rd r ‘f ), with id the identity relation on {o,p}, but unfortunately we do not
have Agree(σ ′,σ , id, rd r ‘f ). The asymmetry makes working with agreement somewhat delicate.
At a higher level, there will be symmetry, for two reasons. One has to do with the notion of

framed reads, to which we return in Section 6.3. Roughly, it means that if rd r ‘f is in the effects
then so is rd r . The other reason is that the semantics of correctness judgments, defined in the
following Section 5, imposes a condition on all pairs of executions. The condition is a property
parameterized by states σ ,σ ′,τ ,τ ′. Intuitively, the condition says that if σ and σ ′ agree on given
read effects ε , then τ and τ ′ agree on any preexisting locations that were written as well as on any
fresh locations. In uses of the condition, σ ,σ ′ are initial states and τ ,τ ′ are the corresponding final
states resulting from executions of a command or applications of a candidate interpretation. First,
define

freshRefs(σ ,τ ) = τ (alloc) \ σ (alloc),
freshLocs(σ ,τ ) = {p. f | p ∈ freshRefs(σ ,τ ) ∧ f ∈ Fields(Type(p,τ ))}.

Definition 4.4 (Allowed Dependence, σ ,σ ′⇒τ ,τ ′ |=θ ε). We say ε allows dependence from σ ,σ ′

to τ ,τ ′, and write σ ,σ ′⇒τ ,τ ′ |=θ ε , iff for all π if Agree(σ ,σ ′, ε,π ,θ ) then there is ρ ⊇ π with
ρ (freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′) and Laдree (τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )).

Note that the first conjunct is equivalent to ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and this is the
form we often use in proofs.
Like Definition 4.3, this definition is left-skewed, both because ε is interpreted in the left state

σ and because the fresh and written locations are determined by the left transition σ to τ . The
asymmetry is tamed, in later sections, through the use of framed reads and application of the
condition to all pairs of executions.

5 SEMANTICS OF CORRECTNESS JUDGMENTS

This section completes the semantic definitions for program correctness judgments.
Recall that for syntactic substitution we use the notation Px

E
. In addition, for clarity we also use

substitution notation for values, even references—although, strictly speaking, the syntax does not
include reference literals.13 This is only done in certain contexts, for which we define the following
abbreviations. If Γ,x : T � P and σ ∈ [[Γ]] and v is a value in [[T ]]σ , we write

σ |=Γ
θ Px

v to abbreviate [σ + x :v] |=Γ,x :T
θ

P .

13We do not want literals in formulas, as otherwise we would lose the agreement lemmas or else need to include literal
values in read effects. For clarity, we refrain from using reference literals (other than null) anywhere.
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If ε contains neitherwrx nor rdx then σ→τ |=θ εx
v abbreviates [σ + x :v]→[τ + x :v] |=θ ε . Finally,

wlocs(σ ,θ , εx
v ) abbreviates wlocs([σ + x :v],θ , ε ).

A correct candidate interpretation, called context interpretation, is one that satisfies its
specifications.

Definition 5.1 (Context Interpretation). LetΦ be swf in Γ and letφ be a candidateΦ-interpretation.
Say φ is a Φ-interpretation iff for eachm in dom (Φ):

—Ifm has specification (x :T , res:U )P � Q [ε], then for any σ ∈ [[Γ]] and v ∈ [[T ]]σ ,
(a) φ (m) (σ ,v ) = � iff σ � |=φ Px

v

(b) if σ |=φ Px
v then lettingw = φ (m) (σ ,v ) we have σ |=φ Qx,res

v,w

(c) if σ |=φ Px
v then we have the following: for any σ ′ ∈ [[Γ]], v ′ ∈ [[T ]]σ ′ with σ ′ |=φ Px

v ′ ,
and any refperm π from σ to σ ′, lettingw = φ (m) (σ ,v ) andw ′ = φ (m) (σ ′,v ′):
if Agree([σ + x : v], [σ ′ + x : v ′], (ε, rdx ),π ,φ) thenw

π∼ w ′

—Ifm has specification (x :T )P � Q [ε] then for any σ ∈ [[Γ]] and v ∈ [[T ]]σ ,
(d) � ∈ φ (m) (σ ,v ) iff σ � |=φ Px

v , and also � ∈ φ (m) (σ ,v ) implies φ (m) (σ ,v ) = {�}.
(e) For all τ ∈ φ (m) (σ ,v ), if σ |=φ Px

v then τ |=φ Qx
v and σ→τ |=φ εx

v

(f) For all τ ,σ ′,τ ′,v ′, if
—σ |=φ Px

v ,
—σ ′ |=φ Px

v ′ ,
—τ ∈ φ (m) (σ ,v ), and
—τ ′ ∈ φ (m) (σ ′,v ′)
then [σ + x :v], [σ ′ + x :v ′]⇒τ ,τ ′ |=φ (ε, rdx ).

We refer to the second part of (d), that is, � ∈ φ (m) (σ ,v ) implies φ (m) (σ ,v ) = {�}, as fault

determinacy because it says faulting is mutually exclusive with non-fault outcomes.
We use the notation for allowed dependence in the read effect condition (f). However, since the

read effect of a pure method refers only to final values, not states, we cannot use that notation
in (c). Apropos (a) and (d), the negated satisfaction is equivalent to saying [[P]]φ [σ + x :v] is � or
f alse , as per Equation (5). Apropos (c), (e), and (f), recall that a swf specification does not include
wrx or rdx for its parameter x , so it is safe to use the substitution abbreviations.14 Note that the
definition makes sense even if pure m occurs in its own specification, or in the specification of
some other purem′ in Φ for which the specification refers tom.
Recall from Section 1 that a correctness judgment includes a partial candidateψ that interprets

zero or more of the pure methods in the method context Φ of the judgment. The judgment makes a
claim about program executions (using transition semantics, Figure 9), which rely on a candidate
interpretation φ defined on all methods, pure and impure, of Φ. Validity of a judgment is in terms
of those φs that are Φ-interpretations (Definition 5.1). To define validity, the last ingredient is to
connect the partial candidate ψ in the judgment with the context interpretations φ over which
the judgment quantifies. We say φ extends ψ if φ (m) = ψ (m) for every m on which ψ is defined.
Representing maps by their graphs, this amounts toψ ⊆ φ.

Definition 5.2 (Valid Judgment). A swf correctness judgment Φ;ψ �Γ C : P � Q [ε] is valid iff
the following conditions hold for all Φ-interpretations φ such that φ extends ψ , and all states σ

such that σ |=Γ,sigs(Φ)
φ P .

14Enabling these abbreviations is the main reason we decided to omit wr x and rd x from specifications and instead add
the effects explicitly in the method call and method linking proof rules. Note that we do not use a substitution abbreviation
for agreement, which involves two parallel states.
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(Safety) It is not the case that 〈C, σ , _〉
φ
�−→∗ �.

(Post) τ |=φ Q for every τ with 〈C, σ , _〉
φ
�−→∗ 〈skip, τ , _〉

(Write) σ→τ |=φ ε for every τ with 〈C, σ , _〉
φ
�−→∗ 〈skip, τ , _〉

(Read) For all τ ,σ ′,τ ′, if 〈C, σ , _〉
φ
�−→∗ 〈skip, τ , _〉, 〈C, σ ′, _〉

φ
�−→∗ 〈skip, τ ′, _〉, and σ ′ |=φ P

then σ ,σ ′⇒τ ,τ ′ |=φ ε .

Because the judgment is swf, Γ is method-free, hence the only relevant method environment
is the empty one, written _. In (Post) and (Read) we omit Γ, sigs(Φ) from |=φ . In (Read), note that
the final states should agree on any location that is written, and on any freshly allocated loca-
tions. The significance of this is evident, for example, in the soundness proofs for sequence and

while. As anticipated in the discussion following (8), note that if 〈C, σ , _〉
φ
�−→∗ 〈skip, τ , _〉 and

〈C, σ ′, _〉
φ
�−→∗ 〈skip, τ ′, _〉 as in the antecedent of (Read), and the initial states satisfy the precon-

dition P , then (Read) can also be instantiated with the states swapped, to obtain σ ′,σ⇒τ ′,τ |=φ ε .
It is possible for the specification of a pure method to be unsatisfiable, and thus for there to

be no Φ-interpretations. If the partial candidate interpretation ψ is defined for some m but does
not satisfy Φ(m), then there are no Φ-interpretations that extend ψ . In both cases, the judgment
is semantically valid, though of no use because the vacuous hypothesis cannot be discharged by
linking with any method implementations. As remarked in Section 1.3, for practical purposes one
would want to check early for non-satisfyingψ (m), and for unsatisfiable specifications.
For impure methods, in case σ satisfies the precondition and no state satisfies the postcondition,

the code can diverge. As ours is a partial correctness logic, such an implementation can be correctly
linked. In this situation, a candidate interpretation φ (m) can have φ (m) (σ ,v ) = ∅.

Healthiness and Well-formed Correctness Judgments. The definitions up to this point apply even
if pure methods are called outside their precondition. However, a specification or correctness judg-
ment that involves a pure method called outside its precondition is unlikely to capture an intu-
itively meaningful requirement. For understandable proof rules, and to stay within FOL for as-
sertions, we will disallow such specifications and correctness judgments. That is the purpose of
Definition 5.5 to follow.

Lemma 5.3 (Two-Valued Semantics of Formulas). (a) If φ is a Φ-interpretation and σ |=φ

df(P ,Φ) then [[P]]φσ is not �. (b) For any σ and any Φ-interpretation φ, if σ |=φ df(P ,Φ) then the

condition σ |=φ P satisfies the usual defining clause, see Figure 8.

Proof. For part (a), a similar lemma for expressions is needed as follows.
Lemma A. If φ is a Φ-interpretation and σ |=φ df (F ,Φ), then [[F ]]φσ is not �.
The proof of Lemma A goes by (structural) induction on F , using the definitions in Figures 5

and 6. For the base cases x , c , null, ∅, we have df (F ,Φ) = true. And, [[x]]φσ = σ (x ), [[c]]φσ = c ,
[[null]]φσ = null and [[∅]]φσ = ∅ (so none of them is �).
For case m(F), we have df (m(F ),Φ) = df (F ,Φ) ∧ Px

F
, where Φ(m) = (x : T , res : U )P � Q [ε].

Thus σ |=φ df (F ,Φ), hence by induction hypothesis, [[F ]]φσ is not �. Let v = [[F ]]φσ , so
[[m(F )]]φσ = φ (m) (σ ,v ). We have σ |=φ Px

F
, so by Definition 5.1 (a), φ (m) (σ ,v ) is not �.

The other cases in the proof of Lemma A are straightforward.
Having proved LemmaA,we proceed to showpart (a), that is,σ |=φ df (P ,Φ) implies [[P]]φσ � �.

The proof goes by induction on P , using the definitions in Figures 5 and 7.
For base case x . f = E, the points-to relation, we have df (x . f = E,Φ) = (x � null⇒ df (E,Φ)).

Thus σ (x ) � null⇒ σ |=φ df (E,Φ). By Lemma A, if σ (x ) � null, then [[E]]φσ is not �. On the
other hand, by semantics, if σ (x ) = null then [[x . f = E]]φσ is f alse . Otherwise, let v = [[E]]φσ
then [[x . f = E]]φσ is true or false according to whether σ (x . f ) = v , and not �.

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 6. Publication date: May 2018.



A Logical Analysis of Framing for Specifications with Pure Method Calls 6:25

Case Γ � ∀x : K ∈ G · P . We have df (∀x : K ∈ G · P ,Φ) = df (G,Φ) ∧ (∀x : K ∈ G · df (P ,
Φ)). Thus σ |=φ df (G,Φ). By Lemma A, [[G]]φσ is not �. Also, we have [σ + x :o] |=φ df (P ,Φ),
for all o ∈ ([[G]]φσ ) \ {null} with Type(o,σ ) = K . By induction hypothesis, [[P]]φ [σ + x :o] is not �,
for all o ∈ ([[G]]φσ ) \ {null} with Type(o,σ ) = K . So [[Γ � ∀x : K ∈ G · P]]φσ is not �.
Case P1 ∧ P2. We have df (P1 ∧ P2,Φ) = df (P1,Φ) ∧ (P1 ⇒ df (P2,Φ)). Thus σ |=φ df (P1,Φ) and

σ |=φ (P1 ⇒ df (P2,Φ)). By induction hypothesis on P1, [[P1]]φσ � �. If [[P1]]φσ is false, then
[[P1 ∧ P2]]φσ = false, and thus not �. If [[P1]]φσ is true , then σ |=φ P1. Hence σ |=φ df (P2,Φ) and
by the induction hypothesis on P2, [[P2]]φσ � �. Thus [[P1 ∧ P2]]φσ = [[P2]]φσ , hence not �.
For part (b) of the lemma, a straightforward case analysis shows that when the definedness

condition holds, the clause in Figure 8 is equivalent to the definition in Figure 7. �

Definition 5.4 (Φ;ψ -Valid Formula). Let Γ be a typing context and let Φ be a specification context
that is swf in Γ. Letψ be a partial candidate for Φ. Let P be a formula that is swf in Γ, sigs(Φ). Then
P is Φ;ψ-valid, written Φ;ψ |= P , iff σ |=φ P for all states σ and all Φ-interpretations φ that extend
ψ .

Note that φ includes impure methods if Φ does, but they have no bearing on validity of the
formula (see Equation (6)).
The term “Φ;ψ -valid” elides dependency on Γ, but the relevant typing context should always be

clear. If Φ contains an unsatisfiable specification, or ψ (m) does not satisfy Φ(m) for somem, then
every P is Φ;ψ -valid, as there are no Φ-interpretations.
In a VC-gen setting, the proof obligations include definedness conditions on the specifications.

In the logic, that is manifest by the stipulation that proof rules are only instantiated with healthy
judgments.

Definition 5.5 (Healthy, Well-Formed). Let Γ and Φ satisfy the conditions of Definition 5.4, andψ
be a partial candidate for Φ. A formula P that is swf is healthy for ψ iff df (P ,Φ) is Φ;ψ -valid. A
swf impure method specification (x :T )P � Q [η] is healthy (with respect to Γ,Φ,ψ ) iff the three
formulas df (P ,Φ), df (Q,Φ), and P ⇒ df (η,Φ) are Φ;ψ -valid. A swf pure method specification
(x :T , res:U )P � Q [η] is healthy if df (P ,Φ), P ⇒ df (Q,Φ), and P ⇒ df (η,Φ) are Φ;ψ -valid. A
swf correctness judgment Φ;ψ �Γ C : P � Q [η] is healthy iff the specifications in Φ are healthy
forψ and

—the formulas df (P ,Φ) and P ⇒ df (η,Φ) are Φ;ψ -valid, and
—either df (Q,Φ) is Φ;ψ -valid or η has no writes other than wr res and P ⇒ df (Q,Φ) is Φ;ψ -
valid.

The term well-formed means swf and healthy.

Note that for impure methods, and for correctness judgments, the definition requires the va-
lidity of df (Q,Φ) rather than the weaker condition P ⇒ df (Q,Φ). In the case of a pure method,
the pre and post conditions are applied to the same state, usually one that satisfies the precondi-
tion P . But for impure methods and for correctness judgments, the post-state is typically not the
same as the pre-state. In reasoning about Q in the post state, we cannot rely on P holding, so the
weaker condition P ⇒ df (Q,Φ) would be inadequate. The last part of the definition is to cater to
judgments for pure methods, making the condition on judgments consistent with the condition
on specifications in accord with Definition 2.1.
The definitions to this point are intricate but elementary. But by contrast with axiomatic seman-

tics, correctness is directly grounded in a conventional operational semantics. The one unconven-
tional element is that transition semantics depends on a candidate interpretation of the method
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context. The ultimate confirmation that we are reasoning about program behavior is soundness of
the linking rule, which can be used to discharge all hypotheses.

Remark on Valid Formulas. Definition 5.4 says that Φ;ψ |= P if σ |=φ P for all states σ (and all
Φ-interpretations φ that extendψ ). Here and throughout the article, states are required to be type
correct and self-contained in the sense that there are no dangling references; moreover the value of
alloc is exactly the set of allocated references in the heap. So, in addition to first-order tautologies
and consequences of Φ, there are some valid formulas concerning alloc, such as x ∈ alloc ∪ {null}
for any reference type variable x in scope. Also ∀x : K ∈ G · x . f ∈ alloc ∪ {null} ∧ x .д ⊆ alloc ∪
{null} for reference (resp. region) typed field f (resp. д).

6 SUBEFFECTS, FRAMING OF FORMULAS, AND SEPARATOR FORMULAS

The proof system for correctness judgments relies on several concepts that are covered in this
section. Section 6.1 is about the subeffect judgment, which allows us to weaken an effect or change
the way it is expressed. Section 6.2 covers several notions. The framing judgment delimits the read
effect of a formula. Separator formulas play a key role in the Frame rule for programs. Separator
formulas are also used in the notion of immunity, which enables something like the Frame rule
for effects, and appears in the proof rules for command sequences and loops. Immunity, separator
formulas, and the framing judgment are adapted from RLI. Section 6.3 defines framed reads, a new
notion that plays a role similar to immunity but for read effects. Technically, framed reads restores
symmetry to allowed dependence.
Concerning the subeffect and framing judgments, we start with their semantics, which is

amenable to direct checking using an SMT solver. Then proof rules are given for deriving the
judgments syntactically (following RLI). In turn, these rules refer to context-validity of first-order
formulas (see Definition 5.4).

6.1 Subeffect

For an effect of the formwrG‘f , there is the possibility of more liberal effectwrH ‘f in caseG ⊆ H .
Since region expressions are state-dependent and context-interpretation dependent, so are inclu-
sions like the above.
For method context Φ and partial candidate ψ for Φ, we define the subeffect judgment to have

the form
P ;Φ;ψ � ε1 ≤ ε2.

Such a judgment is healthy iff df (P ,Φ), P ⇒ df (ε1,Φ) and P ⇒ df (ε2,Φ) are all Φ;ψ -valid. A
healthy subeffect judgment is intended to mean that under precondition P , the “bigger” effect
ε2 is more permissive than ε1. Impure methods may be present in Φ but those are irrelevant here.

Definition 6.1 (Valid Subeffect). Awell-formed subeffect judgment is valid, written P ;Φ;ψ |= ε ≤
η, if for all Φ-interpretations φ that extendψ , and all states σ with σ |=φ P , we have rlocs(σ ,φ, ε ) ⊆
rlocs(σ ,φ,η) and wlocs(σ ,φ, ε ) ⊆ wlocs(σ ,φ,η).

Lemma 6.2 (Subeffects Allow Change and Dependency). If P ;Φ;ψ |= ε ≤ η, then the fol-
lowing hold for all Φ-interpretations φ that extend ψ and states σ ,σ ′,τ ,τ ′ such that σ |=φ P and
σ ′ |=φ P :

(allowed change) σ→τ |=φ ε implies σ→τ |=φ η.
(agreement) Agree(σ ,σ ′,η,π ,φ) implies Agree(σ ,σ ′, ε,π ,φ)
(allowed dependency) σ ,σ ′⇒τ ,τ ′ |=φ ε implies σ ,σ ′⇒τ ,τ ′ |=φ η

The first two parts are immediate from definitions. To show the third part, (allowed depen-
dency), suppose σ ,σ ′⇒τ ,τ ′ |=φ ε and consider any σ ,σ ′,τ ,τ ′,π such that Agree(σ ,σ ′,η,π ,φ). By
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Fig. 10. Selected rules for well-formed subeffect judgments. We write ≶ to abbreviate two inclusion rules.

(agreement), we haveAgree(σ ,σ ′, ε,π ,φ) so we can useσ ,σ ′⇒τ ,τ ′ |=φ ε to get the conclusion that
there is ρ ⊇ π such that ρ (freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪
written(σ ,τ )).
Figure 10 provides rules for subeffecting, to be applied to well-formed subeffect judgments.

Lemma 6.3 (Subeffect Soundness). If P ;Φ;ψ � ε ≤ η is derivable by rules in Figure 10, then the

judgment is valid.

The proof goes by showing that each rule is sound and is straightforward.
Recall that for clarity we often abuse notation and treat compound effects as sets. As a conse-

quence, it is immediate to derive judgments of the forms P ;Φ;ψ � ε, ε ≤ ε and P ;Φ;ψ � ε,η ≤ η, ε .
We get true;Φ;ψ � ε ≤ ε by instantiating true;Φ;ψ � ε ≤ ε,η with η as the empty effect.

6.2 Framing and Separator Formulas

The framing judgment has the form

P ;Φ;ψ �Γ η frm Q

and is swf under evident conditions. It means that in P-states, the formula Q depends only on the
part of the state delimited by η. The judgment is healthy iff the formulas df (P ,Φ), P ⇒ df (η,Φ),
and P ⇒ df (Q,Φ) areΦ;ψ -valid. Oftenwe elide the context Γ in a framing judgment, as it is usually
clear from context.

Definition 6.4 (Frame Validity). A well-formed framing judgment is valid, written P ;Φ;ψ |=Γ

η frm Q , iff for all Φ-interpretations φ that extend ψ , all Γ-states σ ,τ and refperms π , if
Agree(σ ,τ ,η,π ,φ), and σ |=Γ

φ P ∧Q , then τ |=Γ
φ Q .

In this article, it would suffice to define frame validity in terms of the identity refperm on the
initial references σ (alloc), as that suffices for its use in the frame rule. The extra generality has
little cost and is convenient because we need the general form of agreement to formulate quasi-
determinacy (Section A.1). It is also useful in relational logic [7].
A verifier can check framing judgments in terms of the validity property (see Section 10 and

Reference [53]), but our logic includes rules to derive framing judgments. A basic rule allows
us to infer, for atomic formula P , the judgment true;Φ;ψ � ftpt (P ,Φ) frm P , concerning a precise
footprint computed by function ftpt, which is defined in Figure 12. In the figure, notation εx

F
means

syntactic substitution.
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Fig. 11. The separator function ·/. is defined by recursion on effects.

Fig. 12. Footprints of region expressions and atomic assertions well-formed in Φ.

Lemma 6.5 (Footprint Agreement). For any states, σ ,σ ′, for any expression F , for any refperm

π from σ to σ ′, for any method context Φ, and for any Φ-interpretation φ, suppose df(F ,Φ) is valid

and Agree(σ ,σ ′, ftpt(F ,Φ),π ,φ). Then [[F ]]φσ
π∼ [[F ]]φσ ′.

Separator Formulas and Immunity. The point of establishing P ;Φ;ψ � η frm Q is that code that
writes outsideη cannot falsifyQ . This is expressed in the frame rule (Figure 14) by computing, from
the frame η ofQ and the frame condition ε of the code, a separator formula, which is a conjunction
of region disjointness formulas describing states in which writes allowed by ε cannot affect the
value of a formula with read effect η. There is a related notion for effects, called immunity, which
enables a sort of framing of effects that is embodied in the proof rules for sequential composition
and for while loops.
For anyη, ε , the separator formulaη ·/. ε is defined in Figure 11, using function ·/., which recurses

on effects. The most interesting case is the first line: rdG‘f ·/. wrH ‘f is the disjointness formula
G # H . (Throughout the article, ≡means syntactic identity.) We use the data group any to abstract
from all field names, so rdG‘any ·/. wrH ‘f is G # H for any f . Writes on the left and reads on
the right are ignored, so η ·/. ε is the same as reads(η) ·/. writes(ε ). Note that G # H means the
intersection of the regions contains at most null, which is not an allocated reference.
One can show by structural induction on effects that for any σ and any Φ-interpretation φ:

σ |=φ η ·/. ε iff rlocs(σ ,φ,η) ∩ wlocs(σ ,φ, ε ) = ∅.

The key property of a separator is to establish the agreement to which frame validity refers.

Lemma 6.6 (Separator Agreement). Consider any effects η and ε . Suppose σ→τ |=ψ ε and σ |=ψ

η ·/. ε . Then Agree(σ ,τ ,η, id,ψ ), where id is the identity on σ (alloc).

The frame rule relies on separation to allow an assertion to be transferred from one point in
control flow to a later one. The proof rules for sequence andWhile allow a write effect to be trans-
ferred, under a suitable notion of separation called immunity. We adapt the notion of immunity
from RLI, simply by including the context for pure methods.
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Fig. 13. Rules for the framing judgment. Typing context Γ is elided in rules where the context is the same in
every judgment of the rule. Context Φ, and Φ-interpretationψ , are elided in rules where they are the same.

Definition 6.7 (P ;Φ;ψ/ε-Immune). Region expressionG is said to be immune from ε under P ,Φ,ψ ,
written P ;Φ;ψ/ε-immune, iff this formula is Φ;ψ -valid:

P ⇒ ftpt (G,Φ) ·/. ε .
Effect η is P ,Φ,ψ/ε-immune provided that for all G, f such that wrG‘f or rdG‘f occurs in η, it is
the case that G is P ,Φ,ψ/ε-immune.

For example, wrx and rdx are true;Φ;ψ/wrx-immune vacuously. On the other hand, wr {x }‘f
is not true;Φ;ψ/wrx-immune because the region expression {x } in wr {x }‘f is not: ftpt ({x },Φ) ·/.
wrx = rdx ·/. wrx = f alse . In contrast, wr {x }‘f is true;Φ;ψ/ε-immune provided wrx is not
in ε .

Lemma 6.8. Let G be P ,Φ,ψ/ε-immune and let φ be a Φ-interpretation that extends ψ . Then for

any σ ,σ ′ such that σ→σ ′ |=φ ε and σ |=φ P we have [[G]]φσ = [[G]]φσ ′.

Lemma 6.9. Let η be P ,Φ,ψ/ε-immune and let φ be a Φ-interpretation that extendsψ . Then for any

σ ,σ ′ such that σ→σ ′ |=φ ε and σ |=φ P we have rlocs(σ ,φ,η) = rlocs(σ ′,φ,η) and wlocs(σ ,φ,η) =
wlocs(σ ′,φ,η).

Framing Rules. Figure 13 specifies (mostly) syntax-directed rules for the framing judgment
P ;Φ;ψ � ε frm Q . The ftpt function is used for atomic formulas. For non-atomic formulas there are
syntax-directed rules, for example, the rule for conjunction allows to infer P ;Φ;ψ � ε frm Q1 ∧Q2

from P ;Φ;ψ � ε frm Q1 and P ∧Q1;Φ;ψ � ε frm Q2. There are also subsidiary rules for subsump-
tion of effects and for logical manipulation of P . The latter means that P ;Φ;ψ � ε frm Q may be
inferred from R;Φ;ψ � ε frm Q if Φ;ψ |= P ⇒ R. These rules are adapted in a straightforward way
from RLI.
As it happens, the framing rules preservewell-formedness, so it is enough to say the axiomsmust

be instantiated by well-formed judgments. But later, in connection with correctness judgments,
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we require not only the premises but also the conclusion of a rule instance to be well-formed
judgments.

Lemma 6.10 (Frame Soundness). Every derivable framing judgment is valid.

The proof is by induction on derivations, using soundness of the rules. Soundness of the rules
is proved using Lemmas 6.3 and 6.5.

6.3 Framed Reads

An effect ε is said to have framed reads, in method context Φ, provided that for every rdG‘f in ε ,
its footprint ftpt (G,Φ) is in ε . For example, with r :rgn the effect rd r ‘f does not have framed reads,
but it is a subeffect of rd r ‘f , rd r , which does.
In this article, the property of having framed reads is important for soundness of the proof rules

for sequence and iteration: it allows transfer of a read effect from one control point to another,
which hinges critically on symmetry of allowed dependence. It seems advisable formost judgments
and specifications to have framed reads, but not all, as discussed later in connection with the proof
rule for sequence. We prove key properties of effects with framed reads and then give examples
showing the necessity of framed reads for these properties.
If the frame conditions of pure methods in Φ have framed reads, then ftpt (F ,Φ) has framed

reads, for any expression F . This carries over to framing judgments for formulas derivable by the
rules in Figure 13, with the exception of some uses of the subeffect rule.
For ε that has framed reads, if Agree(σ ,σ ′, ε,π ,θ ) then [[G]]θσ

π∼ [[G]]θσ ′ for any rdG‘f in ε (by
Lemma 6.5). Two additional properties are important. First, although agreement is defined in an
asymmetric way, referring to the left state for interpretation of the readable locations, a kind of
symmetry holds in case of framed reads.

Lemma 6.11 (Agreement Symmetry). Let Φ be a method context and φ be a Φ-interpretation.

Suppose ε has framed reads and df(ε,Φ) is Φ;φ-valid. Consider any states σ ,σ ′ and any refperm π
such that Agree(σ ,σ ′, ε,π ,φ). Then

(a) rlocs(σ ′,φ, ε ) = π (rlocs(σ ,φ, ε )),
(b) Agree(σ ′,σ , ε,π−1,φ).

Proof. (a) For variables the equality follows immediately by definition of rlocs and definition
Equation (7). For heap locations, the argument is by mutual inclusion. To show rlocs(σ ′,φ, ε ) ⊆
π (rlocs(σ ,φ, ε )), let o. f ∈ rlocs(σ ′,φ, ε ). By definition of rlocs, there exists region G such that
ε contains rdG‘f and o ∈ [[G]]φσ ′. Since ε has framed reads, ε contains ftpt (G,Φ), hence from

Agree(σ ,σ ′, ε,π ,φ) by Lemma 6.5 we get [[G]]φσ
π∼ [[G]]φσ ′. Thus o ∈ π ([[G]]φσ ). So, we have

o. f ∈ π (rlocs(σ ,φ, ε )). Proof of the reverse inclusion is similar.
(b) For variables, this is straightforward. For heap locations, consider any o. f ∈ rlocs(σ ′,φ, ε ).

From (a), we have π−1 (o). f ∈ rlocs(σ ,φ, ε ). From Agree(σ ,σ ′, ε,π ,φ), we get σ (π−1 (o). f )
π∼

σ ′(o. f ). Thus we have σ ′(o. f )
π −1∼ σ (π−1 (o). f ). �

The example, following Equation (9) in Section 4 shows that the lack of framed reads leads to
asymmetry of agreement.
The second critical, but non-obvious, property is that for a pair of states σ ,σ ′ that are in “sym-

metric” agreement and transition to a pair τ ,τ ′ forming an allowed dependence, the transitions
preserve agreement on any set of locations whatsoever.

Lemma 6.12 (Preservation of Agreement). Let Φ be a method context and φ be a

Φ-interpretation. Suppose σ ,σ ′⇒τ ,τ ′ |=φ ε and σ ′,σ⇒τ ′,τ |=φ ε . Let Agree(σ ,σ ′, ε,π ,φ) and
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Agree(σ ′,σ , ε,π−1,φ). Let ρ be any refperm ρ ⊇ π , for which

Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )). (10)

Then for any set of locationsW in σ , if Lagree(σ ,σ ′,π ,W ) then Lagree(τ ,τ ′, ρ,W ).

Note that existence of such ρ is a consequence of σ ,σ ′⇒τ ,τ ′ |=φ ε .

Proof. Using Agree(σ ′,σ , ε,π−1,φ) we appeal to σ ′,σ⇒τ ′,τ |=φ ε to obtain refperm ρ ′ ⊇ π−1

such that
Lagree(τ ′,τ , ρ ′, freshLocs(σ ′,τ ′) ∪ written(σ ′,τ ′)). (11)

Now supposeW is a set of locations inσ such that Lagree(σ ,σ ′,π ,W ).We show Lagree(τ ,τ ′, ρ,W ).
For x ∈W , either x ∈ written(σ ,τ ) or σ (x ) = τ (x ).

• If x ∈ written(σ ,τ ) then from (10), we have τ (x )
ρ∼ τ ′(x ).

• If σ (x ) = τ (x ), we claim that σ ′(x ) = τ ′(x ). Then from Lagree(σ ,σ ′,π ,W ) we have τ (x ) =

σ (x )
π∼ σ ′(x ) = τ ′(x ).

We prove the claim by contradiction. If it does not hold then x ∈ written(σ ′,τ ′). By Equa-

tion (11) this implies τ ′(x )
ρ′∼ τ (x ) = σ (x )

π∼ σ ′(x ). Then, since ρ ′ ⊇ π−1, we would have
σ ′(x ) = π (π−1 (τ ′(x ))) = τ ′(x ), which is a contradiction.

For o. f ∈W , either o. f ∈ written(σ ,τ ) or σ (o. f ) = τ (o. f ).

• If o. f ∈ written(σ ,τ ), then from (10), we have τ (o. f )
ρ∼ τ ′(ρ (o). f ).

• If σ (o. f ) = τ (o. f ), we claim that σ ′(π (o). f ) = τ ′(π (o). f ). Then from Lagree(σ ,σ ′,π ,W )

we have τ (o. f ) = σ (o. f )
π∼ σ ′(π (o). f ) = τ ′(π (o). f ).

The claim σ ′(π (o). f ) = τ ′(π (o). f ) is proved by contradiction. If it does not hold, then

π (o). f ∈ written(σ ′,τ ′). By (11) this implies τ ′(π (o). f )
ρ′∼ τ (ρ ′π (o). f ) = τ (o. f ) = σ (o. f )

π∼
σ ′(π (o). f ). Then, since ρ ′ ⊇ π−1, we would have σ ′(π (o). f ) = π (π−1 (τ ′(π (o). f ))) =
τ ′(π (o). f ), hence σ ′(π (o). f ) = τ ′(π (o). f ), which is a contradiction.

This completes the proof of Lagree(τ ,τ ′,π ,W ) for heap locations. �

Lemma 6.13 (Freshness Symmetry). Let Φ be a method context and φ be a Φ-

interpretation. Suppose σ ,σ ′⇒τ ,τ ′ |=φ ε and σ ′,σ⇒τ ′,τ |=φ ε . Suppose Agree(σ ,σ ′, ε,π ,φ)
and Agree(σ ′,σ , ε,π−1,φ). Let ρ be any refperm ρ ⊇ π for which

ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and

Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )).
(12)

Then we have Lagree(τ ′,τ , ρ−1, freshLocs(σ ′,τ ′)).

Proof. From Agree(σ ′,σ , ε,π−1,φ) and σ ′,σ⇒τ ′,τ |=φ ε , there is a refperm ρ ′ ⊇ π−1 for which
ρ ′(freshLocs(σ ′,τ ′)) ⊆ freshLocs(σ ,τ ) and Lagree(τ ′,τ , ρ ′, freshLocs(σ ′,τ ′) ∪ written(σ ′,τ ′)).
From (10), we have ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′). From Definition 4.2, we know
that ρ and ρ ′ are total on freshLocs(σ ,τ ) and freshLocs(σ ′,τ ′) respectively. Since ρ and ρ ′

are bijections, we have |freshLocs(σ ,τ ) | = |freshLocs(σ ′,τ ′) |. So we get ρ (freshLocs(σ ,τ )) =
freshLocs(σ ′,τ ′). Now from (12), using (8) we get Lagree(τ ′,τ , ρ−1, ρ (freshLocs(σ ,τ ))). Hence
Lagree(τ ′,τ , ρ−1, freshLocs(σ ′,τ ′)). �

Example 6.14. This example shows that allowed dependence is not symmetric, in general, and
that symmetric instances of allowed dependence are necessary for the preservation of agreement
Lemma 6.12. Consider the typing context

Γ =̂ alloc : rgn, r : rgn,x : K
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and consider type K with Fields(K ) = { f : int}. In this example, we suppose that that method con-
text and its candidate interpretation are empty and we omit them. Now consider the following
four states, written in suggestive notation, and implicitly giving reference o type K :

σ =̂ [alloc:{o}, r :∅,o. f :3] σ ′ =̂ [alloc:{o}, r :{o},o. f :3] τ =̂ σ τ ′ =̂ [σ ′ | o. f : 4].

Consider the effect rw r ‘f . We have rlocs(σ , rw r ‘f ) = ∅ and rlocs(σ ′, rw r ‘f ) = {o. f }. So we
get Agree(σ ,σ ′, rw r ‘f ) and Agree(σ ′,σ , rw r ‘f ) (for the identity refperm on {o}). We also have
written(σ ,τ ) = freshLocs(σ ,τ ) = ∅. Thus we get Lagree(τ ,τ ′, id, freshLocs(σ ,τ ) ∪ written(σ ,τ )).
But written(σ ′,τ ′) = {o. f } and τ (o. f ) � τ ′(o. f ). Thus we do not have

Lagree(τ ′,τ , id, freshLocs(σ ′,τ ′) ∪ written(σ ′,τ ′)).

This shows that allowed dependence is not symmetric: σ ,σ ′⇒τ ,τ ′ |= rd r ‘f but not σ ′,σ⇒τ ′,τ |=
rd r ‘f . Finally, letW = {o. f }; then we have Lagree(σ ,σ ′, id,W ) but not Lagree(τ ,τ ′, id,W ). Agree-
ment is not preserved.

Note that the states in this example do not arise in any method interpretation, because an in-
terpretation is required to satisfy the allowed dependency both ways around (that is, the bound
variables σ ,σ ′ in Def. 5.1 can be instantiated by both σ ,σ ′ and σ ′,σ above). The next example is
another where agreement fails to be preserved. But since it has symmetric allowed dependence,
it can be part of an interpretation. This is used in Section 7 to show the necessity of framed read
conditions in the proof rules for sequence and iteration.

Example 6.15. This example builds on (9) which shows that agreement on effects is not symmet-
ric. This example illustrates the necessity of symmetric agreement for preservation of agreements
in Lemma 6.12. Consider the typing context Γ =̂ alloc : rgn, r : rgn,x : K , j : int, where K is a type
with with Fields(K ) = { f : int}. Consider the method context

Φ =̂m() : P � true [rw r ‘f ]

for impure parameterlessm. Let the precondition be this very particular condition:

P =̂ 1 ≤ |r | ≤ 2 ∧ (∀a,b : K ∈ alloc · a. f = 3 ∧ b . f = 5⇒ r = {a,b}).

The effect ofm() does not have framed reads. Since Φ does not contain any pure methods, we use
the empty interpretation, and omit it. Consider distinct references o,p and the following states:

σ =̂ [alloc:{o,p}, r :{o},x :o, j:0,o. f :3,p. f :4] σ ′ =̂ [alloc:{o,p}, r :{o,p},x :o, j:0,o. f :3,p. f :5]
τ =̂ σ τ ′ =̂ [σ ′ | o. f : 6] .

Consider the effect rw r ‘f . We have rlocs(σ , rw r ‘f ) = {o. f } and rlocs(σ ′, rw r ‘f ) = {o. f ,p. f }.
Since σ (o. f ) = 3 = σ ′(o. f ), we have Agree(σ ,σ ′, rw r ‘f ) (eliding the identity refperm of {o,p}).
But since σ (p. f ) � 5 = σ ′(p. f ), we do not have the symmetric agreement Agree(σ ′,σ , rw r ‘f ).
Since written(σ ,τ ) = freshLocs(σ ,τ ) = ∅, we have Lagree(τ ,τ ′, id, freshLocs(σ ,τ ) ∪ written

(σ ,τ )). So we have σ ,σ ′⇒τ ,τ ′ |= rw r ‘f . We also have the symmetric instance of allowed de-
pendence, that is, σ ′,σ⇒τ ′,τ |= rw r ‘f , because the antecedent in its definition, Agree(σ ′,σ ,
rw r ‘f ,π ), is false for all π . To show that preservation of agreement fails, we considerW = {o. f }.
We have Lagree(σ ,σ ′, id,W ), but not Lagree(τ ,τ ′, id,W ).

Example 6.16. Although Example 6.15 seems contrived, the states σ ,σ ′,τ ,τ ′ can in fact arise in
programs. Here we give an interpretation φ, of Φ in Example 6.15, such that φ (m) (σ ) = {τ } and
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φ (m) (σ ′) = {τ ′}. Consider the map defined for all states υ by

φ (m) (υ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

{�} if ¬P
{υ ′} if ∃q, t ∈ [[K]]υ·

q � t ∧ υ (r ) = {q, t } ∧ υ (q. f ) = 3 ∧ υ (t . f ) = 5 ∧ υ ′ = [υ | q. f : 6].
{υ} otherwise

For brevity, in this example we omit the argument value; strictly, we should define φ (m) (v ) (υ) as
above, independent of value v . Notice that the second clause is well defined owing to P . One can
check that φ (m) (σ ) = {τ } and φ (m) (σ ′) = {τ ′}. We show that φ is indeed a Φ-interpretation. Let
υ ∈ [[Γ]].

—We have � ∈ φ (m) (υ) iff υ � |= P .
—For all κ ∈ φ (m) (υ), we have κ |= True and υ→κ |= rw r ‘f , because written(υ,κ) ⊆

wlocs(υ, rw r ‘f ).
—For allκ,υ ′,κ ′ and π , ifυ |= P ,υ ′ |= P ,κ ∈ φ (m) (υ),κ ′ ∈ φ (m) (υ ′) andAgree(υ,υ ′, rw r ‘f ,π ),
then there are two cases:

(a) Suppose |υ (r ) | = 1, or υ (r ) = {q, t }, and {υ (q. f ),υ (t . f )} � {3, 5}. Then we have κ =
φ (m) (υ) = υ. Thuswritten(υ,κ) = freshLocs(υ,κ) = ∅, so Lagree(κ,κ ′,π , freshLocs(υ,κ) ∪
written(υ,κ)).

(b) Suppose υ (r ) = {q, t } where υ (q. f ) = 3 and υ (t . f ) = 5. So κ = [υ | q. f : 6]. Also, we
have rlocs(υ, rw r ‘f ) = {q. f , t . f }, written(υ,κ) = {q. f }, and freshLocs(υ,κ) = ∅. From
Agree(υ,υ ′, rw r ‘f ,π ), we know that there are referencesq′ = π (q) and t ′ = π (t ) such that
υ ′(q′. f ) = 3 andυ ′(t ′. f ) = 5. Sinceυ ′ |= P , we haveυ ′(r ) = {q′, t ′}. Thusκ ′ = [υ ′ | q′. f : 6]
by definition of φ (m). So we have Lagree(κ,κ ′,π , freshLocs(υ,κ) ∪ written(υ,κ)).

7 PROOF SYSTEM FOR PROGRAM CORRECTNESS

This section gives the proof system and works out an example. Soundness is proved in Section 8.
Besides correctness judgments, the rules involve side conditions: validity of formulas, subeffects,

and framing judgments. The linking rule for pure methods features one other condition based on
the following notion which was introduced in Section1.3 in connection with (2).

Definition 7.1 (Correct Partial Candidate). Let Φ and Φ,Θ both be swf and Θ a specification of
pure methods only. Letψ be a partial candidate for Φ. Let θ be a candidate interpretation of Θ. We
say θ is a correct partial candidate for Φ,Θ;ψ , written

θ |= Φ,Θ;ψ ,

provided that for any Φ-interpretation φ that extends ψ , the candidate φ ∪ θ is a (Φ,Θ)-
interpretation.15

We tend to use a comma for union of disjoint partial maps in the context of judgments, for
example, Φ,Θ. In other contexts, it sometimes seems more clear to use ∪.

7.1 The Proof System

Figures 14 and 15 present the proof rules. They are to be instantiated only with well-formed
premises and conclusions (Definition 5.5). To emphasize the point, we make the following def-
initions. A correctness judgment is derivable iff it is well-formed and can be inferred using the
proof rules instantiated with well-formed premises and conclusions. A proof rule is sound if for

15Under these conditions, if the specifications in Θ refer to methods in Φ, then Θ is not swf on its own, and then it is not
meaningful to call θ a Θ-interpretation.
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Fig. 14. Syntax-directed proof rules. The notation y � x indicates the variables are syntactically distinct.
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Fig. 15. Structural proof rules

any instance with well-formed premises and conclusion, the conclusion is valid if the premises are
valid and the side conditions hold. In the soundness proof, we make pervasive use of the health-
iness of judgments. It ensures that definedness formulas hold where they are needed, so we can
use two-valued reasoning (in light of Lemma 5.3).

Theorem 7.2. The rules in Figures 14 and 15 are sound.

An immediate corollary is that every derivable correctness judgment is valid. The proof is given
in Section 8, with some additional cases in appendices.
Here are a few comments on the rules, in order of their appearance in the figures. The first

rule, for field update, is a “local axiom” that precisely describes the effect. Note that the reference
variablex is read, towrite the fieldx . f . Readers familiar with RLI (Section 7.1) and RLII (Section 7.1)
may notice that the addition of read effects for this and most subsequent rules is straightforward.
Rule FieldAcc, is another local axiom. It uses an extra variable to refer to the initial value

of y, for soundness in the case that y ≡ x . In case y � x , one can derive the convenient axiom
Φ; � x := y. f : y � null � x = y. f [wrx , rdy, rdy. f ] as noted in RLI.
Rule Assign is formulated using the ftpt function to compute the read effect (Figure 12).
Rule Alloc has a postcondition that each field f in the list f of fields has the default value

for its type. The rule uses variable r , that is not written, to snapshot the initial value of alloc
to express freshness by postcondition x ∈ alloc. This technique is also used in the rules Seq and
While, avoiding the need for freshness effects as in RLI/II.16 Note that the command reads alloc.
Rule Alloc has some important consequences. First, we can derive that the allocated object

is disequal from existing ones in variables. For y of reference type (with y � x ), the formula

16In RLI, the postcondition also includes an assertion type(K, {x }) that x has type K , but in this article we refrain from
including that among the primitive formulas. In RLI, the allocation rule is formulated using a freshness effect. It is shown
there that a rule like Alloc is derivable.
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y ∈ alloc ∪ {null} is valid (see remark at the end of Section 5). So the formulas r = alloc and
r = alloc ∧ y ∈ r ∪ {null} are logically equivalent. Hence we can use Conseq to add y ∈ r ∪ {null}
to the precondition (and to drop irrelevant postconditions):

� x := new K : r = alloc ∧ y ∈ r ∪ {null} � x � r ∪ {null} [wrx , rw alloc].

Then, since y and r are not written, we can use Frame to get

� x := new K : r = alloc ∧ y ∈ r ∪ {null} � x � r ∪ {null} ∧ y ∈ r ∪ {null} [wrx , rw alloc].

Now use Conseq to simplify the precondition and weaken the postcondition, to get

� x := new K : r = alloc � x � y [wrx , rw alloc],

which saysy is distinct from the fresh reference. Furthermore, since r does not occur in the frame or
postcondition, we can use rule ExistRegion together with Conseq to eliminate the precondition
r = alloc. That yields a judgment in which alloc only occurs in the frame condition. Using similar
derivations, one can show x � s for region variable s , and x � y.д or x � y.д for a field. These
postconditions can be combined with that of Alloc through use of rule Conj.
A formula may refer to fields of a variable bound by a quantifier, and again we can derive

that a fresh reference is distinct from existing ones. For example, this formula is valid: ∀z : K ′ ∈
alloc · z. f ∈ alloc ∪ {null} ∧ z.д ⊆ alloc ∪ {null} (for f of reference type and д of region type). So
the precondition r = alloc of Alloc is logically equivalent to r = alloc ∧ P where

P =̂ ∀z : K ′ ∈ alloc · z. f ∈ r ∪ {null} ∧ z.д ⊆ r ∪ {null}.
By Conseq and Frame we get

� x := new K : r = alloc ∧ P � x � r ∪ {null} ∧ P [wrx , rw alloc].

Now use Conseq to simplify the precondition and weaken the postcondition, to get

� x := new K : r = alloc � ∀z : K ′ ∈ alloc · x � z. f ∧ x � z.д [wrx , rw alloc].

Because for any G, the formula G ⊆ alloc is valid, we can now use Conseq and Exist Region to
obtain � x := new K : true � ∀z : K ′ ∈ G · x � z. f ∧ x � z.д [wrx , rw alloc] where again alloc
appears only in the frame condition.
For future reference, we summarize these considerations by the following derivable rule:

Alloc1
y � x Fields(K ) = f : T f : K ′′ is in Fields(K ′) д : rgn is in Fields(K ′)

Φ; � x := new K : r = alloc � x � y ∧ x � r ∧ alloc = r ∪ {x } ∧ x . f = default (T )
∧(∀z : K ′ ∈ alloc · x � z. f ∧ x � z.д)

[wrx , rw alloc]

Although our small axioms for assignment are as succinct as those of separation logic, the axiom
Alloc is not quite as beautiful since its use in context involves more than mere use of the frame
rule.

Apropos rule PureCall, the command y :=m(z) is an assignment and as such establishes post-
condition y =m(z). Calling it out as a special case enables us to also assert the postcondition Q .
The variable condition y � FV (Q ), that is, y not free inQ , is included for clarity; it actually follows
from specifications being swf, using the distinction between local and global variables mentioned
in Footnote 7.
Rules PureLink and ImpureLink are for linking a client with a single method implementation,

either pure or impure. As discussed in Section 1.3, one premise of PureLink is that partial (Φ,Θ)-
interpetation θ is provided; its purpose is to give the chosen interpretation for m, to be used in
verifying the body B. By contrast, the premise forC requires correctness with respect to all inter-
pretations ofm. This addresses the use of pure methods for abstraction, e.g., in situations where
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the pure method should be “opaque” because its definition acts on state that is not in scope or
reachable for the client. As noted in connection with Equation (3), there are also situations in
which it is appropriate for the interpretation to be visible to clients, addressed by this “transpar-
ent” linking rule rule TranspPureLink. It is not a derived rule, because the weaker judgment
Φ,Θ;ψ ,θ �Γ C : P � Q [ε] does not entail the stronger one that requires C to be correct for all
interpretations ofm.
In general, it is necessary to simultaneously link several pure and impure methods—subject to

the proviso concerning well-founded dependency among pure method preconditions (see ≺+Φ in
the definition of swf method context in Section 2). Simultaneous linking is needed for multiple
pure methods that share a data representation and need to have compatible interpretations (cf.
Definition 7.1). However, owing to the observation in Equation (4) following Definition 2.2, it is
sufficient to simultaneously link a set of impure methods, after which a set of pure methods can
be linked. So it suffices to have one rule like PureLink but linking multiple pure methods, and one
like ImpureLink but linking multiple impure ones. In these general rules, each method body must
satisfy its specification, in the context of all of the specifications. This can be seen in the examples
in Section 7.3. Soundness of these rules can be proved by a straightforward generalization of the
proofs in this article.
Rule Var for local variable blocks is adapted straightforwardly from RLI. The premise allows

reading and writing the local variable; these effects are dropped in the conclusion. This makes
it possible for a pure method to traverse heap structure using loops—indeed, quite complicated
algorithms can be puremethods if the language is extended to allow local variables ofmathematical
types like sequences. For example, one can implement the anc function of Figure 2 using a loop that
traverses parent pointers using an accumulator variable (or res itself) and a variable that points at
the current node.
Rules Seq and While use immunity conditions to ensure that the interpretation of effects is

consistent between the relevant points of control flow. In RLI, immunity is needed in these rules
to deal withwrite effects. Here, it is needed aswell for read effects, but in additionwe need effects to
have framed reads. This ensures that certain agreements that hold initially also hold after executing
commands in sequence, including iteratively, despite the use of state-dependent expressions in
effects. The relevant technical result is Lemma 6.12. Section 7.2 shows necessity of framed reads
conditions. Note that framed reads are not required for the effects involving the expression H to
reason about writes to freshly allocated objects. This is important, because it allows H to itself be
expressed in terms of freshly allocated objects. For an example, see the use of expression H3 in the
proof of the client of Cell in Section 7.3.
About While, note that rdx may be in ε but need not be if the loop body does not read x .

In useful code, ε will contain rwx . The grammar allows a program expression E for the guard
condition. For proving soundness, it is convenient and loses no generality to restrict to the case of
a variable x .
The remaining rules, in Figure 15, are for general reasoning about judgments. The adaptation

of rule Frame from RLI/II is straightforward: adding partial candidate ψ and adding context Φ;ψ
for the side conditions. Similarly for the other structural rules.

Apropos Frame, observe that x := new Cell satisfies true � true [rw alloc,wrx] but it does not
satisfy

true ∧ (∀x : Cell ∈ alloc · false) � true ∧ (∀x : Cell ∈ alloc · false) [rw alloc,wrx]. (13)

It also does not satisfy the equivalent judgment alloc = ∅ � alloc = ∅ [rw alloc,wrx]. This is not
surprising: the Frame rule is inapplicable in these cases, because any frame judgment for either
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formula includes rd alloc, and the command writes alloc. We return to this point in connection
with weak purity (Section 11).
In this article, the assertion language does not include quantification at type rgn. So, to achieve

the effect of rule Exist for region variables, we need rule ExistRegion (just as in RLI/II).
Not all valid judgments are provable. Here is an example judgment that involves a read effect

that is not observable:

. . . � x := 0;y := x : true � true [wrx ,wry, rdx].

Dropping rdx yields a valid judgment, because the final values are independent from the initial
value of x . This is not derivable in our proof system. The logic RLI includes “masking” rules that
remove from a frame condition a write effect if the postcondition says the written location is
unchanged from its initial value. In a more general relational logic, it is possible to formulate
masking rules for read effects.

7.2 Examples Showing the Need for Reads to be Framed

Example 7.3. This example shows that in a sequence of two commands, the effect of the judg-
ment of the first command needs to have framed reads. Recall the specification in Example 6.15:

Φ =̂m() : P � true [rw r ‘f ],

P =̂ 1 ≤ |r | ≤ 2 ∧ (∀a,b : K · a. f = 3 ∧ b . f = 5⇒ r = {a,b}).
We use m() for the first command in sequence. The judgment Φ;∅ � m() : P � true [rw r ‘f ] is
valid, as it is an instance of the proof rule ImpureCall. The Frame rule yields this valid judgment:

Φ;∅ � m() : P ∧ x � null � x � null [rw r ‘f ]. (14)

For the second command, define
C1 =̂ j := x . f ; if j = 3 then j := −1 else j := 1.

Consider the judgment

Φ;∅ � C1 : x � null � true [rdx . f , rdx , rw j]. (15)

This can be derived using the proof rules; note in particular that the effect has framed reads. Using
rule Seq on Equations (14) and (15)—but ignoring the side condition that the first judgment has
framed reads—would give us the judgment

Φ;∅ � m();C1 : P ∧ x � null � true [rw r ‘f , rdx . f , rdx , rw j].

We show that this judgment is invalid because the read effect property fails. Consider the inter-
pretation φ from Example 6.16, and these states from Example 6.15:

σ =̂ [alloc:{o,p}, r :{o},x :o, j:0,o. f :3,p. f :4] σ ′ =̂ [alloc:{o,p}, r :{o,p},x :o, j:0,o. f :3,p. f :5].
τ =̂ σ τ ′ =̂ [σ ′ | o. f : 6]

We haveAgree(σ ,σ ′, (rw r ‘f , rdx . f , rdx ,wr j )). The transitions form() lead, respectively, to states
τ ,τ ′, Let κ,κ ′ be the respective states afterC1 executes from τ ,τ ′. Then we have j ∈ written(σ ,κ),
κ (j ) = −1, and κ ′(j ) = 1. This contradicts Lagree(τ ,τ ′,π , freshLocs(σ ,τ ) ∪ written(σ ,τ )).
In conclusion, without the requirement of framed reads for the first command in a sequence, we

could derive invalid conclusions from valid premises.

Example 7.4. This example shows the necessity for the second command in a sequence to have
framed reads, except for locations freshly allocated by the first command in the sequence.We begin
by considering this judgment with P and Φ as above:

Φ;∅ � x . f := 3 : P ∧ x � null � P [rdx ,wrx . f ]. (16)
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Fig. 16. Specifications for methods of Cell, adapted from Figure 1, using syntax close to the formalization
but allowing multiple parameters (and making self explicit). The name self has no special semantics.

This can be derived using FieldUpd, Frame, and Conseq, so it is valid. Using rule Seq on Equa-
tions (14) and (16)—but ignoring the side condition that the effect rw r ‘f of (14) has framed reads—
yields

Φ;∅ � x . f := 3;m() : P ∧ x � null � true [rw r ‘f , rdx ,wrx . f ].

We show that this is invalid owing to its read effect. Starting from states

υ =̂ [alloc:{o,p}, r :{o},x :o,o. f :0,p. f :4] and υ ′ =̂ [alloc:{o,p}, r :{o},x :o,o. f :0,p. f :4]

we have Agree(υ,υ ′, id, rw r ‘f , rdx ). We also have transitions

〈x . f := 3;m(), υ, _〉
φ
�−→ 〈m(), σ , _〉

φ
�−→ 〈skip, τ , _〉

and 〈x . f := 3;m(), υ ′, _〉
φ
�−→ 〈m(), σ ′, _〉

φ
�−→ 〈skip, τ ′, _〉. Here σ ,σ ′,τ ,τ ′ are as in Example 7.3.

Notice that written(υ,τ ) = {o. f } and freshLocs(υ,τ ) = ∅. But since τ (o. f ) = 3 � 6 = τ ′(o. f ), we
do not have Lagree(τ ,τ ′, id, freshLocs(υ,τ ) ∪ written(υ,τ )).
In conclusion, without the requirement of framed reads for the second command in a sequence,

we could derive invalid conclusions from valid premises. For an example showing why it is unten-
able to require all reads to be framed, see the use ofH3 in the verification of the client in Section 7.3.

7.3 Example Proof: The Cell Methods and a Linked Client

To illustrate features of some of the rules, we sketch proofs of the implementations of the Cell
methods from Figure 16 and this linked client:

Cli =̂ d := newCell ; init (d ); set (c, 5); set (d, 4) : I ∧ c � null � I ∧ дet (c ) = 5 [η],
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whereη =̂ rwd, rw alloc, rw c .foot ‘any, rd c .foot , rd cd . More precisely, we aim to use the PureLink
and ImpureLink rules to prove that the linked command (see Equation (4)):

letдet (self : Cell ) : int = res := self.value in
let set (self : Cell ,v : int) = self.value := v ; init (self : Cell ) = self.foot := {self} in
Cli

(17)

has specification I ∧ c � null � I ∧ дet (c ) = 5[η]. Recall that rw in Figure 16 abbreviates a read
and write, e.g., rw c .foot ‘any abbreviates the effects rd c .foot ‘any,wr c .foot ‘any.
Method init serves as constructor for Cell. The implementation of init is simply self.foot :=

{self}, which suffices for our implementation of set. But init’s specification follows good practice,
which is to allow allocation in constructors. For simplicity, we treat constructors as ordinary meth-
ods, so the specification needs to explicitly require that self is freshwith respect to preexisting state
of interest; in this example we need self � x .foot for preexisting x .
In a richer specification language, I in the figure would be declared as a class invariant—a public

one, because it is useful to clients and does not expose the internal representation.
As an abbreviation, define this variation on I :

J (s ) =̂ ∀x ,y : Cell ∈ s · x ∈ x .foot ∧ (x = y ∨ x .foot # y.foot ).

The parameter s is just a convenience so we can write J (r ) for the instantiation J s
r , and similarly

for other instantiations of s . Note that I and J (r ), respectively, are framed by rd alloc, rd alloc‘foot ,
and rd r , rd r ‘foot .
The judgment for Equation (17) is considered in context

Γ =̂ alloc : rgn, r : rgn, c : Cell ,d : Cell .

The ghost variable r , declared in Γ, is used as an idiom to express freshness. It would be better for
r to be a specification variable, so it could be instantiated in different ways as needed for more
complicated clients, but we do not formalize those in this article.
To use PureLink, note that the hypothesis context for (17) is empty. But the hypothesis context

used for the judgment of get’s implementation comprises get’s specification; this hypothesis con-
text is also the one for the inner let. The use of ImpureLink requires that context be augmented
by the specifications of set and init to set up the judgments for the implementations of set and
init. Let Φ comprise the specifications, given in Figure 16, of the three methods. Then the client’s
judgment uses hypothesis context Φ. The partial candidate φ for pure method get is defined as
φ (дet ) (σ ,o) = σ (o.value ) for all states σ and non-null references o in [[Cell]]σ such that σ |= I .
(Otherwise, φ (дet ) (σ ,o) = �, in accord with Definition 5.1.) To save space, we elide Γ,Φ,φ in the
development below, although we will point to the use of φ when necessary.

Proof of the Cell Method Implementations. We prove the correctness of the method implementa-
tions with respect to the specifications of get, set and init given in Figure 16.
• get: With B =̂ res := self.value , we must prove

B : self � null ∧ I � res = дet (self) [wr res, rd self, rd self.foot ‘any]. (18)

Using FieldAcc, we can obtain B : self � null � res = self.value [wr res, rd self, rd self.value].
Note that Conseq can be used to strengthen the precondition above to self � null ∧ I . The rules
for subeffect judgments allow us to conclude {self} ⊆ self.foot |= rd self.value ≤ rd self.foot ‘any.
Because self � null ∧ I ⇒ {self} ⊆ self.foot , we get the subeffect judgment self � null ∧ I |=
rd self.value ≤ rd self.foot ‘any. Furthermore the formula res = self.value ⇒ дet (self) = v is valid
by definition of φ. Now Conseq yields Equation (18).
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• set: With C =̂ self.value := v , we must prove

C : self � null ∧ I � дet (self) = v ∧ I [rw self.foot ‘any, rd self, rdv]. (19)

Rule FieldUpd yields C : self � null � self.value = v [wr self.value, rd self, rdv]. Aiming to use
Frame with I , since I is framed by rd alloc, rd alloc‘foot , we compute the separator formula

rd alloc, rd alloc‘foot ·/. wr self.value = (rd alloc ·/. wr self.value )
∧ (rd alloc‘foot ·/. wr self.value )

= true ∧ true.

Thus, by Frame we obtain C : self � null ∧ I � self.value = v ∧ I [wr self.value, rd self, rdv].
The rules for subeffect judgments allow us to conclude {self} ⊆ self.foot |= wr self.value ≤
wr self.foot ‘any, rd self.foot ‘any. Because self � null ∧ I ⇒ {self} ⊆ self.foot , we get the subef-
fect judgment self � null ∧ I |= wr self.value ≤ rw self.foot ‘any. Furthermore the formula
self.value = v ⇒ дet (self) = v is valid by definition of φ. Thus, using Conseq, we get Equa-
tion (19).
• init: With D =̂ self.foot := {self}, we must prove

D :
self.foot = ∅

∧ ∀x : Cell ∈ alloc \ {self} · self � x .foot
∧ J (alloc \ {self})

� I [rw alloc, rw self.foot , rd self]. (20)

FieldUpd yields D : self � null � self.foot = {self} [wr self.foot , rd self]. Aiming to use Frame
with J (alloc \ {self}), since the formula is framed by rd alloc, rd (alloc \ {self})‘foot , rd self, we com-
pute the separator formula

rd alloc, rd (alloc \ {self})‘foot , rd self ·/. wr self.foot
= rd alloc ·/. wr self.foot
∧ (rd (alloc \ {self})‘foot ·/. wr self.foot )
∧ (rd self ·/. wr self.foot )

= true ∧ (alloc \ {self}#{self}) ∧ true,

which is a conjunction of trues. So, by Frame we get

D : self � null ∧ J (alloc \ {self}) � self.foot = {self} ∧ J (alloc \ {self}) [wr self.foot , rd self].

Now self.foot = {self} ∧ J (alloc \ {self}) ⇒ I , and we have the subeffect judgment self � null ∧
J (alloc \ {self}) |= wr self.foot , rd self ≤ rw alloc, rw self.foot , rd self. By Conseq, we get

D : self � null ∧ J (alloc \ {self}) � I [rw alloc, rw self.foot , rd self].

Now (20) follows by Conseq: the desired precondition can be obtained by strengthening the pre-
condition self � null in the above judgment, noting that self.foot = ∅⇒ self � null.

Proof of the Cell Client. The proof proceeds by using small axioms for the atomic commands, rule
Frame to adapt their specifications, and rule Seq to combine the commands in sequence, working
from the left. We rely on the derivable consequences of rule Alloc, which are summarized as rule
Alloc1 in Section 7.1. Using that the default value for foot : rgn is ∅, we get

d := new Cell : r = alloc �
d � r ∧ alloc = r ∪ {d } ∧ d � c
∧ d .foot = ∅ ∧ (∀b : Cell ∈ r · d � b .foot ) [wrd, rw alloc]
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Aiming to use Frame with J (r ), since J (r ) is framed by rd r , rd r ‘foot , we use the definition of ·/.
to compute the separator formula

(rd r , rd r ‘foot ) ·/. wrd,wr alloc = (rd r ·/. wrd ) ∧ (rd r ·/. wr alloc)
∧ (rd r ‘foot ·/. wrd ) ∧ (rd r ‘foot ·/. wr alloc)

= true ∧ true ∧ true ∧ true.

Because J (r ) ∧ r = alloc⇒ true ∧ true ∧ true ∧ true is valid, by Frame we get

d := newCell : J (r ) ∧ r = alloc �
J (r ) ∧ d � r ∧ alloc = r ∪ {d } ∧ d � c
∧d .foot = ∅ ∧ (∀b : Cell ∈ r · d � b .foot ) [wrd, rw alloc].

Again aiming to frame c � null, note that rd c frames c � null and

rd c ·/. (wrd, rw alloc) = (rd c ·/. wrd ) ∧ (rd c ·/. wr alloc) = true ∧ true.

Hence by Frame we get

d := newCell : J (r ) ∧ r = alloc ∧ c � null �
J (r ) ∧ d � r ∧ alloc = r ∪ {d }
∧d � c ∧ d .foot = ∅ ∧ c � null
∧(∀b : Cell ∈ r · d � b .foot )

[wrd, rw alloc].

By Conseq, using the validity of the formulas

I ⇒ J (r )
alloc = r ∪ {d } ⇒ d � null (because null � alloc in all states)
alloc = r ∪ {d } ∧ J (r ) ⇒ J (alloc \ {d })
alloc = r ∪ {d } ∧ ∀b : Cell ∈ r · d � b .foot ⇒ ∀b : Cell ∈ alloc \ {d } · d � b .foot

we get the following, where η1 =̂ wrd, rw alloc:

d := newCell : I ∧ r = alloc ∧ c � null �

d � r ∧ d � null
∧ d � c ∧ c � null
∧ d .foot = ∅

∧ ∀b : Cell ∈ alloc \ {d } · d � b .foot
∧ J (alloc \ {d })

[η1]. (21)

Now, by ImpureCall,

init (d ) : d .foot = ∅ ∧ ∀x : Cell ∈ alloc \ {d } · d � x .foot ∧ J (alloc \ {d })
� I [rw alloc, rwd .foot , rdd].

By Frame of (d � r ∧ d � null ∧ d � c ∧ c � null), noting that (rd c, rdd, rd r ) ·/. (wrd .foot ,
wr alloc) = true ∧ true ∧ true ∧ true ∧ true ∧ true, we get

init (d ) :

d .foot = ∅

∧∀x : Cell ∈ alloc \ {d } · d � x .foot
∧J (alloc \ {d }) ∧ d � r
∧d � null ∧ d � c ∧ c � null

�
I ∧ d � r
∧d � null
∧d � c ∧ c � null

[rw alloc, rwd .foot , rdd].

Using Conseq, we can rewrite this judgment as

init (d ) :

d � r ∧ d � null
∧d � c ∧ c � null
∧d .foot = ∅

∧∀x : Cell ∈ alloc \ {d } · d � x .foot
∧J (alloc \ {d })

�
I ∧ d � r
∧d � null
∧d � c ∧ c � null

[rw alloc, rwd .foot , rdd].

(22)
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Next we use Seq to combine (21) and (22) as follows. Observe that η1 has framed reads and wr r �
η1. Also, let η2 =̂ rw alloc, rdd . The effect of (22) can be written as η2, rwd .foot . Notice that η2 is
immune from η1 under I ∧ r = alloc ∧ c � null vacuously (since there is no region expression of
the form G‘f in η2) and η2 has framed reads. Let H1 = {d } and P1 =̂ I ∧ d � r ∧ d � null ∧ d �
c ∧ c � null. We have P1 ⇒ H1#r is valid. Thus all side conditions of Seq are valid. By Seq

d := newCell ; init (d ) : I ∧ r = alloc ∧ c � null �
I ∧ d � r ∧ d � null
∧ d � c ∧ c � null

[rwd, rw alloc]. (23)

By ImpureCall for set , we get

set (c, 5) : I ∧ c � null � I ∧ дet (c ) = 5 [rw c .foot ‘any, rd c].

Let η3 =̂ rwd, rw alloc and let η4 =̂ rw c .foot ‘any, rd c .foot , rd c . We have I ∧ c � null |=
rw c .foot ‘any, rd c ≤ η4. Aiming to frame d � r ∧ d � null ∧ d � c ∧ c � null, we compute
(rd c, rdd, rd r ) ·/. η4; this is a conjunction of trues. Thus by Frame and Conseq, we get

set (c, 5) :
I ∧ c � null ∧ d � r ∧ d � null
∧ d � c �

I ∧ дet (c ) = 5 ∧ d � r ∧ d � null
∧ d � c [η3]. (24)

Again we aim to use Seq to compose (23) and (24). Notice that both η3 and η4 have framed
reads and wr r � η3. LetH2 =̂ ∅, P2 =̂ I ∧ d � r ∧ d � null ∧ d � c ∧ c � null, and P =̂ I ∧ r =
alloc ∧ c � null. Then P2 ⇒ H2#r is valid. We also need to check that η4 is immune from η3
under P . The region expressions in η4 are c .foot and {c}. Thus we need to show the validity of
P ⇒ ftpt ({c}‘foot ,Φ) ·/. η3 and P ⇒ ftpt ({c},Φ) ·/. η3. It suffices to show the validity of the first
implication. The validity of the second follows because ftpt ({c}‘foot ,Φ) = rd {c}‘foot , ftpt ({c},Φ) =
rd {c}‘foot , rd c . The validity of the first implication follows because its consequent reduces to a
conjunction of trues. To wit, by definition of separator, we have

rd {c}‘foot , rd c ·/. (wrd,wr alloc) = (rd {c}‘foot ·/. wrd ) ∧ (rd c ·/. wrd )

∧ (rd {c}‘foot ·/. wr alloc) ∧ (rd c ·/. wr alloc).

= true ∧ true ∧ true ∧ true

Observe that c,d are distinct variables in Γ, which is why rd c ·/. wrd = true. Thus by Seq we get

d := newCell ; init (d ); set (c, 5) : I ∧ r = alloc ∧ c � null �
I ∧ d � r ∧ d � null
∧ d � c ∧ дet (c ) = 5

[η3,η4]. (25)

Recall from definition of η that η = η3,η4.
By ImpureCall for set , we get

set (d, 4) : I ∧ d � null � I ∧ дet (d ) = 4[η5] where η5 =̂ rwd .foot ‘any, rdd .

Aiming to frame d � r ∧ d � c ∧ дet (c ) = 5, note that (rd c, rdd, rd r , rd c .foot , rd c .foot ‘any) ·/.
η5, we can use Frame to get

set (d, 4) :
I ∧ d � r ∧ d � null
∧ d � c ∧ дet (c ) = 5

�
I ∧ d � r ∧ дet (d ) = 4
∧ d � c ∧ дet (c ) = 5

[η5]. (26)

Now we check the side conditions of Seq to compose (25) and (26). Let H3 = d .foot and P3 =̂ I ∧
d � r ∧ d � null ∧ d � c ∧ дet (c ) = 5. Then P3 ⇒ H3#r is valid. Also, η has framed reads and
wr r � η. Since rdd is P/η-immune, by Seq we get

d := newCell ; init (d ); set (c, 5); set (d, 4) : I ∧ r = alloc ∧ c � null �
I ∧ d � r ∧ дet (d ) = 4
∧d � c ∧ дet (c ) = 5 [η].
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Notice that the footprint ofH3 contains rd {d }‘foot and it does not make sense for this to appear in
the effect of the sequence, because it refers to a field d .foot of the freshly allocated object assigned
to d . This shows why rule Seq does not require the entire frame condition to be read framed. By
contrast, the H1 earlier has its footprint in the effect.
Now, fromConseq, using I ∧ d � r ∧ дet (d ) = 4 ∧ d � c ∧ дet (c ) = 5⇒ I ∧ дet (c ) = 5, we

get

d := newCell ; init (d ); set (c, 5); set (d, 4) : I ∧ r = alloc ∧ c � null � I ∧ дet (c ) = 5[η].

The variable r only serves to refer to the initial value of alloc. By rule ExistRegion, the above
judgment yields

d := newCell ; init (d ); set (c, 5); set (d, 4) :
(∃r : rgn · I ∧ r = alloc ∧ c � null) � .
I ∧ дet (c ) = 5 [η]

Then by predicate calculus and rule Conseq, using that r is not free in I , we get

d := newCell ; init (d ); set (c, 5); set (d, 4) : I ∧ c � null � I ∧ дet (c ) = 5[η]. (27)

To finish the example, we need to link the client to the implementations. Using judgment (18),
(19), (20), and (27), rules PureLink and ImpureLink yield that (17) has the specification I ∧ c �
null � I ∧ дet (c ) = 5[η].

8 SOUNDNESS OF THE PROOF SYSTEM

8.1 Proof of Soundness for Rules Other Than Linking

We prove soundness of each rule in turn, making reference to the named conditions (Safety, Post,
Write, and Read) in Definition 5.2. The proof ofWhile is in the Appendix, and soundness of linking
is the topic of Sections 8.2 and 8.3.
FieldAcc and Assign: These are straightforward and similar to FieldUpd, which we prove in

detail. For Assign, the argument for the Read condition uses Lemma 6.5.
FieldUpd: Consider any Φ-interpretation φ, and any state σ satisfying the precondition, that

is, such that σ |=φ x � null. By semantics the configuration 〈x . f := y, σ , _〉 does not fault (which
proves Safety), and we have 〈x . f := y, σ , _〉

φ
�−→ 〈skip, τ , _〉 where τ =̂ [σ | x . f :σ (y)]. To prove

Post wemust show τ |= x . f = y. By semantics τ |= x . f = y iff τ (x ) � null and τ (x . f ) = τ (y). Since
neitherx nory ismodified by field update,τ (x ) = σ (x ) � null andτ (y) = σ (y). Thusτ (x . f ) = τ (y).
To prove Write, let ε =̂ wrx . f , rdx , rdy. Notice that wlocs(σ ,φ, ε ) = {σ (x ). f }. Since τ is only

different from σ in value of x . f , we get Write in accord with Definition 4.1.

To prove Read consider 〈x . f := y, σ ′, _〉
φ
�−→ 〈skip, τ ′, _〉. Suppose σ ′ |= x � null and

Agree(σ ,σ ′, ε,π ,φ), where π is a refperm. By semantics, τ ′ = [σ ′ | x . f :σ ′(y)]. Since rlocs(σ ,φ, ε ) =

{x ,y}, from Agree(σ ,σ ′, ε,π ,φ) we have σ (x )
π∼ σ ′(x ) and σ (y)

π∼ σ ′(y). Thus τ (x . f )
π∼ τ ′(x . f ).

Also, written(σ ,τ ) = {σ (x ). f } and freshLocs(σ ,τ ) = ∅. These show that ρ (freshLocs(σ ,τ )) ⊆
freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )), where ρ = π .

Alloc: Consider any Φ-interpretation φ and any state σ with σ |=φ r = alloc. By seman-

tics it is not the case that 〈x := new K , σ , _〉
φ
�−→ �. Instead we have 〈x := new K , σ , _〉

φ
�−→

〈skip, [σ1 | x :o], _〉, where o � σ (alloc), σ1 = New (σ ,o,K , default (T )), and Fields(K ) = f : T . Let
τ = [σ1 | x :o]. (Recall that New (. . .) is defined in the caption of Figure 9.) We have that τ satisfies
the postconditions x � r , alloc = r ∪ {x }, and x . f = default (T ), by definition.
To prove Write, that is, σ→τ |= wrx , rw alloc, observe that wlocs(σ ,φ, (wrx , rw alloc)) =

{x , alloc} and written(σ ,τ ) = {x , alloc} by definitions. To prove Read, consider ad-
ditional states σ ′,τ ′ and refperm π such that Agree(σ ,σ ′, (wrx , rw alloc),π ,φ) and
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〈x := new K , σ ′, _〉
φ
�−→ 〈skip, τ ′, _〉. We have rlocs(σ ,φ, (wrx , rw alloc)) = {alloc}. Thus

σ (alloc)
π∼ σ ′(alloc). Define ρ = π ∪ {(τ (x ),τ ′(x ))}. We must show

ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ ′)).

Note that freshLocs(σ ,τ ) = {o. fi | fi ∈ f } and freshLocs(σ ′,τ ′) = {o′. fi | fi ∈ f }, where o = τ (x )
and o′ = τ ′(x ). So, we have ρ (o) = o′. From this we get ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′).
Now we show Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ ′)). By definition of ρ we have

τ (x )
ρ∼ τ ′(x ). We also have τ (alloc)

ρ∼ τ ′(alloc) because τ (alloc) = τ (r ) ∪ {τ (x )} = σ (r ) ∪ {τ (x )} ρ∼
σ ′(r ) ∪ {τ ′(x )} = τ ′(alloc). Recall freshLocs(σ ,τ ) = {o. fi | fi ∈ f }, and the fields are initialized to
default values, so we have τ (o. fi )

ρ∼ τ ′(ρ (o). fi ) for each fi .

ImpureCall: LetΦ bem : (x :T )P � Q [ε] andφ be an arbitraryΦ-interpretation, noting that the
partial candidate is empty. To prove Φ |= m(z) : Px

z � Qx
z [εx

z , rd z], suppose σ |=φ Px
z and let μ be

a Γ-environment. Letv = σ (z). Then we have σ |=φ Px
v . The call cannot fault from σ , because that

would contradict Definition 5.1(d) of context interpretation. The transitions are 〈m(z), σ , _〉
φ
�−→

〈skip, τ , _〉 for all τ ∈ φ (m) (σ ,v ). By Definition 5.1(e), this yields τ |=φ Qx
v , andσ→τ |=φ εx

v , which
gives us τ |=φ Qx

z and σ→τ |=φ εx
z since σ (z) = v .

Finally, to prove Read, for any τ ,σ ′,τ ′,π suppose that σ ′ |=Γ
φ Px

v ′ , Agree(σ ,σ ′, (εx
v , rd z),π ,φ),

〈m(z), σ , _〉
φ
�−→∗ 〈skip, τ , _〉 and 〈m(z), σ ′, _〉

φ
�−→∗ 〈skip, τ ′, _〉, where v ′ = σ ′(z). From tran-

sition semantics τ ∈ φ (m) (σ ,v ) and τ ′ ∈ φ (m) (σ ′,v ′). Because Agree(σ ,σ ′, rd z,π ,φ), we have
v

π∼ v ′. Thus, from Definition 5.1(f), there is ρ ⊇ π with ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and
Lagree(τ ,τ ′, ρ, freshLocs(σ ,τ ) ∪ written(σ ,τ )).

PureCall: Recall that a swf specification for a pure method is not allowed to have a write effect.
Let φ be any Φ-interpretation. Consider any σ such that σ |=φ Px

z . Letw = φ (m) (σ ,σ (z)). Because

φ is a Φ-interpretation, we know that w is not �, see Definition 5.1(a). So 〈y :=m(z), σ , _〉
φ
�−→

〈skip, τ , _〉, where τ = [σ |y:w]. Thus Safety is immediate. Furthermore, σ |=φ Qx,res
z,w by Defini-

tion 5.1(b) of context interpretation, hence σ |=φ Qx,res
z,y . We get the postcondition y =m(z) by

semantics: According to the typing rule for y :=m(z), y is not in scope for the specification ofm
(see also Footnote 7); thus [[m(z)]]φτ = [[m(z)]]φσ and hence τ |=φ y =m(z).
For Write, it is immediate from semantics: τ = [σ |y:w] and wry is in the frame condition. For

Post, we must show τ |=φ Qx,res
z,y . Below, we show that τ |=φ Qx,res

z,y iff σ |=φ Qx,res
z,w , whence we are

done. Because σ and τ possibly differ only on the value of y, and y � z, we have τ (z) = σ (z). Now
note that

τ |=φ Qx,res
z,y

⇔ [τ + x , res:τ (z),τ (y)] |=φ Q, by substitution property
⇔ [τ + x , res:τ (z),w] |=φ Q, since τ (y) = w
⇔ [τ + x , res:σ (z),w] |=φ Q, since τ (z) = σ (z)
⇔ [σ + x , res:σ (z),w] |=φ Q, since y � FV (Q ),y � z
⇔ σ |=φ Qx,res

z,w , by abbreviation (asw is a value)

.

To showRead, for any τ ,σ ′,τ ′,π , suppose thatAgree(σ ,σ ′, (wry, rdz, εx
z ),π ,φ),σ ′ |=φ Px

z , 〈y :=

m(z), σ , _〉
φ
�−→∗ 〈skip, τ , _〉 and 〈y :=m(z), σ ′, _〉

φ
�−→∗ 〈skip, τ ′, _〉. Let w ′ = φ (m) (σ ′,σ ′(z)).

By semantics, we have τ = [σ |y:w] and τ ′ = [σ ′ |y:w ′]. From the agreement assumption we get
σ (z)

π∼ σ ′(z). Let ρ = π . Because φ is a context interpretation, by Definition 5.1(c) we therefore
obtainw

π∼ w ′. Hence τ (y)
π∼ τ ′(y) and we are done because τ ,τ ′ differ from σ ,σ ′ only in y.
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Seq: We only show Read, as proofs for the other conditions are straightforward adaptations of
the soundness proof in RLI. Consider any Φ-interpretation φ that extendsψ , and suppose for states
σ ,σ ′,τ ,τ ′, for refperm π , we have

σ |=φ P ∧ r = alloc, σ ′ |=φ P ∧ r = alloc, Agree(σ ,σ ′, (ε1, ε2),π ,φ), (28)

and
〈C1;C2, σ , _〉

φ
�−→∗ 〈skip, τ , _〉 and 〈C1;C2, σ

′, _〉
φ
�−→∗ 〈skip, τ ′, _〉.

We must show that there is a refperm ρ such that ρ ⊇ π and

ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′), (29)

Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )). (30)

To show the agreement (30), observe by semantics and validity of the first and second premises of
the rule, there are states σ1 and σ ′1 such that

〈C1, σ , _〉
φ
�−→∗ 〈skip, σ1, _〉 and σ1 |=φ P1 and 〈C2, σ1, _〉

φ
�−→∗ 〈skip, τ , _〉,

and

〈C1, σ
′, _〉

φ
�−→∗ 〈skip, σ ′1, _〉 and σ ′1 |=φ P1 and 〈C2, σ

′
1, _〉

φ
�−→∗ 〈skip, τ ′, _〉.

From Equation (28) we have Agree(σ ,σ ′, ε1,π ,φ), so using the Read property of the first premise
we get some refperm ρ1 ⊇ π such that

ρ1 (freshLocs(σ ,σ1)) ⊆ freshLocs(σ ′,σ ′1 ) and Lagree(σ1,σ
′
1, ρ1,Y )

where Y = written(σ ,σ1) ∪ freshLocs(σ ,σ1).
(31)

From the first premise, we also know that σ→σ1 |=φ ε1. Since ε2 is P ,Φ,ψ/ε1-immune, from
Lemma 6.9 we have rlocs(σ1,φ, ε2) = rlocs(σ ,φ, ε2). Hence rlocs(σ1,φ, ε2) ⊆ rlocs(σ ,φ, (ε1, ε2)).
Thus, from Equation (28) using Definition 4.2, we can derive Lagree(σ ,σ ′,π , rlocs(σ1,φ, ε2)).
From validity of the first premise we have both σ ,σ ′⇒σ1,σ

′
1 |=φ ε1 and σ ′,σ⇒σ ′1,σ1 |=φ ε1.

Since ε1 has framed reads, using Lemmas 6.11 and 6.12, we obtain ρ1 ⊆ π such that

Lagree(σ1,σ
′
1, ρ1, rlocs(σ1,φ, ε2)). (32)

From side conditions Φ;ψ |= P1 ⇒ H#r and wr r � ε1 of Seq, using also σ |=φ r = alloc, we have
[[H ]]φσ1 ⊆ freshRefs(σ ,σ1). Thus,

rlocs(σ1,φ, rdH ‘f ) ⊆ freshLocs(σ ,σ1) ⊆ Y . (33)

With a similar argument we get

rlocs(σ ′1,φ, rdH ‘f ) ⊆ freshLocs(σ ′,σ ′1 ). (34)

From Equation (31) and (33), we get Lagree(σ1,σ
′
1, ρ1, rlocs(σ1,φ, rdH ‘f )). Combined with Equa-

tion (32) and from Definition 4.2, we derive Lagree(σ1,σ
′
1, ρ1, rlocs(σ1,φ, (ε2, rdH ‘f ))). By Defini-

tion 4.3 this yields

Agree(σ1,σ
′
1, (ε2,wrH ‘f , rdH ‘f ), ρ1,φ). (35)

Recall that from the validity of the first premise we have σ ′,σ⇒σ ′1,σ1 |=φ ε1. Since ε1 has frame
reads, using Lemma 6.11 and Equation (28), we have Agree(σ ′,σ , ε1,π

−1,φ). From Lemma 6.13,
we get Lagree(σ ′1,σ1, ρ

−1
1 , freshLocs(σ ′,σ ′1 )). From Equation (34), we get Lagree(σ ′1,σ1, ρ

−1
1 ,

rlocs(σ ′1,φ, rdH ‘ f̄ )). Furthermore, ε2 has framed reads. So, using Lemma 6.11 and Equation (35), we
get Lagree(σ ′1,σ1, ρ

−1
1 , rlocs(σ ′1,φ, ε2)). Thus we have Lagree(σ ′1,σ1, ρ

−1
1 , rlocs(σ ′1,φ, (ε2, rdH ‘ f̄ ))).

So we get

Agree(σ ′1,σ1, (ε2,wrH ‘f , rdH ‘f ), ρ−11 ,φ). (36)
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Using Equation (35) we appeal to the Read property of the second premise, that is,
σ1,σ

′
1⇒τ ,τ ′ |=φ ε2, rdH ‘f which yields that there is a refperm ρ ⊇ ρ1 such that

ρ (freshLocs(σ1,τ )) ⊆ freshLocs(σ ′1,τ )
Lagree(τ ,τ ′, ρ,W ), whereW = written(σ1,τ ) ∪ freshLocs(σ1,τ ).

(37)

Observe that

written(σ ,τ ) ∪ freshLocs(σ ,τ )

⊆ written(σ ,σ1) ∪ written(σ1,τ ) ∪ freshLocs(σ ,σ1) ∪ freshLocs(σ1,τ )

= Y ∪W .
From (37), we have Lagree(τ ,τ ′, ρ,W ), so it remains to show Lagree(τ ,τ ′, ρ,Y ). By validity of the
second premise, we get σ1,σ ′1⇒τ ,τ ′ |=φ ε2,wrH ‘f , rdH ‘f and σ ′1,σ1⇒τ ′,τ |=φ ε2,wrH ‘f , rdH ‘f .
Using Lemma 6.12, from (35), (36) and (31), we get Lagree(τ ,τ ′, ρ,Y ). This completes the proof of
(30).
To complete the proof of (29), note that freshLocs(σ ,τ ) = freshLocs(σ ,σ1) ∪ freshLocs(σ1,τ ),

since σ (alloc) ⊆ σ1 (alloc) ⊆ τ (alloc). Thus we have

ρ (freshLocs(σ ,τ )) = ρ (freshLocs(σ ,σ1)) ∪ ρ (freshLocs(σ1,τ ))
⊆ freshLocs(σ ′,σ ′1 ) ∪ freshLocs(σ ′1,τ

′) from (31) and (37).
= freshLocs(σ ′,τ ′)

Frame: We must show Φ;ψ |= C : P ∧ R � Q ∧ R [ε], assuming validity of premises. Consider
any Φ-interpretation φ such that ψ ⊆ φ. Suppose σ |=φ P ∧ R. All the conditions in Definition 5.2
except Post are immediate from the validity of the premise, which also yields τ |=φ Q . To show
Post it remains to show τ |=φ R. Because φ is a Φ-interpretation, the premise Φ;ψ |= P ∧ R ⇒
η ·/. ε yields σ |=φ η ·/. ε . Instantiating the premise for C with φ gives σ→τ |=φ ε (Write), so
by Lemma 6.6 we have Agree(σ ,τ ,η, id,φ), where id is the identity on σ (alloc). Now we appeal to
the definition of P ;Φ;φ |= η frm R (Definition 6.4). Hence fromAgree(σ ,τ ,η, id,φ) and σ |=φ P ∧ R
we obtain τ |=φ R.

Conseq: For all Φ-interpretation φ that extends ψ and all state σ such that σ |=φ P1, from
Φ;ψ |= P1 ⇒ P , we have σ |=φ P . Thus by validity of the premise, we conclude that transition

from 〈C, σ , _〉 via
φ
�−→ cannot fault. To prove post and safety, consider state τ with 〈C, σ , _〉

φ
�−→∗

〈skip, τ , _〉. Again from first premise we have τ |=φ Q and σ→τ |=φ ε . From Φ;ψ |= Q ⇒ Q1, we
get τ |=φ Q1. Since P1 Φ;ψ |= ε ≤ ε1, by Lemma 6.2 (allowed change) we have σ→τ |=φ ε1. The
read condition is the result of use of Lemma 6.2 (allowed dependency) on Read condition of the
premise.

InterpIntro: Note that by well-formedness, the unionψ ,ψ ′ is a partial candidate so if there is
anym in the domain of both then ψ (m) = ψ ′(m). Any interpretation that extends ψ ∪ψ ′ also ex-
tendsψ , so the conclusion follows directly from the premise by semantics of correctness judgment.

8.2 Preliminaries for Soundness of Linking Rules

To lay groundwork, we give a high-level sketch the soundness arguments for the linking rules,
which motivates some definitions and technical results adapted from RLII.
The conclusion of both linking rules is a judgment about the potentially recursive let-binding

of method namem to method body B in clientC . The let-command executes by taking one step in
which B gets bound tom in the environment, followed by execution ofC in that environment. The
two premises of the rule are judgments for B and forC , both withm bound to its specification. To
prove that the let-command’s execution satisfies its specification, we show that any trace of the
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let-command, in which calls tom are environment calls, gives rise to a trace ofC in which calls to
m are context calls. This lets us appeal to the premise judgment forC , since its specification is the
same as that of the let-command.
To make this argument precise, we need to decompose traces withm in the environment into

segments corresponding to “topmost calls” ofm, between which the code of C is executed. More-
over, we need to connect executions of B, in which recursive calls of m are environment calls,
with executions of B, in which recursive calls are context calls, so we can appeal to the premise
judgment for B. These arguments go by induction on the number of topmost calls tom in a trace,
and by induction on recursion depth, for which the rest of this subsection provides notation and
nomenclature.

Technical Background. The active command of a configuration 〈C, σ , μ〉 is the command’s redex,
that is, the part that determines the transition. So Active(C1;C2) = Active(C1) and Active(C ) = C if
there are no C1,C2 such that C is C1;C2.
In the following, we consider intermediate configurations that may include local variables as

well as end-markers for let-bound methods. This can be formalized by a notion of compatibility,
as in RLII (Definition 4.3 there), but here we gloss over the details with the phrase “well formed
for an extension of Γ”.
The following says that if a configuration is not about to callm then the behavior is independent

of whetherm is in the environment or the context.

Lemma 8.1 (Independence). Suppose Φ is swf in Γ and φ is a Φ-interpretation. Consider any

m,C,σ , μ̇,φ such thatm ∈ dom(μ̇) and 〈C, σ , μ̇〉 is well formed for some extension of Γ. Let μ = μ̇�m
and suppose Θ specifiesm and θ is a Θ-interpretation form. SupposeC has no elet(m) (and note that

by well-formedness of the configurations, C has no let binding of m). Suppose Active(C ) is not a call

tom. Then for anyC ′,σ ′, μ̇ ′ we have 〈C, σ , μ̇〉
φ
�−→ 〈C ′, σ ′, μ̇ ′〉 iff 〈C, σ , μ〉

φ∪θ
�−→ 〈C ′, σ ′, μ ′〉, where

μ ′ = μ̇ ′�m. Moreover 〈C, σ , μ̇〉
φ
�−→ � iff 〈C, σ , μ〉

φ∪θ
�−→ �.

A key part of the argument for linking m with its client goes by induction on the number of
calls tom. The following notion helps in the formalization.

Definition 8.2 (m-Truncated). A trace 〈C, σ , μ〉
φ
�−→∗ 〈D, τ , ν〉 is calledm-truncated, ifD is either

of the form y :=m(z);C ′ or the formm(z);C ′, or the trace has no incomplete invocation ofm.

We use the term topmost call to refer to a call to a method m that is not invoked (directly or
indirectly) fromm itself, though it may be from a chain of other method invocations.

Lemma 8.3 (Decomposition for Pure Environment Methods). Suppose μ0 (m) = (x : T , res :

U .B) and 〈C0, σ0, μ0〉 is compatible with Φ;φ, where m � dom (φ). Suppose 〈C0, σ0, μ0〉
φ
�−→∗

〈D, τ , ν〉. Then there is n ≥ 0 and, for all i (0 < i ≤ n), there are configurations 〈Ci , σi , μi 〉, vari-

ables zi , yi , xi and resi , states τi , υi and σ̇i such that for all i (0 < i ≤ n):

(1) 〈Ci−1, σi−1, μi−1〉
φ
�−→∗ 〈yi :=m(zi );Ci , τi , μi 〉 without any intermediate configurations in

which the call tom is the active command.

(2) 〈yi :=m(zi );Ci , τi , μi 〉
φ
�−→ 〈Bx,res

xi ,resi
;yi := resi ; ecall(xi , resi );Ci , υi , μi 〉.

and υi = [τi + xi , resi :τi (zi ), default(U )] (note that xi and resi are fresh parameter names).

(3) 〈Bx,res
xi ,resi

, υi , μi 〉
φ
�−→∗ 〈skip, σ̇i , μi 〉 and hence by semantics,

〈Bx,res
xi ,resi

;y := resi ; ecall(xi , resi );Ci ,υi , μi 〉
φ
�−→∗ 〈ecall(xi , resi );Ci , σ̈i , μi 〉, where σ̈i = [σ̇i |

yi : σ̇ (resi )].
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(4) 〈ecall(xi , resi );Ci , σ̈i , μi 〉
φ
�−→ 〈Ci , σi , μi 〉 and σi = σ̈i �xi �resi .

(5) 〈Cn , σn , μn〉
φ
�−→∗ 〈D, τ , ν〉without any completed invocations ofm—but allowing a topmost

call that is incomplete.

Lemma 8.4 (Decomposition for Pure Interpreted Methods). Suppose that μ is a method en-

vironment such thatm � dom (μ ) and 〈C0, σ0, μ0〉 is compatible with Φ;φ, wherem ∈ dom (φ). Also,

suppose 〈C0, σ0, μ0〉
φ
�−→∗ 〈D, τ , ν〉. Then there is n ≥ 0 and, for all i (0 < i ≤ n), there are configu-

rations 〈Ci , σi , μi 〉, variables zi and yi and states τi such that for all i (0 < i ≤ n):

(1) 〈Ci−1, σi−1, μi−1〉
φ
�−→∗ 〈yi :=m(zi );Ci , τi , μi 〉 without any intermediate configurations in

whichm is the active command.

(2) 〈yi :=m(zi );Ci , τi , μi 〉
φ
�−→ 〈Ci , σi , μi 〉 and σi = [τi |yi :φ (m) (τi ,τi (zi ))].

(3) 〈Cn , σn , μn〉
φ
�−→∗ 〈D, τ , ν〉without any completed invocations ofm—but allowing a topmost

call that is incomplete.

Lemma 8.5 (Change of Method Environment). Consider states σ and τ , candidate interpreta-

tion φ and command C . Then we have 〈C, σ , _〉
φ
�−→∗ 〈skip, τ , _〉 iff 〈C, σ , μ〉

φ
�−→∗ 〈skip, τ , μ〉 for

any method environment μ with domain disjoint from the domain of φ and containing no method

bound by let in C .

A bounded configuration has the form 〈C, σ , μ〉k , where k is a natural number. One can think
of k as the size of the available stack space. A computation will get stuck (and does not fault) if it
attempts to make an environment call on a method when k is 0.

Definition 8.6 (Depth-Bounded Semantics). The transition relation on depth-bounded configura-

tions is written
φ
�−→ just like for standard configurations. It is defined so the bound is decreased in

the invocation step and increased when the end-marker of the method body is reached:

k > 0 μ (m) = (x :T , res:U .C ) x ′ � Vars(σ ) res′ � Vars(σ ) C ′ = Cx,res
x ′,res′

〈y :=m(z), σ , μ〉k θ�−→ 〈C ′;y := res′; ecall(x ′, res′), [[σ + x ′:σ (z)] + res′: default (U )], μ〉k−1

〈ecall(x ), σ , μ〉k θ�−→ 〈skip, σ �x , μ〉k+1.

The bound needs to be propagated in one of the transitions for sequence

〈C, σ , μ〉k θ�−→ 〈C ′, σ ′, μ ′〉k ′

〈C ;D, σ , μ〉k θ�−→ 〈C ′ ;D, σ ′, μ ′〉k ′
.

In all other cases, the transition rule is the same as for non depth-bounded configurations except
that a single bound k is added uniformly to every configuration in the rule.

Lemma 8.7 (Depth-Bounded Semantics). For any θ and 〈C, σ , μ〉 we have:

(1) 〈C, σ , μ〉 θ�−→∗ 〈C ′, σ ′, μ ′〉 iff there are k, j such that 〈C, σ , μ〉k θ�−→∗ 〈C ′, σ ′, μ ′〉j .
(2) 〈C, σ , μ〉 θ�−→∗ � iff there is some k ≥ 0 such that 〈C, σ , μ〉k θ�−→∗ �.

Lemma 8.8 (Judgment Renaming). If Φ;φ |=Γ,x :T C : P � P ′ [ε] and Γ,y : T is well formed, then

Φ;φ |=Γ,y :T Cx
y : Px

y � P ′xy [εx
y ].
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8.3 Soundness of Linking Rules

Soundness of ImpureLink is proved in the Appendix. In addition to features common to the sound-
ness proofs for the other linking rules, ImpureLink relies on a theory of quasi-determinacy, which
is developed in the Appendix. Soundness of TranspPureLink can be proved by an argument very
much like the one for PureLink, and we omit it. The rest of this section proves PureLink in detail.
For this, we rely on nomenclature set out in the results of Section 8.2.
Suppose that Φ and Φ,Θ are well formed in Γ. Suppose Θ is m : (x :T , res:U )R � S [η] and

dom (θ ) = dom (Θ). Suppose the side condition on correctness of the interpretation holds:

θ |= Φ,Θ;ψ . (38)

Suppose the premises are valid, that is,

Φ,Θ;ψ |=Γ C : P � Q [ε], (39)

Φ,Θ;ψ ,θ |=Γ,x :T ,res:U B : R � res =m(x ) [wr res, rdx ,η]. (40)

We are to prove validity of the conclusion of the rule:

Φ;ψ |=Γ letm(x :T ):U = B inC : P � Q [ε]. (41)

Whereas premise (40) is a judgment about B with any recursive calls ofm in B treated as context
calls, the following Lemma spells out the correctness property of the body B when executed with
recursive calls tom as environment calls, by connecting it with the interpretation θ (m).

Lemma 8.9 (Recursive Correctness). The following is a consequence of Equation (39) and (40).

Let x ′, res′ not be in dom (Γ) ∪ {x , res}. Let Γ′ be Γ,x ′ : T , res′ : U . Let σ be any Γ′-state such

that σ |=ψ Rx
x ′ . Let μ̇ be any Γ′-environment such that μ̇ (m) = (x : T , res : U .B). Let φ be a Φ-

interpretation such thatψ ⊆ φ. Then the computation from 〈Bx,res
x ′,res′, σ , μ̇〉 via

φ∪θ
�−→

(a) does not fault, and

(b) if it reaches 〈skip, τ , μ̇〉, then τ = [σ | res′:θ (m) (σ ,σ (x ′))].

We defer the proof of this Lemma and proceed to prove (41).
To that end, let μ be the empty Γ-environment. Let φ be a Φ-interpretation such thatψ ⊆ φ, and

let σ be a Γ-state such that σ |=φ P . The first transition is

〈letm(x :T ):U = B inC, σ , μ〉
φ
�−→ 〈C ; elet(m), σ , μ̇〉.

where μ̇ = [μ +m: (x : T , res : U .B)]. Continuing from there, any trace of C ; elet(m) corresponds
step by step with a trace ofC containing a trailing elet(m) in every configuration with exactly the
same states, followed by a final step that executes elet(m). This step just removesm from μ̇, which
means it does not fault or change the state. Thus, for (41), it is enough to prove the following:

(i) it is not the case that 〈C, σ , μ̇〉
φ
�−→∗ �,

(ii) for any τ , if 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉 then τ |=φ Q and σ → τ |=φ ε ,

(iii) for all τ ,σ ′,τ ′, if 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉 and 〈C, σ ′, μ̇〉

φ
�−→∗ 〈skip, τ ′, μ̇〉 andσ ′ |=Γ

φ P
then (σ ,σ ′)⇒(τ ′,τ ) |=φ ε .

As sketched at the beginning of Section 8.2, we will connect the traces in (i)–(iii), in whichm is in
the environment, with traces in whichm is in the context and thus has an interpretation. Indeed,
its interpretation is given: θ (m).
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To use the premises, we need a Φ,Θ;ψ -interpretation. The side condition θ |= Φ,Θ;ψ and the
assumption that φ is a Φ-interpretation directly imply that φ ∪ θ is a Φ,Θ;ψ -interpretation (see
Definition 7.1). We prove (i)–(iii) using the following claim involving φ ∪ θ .

Claim A. For all C ′,σ ′, μ̇ ′ andm-truncated trace 〈C, σ , μ̇〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉

we have 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉, where μ ′ = μ̇ ′�m.

Also, if C ′ = (y :=m(z);D) for some y, z,D then σ ′ |=φ∪θ Rx
z .

Note that |=φ∪θ Rx
z is the same as |=φ Rx

z because by well-formedness of context (Φ,Θ), the
precondition R ofm does not invokem.
Before proving Claim A, we use it to prove (i)–(iii).

(i) Suppose 〈C, σ , μ̇〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉

φ
�−→ �. If the part of this trace before faulting is m-

truncated then we have 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉 by Claim A. In this case, from 〈C ′, σ ′, μ̇ ′〉

φ
�−→

� we have by semantics Active(C ′) is a field access/update. Thus by Lemma 8.1 we get

〈C ′, σ ′, μ ′〉
φ∪θ
�−→ �. But this contradicts the premise (39) for C . Now consider the case that the

trace 〈C, σ , μ̇〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉 is notm-truncated. By Lemma 8.3 it can be decomposed as

〈C, σ , μ̇〉
φ
�−→∗〈y :=m(z);D, τ , ν̇〉

φ
�−→ 〈Bx,res

x ′,res′ ;y := res′; ecall(x ′, res′);D, υ, ν̇〉
where x ′, res ′ are fresh variables and υ is [τ + x ′, res ′:τ (z), default (U )]

φ
�−→∗〈A; ecall(x ′, res′);D, σ ′, μ̇ ′〉 where C ′ is A; ecall(x ′, res ′);D for some A,D

φ
�−→ .�

So we have 〈Bx,r es
x ′,r es ′, υ, ν̇〉

φ
�−→∗ �. On the other hand, 〈C, σ , μ̇〉

φ
�−→∗ 〈y :=m(z);D, τ , ν̇〉 is anm-

truncated trace. So by Claim A, we have τ |=φ∪θ Rx
z and thus υ |=φ Rx

x ′ [using (6)], whence by
Lemma 8.9 〈Bx

x ′, υ, ν̇〉 does not fault—a contradiction.
17 So (i) is proved.

(ii) Suppose 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉. This is m-truncated, so by Claim A, we get

〈C, σ , μ〉
φ∪θ
�−→∗ 〈skip, τ , μ〉. We assumed at the outset that σ |=φ P , so σ |=φ∪θ P because P cannot

mentionm (see Equation (6)). Hence by premise (39) for C we have τ |=φ∪θ Q and σ→τ |=φ∪θ ε .
Owing to well-formedness of the conclusion (41), all of P ,Q, ε are well-formed in Φ. Thus |=φ∪θ is
|=φ and wlocs(σ ,φ, ε ) = wlocs(σ ,φ ∪ θ , ε ) (again using (6) and the analogous property for wlocs).
Hence we have τ |=φ Q and σ→τ |=φ ε .

(iii) Suppose 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉 and 〈C, σ ′, μ̇〉

φ
�−→∗ 〈skip, τ ′, μ̇〉Also suppose that there

is a refperm π such that Agree(σ ,σ ′, ε,π ,φ) and σ ′ |=Γ
φ P . The traces arem-truncated. By Claim A,

we have traces 〈C, σ , μ̇〉
φ∪θ
�−→∗ 〈skip, τ , μ̇〉 and 〈C, σ ′, μ̇〉

φ∪θ
�−→∗ 〈skip, τ ′, μ̇〉. Since rlocs(σ ,φ, ε ) =

rlocs(σ ,φ ∪ θ , ε ), we have Agree(σ ,σ ′, ε,π ,φ ∪ θ ). By the Read part of premise (39) for C , there is
refperm ρ such that ρ ⊇ π , ρ (freshLocs(τ ,τ ′)) ⊆ freshLocs(τ ′,τ ) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪
freshLocs(σ ,τ )).

It remains to prove Claim A and Lemma 8.9.

Proof of Claim A. To prove Claim A, we make the following somewhat intricate claim.

17Strictly speaking, Lemma 8.9 pertains to executions of B in Γ′-states whereas υ may have additional variables, but these
have no influence on execution of B and can be deleted to make an exact connection with the Lemma.
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Claim B. For any n ≥ 0 we have the following. For all C0,σ0, μ̇0,C
′,σ ′, μ̇ ′, and for

anym-truncated trace

〈C, σ , μ̇〉
φ
�−→∗ 〈C0, σ0, μ̇0〉

φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉,

if the trace 〈C0, σ0, μ̇0〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉 has exactly n completed topmost calls of

m, and there is a trace 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C0, σ0, μ0〉, then there is a trace

〈C0, σ0, μ0〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉,

where μ0 = μ̇0�m and μ ′ = μ̇ ′�m.

To prove ClaimA, consider 〈C0, σ0, μ̇0〉 to be 〈C, σ , μ̇〉. Using Claim B, from trace 〈C, σ , μ̇〉
φ
�−→∗

〈C ′, σ ′, μ̇ ′〉, we get the requisite trace 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉. For the second part of Claim A,

suppose C ′ = (y :=m(z);D) for some y, z,D. If, contrary to the claim, we have σ ′ �|=φ∪θ Rx
z then

by semantics of y :=m(z) and θ being a context interpretation [that is, condition θ |= Φ,Θ;ψ in

Equation (38)], we would have 〈C ′, σ ′, μ ′〉
φ∪θ
�−→ � and hence 〈C, σ , μ〉

φ∪θ
�−→ �. But this contradicts

the premise (39) for C , since σ |=φ∪θ P . So Claim A is proved.
It remains to prove Claim B, for which we rely on premise (40) via Lemma 8.9. To build the

needed trace via
φ∪θ
�−→, we go by induction on the number n of completed topmost calls ofm in the

trace via
φ
�−→. Accordingly, consider anm-truncated trace

〈C, σ , μ̇〉
φ
�−→∗ 〈C0, σ0, μ̇0〉

φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉.

Using Lemma 8.3, we obtain intermediate states τi ,υ, σ̇ , σ̈ ,σi and environments μ̇i such that the
following holds:18

〈C0, σ0, μ̇0〉
φ
�−→∗〈y1 :=m(z1);C1, τ1, μ̇1〉 with no invocations ofm

φ
�−→ 〈Bx,res

x1,res1 ;y1 := res1; ecall(x1, res1);C1, υ1, μ̇1〉 where υ1 = [τ1 + x1, res1:τ1 (z1),d]
and x1, res1 are fresh and d = default (U )

φ
�−→∗〈y1 := res1; ecall(x1, res1);C1, σ̇1, μ̇1〉 where 〈Bx,res

x1,res1 , υ1, μ̇1〉
φ
�−→∗ 〈skip, σ̇1, μ̇1〉

φ
�−→ 〈ecall(x1, res1);C1, σ̈1, μ̇1〉 where σ̈1 = [σ̇1 |y1: σ̇1 (res1)]

φ
�−→ 〈C1, σ1, μ̇1〉 where σ1 = σ̈1�x1�res1
... containing n − 1 topmost invocations ofm

φ
�−→ 〈Cn , σn , μ̇n〉

φ
�−→∗〈C ′, σ ′, μ̇ ′〉 with no completed topmost invocations ofm.

Say that any two configurations 〈A, τ , μ̇〉 and 〈A′, τ ′, μ〉 are matching configurations iff A = A′,
τ = τ ′ and μ̇ = [μ +m: (x : T , res : U .B)] and hence μ = μ̇�m.

18The names μ̇i indicate that each binds m to (x : T , res : U .B )), but σ̇i and σ̈i are fresh names with no significance
beyond what is stated.
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Below, using Lemma 8.4 we will construct a trace via
φ∪θ
�−→ that looks as follows:

〈C0, σ0, μ0〉
φ∪θ
�−→∗〈y :=m(z1);C1, τ1, μ1〉 matching the configurations above, so μ1 = μ̇1�m
φ∪θ
�−→ 〈C1, σ1, μ1〉 a single step by Lemma 8.4 (2) (∗)
... containing n − 1 additional invocations ofm
φ∪θ
�−→ 〈Cn , σn , μn〉
φ∪θ
�−→∗〈C ′, σ ′, μ ′〉 again matching configurations.

By induction on n, we prove that 〈Ci , σi , μ̇i 〉 and 〈Ci , σi , μi 〉 are matching configurations for
i = 1, 2, . . . ,n in two traces. In the base case of the induction, n = 0, all but one line of the given

decomposed trace is empty. That is, we have 〈C0, σ0, μ̇0〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉without any intermedi-

ate calls ofm (but possibly a call in the last configuration). Using Lemma 8.1, we can dropm from

each environment to get a step by step matching trace 〈C0, σ0, μ0〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉.

For the inductive case, n > 0, the initial steps 〈C0, σ0, μ̇0〉
φ
�−→∗ 〈y :=m(z1);C1, τ1, μ̇1〉 are

matched as in the base case, up to the first invocation of m, in some state τ1, environment μ̇1,
and with continuationC1. At that point we have τ1 |=φ Rx

v , where we let v = τ1 (z1)—equivalently,

τ1 |=φ∪θ Rx
v—as otherwise we have a contradiction: We just established 〈C0, σ0, μ0〉

φ∪θ
�−→∗ 〈y :=

m(z1);C1, τ1, μ1〉, and if τ1 � |=φ∪θ Rx
v , then we get 〈y :=m(z1);C1, τ1, μ1〉

φ∪θ
�−→ �. Furthermore, by

hypothesis of Claim B, we have 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C0, σ0, μ0〉. Putting these together we would ob-

tain a faulting trace from 〈C, σ , μ〉 via
φ∪θ
�−→ . This contradicts premise (39) for C since σ |=φ P ,

which gives us σ |=φ∪θ P .

Having established τ1 |=φ Rx
v , we get υ1 |=φ Rx

x1
by definition of υ1. (In the trace for

φ
�−→

displayed above, υ1 extends τ1 with x1 : v , that is, x1 : τ1 (z1).) By Lemma 8.9 we have σ̇ =

[υ1 | res1:θ (m) (υ1,υ1 (x1))] and hence σ1 (y1) = θ (m) (τ1,τ1 (z1)). On the other hand, for
φ∪θ
�−→ the pure

call rule in Figure 9 gives the step 〈y :=m(z);C1, τ1, μ1〉
φ∪θ
�−→ 〈C1, [τ1 |y1:θ (m) (τ1,τ1 (z1))], μ1〉.

The state [τ1 |y1:θ (m) (τ1,τ1 (z1))] is identical to σ1 as defined above for the trace via
φ
�−→, justify-

ing our use of σ1 in the line marked (*) in the trace via
φ∪θ
�−→.

In conclusion, after the first call to m the traces reach matching configurations, namely

〈C1, σ1, μ̇1〉 and 〈C1, σ1, μ1〉. What remains from 〈C1, σ1, μ̇1〉 onward is a trace via
φ
�−→ with n − 1

completed invocations ofm, from a configuration reachable from 〈C, σ , μ̇〉 via
φ
�−→. So, we can ap-

ply the inductive hypothesis to the trace 〈C1, σ1, μ̇1〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉 to obtain the needed trace

via
φ∪θ
�−→ and conclude the proof of Claim B.

Proof Sketch for Lemma 8.9. The proof is similar to the argument for (i), (ii), and (iii) in the proof,
above, of PureLink, though about the body B rather than the client C . So it uses the premise (40)
rather than the premise (39). Indeed, we need substitution instances of (40), which are available
owing to Lemma 8.8. Thus, for fresh x ′, res′, we have

Φ,Θ;ψ ,θ |=Γ,x ′:T ,res′:U Bx,res
x ′,res′ : R

x
x ′ � res′ =m(x ′) [wr res′, rdx ′,ηx

x ′].

(Recall that by well-formedness, η is wr -free and does not mention res.)
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To deal with recursion, we prove the conditions (a) and (b) of Lemma 8.9 for depth-bounded
semantics (Definition 8.6) and arbitrary recursion depth k . This implies Lemma 8.9 for normal
semantics, using Lemma 8.7. To prove (a) and (b) for arbitrary k we go by induction on k . For a
given k , the argument of (a), not faulting, is similar to argument of (i). The proof of (b), that the
final state of execution on the call is given by interpretation θ , is similar to proof of (ii) and (iii)
combined. For both parts of condition (b), for a given k we follow the lines of the argument for
(i)–(iii), except that where the argument (i)–(iii) appeals to Lemma 8.9, we instead appeal to the
inductive hypothesis for depth k − 1. The gist of those arguments is that we obtain an execution

of B via
φ∪θ
�−→ , to which the premise (40) for B applies. From that premise, we get that nothing is

written except the result variable, and we get the postcondition res =m(x ), or rather res′ =m(x ′).
So the final state τ is unchanged from the initial state σ except for res′, whose value is given by
θ (m) (σ ,σ (x ′)).

9 DERIVING INTERPRETATIONS FROM IMPLEMENTATIONS

The preceding sections develop a logic featuring a linking rule for pure methods that relies on a
provided interpretation that givesmeaning to the puremethod invocations in pre-, post-, and frame
conditions. It relies as well on the syntactic restriction of specification to prevent cyclic references
between preconditions, in support of definedness conditions. Aside from purity of effect, the bodies
of pure methods are unrestricted commands that may use loops and make mutually recursive calls.
In this section, we consider the question of how to obtain interpretations.
TheWhy3 tool19 provides one answer. Why3 provides a very expressive mathematical language

and enables the use of interactive proof assistants when needed for proofs that are not amenable to
full automation. In rough terms, Why3 provides the full power of mathematics, which can be used
both for defining candidate interpretations and for semantic reasoning to prove they are context
interpretations. However, this answer does not help us to provide a foundation for automated
verification tools based on SMT-solvers.
Another answer is suggested by prior works in which interpretations are derived directly from

code. In these works, the body of a pure method is restricted to be a single expression, like res := E
in our notation. By Hoare’s pun, E is essentially taken to be the mathematical definition of what
we call a candidate interpretation, and VCs are defined to check that it is a context interpretation.
We proceed to sketch how this idea can be embodied in our program logic. In so doing, we give a
foundational account for restrictions on specifications proposed in the prior work, and show that
the restriction of method bodies is unnecessary.
Consider a pure method specification Θ ≡ m : (x :T , res:U )R � S [η] for which the intended

implementation is command B. For the moment, assume there are no calls to p in S or in B. The
idea can be sketched using the following variation on rule PureLink:

PLinkDeriv0
Φ,Θ;ψ �tot B : R � S [wr res, rdx ,η] Φ,Θ;ψ � C : P � Q [ε]

Φ;ψ � letm(x :T ):U = B inC : P � Q [ε]

Here the notation �tot indicates that the judgment is meant in the sense of total correctness, that is,
B must terminate from any initial state satisfying R. As is standard, proof rules for total correctness
require that loops are provided with variants (that is, measures that decrease), and similarly for
recursion, to which we return later.
The point of the rule is that no candidate interpretation is provided form (though ψ may pro-

vide interpretations for some other pure methods). In establishing the judgment for B, one has no
recourse to a specific interpretation ofm. Nor would an interpretation be of use, given that for the

19See why3.lri.fr and our Section 10.
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moment we assume there are no calls tom in B or in the specification. We claim the rule is sound,
essentially because it ensures that an interpretation can be derived from B.
In light of the pure method specification, which allows no effects, we can define by standard

techniques a denotational semantics of B as a function from states to values (the final value of res)
and � (if B faults or diverges). We refrain from spelling out the denotational semantics; it is similar
to the one defined in Appendix Section A.1 for other purposes. So the denotational semantics
provides a candidate interpretation, say θ , form.
By the total correctness judgment, we get a value (not �) for every initial state that satisfies pre-

conditionR. That is, the conditions required for θ to be a context interpretation, that is,Φ,Θ;ψ |= θ ,
are immediate consequences of the judgment for B. Moreover, this is valid: Φ,Θ;ψ ,θ � B : R �
S [wr res, rdx ,η]. Now conclusion of PLinkDeriv0 follows by exactly the proof of PureLink.
Now let us consider the general case, where there may be calls tom in its body and in its speci-

fication. Indeed, let us consider multiple methods, among which there may be mutually recursive
calls in the bodies and in the specifications. Let us also assume there are no loops, so nontermina-
tion can only be due to recursion. A standard example of mutual recursion are the even and odd
functions, here specified in a form taken from Leino and Middelkoop [39].

isEven : (n : int , res : bool ) 0 ≤ n � res = (if n = 0 then true else isOdd (n − 1)) [ ],
isOdd : (m : int , res : bool ) 0 ≤ m � res = ¬isEven(m) [ ].

Obvious implementations are the commands if n = 0 then res := true else res := isOdd (n − 1) and
res := ¬isEven(m).
It is well known that for total correctness, the linking rule needs to include a measure that is

decreased in recursive calls. The details can be intricate in case of mutual recursion—and even
more so in the presence of dynamic dispatch, which is outside the scope of this article. We follow
the succinct and general formulation of Apt et al. [3]. In our notation, for a single method, the idea
can be sketched as follows:

PLinkDeriv

Φ,m : (x :T , res:U )R ∧ t < z � S [η];ψ � B : R ∧ t = z � S [wr res, rdx ,η]
Φ,Θ;ψ � C : P � Q [ε] R ⇒ t ≥ 0

Φ;ψ � letm(x :T ):U = B inC : P � Q [ε]

Here t is an integer expression and z is a fresh variable, that is, z does not occur in any of the
code or specifications. Typically, t is an expression in the method parameters. The judgment for
B is changed in two ways, so that t can serve as measure for the size of inputs to recursive calls.
The equation t = z is conjoined with the precondition for B, to snapshot the initial value of t ,
and t < z is conjoined with the precondition in the hypothesis form.20 Rule PLinkDeriv ensures
that the measure is bounded from below and decreases in recursive calls. For linking mutually
recursive procedures, the judgment for each procedure body is modified as above, using the single
expression t for all.21

We would like to argue for soundness of PLinkDeriv as follows. As in the proof of recursion
Lemma 8.9, we argue by induction on depth-bounded semantics that the premise for B is valid,
and, moreover, B is terminating from all initial states that satisfy precondition R. So a candidate
interpretation θ could be derived from the semantics of B, and as a consequence of the judgment
for B it would be a context interpretation.

20The rule needs to be used together with a rule for instantiation (rule Subst in RLI), to adapt the assumed specification
to calls of m. See the discussion in Apt et al. [3] of their Rule 13 Recursion IV. Substitution for z is disallowed.
21Thismay involve some encoding. For the isEven/isOdd example, a ghost variable can be used to encode that the argument
number is decreased when calling isOdd and not increased when calling isEven.
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The hope is that B is correct, with respect to the interpretation given by its own denotation. But
what if the specification is unsatisfiable (that is, there are some states that satisfy R for which no
result exists satisfying S)? Then the premise for B is valid, for any B whatsoever, since it quantifies
over all context interpretations. This renders the rule PLinkDeriv0 unsound because calls to m
in the client C need not behave as specified. Rule PureLink precludes this: the required context
interpretation witnesses satisfiability of the specification. What about PLinkDeriv?
In prior work, it was proposed to consider calls tom in its own postcondition, or more gener-

ally calls in postconditions of several mutually recursive methods, as recursive calls that should
decrease a measure. Rule PLinkDeriv imposes decrease of the measure for calls in B, but it is not
obvious how to express the same restriction on calls in postcondition S or in the frame condition η.
One possibility is to make use of a variation of the definedness conditions (Figure 5) that imposes
the extra precondition t < z. We do not formalize the details here. Assuming the restriction is
imposed, let us proceed to argue why such restrictions suffice to show soundness of PLinkDeriv.
The idea is to generalize context interpretations (Definition 5.1) to approximate context inter-

pretations that are allowed to � on some initial states satisfying the precondition. The definition
of valid judgment (Definition 5.2) is changed to allow approximate context interpretations. As re-
marked following that definition, it is well defined even in case methods are called (in formulas and
effects) outside their preconditions. Soundness of PLinkDeriv hinges on a recursion lemma (akin
to Lemma 8.9) that provides a semantic result that amounts to validity of the premise for B but
with context calls replaced by environment calls. The lemma is proved using the depth-bounded
semantics (Definition 8.6) and goes by induction on depth k . Whereas the proof of Lemma 8.9
relies on the given interpretation for semantics of formulas and effects, to prove PLinkDeriv we
define a chain of approximate interpretations θk , using the denotational semantics of B. (A similar
construction is carried out in detail, for the proof of ImpureLink, in the Appendix Section A.1.)
The measure restrictions (t < z) ensure that these interpretations are only applied to inputs for
which they deliver a non-� result, so we retain two-valued reasoning about formulas.
In summary, this approach is a more nuanced take on the role of definedness conditions and

healthiness conditions. Notice that the measure restrictions are imposed in the judgment for
method body B, but are not required for the specifications used to verify the client. Moreover,
the user of the logic does not explicitly define an interpretation—indeed it may not be expressible
in assertion language (or only expressible via encodings with no practical use). Nor can they rely
on an interpretation for reasoning about formulas. So in proving the judgment for body B, calls to
m in formulas and effects become opaque, just as they are for the client: one can reason from the
spec ofm but not its definition.

10 CASE STUDIES

To explain how pure methods have been encoded in verification tools based on SMT solvers, and to
demonstrate how our logic accounts for such encodings, this section presents verifications of the
running examples using the Why3 tool.22 Why3 implements procedure-modular reasoning for a
first-order intermediate language. This tool is used because it provides VC-gen for a convenient in-
termediate language with pre-post contracts, while enforcing a strict separation between program
code and mathematical formulas. This allows us to focus on VC-gen for pure methods, without the
need to delve into the routine aspects of translating pre-post contracts and code annotated with
assertions into FOL formulas. Why3 generates VCs for a range of provers but we use only SMT
solvers (Alt-Ergo, CVC3, CVC4, and occasionally Z3).

22why3.lri.fr.
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The full developments are provided as supplementarymaterial for this article.23 Here we present
highlights, omitting for example the import clauses in theories and modules. In principle, our
encodings could be automatically generated from the source programs and specifications, but that
is not our purpose here.

Preliminaries. Why3 is carefully designed to make a clear distinction between mathematical
definitions and programs. Amathematical function is indicated by keyword function; it may have
a mathematical definition (in Why3 syntax) or be left uninterpreted. Whereas a Why3 “theory”
contains only math, a Why3 “module” can contain program functions with mutable state, ghost
code, contracts, and annotations, including assertions and loop invariants. A program function is
indicated by keyword let and is written in WhyML syntax; it has a contract and body. Keyword
val declares a program function without a body.
Roughly speaking, the VC for a program C with specification P � Q [. . .] is a first-order for-

mula P ⇒ wp (C,Q ), validity of which is equivalent to the judgmentC : P � Q [. . .]. The formula
wp (C,Q ) is defined by structural recursion on C to be an approximate weakest (liberal) precon-
dition, taking into acount loop invariants, other annotations, and contracts for functions called
in C . Source-language notations in P and Q are desugared in various ways, and additional an-
tecedents may be used to axiomatize the programming language semantics as well as problem-
specific mathematical definitions and facts. Just as our logic requires judgments to be healthy, VCs
include definedness checks for specifications.
When targeting SMT solvers, Why3 has to translate a recursively defined mathematical func-

tion into FOL, which it does by means of an uninterpreted function and definitional axioms that
express the defining clauses. Any reasoning system that allows recursive definitions relies on proof
obligations or syntactic checks that ensure the recursion is well founded. Why3 relies on syntactic
checks based on structural recursion. More on basic VC-gen can be found in References [20, chapt.
5] and [37]. The latter includes the encoding of pure methods, along the lines that we discuss in
the following.
The Why3 language (including WhyML) allows mutable objects but sharing is very limited by

design [27]. Sowe usemutable records andmaps to explicitlymodel the heap in a standardway.We
treat references as an uninterpreted type, called reference as in other sections of this article. Note
that Why3 provides a library module for ML-style references, subject to restrictions that disallow
aliasing, but we are not using that module. In ourmodel, each field is a map on references. The heap
is a record with a mutable field for each of these maps, together with a map that designates which
references are allocated and what are their types. Why3 features an “invariant” declaration to be
associated with a data type; these invariants are enforced on procedure call/return boundaries. We
use data type invariants for well-formedness conditions on the heap that are ensured by type safety
of Java-like source languages: fields have type correct values and there are no dangling pointers.
Specifications in Why3 feature coarse-grained frame conditions—read and write clauses for

mutable fields of records—which are checked by simple syntactic analysis. We encode the finer-
grained frame conditions of our logic using postconditions and frame axioms.Why3 provides ghost
annotations and checks that ghost code does not interfere with the underlying program. We use
this feature to mark the allocation map, which is part of our heap model. We also use it to mark
ghost state in the examples, even though we do not formalize ghost annotations in the logic.
It is straightforward to encode a pair of heaps connected by a refperm (Section 4), represent-

ing the refperm as a pair of maps subject to universally quantified axioms that one is inverse
of the other. However, for the developments in this section, we only need identity refperms in

23The Why3 files are available at http://www.cs.stevens.edu/naumann/pub/readRLWhy3.tar.
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agreements, because we are not checking read effects of impure methods (see remark following
Definition 6.4).

Encoding of Pure Methods. We verify client code, namedmain, with respect to amethod contextΦ
and linked with implementations of the methods inΦ. In accord with the proof rules PureLink and
ImpureLink, main should be verified in a context that provides contracts for the pure and impure
methods in scope. For an impure methodm we make a single declaration,mCode , with contract
from Φ(m). Why3 generates VCs to verify that its body satisfies its contract, and generates VCs
for main that include the contract ofmCode .
For a pure method p with specification Φ(p) = (x :T , res:U )R � S [η], we make three declara-

tions in Why3:

—pCode is a program function, including the implementation code of p, defined using the
Why3 let construct.

—pUnInt is an uninterpreted function for use in specifications (where Why3 disallows the
use of pCode).

—pInt is a defined mathematical function, the chosen interpretation of p.

These are used in accord with rule PureLink. The definition of pInt is subject to Why3’s re-
strictions that ensure it is well defined as a total function. Invocations of p in the code of main
are invocations of pCode and so the VCs for main include the contract of pCode . We augment the
contract Φ(p) with postcondition res = pUnInt (x ) in the contract for pCode .
For reasoning about p in specifications, there are two axioms about pUnInt . The frame axiom

says that pUnInt satisfies the read effect: if σ and σ ′ agree on η and on the value of argument
expression E, then they agree on the value of pUnInt (E). The pre-post axiom says that pUnInt
satisfies its postcondition: (∀x :T · R ⇒ S res

p (x )
). These axioms express the contract Φ(p). They are

named as pFrame and pPrePost , respectively, and are made available for verifying the client com-
mand. In rule PureLink the contract is an explicit hypothesis for the client command, and for
reasoning about the implementation of p, one can use the contract because it is available indi-
rectly through the side condition θ |= Φ,Θ;ψ and postcondition res = p (x ). As expected, one can
prove partial correctness of the non-terminating implementation of p that simply calls itself with
the given arguments.
For verification of the body of pCode , the interpretation pInt should be available, so the imple-

mentation of pCode begins with an assume statement that says pUnInt is the same as pInt . On
the other hand, no such assumption is provided for main, so its verification is done without an
interpretation of p. Of course, it is also possible to make pInt available for main, providing for the
form of reasoning in the proof rule TranspPureLink, but we do not do that in the case studies.
As noted in Section 12, several prior works feature that form of reasoning and thus definitional
axioms for pure methods.
To justify the frame axiom for pUnInt , it is formulated and proved as a lemma about pInt . To

justify the pre-post axiom forpUnInt , we do not directly prove thatpInt satisfies the postcondition;
instead, the contract is verified for pCode . The additional postcondition res = pUnInt (x ), together
with the assumption connecting pUnInt with pInt , entails that pInt satisfies the postcondition.
This deviates slightly from the formulation of PureLink, but is needed because Why3 provides
contracts for code (our pCode) but not for defined functions (our pInt ).
Generation and validation of VCs is different from deductive proofs using inference rules for

correctness judgments, but it may be helpful to note some parallels. Some proof rules in our logic
require (Φ;ψ )-validity of certain formulas P for some relevant method context Φ and partial inter-
pretation ψ (written Φ;ψ |= P according to Definition 5.4). In Why3, the pInt functions play the
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role ofψ and the pre-post and frame axioms for the pUnInt functions play the role of Φ in proving
formulas.

Hiding Data Invariants. Although the logic in this article does not formalize the hiding of in-
variants, we do take some care with information hiding in the case studies. To do so, we make
use of the Why3 module system, but that does not provide direct support for hiding of invari-
ants. Internal invariants like the ones in the Composite example do not appear in the contracts
(which are public) but are encoded using assume and assert statements within the relevant code.
Our treatment of hiding is intended to have tutorial value, not to be a comprehensive treatment.

10.1 Cell in Why3

The Cell example (Figures 1 and 16) is implemented in Why3 using one theory and three modules.
A theory only contains logical definitions.

theory Reference
type reference
constant null: reference
type rtype = Null | Unalloc | Cell

end

All of our examples in Why3 have such a theory, which is the basis for formalizing a Java-like data
model in which allocated references have an immutable class type. The type rtype provides names
for the types of allocated objects. In this example there is a single class, Cell, but in general there
may be many.
Module Heap describes the heap structure, using maps and sets from the Why3 library.

type heap = {
ghost mutable alloct: map reference rtype;
mutable value: map reference int;
ghost mutable foot: map reference (set reference);

}

A heap is a record. The first field, alloct, records the allocated references and their types. In a given
heap, the set of p for which alloct[p] is not Unalloc or Null corresponds to the value of variable
alloc in our logic. Module Heap also declares, as a Why3 data type invariant, the heap typing
invariants that are ensured by typing rules for our programming language but are not expressed
as Why3 types. Whereas the value field is given type int in the Why3 declaration of heap, we need
to use an invariant to express that the region-valued field foot has no dangling references, that
is, the field has a value in accord with its type in our source language. (In Section 10.2, we use an
axiom to express the same typing constraint on the result of the anc function.)

invariant {self.alloct[null] = Null ∧
(∀ p: reference. self.alloct[p] = Null⇒ p = null) ∧
(∀ p q: reference. self.alloct[p] = Cell⇒ mem q self.foot[p]⇒ self.alloct[q] � Unalloc)

}

In Why3, the keyword self refers to an instance of the type with which an invariant is associated,
in this case heap. Function mem is from the Why3 library module Set, from which we also use
intersection (named inter) and other functions. We typeset implication as⇒ and let it associate to
the right.
In addition to the typing of field foot, the invariant also says that the one and only reference

mapped to Null is null. This is a minor detail that is convenient because null is a value of every
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reference type. As a Why3 invariant, the condition is included in the generated precondition of
code using Heap, and as a postcondition of any code that may write the heap.
The formula I , used as a public invariant in the specifications of the Cell methods in Figure 16,

is defined in module Heap as well, but named iInv.

predicate iInv1 (h: heap) = ∀ p: reference. h.alloct[p] = Cell⇒ mem p h.foot[p]
predicate iInv2 (h: heap) = ∀ p q: reference. h.alloct[p] = Cell⇒ h.alloct[q] = Cell⇒

p � q⇒ is_empty (inter h.foot[p] h.foot[q])
predicate iInv (h: heap) = iInv1 h ∧ iInv2 h

Finally, module Heap defines agreement on a reference set, specialized to the fields of Cell to
interpret effects that refer to the data group “any”.

predicate agreeOnAny (h h′: heap) (ftp: set reference)
= ∀ p: reference. mem p ftp⇒ h.value[p] = h′.value[p] ∧ h.foot[p] = h′.foot[p]

Module Cell gives the specifications and implementations for the methods of class Cell (see
Figure 16). For pure method get the uninterpreted and interpreted functions are as follows:

function getUnInt (h: heap) (p: reference): int

function getInt (h: heap) (p: reference): int
= if h.alloct[p] = Cell then h.value[p] else 0

axiom getFrame: ∀ h h′: heap. ∀ p: reference.
agreeOnAny h h′ h′.foot[p] ∀ getUnInt h p = getUnInt h′ p

The axiom getFrame expresses the read effect rd self.foot ‘any. We omit the pre-post axiom for get
because it is trivial. The read effect is verified for getInt in the following form:

lemma framegetInt: ∀ h h′: heap. ∀ p: reference. h.alloct[p] = Cell⇒ h′.alloct[p] = Cell⇒
mem p h.foot[p]⇒ agreeOnAny h h′ h.foot[p]⇒ getInt h p = getInt h′ p

Note that this amounts to proving an interpretation θ (дet ) satisfies the frame condition in a spec-
ification Θ(дet ), which is part of the context interpretation side condition written θ |= Φ,Θ;ψ in
rule PureLink. Aside from the read effect, we encode the pre-post condition as a contract on get-
Code, though in this case there is no non-trivial postcondition. So the only thing to prove about
getCode is that its result equals that of getInt, in accord with the postcondition res = дet (self ) in
the premise for дet in PureLink. This is expressed as a postcondition in the contract for getCode.

predicate getInterpreted =
∀ h: heap. ∀ p: reference. h.alloct[p] = Cell⇒ getUnInt h p = getInt h p

let getCode (h: heap) (s: reference): int
requires { iInv h ∧ h.alloct[s] = Cell }
ensures { iInv h ∧ getUnInt h s = result }

=

assume { getInterpreted };
h.value[s]

let setCode (h: heap) (s: reference) (v: int): unit
requires { iInv h ∧ h.alloct[s] = Cell }
ensures { iInv h ∧ getUnInt h s = v }
writes { h.value }
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ensures { ∀ p: reference. h.alloct[p] = Cell⇒
not mem p h.foot[s]⇒ agreeOnAny h (old h) (h.foot[p]) }

=

assume { getInterpreted };
h.value← set h.value s v

Owing to the assumption getInterpreted, the verification of getCode and setCode can rely on the
definition of getInt as well as its frame condition for reasoning about getUnInt which appears in
the specifications. (Indeed, the frame condition is available both as an axiom about getUnInt and
as a lemma about getInt.) The precondition h.alloct[s] = Cell amounts to non-nullity of s plus a
property ensured by typing of the source language. The Why3 frame condition for setCode says
that any cell’s value may be written. The postcondition following the writes clause expresses the
semantics of our finer frame condition wr self.foot ‘any.
One last feature of our Why3 model of the heap is the semantics of allocation. It is specialized

to the relevant classes, here just Cell. A previously unallocated reference is chosen nondetermin-
istically and its fields initialized to default values.

val newCell (h: heap): reference
ensures { (old h).alloct[result] = Unalloc }
ensures { h.alloct =Map.set (old h).alloct result Cell }

ensures { h.foot[result] = empty ∧ h.value[result] = 0 }
writes { h.alloct }

The last part of module Cell is the constructor as specified in Figure 16 and adapted to the
Why3 specification for newCell. As usual, the postcondition following the writes clause is our
fine-grained frame condition.

let init (h: heap) (s: reference): unit
requires { h.alloct[s] = Cell ∧ h.foot[s] = empty }
requires { ∀ p: reference. h.alloct[p] = Cell⇒ p � s⇒

(not mem s h.foot[p] ∧ mem p h.foot[p]) }
requires { ∀ p q: reference. h.alloct[p] = Cell⇒ h.alloct[q] = Cell⇒ p � s⇒ q � s
⇒ (p = q ∨ is_empty (inter h.foot[p] h.foot[q])) }

ensures { iInv h }
writes { h.foot}
ensures { ∀ p: reference. h.alloct[p] = Cell⇒ p � s⇒ h.alloct[p] = Cell⇒
h.foot[p] = (old h).foot[p] }

=

h.foot← set h.foot s (singleton s); ()

(The trailing “()” is needed so Why3 can determine, by syntactic analysis, that the result does not
depend on ghost state.)
The last module provides a client, the framing example from the beginning of Section 1.

let main (h: heap): unit
=

assume { iInv h };
let c = newCell h in init h c;
let d = newCell h in init h d;
setCode h c 5;
setCode h d 4;
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assert { iInv h };
assert { getUnInt h c = 5 }

Note the absence of an assumption connecting getUnInt with the interpretation getInt.
To verify the client and all the preceding code, the splitting tactic provided by Why3 generates

23 goals that are automatically verified using CVC4 in 3 seconds. Verification of main relies on
framing; it fails to verify if axiom getFrame is removed.

10.2 Composite in Why3

Next we consider the example in Figure 2. To show that our approach caters for weak specifi-
cations, we retain the under-specified contracts as in the Figure, though invariants are added to
verify the implementations. Where possible, our formalization uses annotations similar to those
used by Rosenberg et al. [53], to facilitate comparison.
The Reference theory for Composite is just like the one for Cell, but with type Comp instead

of Cell. Aside from the Reference theory, the Why3 file for Composite contains six modules. The
first of these modules is Heap.

type heap = {
ghost mutable alloct: map reference rtype;
mutable chrn: map reference (list reference);
mutable size: map reference int;
mutable parent: map reference reference;
ghost mutable depth: map reference int;

}

As in the Cell example, alloct is a ghost field that keeps track of allocated references and their
types. The others fields are those of class Comp. The map chrn represents list of children for a
Composite node. The main difference between our version and that of Reference [53] is that we do
not use a ghost field for keeping track of descendants of a Composite (which required a number
of invariants). Instead we define a pure method anc which recursively computes the ancestors of
a given Composite and uses, it directly to reason about the ancestors of each Comp node.
As in the Cell example, our encoding includes an invariant for type safety. For integer field size

the Why3 type suffices. But for parent and chrn the Why3 type merely constrains the value to be a
reference and a list of references respectively. Typing rules of our source language ensure that the
parent is either null or allocated and of typeComp. Similarly for chrn. Unlike the Cell example, the
Composite is sufficiently complicated that we need to refer to type safety conditions in lemmas,
which are not in the scope of Why3’s data type invariants. So we define and use a predicate on
heaps, named okHeap, to express the type safety conditions.
The secondmodule,CompInvs, defines some predicates to be used as private invariants for class

Composite. The first invariant is a relationship between a Composite and its parent and children.
In the notation of Section 2, it is defined as follows:

∀p : Comp · p � null⇒
(∀q : Comp · q ∈ p.chrn ⇒ q.parent = p)
∧(∀s : Comp · s = p.parent ⇒ p ∈ s .chrn)
∧p � p.chrn ∧ nodup p.chrn

,

where nodup checks that p.chrn does not have any duplicates. The second specifies the depth of
an element in the composite tree:

∀p : Comp · p � null⇒
p.depth ≥ 0
∧(p.parent = null⇔ p.depth = 0)
∧(p.parent � null⇒ p.depth = 1 + p.parent .depth)
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InWhy3 code, the name ptcdInv is used for the conjunction of the first two invariants. Maintaining
these two predicates as invariants helps to ensure the acyclicity of the chain of parents for any
given composite. The third invariant specifies the size field:

∀p : Comp · p � null⇒ (p.size > 0 ∧ p.size = 1 + (Σq∈p .chrn · q.size )).

To be able to define the summation above, we need two extra functions inWhy3, which are simple
recursive functions on lists and we omit them here. In Why3 code this invariant is called sizeInv.
The last part of CompInvs module is a mathematical definition of the list of ancestors, which

is the basis for the interpretation, ancInt, of method anc . Whereas we used a set for the footprint
region in Section 10.1, here we encode ancestors as a list. The reason is that we need induction on
ancestors, and the Why3 library module for finite sets is less well developed than the one for lists.
Based on the code in Figure 2, one might like to formulate the definition as follows, for non-null

references p of type Comp:

f (p) =̂ if p.parent = null then Cons p Nil else Cons p ( f (p.parent )).

This makes p an ancestor of itself, as intended. However, this is a bogus definition, owing to the
possibility of cycles via parent. Indeed, Why3 rejects such a definition. Instead we define a predi-
cate is_loa with a list argument supporting a well founded induction. This technique is often used
in separation logic [52]. The predicate is_loa h p l says that l is the list of ancestors of p in heap h.

inductive is_loa (heap) (reference) (list reference) =
| Nil_l: ∀ h: heap, p: reference. okHeap h⇒ ptcdInv h⇒ is_loa h null Nil
| Tree: ∀ h: heap, p: reference, l: list reference. okHeap h⇒ ptcdInv h⇒

h.alloct[p] = Comp⇒ is_loa h h.parent[p] l⇒ is_loa h p (Cons p l)

The depth condition in ptcdInv rules out cyclic parent structure, so we can prove lemmas, not
shown, that the ancestor list exists and is unique. (It is our only use of the ghost field depth.) This
justifies an axiom to define function anc:

function anc (h: heap) (p: reference): (list reference)

axiom anc_def: ∀ h: heap, p: reference. okHeap h⇒ ptcdInv h⇒ okReft h p Comp⇒
is_loa h p (anc h p)

The predicate okReft h p Comp above indicates that p is a value of type Comp, that is, p is either
null or allocated in heap h with type Comp.
The next two modules, SizeInvs and CompInduct, are collections of lemmas needed for reason-

ing about the size field and ancestors function. Most of them are written using the let rec lemma

statement which is a way of expressing induction proofs in Why3.
The fifth module is Composite. For getSize the code is as follows:

function getSizeUnInt (h: heap) (s: reference): int

axiom getSizeFrame: ∀ h h′: heap, s: reference. h.alloct[s] = Comp⇒
h′.alloct[s] = Comp⇒ h.size[s] = h′.size[s]⇒ getSizeUnInt h s = getSizeUnInt h′ s

axiom getSizePrePost: ∀ h: heap, s: reference. h.alloct[s] = Comp⇒
getSizeUnInt h s = h.size[s]

function getSizeInt (h: heap) (s: reference): int =
if h.alloct[s] = Comp then h.size[s] else 0

lemma framegetSizeInt: ∀ h h′: heap, s: reference. h.alloct[s] = Comp⇒
h′.alloct[s] = Comp⇒ h.size[s] = h′.size[s]⇒ getSizeInt h s = getSizeInt h′ s
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predicate getSizeInterpreted =
∀ h: heap, p: reference. h.alloct[p] = Comp⇒ getSizeUnInt h p = getSizeInt h p

let getSizeCode (h: heap) (s: reference): int
requires{ h.alloct[s] = Comp }
ensures{ result = getSizeUnInt h s }

=

assume { ptcdInv h ∧ sizeInv h ∧ getSizeInterpreted };
h.size[s]

The axiom getSizeFrame is the read effect for дetSize in terms of getSizeUnInt. Using RL effect
syntax, this is rd self.size . Lemma framegetSizeInt shows that read effect is correct for the given
interpretation. Unlike our other examples, the postcondition of getSize is nontrivial so its pre-post
axiom is included, named getSizePrePost.
For method anc , there is an additional axiom, ancUnInt_type, that says its result is a region, that

is, no dangling references. (Compare with the invariant for field foot in Section 10.1). We omit the
pre-post axiom because in this case it is trivial.

function ancUnInt (h: heap) (s: reference): list reference

axiom ancUnInt_type: ∀ h: heap, p q: reference. h.alloct[p] = Comp⇒
mem q (ancUnInt h p)⇒ h.alloct[q] � Unalloc

axiom ancFrame: ∀ h h′: heap, p: reference. h.alloct[p] = Comp⇒
h′.alloct[p] = Comp⇒ (∀ q: reference. mem q (ancUnInt h p)⇒ q � null⇒
h.parent[q] = h′.parent[q])⇒ ancUnInt h p = ancUnInt h′ p

function ancInt (h: heap) (p: reference): list reference
= if h.alloct[p] = Comp then anc h p else Nil

let rec lemma frameancInt (h h′: heap) (p: reference)
requires { h.alloct[p] = Comp ∧ h′.alloct[p] = Comp }
requires { ∀ q: reference. mem q (ancInt h p)⇒ h.parent[q] = h′.parent[q] }
requires { ptcdInv h ∧ ptcdInv h′ }
ensures { ancInt h p = ancInt h′ p }
variant { length (ancInt h p) }

=

if h.parent[p] � null then

(assert { ancInt h p = Cons p (ancInt h h.parent[p]) };
ancInt_rd h h′ h.parent[p])

predicate ancInterpreted = ∀ h: heap, p: reference. okReft h p Comp⇒
ancUnInt h p = ancInt h p

let rec ancCode (h: heap) (s: reference): list reference
requires{ h.alloct[s] = Comp }
ensures{ result = ancUnInt h s }
variant { ancUnInt h s }

=

assume { ptcdInv h ∧ sizeInv h ∧ ancInterpreted };
if h.parent[s] = null then Cons s Nil else Cons s (ancCode h h.parent[s])

The axiom ancFrame is the read effect for ancUnInt; in RL syntax, rd (self .anc ())‘parent . To use
the read effect, we need to know that any reference in ancUnInt list is already allocated. But
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since this function is not defined, we give this property as an axiom before its read effect, called
ancUnInt_alloc. Lemma frameancInt has an inductive proof that shows read effect is correct for
ancInt. The implementation of anc is given as a recursive function. We verify that it returns the
same list of ancestors as ancUnInt.
A private method, addtosizeCode is defined after that (not shown). For a given heaph, reference

s and integerv this method just addsv to the size of ancestors of s . This method breaks sizeInv, so
clients cannot call it directly. It is only used by addCode so a full functional spec is appropriate,
which mentions private fields.
A private ghost method depthUpdate is defined after addtosizeCode. For a given heap h and

reference x , this method updates the depth of x and its descendents to ensure ptcdInv h.
The last method in the Composite module is addCode.

let addCode (h: heap) (s x: reference): unit
requires { h.alloct[x] = Comp ∧ h.alloct[s] = Comp }
requires { h.parent[x] = null ∧ not (mem x (ancUnInt h s)) }
ensures { h.parent[x] = s }
writes { h.parent, h.size, h.chrn, h.depth }
ensures { ∀ p: reference. h.alloct[p] = Comp⇒

not (mem p (ancUnInt (old h) s))⇒ h.size[p] = (old h).size[p] }
ensures { ∀ p: reference. h.alloct[p] = Comp⇒ x � p⇒

h.parent[p] = (old h).parent[p] }
=

assume { ptcdInv h ∧ sizeInv h ∧ getSizeInterpreted ∧ ancInterpreted };
let l = ancCode h s in

h.chrn← set h.chrn s (Cons x h.chrn[s]);
h.parent← set h.parent x s;
depthUpdate h x;
addtosizeCode h s h.size[x];
assert{ l = ancInt h s ∧ sizeInv h ∧ ptcdInv h }

For a heap h and two references x and s , this method adds x as a child of s , provided that parent
of x is null and x is not in the ancestors of s . The effects of this method using the syntax of RL are
wr self‘any, wr self.anc ()‘size and wrx .parent . Note that this method writes self.chrn; however,
to hide the internal structure of Composite from the client, we use wr self‘any in RL. Why3 does
not have the abstraction, any, so we are forced to have h.chrn in the writes of this method. In the
body of addCode the immutable variable l is used to guide the provers to the fact that ancestors of
s are not changing. The invariants of Composite class are assumed at the beginning of body and
asserted at the end.
The last module is ClientOfComposite containing the client from the beginning of Section 2. It

does not import CompInvs, as it relies on the public specifications of Composite and not on the
private invariants or the interpretations ancInt and getSizeInt. The client code is as follows:

let main (h: heap) (b c d: reference): unit
requires { h.alloct[b] = Comp ∧ h.alloct[c] = Comp ∧ h.alloct[d] = Comp }
requires { not mem d (ancUnInt h b) ∧ h.parent[c] = null }
requires { not (mem c (ancUnInt h b)) ∧ not mem c (ancUnInt h d) }

=

let i = getSizeCode h d in

addCode h b c;
assert { i = getSizeUnInt h d ∧ i = h.size[d] };
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This uses immutable variable i, but the heap h is mutable and indeed updated by addCode. The
main point of the example is that the value of d .дetSize (), computed by getSizeCode, is unchanged
by the call to addCode, and this fact can be established owing to its frame condition. The precon-
ditions of main reflect those of the call to add. In addition to the postcondition i = getSizeUnInt h
d from the beginning of Section 2, we prove a second postcondition: i = h.size[d]. This follows by
the pre-post axiom, getSizePrePost.
Using the module system of Why3, we make sure that this module only has access to Heap and

Composite. This means that the internal structure and the invariants of Composite class are hidden
from the client as in Figure 2. For the pure methods, the interpretations are syntactically visible in
the client module, but there is no assumption connecting them with the uninterpreted methods;
So the client verification relies only on the uninterpreted versions and their contracts. The first
postcondition (i = getSizeUnInt h d) fails to verify if the frame axiom for getSize is omitted, and
the second postcondition (i = h.size[d]) fails to verify if the pre-post axiom is omitted.
To verify the client and all the preceding code, Why3 generates 23 goals (coincidentally the

same number as for Cell). We use the splitting tactic provided by Why3 only for goals that are not
otherwise verified. Using Alt-Ergo, CVC3 and CVC4, the goals all verify, in a total of 83 seconds.

11 WEAK PURITY

In this article, a pure method’s code can have no effects except writes to local variables and non-
termination; and the associated interpretation must be total on states that satisfy the method’s
precondition. Much of the prior work on pure methods addresses weak purity, which allows the
additional effect of allocation; a weakly puremethodmay use and even return a reference to freshly
allocated objects. This section reviews weak purity with reference to prior works. Section 12 re-
views related work in connection with other topics.
The use of pure and weakly pure methods in specifications is motivated by the need for func-

tional abstraction and by the opportunity to leverage, for purposes of specification, pure functions
that happen to be defined as part of the program under consideration. To introduce issues raised by
weak purity, we quote from the survey paper of Hatcliff et al. [29], which identifies three problems
with pure methods. One is “verifying that the method is well defined and does not lead to an un-
sound axiomatization” (they cite References [25] and [23], which we discuss further in Section 12).
The issue is that most reasoning systems are based on total functions whereas code can diverge.
To reconcile potential non-termination of pure methods with their use in specifications, it suffices
to leverage preconditions and definedness conditions, as shown in the preceding sections of this
article.
The second problem identified byHatcliff et al. is “checking that themethod really is pure, that is,

free of side effects. This is not as simple as a syntactic check for assignment statements, because one
wants to allow the method body to, for example, allocate new objects (perhaps an iterator object
or a string builder) and modify their state. Hence, the desired check is that of observational purity,
which says that the method may have some side effects, but it appears pure to any observer.” (Here
they cite References [12, 21, 46, 55]). If the side effects are of any use, they are surely observable
in the intended context; what is meant here is any observer outside the relevant encapsulation
boundary. Observational purity has been identified decades ago [32] but has yet to be formalized
in a program logic or general verification system that handles object-based programs. For example,
RLII has a proof rule for hiding of invariants on encapsulated state but not for hiding of effects on
it.
Weak purity is an attractive special case of observational purity: it applies in many practical

situations but appears to avoid the need to bring encapsulation into the picture. Put differently,
allocation in Java-like languages is an abstractionwith a built-in encapsulation boundary: owing to
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Fig. 17. Specifications of method plus1.

absence of pointer arithmetic, the state of the allocator is not observable. Themost broadly relevant
kind of application is where a query method needs to allocate data structures used to compute a
result, and possibly to represent that result, in the program itself.24 Several verification systems
allow the use of weakly pure methods in specifications [22, 23, 25, 59] with varying degrees of
justification. The current trend, however, seems to be to insist on strong purity, as in Dafny [38]
and Why3. Our analysis in this section may help explain the trend.
Allocation is one cause of Hatcliff et al.’s third problem with pure methods: they “are not nec-

essarily deterministic. More precisely, calling a pure method twice may yield two different re-
sults, because the side effects supposedly not visible to observers cause the second call to start in
a slightly different state. This means that pure methods cannot be represented as mathematical
functions of their arguments and of an unchanging heap. One solution is to make the definition of
observational purity strict enough to avoid this situation; another is to allow slightly different re-
sults and to prevent callers from assuming anything more than some sort of equivalence between
the results” (here citing References [40]).
As an example, the Java expression new Cell () == new Cell () is always false—apparently vi-

olating reflexivity of equality! Our desugared language does not include such expressions; in-
stead, allocation is at the level of commands. Nonetheless the problem is still present in our lan-
guage, in which the phenomenon can be illustrated this way: the command vary, z : Cell iny :=
new Cell ; z := new Cell establishes postcondition y � z.
The idea of the first solution is to restrict programs and specifications sufficiently that it is sound

to ignore the effects. Tomake this precise and to justify it, a first step is to consider threaded seman-

tics of expressions in formulas [25]. This is just like ordinary program semantics of expressions
that can have side effects: to evaluate the comparison new Cell = new Cell in a state σ , first the
left argument new Cell is evaluated, yielding both a value and an updated state τ in which the
second argument is evaluated. Threaded semantics is necessary to make sense of expressions in
which subexpressions can allocate. For example, consider the specification in Figure 17 of amethod
that computes the successor of Cell , as a new object. To evaluate дet (plus1(y)), the evaluation of
дet must be in the new state in which the reference returned by plus1(y) is allocated. In threaded
semantics, the expression plus1(y) = plus1(y) is always false. So no implementation could satisfy
the postcondition res = plus1(self ) stipulated by PureLink in Figure 14. The specification in Fig-
ure 17 tries to avoid the problem by expressing a suitable equivalence using equality of integers,
as in the second solution in the quote above.
Naumann’s semantic analysis [46] considers these issues in connection with reconciling run-

time assertion checking with static verification and shows how weakly pure expressions and as-
sertions do not cause problems provided the assertions are insensitive to garbage collection and
differences in allocation. As in the present article, differences in allocation are “quotiented away”

24The other kind of application has been featured in JML, which has been designed to avoid the need for mathematical
types beyond those of the programming language itself, so, in particular, ubiquitous mathematical abstractions like sets
and sequences are defined by Java libraries rather than logical theories.
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in the semantics of read effects, using refperms. (Refperms also serve as basis for defining notions
of agreement for purposes such as program equivalence [7].) However, the semantic analysis only
deals with the interface between assertions and code. In this article, we are dealing with a program
logic, with elements including definedness conditions which are also needed in verification tools.
In semantics, axiomatic or otherwise, it is not difficult to formalize the threading of state through

semantics of expressions since the heap is an explicit parameter (see Section 10). There is a price
however: by explicitly modeling the program semantics, such a formalization is partly breaking the
pun of Hoare logic, whereby program variables and expressions are directly translated to mathe-
matical variables and expressions.
In keeping with the source language level of abstraction, verification tools like those cited in this

article do not model garbage collection. Their specification languages, however, provide means to
refer to the currently allocated objects, e.g., for the range of quantifiers. This admits formulas that
are not garbage insensitive.
The next considerations are whether effects need to be threaded through the semantics of for-

mulas and the semantics of effects. Let us begin with conjunction. If formulas P andQ have weakly
pure subexpressions, shouldQ be evaluated in the state after P has been evaluated, that is, threaded,
or should snapback semantics be used, in whichQ is evaluated in the original state? Consider these
formulas:

Pa =̂ alloc = ∅ P f =̂ ∀x : Cell ∈ alloc · false Pn =̂ дet (make ()) > 0,

wheremake is a pure method that returns a newCell . In threaded semantics, Pa ∧ Pn is satisfiable
whereas Pn ∧ Pa is unsatisfiable, and mutatis mutandis for P f and Pn—breaking the symmetry of
conjunction. Idempotence of conjunction is also broken by threaded semantics: Pa ∧ Pn is satis-
fiable but (Pa ∧ Pn) ∧ (Pa ∧ Pn) is not. Given that only boolean values flow between operands of
the propositional connectives, snapback seems plausible for those. But consider a quantified for-
mula ∀x : K ∈ G · Q whereG is a singleton expression {p (F )} with p returning a fresh reference;
evaluation of G needs to be threaded to evaluation of Q , if the latter depends on fields of x .
Like for expressions, a verification system can explicitly thread updates through the semantics

of the propositional connectives—but this comes at high cost. The specifier loses their ability to
interpret specifications in terms of familiar mathematical and logical notions, and the verifier loses
the ability to rely on shallow embedding of logical connectives to leverage automated theorem
provers.
One reaction to these considerations is to seek restrictions on specifications such that there is

no observable difference between threaded and snapback semantics. This is the approach taken by
Naumann [46] and Darvas and Müller [25]. In our setting, an obvious restriction is to disallow in
formulas explicit references to the ghost variable alloc. Further restrictions are needed to preclude,
for example, calls of a puremethod that returns the value of alloc. And that cannot be done in terms
of the pure method’s frame condition: any method that allocates also reads alloc, so rd alloc does
not distinguish between a method that returns a new Cell and one that returns the value of alloc.
Let us consider a formalization of weak purity in the present framework. In the semantics of

frame conditions, effects are interpreted conjunctively: for example, see the definitions of rlocs

and wlocs, and Definition 4.3. In terms of the function rlocs, snapback semantics would define
rlocs(σ ,θ , (rdG‘f , rdH ‘д)) as rlocs(σ ,θ , rdG‘f ) ∪ rlocs(σ ,θ , rdH ‘д), which among other things
makes composition of effects symmetric and idempotent—which in turn justifies our abuse of no-
tation, confusing lists and sets of effects. By contrast, threaded semantics for this example would
be

rlocs(σ ,θ , (rdG‘f , rdH ‘д)) = rlocs(σ ,θ , rdG‘f ) ∪ rlocs(τ ,θ , rdH ‘д),
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where τ is the state after evaluating G in σ . So threaded semantics complicates all notions con-
cerning effects.
Once threaded semantics is formalized, we can prove soundness of rules like Frame. As ex-

pected, a formula that calls a weakly pure method cannot be framed over code that allocates, just
like formulas that explicitly mention alloc [recall Equation (13)].
At the level of a judgment, say . . . � C : P � Q [ε], there are several considerations about

threading versus snapback. Definition 5.2 of valid judgment quantifies over all states σ that satisfy
P . It refers to executions of C from σ , but a threaded version would execute C in states c ′, result-
ing from evaluation of P in σ . Moreover, the conditions for write effects and read effects involve
evaluating expressions in the frame condition. Should effects in these too be threaded? If so, in
which order should reads, writes, and precondition be evaluated? Finally, it is the well-formed
judgments that are of real interest, which do not depend on the meaning of pure methods outside
their preconditions—recall Definition 5.5 and the definedness formulas of Figure 5. Definedness
conditions are also checked by verifiers that allow pure methods (see Section 12). Again there is
not a single obviously right way to formulate threaded semantics of these conditions, or to connect
their evaluation with the semantics of judgments.
In connection with proof rules, consider threaded interpretation of preconditions in the seman-

tics of judgments. The proof rules Seq and While hinge on assertions to hold at intermediate
points in computation. In a threaded interpretation of the premises of Seq, there is a state update
between evaluation of the intermediate assertion and the second command. Yet execution of the
sequenced commands involves no such update. This is one place where we would need commands
and formulas to be insensitive to garbage collection. In verification tools and in Reference [46] the
analog is intermediate assert statements.
We investigated variations on threaded semantics of judgments, with the goal to characterize

well-behaved specifications for which threaded and snapback semantics are equivalent. Among
other things, we used the analysis of quasi-determinacy in Section A.1 (because the interpreta-
tion of a weakly pure method returns a set of states paired with values, and must do so quasi-
deterministically). However, it is difficult to find a useful syntactic characterization because, as re-
marked above, a pure method may depend on alloc for differing reasons that are not distinguished
by its frame condition. Moreover, stating a formal result requires tedious intricate definitions of
threaded semantics that have little inherent interest.
One issue that emerges is the question what “garbage insensitivity” should mean in the presence

of ghost state. Though the syntax in this article does not explicitly designate ghost state, that can
be added, and for purposes of the present discussion one can simply consider everything of type
rgn to be ghost state. If we consider ghost variables, including alloc, like ordinary variables, there
is no garbage to collect. An alternative is to define garbage collection in terms of what is reachable
from non-ghost variables, and then update all rgn-typed locations by removing garbage references.
Perhaps the least obvious finding in our investigation is in connection with linking. Rule Pure-

Link relies on the equality res =m(x ) to connect the mathematical interpretation ψ (m) of pure
method m with the result computed by its implementation, but that is untenable in case the re-
sult can be a fresh reference. Nor is there a way to express, at the level of the assertion language,
that the allocations defined by the interpretationψ (m) coincide with those of the implementation.
In the literature, the connection is made by restricting the implementation to simple expressions
from which a mathematical denotation can be derived and formulated in terms amenable to SMT
solvers. For a linking rule that allows arbitrary code restricted only by frame conditions with no
writes other than wr alloc, we defined a denotational semantics of weakly pure methods (along
the lines of Definition A.6 in the Appendix). We formalized, and proved sound using snapback
semantics except for expressions, a linking rule in whichψ (m) is required to be the denotation of
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the method body. Such reasoning is unsatisfactory because it violates the abstraction provided by
the logic and its assertion language.
The investigation sketched in the preceding paragraphs suggests why it is so complicated to

formulate and justify sufficient restrictions on programs and their specifications to achieve oper-
ationally sound reasoning, even for the sequential first-order programs considered in this article.
No single approach has emerged in prior work as clearly the best, balancing simplicity of spec-
ifications, flexibility of programming, and usable proof rules or corresponding VCs. The obvious
conclusion is that weak purity is not, after all, a useful special case of observational purity. Leino
[38] reaches the same conclusion (using pure to mean weakly pure): “pure methods are surpris-
ingly complicated to get right. A major problem is that pure methods do have effects; for example,
a pure method may allocate a hashtable that it uses during its computation...These problems make
it tricky to provide the programming logic with the desirable illusion that pure methods are func-
tions...I conclude with a slogan: pure methods are hard, functions are easy.”

12 RELATED WORK

Pure and weakly pure methods have been studied in the context of VC-gen for various verification
systems such as ESC/Java2, Spec#, and Eiffel. We are not aware of verification tools that support
observational purity. The formulation of pure methods in these studies is roughly like ours in
Section 10: an uninterpreted function is given a pre-post axiom and a frame axiom. The formulation
of VCs in these works does not make linking explicit.
Cok [22] explains the practical importance of pure methods for conciseness and abstraction in

specifications, specifically in JML, and proposes to use uninterpreted functions to encode pure
methods for VC-gen and automated theorem proving. Non-termination and exceptional termina-
tion are considered, as well as the issue of an equality test for pure methods that return freshly
allocated objects. The encodings cater for the ESC/Java2 system, which does not explicitly model
the heap as such: a specialized encoding is used to achieve an effect like threaded semantics.25

A number of earlier works point out the importance of read effects for pure methods. Frame
axioms are explicitly featured in References [40], [37], and [59].
Darvas andMüller [25] introduce the term “weak purity” formethods that are allowed to allocate

and return fresh objects. They formulate VCs with threaded semantics, using two uninterpreted
functions for a pure method: one for the result (constrained by what we call the pre-post axiom)
and one for the updated state. They address what are called “recursive specifications” in which the
postcondition refers to the method itself, and point out the unsatisfiability of specifications like
one that says f (x ) ensures res = f (x ) + 1 (but recursive method bodies are not considered). The
VCs effectively require existence of an interpretation. The VCs are shown to be consistent even in
such cases and without restriction on the use of reference equality. That is, the assumed axioms are
consistent; it is not shown that the VCs are sound with respect to operational semantics. Rudich
et al. [54] add recursive method bodies, remove weak purity, and again show consistency of VCs.
Darvas et al. [24] investigate variations on definedness conditions in the presence of mutually

recursive pure (but not weakly pure) methods, developing a formulation that avoids exponential
blowup in formula size while remaining complete.
Darvas and Leino [23] explore the approach toweak purity inwhich the use of reference equality

is restricted. Leino and Müller [40] develop this further: a specification can designate a “similarity
relation” to be used in formulas instead of equality, and VCs are formulated to check a relational

25Cok [22] points out that puremethods essentially subsume the notion ofmodel field used in JML and in other specification
notations. Some related works address model fields and object invariants in connection with pure methods, but those topics
are outside the scope of our formal development and we refrain from discussing them.
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property like our allowed dependency but requiring similarity of the result values. These and other
works exploit ownership methodologies for framing. Leino and Müller [40] use self composition
[13] for the relational property.
Leino and Middelkoop [39] focus on the problem that specifications may be indirectly con-

tradictory, as in f (x ) with postcondition res = д(x ) and д(y) with postcondition res = f (x ) + 1.
They provide means to detect dependencies like this and to check satisfiability of specifications
via witnesses, together with heuristics to find witness expressions that can be used by SMT solvers
to prove satisfiability of the pre-post axioms in the presence of mutually recursive pure method
bodies. They give a consistency theorem that relies on somewhat complicated well-founded or-
dering as measure for method calls, which is less restrictive than the syntactic restrictions in Ref-
erences [23, 25, 54].
To cater for deriving an interpretation from the implementation, works like References [25] and

[59] restrict method bodies to a single return expression. In Section 9, we showwhy this restriction
is not necessary. We also show the role of measures for recursion: a measure is needed to prove
definedness and correctness of interpretations derived from pure method bodies. For this purpose,
measure constraints can be added to specifications, but need not be added to specifications used
by clients.
As noted in Section 1.3, contradictory postconditions of pure methods are just one of several

ways in which unsatisfiable specifications arise. Inconsistencies like the interdependent f and д
above are more likely than others to be exploited by an SMT solver if used in faulty axioms. Rea-
soning under the assumption of unsatisfiable specifications is harmless, in that a component’s
verification cannot be completed if it relies on methods with unsatisfiable specifications. In our
view, checks for unsatisfiable specifications, like “smoke tests” for inconsistent assumptions of
other kinds are important practical tools, perhaps especially important in the presence of inheri-
tance and dynamic dispatch or other features that result in unwieldy call graphs. But such checks
should not be considered part of the VCs that serve to establish correctness of programs.
We take the Cell example from the most closely related work [59] where read effects of pure

methods are specified using a form of dynamic frames, and methods may be self-framing. They
define (and implement) a VC-generator including VCs that encode the agreement semantics of
read effects, albeit only for a pair of states in succession. That avoids the need for refperms, and
suffices for framing (see remark following Definition 6.4); but not for relational reasoning for data
abstraction and encapsulation. Unlike any of the works cited above, which only prove consistency
of axioms, they give a detailed proof of soundness with respect to transition semantics, by showing
that the VCs ensure a small-step invariant that implies correctness and fault-avoidance. Axioms are
included (and proved sound) to exploit read effects for framing. Different from our work, the body
of a puremethod is required to be a single “return E” statement (and not recursive). The expression
E is visible to clients, as in our rule TranspPureLink and in several of the cited works. (Their
“implementation axiom” is what we call a definition axiom in Section 10.) Pure methods do not
have postconditions in the formal development, but their implementation (p. 453 of the paper) does
include such postconditions. Although VCs are generated modularly, we do not discern an explicit
account of linking, or an easy adaptation to cater for hiding a pure method body or invariants from
clients.
Our use of explicit ghost state in read and write effects is directly inspired by dynamic frames,

the state-dependent frame conditions introduced by Kassios [33, 34]. Kassios’s frames predicate
f frames v (where f is an expression that denotes a location set) says that the current value of
expressionv depends only on the locations in f . Thus if there are nowrites to the locations denoted
by f , the meaning ofv is preserved. In Kassios’s terminology, this leads to a notion of “disjointness
of frames” akin to what is expressed by our Frame rule: if f is the set of locations on which x
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depends, д is the set of locations on which y depends, f ,д are disjoint and we know that only
f is modified, then the value of y is preserved. Kassios introduces self-framing frames to reason
about the preservation of disjointness in connection with allocation. Suppose a dynamic frame д
frames itself, that is, д frames д. In a state where f and д denote disjoint sets of locations, if the
state is modified only by writing locations in f , in such a way that the value of f does not gain
any previously allocated locations, then the disjointness of f and д is preserved.
In this article, our frames are expressed in terms of reference sets (regions) and effect expres-

sions rather than location sets. More significantly, by contrast with Kassios’s work, we can use
recursively defined and parameterized pure methods, implemented by commands, to express the
sets. Kassios’s frames predicate and its properties are embodied in our work, in the frames judg-
ment as well as the notion of immunity (Lemma 6.9).Apropos the connection between preservation
of disjointness and effects with our notion of framed reads, note first that in this article there is
no explicit notation for freshness. By contrast, Smans et al. [59] use a special predicate to express
freshness in postconditions, RLI/II expresses freshness in frame conditions using an effect nota-
tion, and Kassios can directly express freshness because his notations explicitly describe relations
between initial and final states. In this article, we dropped the freshness effect from RL and instead
express freshness in specifications and judgments where the precondition “snapshots” the initial
value of alloc and the postcondition asserts disjointness from that snapshot. (See, e.g., the discus-
sion of derived rule Alloc1 and its use in the example proofs.) Consider the following specification,
using some region expressions G,H :

G = alloc ∧ ftpt (G ) ·/. η � H #G [η].

If the specifications of methods called in G have framed reads, then ftpt (G ) has framed reads. In
this case, the initial separation ftpt (G ) ·/. η ensures that the final value of G is the same as its
initial value—which entails that references in H (in the final state) are fresh. Note that H #G may
imply ftpt (G ) ·/. η or some other disjointness of frames, as in Kassios’s principle described above.
The significance of freshness is that it can be used to establish disjointnesses, so it seems natural
to express freshness in terms of disjointness.
The Dafny verifier features dynamic frames in a form much like that of RL, and includes pure

(but not weakly pure) methods [38]. It is under active development and has been used in large
verification efforts such as Reference [30]. A number of other contract languages also permit the
use of pure methods, including Eiffel, JML, Spec# [11], Chalice [41], VeriCool [57], and Viper [43].
In Section 1.3, we mention a couple of approaches to the semantics of the hypothetical correct-

ness judgment form Equation (1). Yet another approach goes by using nondeterminacy to represent
a single “worst implementation” of each method, akin to the “specification statement” used in ax-
iomatic semantics. This approach facilitates proof of second-order frame rules, and is used for that
purpose by O’Hearn et al. [47] and in RLII [5]. It is also used in the conference version of this
article [6]. For read effects, it requires use of a possibilistic property in ∀∃ form: For all σ ,σ ′ and
all states τ reached by C from σ , there exists τ ′ reached by C from σ ′ such that τ agrees with τ ′.
Unfortunately, this seems incompatible with linking. In checking the details of the proof of the
linking rule, we were unable to complete the argument, because the ∀∃ property would require
moving back and forth between premise and conclusion of the rule in an unsound way. Another
significant flaw in the conference version is in the semantics of read effects. By contrast with Def-
inition 4.4 of allowed dependence, where it requires agreement on locations actually written, the
flawed version requires agreements on writable locations. Because not all writables get changed,
it turns out to be much easier to work with the current definition. Nevertheless, a reconciliation
with the ∀∃ semantics remains an open problem.
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Framing in separation logic encompasses read and write effects, implicitly in syntax but explic-
itly in the semantics, (see the conditions “safety monotonicity” and “frame property” in O’Hearn
et al. [47], where the second-order frame rule is introduced). Permission-based separation logic
allows distinguishing read effects from write effects [19]. Parkinson and Summers [50] explore the
connection between this logic and one based on implicit dynamic frames (IDF) [58]. The IDF logic
is a FOL extended with accessibility predicates that mediate access to heap locations. The logic
is the foundation of Chalice, an SMT-based tool for verification of multi-threaded programs. A
critical concept used to forge the connection is that of a self-framing assertion. Such an assertion
provides a thread with adequate permissions to validate the assertion: interference—that is, poten-
tial modifications of heap locations in the assertion by other threads—is impossible. All separation
logic assertions are proven to be self-framing. Chalice, like us, uses a syntactic definition of self-
framing. In this article, we are not addressing concurrency. The GRASShopper tool [51] does not
feature pure methods but it provides IDF-like notation in specifications. The VCs are generated
using an encoding with explicit ghost state for procedure footprints as reference sets; application
of the frame rule is encoded in terms of these footprints and a global alloc variable. The VCs are
decidable, for specifications based on lists or similar predicates.
Hiding is useful for modularity but difficult to achieve soundly, so the state of the art is to rely

on abstraction: a predicate whose definition is opaque in the interface can be defined internally to
be the invariant. The abstract predicates approach to data abstraction [28, 29, 44, 49] has inspired
several works that cater for SMT solvers by using ghost instrumentation to encode intensional
semantics of effects in terms of permissions. One provides a VC-generator and sketches an argu-
ment for its operational soundness [31]. Another gives a detailed semantics and soundness proof
for VCs that provide effective reasoning about recursively defined abstract predicates and abstrac-
tion functions [60].
Parkinson and Bierman [48] formalize abstract predicates in connection with inheritance, using

statically dispatched versus dynamic handling of predicates, but do not consider pure methods.
Inheritance and dynamic dispatch are not addressed in most of the prior literature on pure meth-
ods. Smans et al. [59] does provide detailed rules for the encoding of inheritance, adapted from
Parkinson and Bierman [48], but it is not included in their formalization or soundness proof. The
encoding addresses dynamic binding but requires all virtual methods to be overriden in every class,
effectively requiring re-verification when inheritance is used. For modular verification, it is well
understood that inheritance should usually conform with behavioral subtyping, which requires
the specification of a method at a subtype to refine its specification at a supertype [36]. In our set-
ting that means refinement for specifications that include read effects. This topic is left for future
work.
Bao [9] investigates behavioral subtyping with explicit frame conditions, in the setting of a fine-

grained version of RL [10] to which we return later. Bao extends the theory of Reference [36] to
account for frame conditions and encapsulation, and shows modular soundness for a logic with
supertype abstraction. Bao’s thesis [9] also presents a unified fine-grained RL that features read
effects in the style of separation logic, i.e., as permission to access locations. This is used to establish
connections between fine-grained RL and separation logic.
Relational semantics for effects is explored by Benton et al. [17]. Their interpretation of both

read and write effects quantifies over different classes of relations that are preserved. By contrast,
other work including this article treats dependency in terms of preservation of specific relations.
Benton et al. [16] consider a denotational semantics of a region-based type and effect system that
supports observational purity. The semantics uses a novel variant of logical relations (setoids)
that allows clients of a module to validate a number of effect-based program equivalences. The
encoding of the semantics for practical use in an SMT-based verifier is not evident.
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Schmitt et al. [56] define and implement rules for a form of read effect for pure methods. The
setting is the KeY tool, which is based on dynamic logic [14]. Dynamic frames are expressed in
terms of location sets and the assertion language features an explicit representation of the heap.
Bao et al. [10] develop a variation on RL in which a “region” is a set of locations, and in which

conditional expressions can be used in frame conditions. With the addition of pure methods in the
present article, we get some ability to express conditional effects, e.g., the effect wrp ()‘f where
pure method p returns a region and has postcondition that describes the region conditioned on
the pre-state. In RL, including the present article, sets of heap locations are expressed in terms
of reference sets (denoted by region expressions G) and image expressions like G‘f which are
in some sense rectangular. For a finite non-rectangular collection of locations we can just use
singletons, say {x0}‘f0, . . . , {xn }‘fn , but this cannot express an unbounded collection of references
with non-uniform fields. (Perhaps more likely in practice would be an unbounded collection of
array references paired with differing indexes.) Use of location sets provides a way to abstract
from field names. This is featured in Smans et al. [59]. Explicit use of fields in RL provides simple
syntactic means to establish many disjointnesses. Arguably, data groups [42] are a sufficient means
of abstracting from field names. The significance of these expressive differences is perhaps best
evaluated in connection with abstraction and information hiding.

13 CONCLUSION

We have formalized and proved sound a logic for object-based programs with dynamic allocation,
with two unusual features in correctness judgments: pure methods in formulas and read effects
in frame conditions for commands. Effects are expressed flexibly by means of state-dependent ex-
pressions typically involving ghost state. A key feature is the frame rule, which says a predicate is
preserved by a command if the predicate’s read effect is separated from the command’s write effect.
Additional features—immunity and framed reads—provide what amounts to framing of frame con-
ditions in sequential execution (sequences and loops). Correctness judgments include hypotheses
to formalize assumed method specifications. The semantics is given in terms of conventional op-
erational semantics, together with partial interpetations that model axioms used in prior work on
verification conditions for pure methods. The linking rules discharge hypotheses, fully grounding
correctness proofs in the operational semantics.
One intended use of the logic is as a stepping stone towards a logic for specification and verifica-

tion using observationally pure methods. Another intended use of the logic is to guide the design
and validation of semi-automated verification tools based on SMT solvers and verification condi-
tion generators. Modular verification tools implement, in effect, linking rules, though this is not
usually explicit in the literature on VC-gen. By contrast with linking rules, other proof rules are not
directly implemented, but rather guide the design of VC-gen, as well as the design of annotation
features (loop invariants, frame conditions, and the like). For example, our results suggest that for
reasoning about read effects of commands, frame conditions in method specifications should have
framed reads. (In the logic, however, we cannot require all judgments to have framed reads, in
light of the discussion of rules Seq and While.) Instead of imposing framed reads as a restriction
on specifications, for practical purposes it can be left implicit, as it is a syntactic closure that can
be applied automatically.
Read effects are a dependency property for which the appropriate extensional semantics is ex-

pressed in terms of two runs of the program. A state-dependent read effect denotes a set of loca-
tions in one of the two initial states. This seeming asymmetry works in part because a correctness
judgment quantifies over all pairs of runs, and in part owing to restriction to “framed reads” which
ensures symmetry where it is needed. Relational Hoare logics have been developed to reason about

ACM Transactions on Programming Languages and Systems, Vol. 40, No. 2, Article 6. Publication date: May 2018.



A Logical Analysis of Framing for Specifications with Pure Method Calls 6:75

dependency properties [2, 15, 61]. In ongoing work [7], we are developing a relational version of
the logic. Read effects of commands play a crucial role in that logic.

APPENDIX

A ADDITIONAL SOUNDNESS PROOFS

A.1 Definitions and Results Needed to Prove Soundness of ImpureLink

Were it not for our aim to be compatible with the small step encapsulation property of RLII, we
would define correctness in terms of a denotational semantics derived from the transition seman-
tics. We do in fact need such semantics for use in proving ImpureLink. The proof follows the lines
sketched at the beginning of Section 8.2, and in some ways the proof of PureLink in Section 8.3.
But for PureLink, we are given a context interpretation for the method to be linked, as needed to
appeal to the premises of the rule. For ImpureLink we use the denotational semantics to construct
the interpretation needed to appeal to the premises.

Quasi-determinacy. Formalization of the denotational semantics relies on a kind of determinacy
mentioned in Section 1 but not explicit in the body of the article.

Definition A.1 (
π≈, �π , Quasi-Determinacy). Fix Γ. For Γ-states σ ,σ ′, define σ

π≈ σ ′ to mean that
π is a total bijection from σ (alloc) to σ ′(alloc) and the states agree modulo π on all variables
and all fields of all objects. That is, Lagree(σ ,σ ′,π , locations(σ )), which under these conditions is
equivalent to Lagree(σ ′,σ ,π−1, locations(σ ′)).
For outcome sets S and S ′, i.e., S, S ′ ∈ P([[Γ]] ∪ {�}), and any partial bijection π on references,

define S �π S ′ (read equivalence modulo π ) to mean that

(i) � ∈ S iff � ∈ S ′,
(ii) for all states σ ∈ S and σ ′ ∈ S ′ there is ρ ⊇ π such that σ

ρ
≈ σ ′, and

(iii) S \ {�} = ∅ iff S ′ \ {�} = ∅.

A candidate interpretation φ is quasi-deterministic if

• For every purem, φ (m) is quasi-deterministic in the following sense: if σ
π≈ σ ′ and v

π∼ v ′
then φ (m) (σ ,v )

π∼ φ (m) (σ ′,v ′) where we lift
π∼ to relate � only to itself.

• For every impurem, φ (m) is quasi-deterministic in the following sense:
—� ∈ φ (m) (σ ,v ) iff φ (m) (σ ,v ) = {�} (fault determinacy),

—σ
π≈ σ ′ and v

π∼ v ′ imply φ (m) (σ ,v ) �π φ (m) (σ ′,v ′) (state determinacy).

We refer to
π≈ as state isomorphism modulo π . Note that item (ii) in the definition of�π involves

extensions of π , whereas the relations
π∼ and π≈ involve only π itself. Instantiating σ ′ := σ , v ′ := v ,

and π to be identity on σ (alloc) in the condition (state determinacy) yields that all results from a
given input are isomorphic.26

Note that for impurem, σ
π≈ σ ′ and v

π∼ v ′ do not imply that φ (m) (σ ,v ) and φ (m) (σ ′,v ′) have
the same cardinality; but item (iii) in the definition of �π ensures that one contains states iff the
other does.
The following result says that expressions and formulas respect isomorphism of states for can-

didate interpretations where the relevant methods are quasi-deterministic.

26In light of these definitions and the results to follow, we could as well replace the codomain of an impure method inter-
pretation, i.e., P([[Γ]] ∪ {�}), by P([[Γ]]) ∪ {�}. The chosen formulation helps slightly streamline a few things later.
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Lemma A.2. Suppose σ
π≈ σ ′. Then [[F ]]φσ

π∼ [[F ]]φσ ′ for any F such that φ (m) is quasi-

deterministic for everym that occurs in F . Moreover, σ |=φ P iff σ ′ |=φ P for any P such that φ (m) is

quasi-deterministic for everym that occurs in P .

The proof is straightforward, by induction on F and induction on P .

Lemma A.3 (Quasi Determinacy of Transitions). Let φ be a quasi-deterministic candidate

interpretation. Then

(a) The transition relation
φ
�−→ is rule-deterministic in the sense that for every configuration

〈C, σ , μ〉, there is at most one applicable transition rule.

(b) No configuration has both � and a non-fault successor. That is, if 〈C, σ , μ〉
φ
�−→ 〈B, τ , ν〉, then

it is not the case that 〈C, σ , μ〉
φ
�−→ �; and if 〈C, σ , μ〉

φ
�−→ �, then 〈C, σ , μ〉 has no other successor.

(c) If σ
π≈ σ ′ and 〈C, σ , μ〉

φ
�−→ 〈D, τ , ν〉 and 〈C, σ ′, μ〉

φ
�−→ 〈D ′, τ ′, ν ′〉, thenD = D ′, ν = ν ′, and

τ
ρ
≈ τ ′ for some ρ ⊇ π .

(d) If σ
π≈ σ ′, then 〈C, σ , μ〉

φ
�−→ � iff 〈C, σ ′, μ〉

φ
�−→ �.

(e) For all i , if σ
π≈ σ ′ and 〈C, σ , μ〉

φ
�−→

i

〈D, τ , ν〉 and 〈C, σ ′, μ〉
φ
�−→

i

〈D ′, τ ′, ν ′〉, then D = D ′,

ν = ν ′, and τ
ρ
≈ τ ′ for some ρ ⊇ π .

(f) If σ
π≈ σ ′, then 〈C, σ , μ〉 is a stuck context call iff 〈C, σ ′, μ〉 is.

(g) If σ
π≈ σ ′ and 〈C, σ , μ〉

φ
�−→ 〈D, τ , ν〉, then 〈C, σ ′, μ〉

φ
�−→ 〈D, τ ′, ν〉 and τ

ρ
≈ τ ′, for some τ

and some ρ ⊇ π .

Apropos (f), it is only impure methods that can be stuck.

Proof. (a) Consider any 〈C, σ , μ〉. There is no transition in caseC ≡ skip. There is no transition
in caseActive(C ) is a context call for an impure methodm with argument valuev andφ (m) (σ ,v ) =
∅. Otherwise, by cases onActive(C ) and inspection of the rules, there is exactly one rule applicable.
In the case of context call of an impure method, this relies on Definition A.1 (fault determinacy).
(b) Fault and non-fault outcomes are given by different rules, so this follows from (a).
(c) By cases onActive(C ). For any command other than context call or allocation, take ρ = π and

inspect the transition rules. For example, x . f := y changes the state by updating a field with values
that are in agreement modulo π . For the case of x := E, we need that [[E]] respects isomorphism
of states, Lemma A.2. For allocation, let ρ = {(o,o′)} ∪ π , where o,o′ are the allocated objects. For
context call, both pure and impure, we get the result by quasi-determinacy.
(d) Similar to the proof of (c), using in particular item (i) in the definition of �π .
(e) By straightforward induction on i , using (c).
(f) By Definition A.1(state determinacy), and using item (iii) in the definition of �π .
(g) Follows from (d), (e), and (f). �

Lemma A.4. Context interpretations are quasi-deterministic.

Proof. Let Φ be a well formed context and let φ be a Φ-interpretation.
First, we show that φ (m) is quasi-deterministic for every purem. The argument goes by induc-

tion on the ordering ≺Φ used in Definition 2.2. For givenm, suppose σ
π≈ σ ′ and v

π∼ v ′. We must
showφ (m) (σ ,v )

π∼ φ (m) (σ ′,v ′). Let P be the precondition ofm and note that anymethods called in
P are quasi-deterministic, by induction. So σ |=φ P iff σ ′ |=φ P by LemmaA.2. Thusφ (m) (σ ,v ) = �

iff φ (m) (σ ′,v ′) = � by Definition 5.1(a). In the non-fault case, we get φ (m) (σ ,v )
π∼ φ (m) (σ ′,v ′)

from the read effect, Definition 5.1(c).
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For any impurem, we get fault determinacy directly from Definition 5.1(d). To show state de-

terminacy, suppose σ
π≈ σ ′ and v

π∼ v ′. We must show φ (m) (σ ,v ) �π φ (m) (σ ′,v ′). To that end,

let R be the precondition of m. Let σ̇ =̂ [σ + x :v] and σ̇ ′ =̂ [σ ′ + x :v ′]. Thus we have σ̇
π≈ σ̇ ′.

By Lemma A.2 and the quasi-determinacy of pure method interpretations (proved above), we
get σ̇ |=φ R iff σ̇ ′ |=φ R. So φ (m) (σ ,v ) = {�} iff φ (m) (σ ′,v ′) = {�}, so in the faulting case we
have φ (m) (σ ,v ) �π φ (m) (σ ′,v ′). For the non-faulting case, suppose σ̇ |=φ R and σ̇ ′ |=φ R. Con-

sider any τ ∈ φ (m) (σ ,v ) and τ ′ ∈ φ (m) (σ ′,v ′). We must find ρ ⊇ π such that τ
ρ
≈ τ ′. By read

effect, Definition 5.1(f), we have σ̇ , σ̇ ′⇒τ ,τ ′ |=φ ε, rdx and σ̇ ′, σ̇⇒τ ′,τ |=φ ε, rdx . From σ̇
π≈ σ̇ ′,

we have Agree(σ̇ , σ̇ ′, (ε, rdx ),π ,φ) and Agree(σ̇ ′, σ̇ , (ε, rdx ),π−1,φ). By σ̇ , σ̇ ′⇒τ ,τ ′ |=φ ε, rdx ,
there exists ρ ⊇ π such that Lagree(τ ,τ ′, ρ, freshLocs(σ̇ ,τ ) ∪ written(σ̇ ,τ )). Because π is total on

the initially allocated locations (according to σ̇
π≈ σ̇ ′), we get that ρ is total on all the loca-

tions of τ ,τ ′. To complete the argument for τ
ρ
≈ τ ′, it remains to get agreement on W where

W =̂ locations(τ ) \ (freshLocs(σ̇ ,τ ) ∪ written(σ̇ ,τ )). Note thatW ⊆ locations(σ̇ ). So from σ̇
π≈ σ̇ ′,

we have Lagree(σ̇ , σ̇ ′,π ,W ). Now we can use Lemma 6.12 to get Lagree(τ ,τ ′, ρ,W ). �

Denotational Semantics. We use the outcome � to represent runtime faults (null dereference) and
also the invocation of a context method outside its specified precondition (i.e., failure of modular
correctness). For purposes of approximation, we can use the empty set of outcomes to represent
undefinedness.

Definition A.5 (approximation, �). Define the approximation ordering � on outcome sets, i.e.,
on P([[Γ]] ∪ {�}) by

S � S ′ iff S = ∅ or S = S ′. (42)

Functions f , f ′ of type [[Γ]]→ P([[Γ]] ∪ {�}) are ordered pointwise: f � f ′ iff f (σ ) � f ′(σ ) for all
σ . Similarly, for method interpretations: for f , f ′ of type (σ ∈ [[Γ]]) × [[T ]]σ → P([[Γ]] ∪ {�}) let
f � f ′ iff f (σ ,v ) � f ′(σ ,v ) for all σ ,v . This is used to define the ordering on candidate interpre-
tations of a given method context Φ, i.e., θ � θ ′ iff θ (m) � θ ′(m) for allm ∈ dom (Φ).

Definition A.6 (Denotation of Command). Suppose C is swf in Γ and θ is a candidate interpreta-
tion for Γ. Define [[Γ � C]]θ to be the function of type [[Γ]]→ P([[Γ]] ∪ {�}) defined by

[[Γ � C]]θ (σ ) = {τ | 〈C, σ , _〉 θ�−→∗ 〈skip, τ , _〉} ∪ ({�} if 〈C, σ , _〉 θ�−→∗ � else ∅),

where _ is the empty method environment.

Lemma A.7 (DenotationMonotonic). Let θ ,φ be candidate interpretations for Γ that are quasi-

deterministic. If θ � φ then [[Γ � C]]θ � [[Γ � C]]φ for any C .

One way to prove this is to first connect the trace-based denotational semantics (Definition A.6)
with one defined compositionally on program syntax (e.g., see Lemma 3.3 in Reference [3]).
Instead we sketch a different argument, which relies only on the quasi-determinacy properties of
the transition relations.

Proof. Consider any σ . We must show that either [[C]]θ (σ ) is empty or [[C]]φ (σ ) = [[C]]θ (σ ).

First, we show [[C]]θ (σ ) ⊆ [[C]]φ (σ ). Suppose 〈C, σ , _〉 θ�−→∗ 〈D, τ , μ〉 and 〈D, τ , μ〉 is termi-
nated or transitions to �. A simple induction shows that 〈C, σ , _〉

φ
�−→∗ 〈D, τ , μ〉 because each

step can be matched: By θ � φ, the only difference between
θ�−→ and

φ
�−→ is on context calls, and

only in case where (for some m,υ,v) we have θ (m) (υ,v ) = ∅ and φ (m) (υ,v ) � ∅. Any context
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call in the execution 〈C, σ , _〉
φ
�−→∗ 〈D, τ , μ〉 must have a non-empty outcome, which can thus be

matched by φ. Finally, if the last configuration faults via θ , it also faults via φ.

Now, we show that either [[C]]φ (σ ) ⊆ [[C]]θ (σ ), or [[C]]θ (σ ) = ∅. Suppose that, via
φ
�−→, a termi-

nated configuration, or �, can be reached from 〈C, σ , _〉. The steps can be matched via θ�−→, unless
and until a configuration is reached where a context call applies θ (m) (υ,v ) but θ (m) (υ,v ) = ∅. To

be more precise, we have two cases. If every terminated configuration or � reached via
φ
�−→ from

〈C, σ , _〉 is also reached via θ�−→ then we have [[C]]φ (σ ) ⊆ [[C]]θ (σ ) and we are done. Otherwise,

suppose there is 〈C, σ , _〉
φ
�−→∗ 〈D, τ , μ〉, that leads to an outcome, but Active(D) callsm for some

v with θ (m) (τ ,v ) = ∅, so this particular trace has no outcome via
θ�−→. We show there are no traces

via
θ�−→ that lead to an outcome, which proves [[C]]θ (σ ) = ∅. Suppose, for the sake of contradiction,

that 〈C, σ , _〉 θ�−→∗ 〈B, υ, ν〉 and the latter configuration is terminated or faults next. Let i be the
length of the stuck trace 〈C, σ , _〉 θ�−→∗ 〈D, τ , μ〉 and j be the length of 〈C, σ , _〉 θ�−→∗ 〈B, υ, ν〉. We
have i � j because 〈D, τ , μ〉 is non-terminated and stuck, unlike 〈B, υ, ν〉. If i < j then consider
the length-i prefix of the latter; say it ends at 〈D ′, τ ′, μ ′〉. By Lemma A.3(f), with σ ′ := σ , we have

D = D ′, μ = μ ′, and τ
π≈ τ ′ for some π . So by Lemma A.3(e), 〈D ′, τ ′, μ ′〉 is stuck, contradicting

i < j. If i > j then consider the length j prefix of the first trace. By Lemma A.3(f), with σ ′ := σ , and
Lemma A.3(e), the first trace should have terminated or faulted rather than getting stuck; again,
contradiction. �

Definition A.8 (Denotation of Impure Method Body). Suppose Φ is a swf method context in typing
context Γ and Θ is a single specification m : (x :T )R � S [η] such that Φ,Θ is swf in Γ. Suppose
B is swf as a body form, i.e., sigs(Φ,Θ), Γ,x :T � B. Suppose φ is a candidate Φ-interpretation. We
define by induction a sequence of functions θi with domain {m} such that each θi (m) is in (σ ∈
[[Γ]]) × [[T ]]σ → P([[Γ]] ∪ {�}). Define θ0 (m) as follows, for all σ ∈ [[Γ]],v ∈ [[T ]]σ :

• If σ � |=φ Rx
v , then θ0 (m) (σ ,v ) = {�}.

• If σ |=φ Rx
v , then θ0 (m) (σ ,v ) = ∅.

For i > 0 define θi (m) as follows, for all σ ∈ [[Γ]],v ∈ [[T ]]σ :

• If σ � |=φ Rx
v , then θi (m) (σ ,v ) = {�}.

• If σ |=φ Rx
v , then θi (m) (σ ,v ) = drop(x , [[sigs(Φ,Θ), Γ,x : T � B]]φ∪θi−1 ([σ + x :v])).

where drop(x ,−) maps −�x over outcome sets and is defined for all τ , S by
� ∈ drop(x , S ) iff � ∈ S and τ ∈ drop(x , S ) iff τ = υ�x for some υ ∈ S .

Finally, define the denotation θ by

θ (m) (σ ,v ) = lubi (θi (m) (σ ,v )). (43)

Note that each φ ∪ θi is a candidate interpretation of Φ,Θ, and so is φ ∪ θ .
To justify the definition, we first show that the sequence θi is an ascending chain, i.e., θi � θi+1

for all i . The proof is by induction on i . The case θ0 � θ1 is direct from the definitions of θ0,θ1,�.
For the inductive step θi � θi+1, the inductive hypothesis is θi−1 � θi , which amounts to θi−1 (m) �
θi (m). To prove the step, we have for any (σ ,v ) that

[[sigs(Φ,Θ), Γ,x : T � B]]φ∪θi−1 ([σ + x :v]) � [[sigs(Φ,Θ), Γ,x : T � B]]φ∪θi
([σ + x :v])

by Lemma A.7. So by definition of θi and θi+1 we have θi (m) (σ ,v ) � θi+1 (m) (σ ,v ).
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Notice that the least upper bound used to define θ in (43) is for an ascending chain of outcome
sets. Owing to the flat ordering on outcome sets, defined by (42), any chain consists of all empty
sets, or some empty and all the rest equal. As a direct consequence, we obtain the following.

Lemma A.9. The least upper bound of the chain θi is θ . Moreover, for any (σ ,v ), there is i such that

for all j ≥ i we have θ (m) (σ ,v ) = θ j (m) (σ ,v ).

Next, we show that each θi (m) is quasi-deterministic, provided that φ is. The proof is by induc-
tion on i . For θ0 it suffices that formulas respect isomorphism of states, Lemma A.2. For θi+1, using

quasi-determinacy of φ ∪ θi , we get the conditions of Lemma A.3 for
φ∪θi�−→ . In particular, conditions

(d), (f), and (g) can be used with the definitions of [[C]]φ∪θi
and θi+1 (m) to show that θi+1 (m) has

the requisite properties when applied to any state,value pair.
Now we can show that φ ∪ θ is quasi-deterministic. Suppose, by Lemma A.9, that θ (m) (σ ,v ) =

θi (m) (σ ,v ). Then the requisite properties of θ (m) (σ ,v ) hold because θi is quasi-deterministic.
The following key result says how, if B is correct and φ is a context interpretation for Φ, the θ

defined above makes φ ∪ θ be a context interpretation for Φ,Θ. (In that case, quasi-determinacy
of φ ∪ θ can be obtained via Lemma A.4.)
Lemma A.10 (Context Interpretation for Impure). Suppose Φ,Θ is swf in Γ, where Θ is

m : (x :T )R � S [η], and suppose Φ,Θ;ψ |=Γ,x :T B : R � S [rdx ,η]. For any Φ-interpretation φ that

extends ψ , we have that φ ∪ θi from Definition A.8 is a Φ,Θ-interpretation, for all i . Moreover, the

least upper bound θ is a Φ,Θ-interpretation.

Proof. First, by induction on i we show that φ ∪ θi is a Φ,Θ-interpretation. Since φ is a context
interpretation, it is enough to show that θi (m) satisfies the conditions of Definition 5.1(d–f), taking
φ := φ ∪ θi in the Definition. For any σ ∈ [[Γ]] and v ∈ [[T ]]σ , we have the following:
Base case i = 0. All of (d), (e), and (f) are direct from the definition of θi (m).
Inductive case i > 0.
(d) If σ � |=φ∪θi

Rx
v then (d) is direct from the definition of θi (m). If σ |=φ∪θi

Rx
v then σ |=φ Rx

v

(sincem is impure). Observe that φ ∪ θi−1 is a Φ,Θ-interpretation, by induction, and it extendsψ .
So from Φ,Θ;ψ |=Γ,x :T B : R � S [rdx ,η], we get that execution of B from σ ,v via φ ∪ θi−1 does
not fault; again (d) follows by definition of θi (m).
(e) We only need to consider σ ,v such that σ |=φ∪θi

Rx
v . Observe that φ ∪ θi−1 is a Φ,Θ-

interpretation, by induction, and it extends ψ . So from Φ,Θ;ψ |=Γ,x :T B : R � S [rdx ,η] we get
that if execution of B from σ ,v via φ ∪ θi−1 terminates in a state τ , then τ �x satisfies the postcon-
dition and write effect. Thus, by definition of θi (m), we get (e).
(f) Similar to the proof of (e) but considering two executions.
This finishes the proof that each φ ∪ θi is a context interpretation.
To show thatφ ∪ θ is aΦ,Θ-interpretation, it is enough to show thatθ (m) satisfies the conditions

of Definition 5.1(d–f), taking φ := φ ∪ θ in the Definition. For each of (d), (e), and (f), the argument
goes by spelling out the condition on θ (m) (σ ,v ), choosing k such that θ (m) (σ ,v ) = θk (m) (σ ,v )
(by Lemma A.9), and appealing to the same condition for θk (m), which is proved above. In the case
of (f) we consider two inputs, with θ (m) (σ ,v ) = θk (m) (σ ,v ) and θ (m) (σ ′,v ′) = θk ′ (m) (σ ,v ), and
choose the max of k,k ′ to complete the argument. �

Trace Decomposition. The remaining lemmas needed to prove soundness of ImpureLink describe
how a trace can be decomposed into convenient segments, similar to Lemmas 8.3 and 8.4 for pure
methods.

Lemma A.11 (Decomposition for Impure Environment Methods). Let φ be a Φ-

interpretation. Suppose μ0 (m) = (x : T .B) and 〈C0, σ0, μ0〉 is compatible with Φ;φ, where m �
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dom (φ). Suppose 〈C0, σ0, μ0〉
φ
�−→∗ 〈D, τ , ν〉. Then there isn ≥ 0 and there are configurations 〈Ci , σi ,

μi 〉, variables zi and xi , states τi , υi , and σ̇i such that for all i (0 < i ≤ n):

(1) 〈Ci−1, σi−1, μi−1〉
φ
�−→∗ 〈m(zi );Ci , τi , μi 〉 without any intermediate configurations in which

m is the active command.

(2) 〈m(zi );Ci , τi , μi 〉
φ
�−→ 〈Bx

xi
; ecall(xi );Ci , υi , μi 〉

and υi = [τi + xi :τi (zi )] (note that xi is fresh parameter names).

(3) 〈Bx
xi
, υi , μi 〉

φ
�−→∗ 〈skip, σ̇i , μi 〉 and hence by semantics

〈Bx
xi
; ecall(xi );Ci , υi , μi 〉

φ
�−→∗ 〈ecall(xi );Ci , σ̇i , μi 〉.

(4) 〈ecall(xi );Ci , σ̇i , μi 〉
φ
�−→ 〈Ci , σi , μi 〉 and σi = σ̇i �xi .

(5) 〈Cn , σn , μn〉
φ
�−→∗ 〈D, τ , ν〉without any completed invocations ofm—but allowing a topmost

call that is incomplete.

Lemma A.12 (Decomposition for Impure Interpreted Methods). Suppose that μ is method

environment such that m � dom (μ ) and 〈C0, σ0, μ0〉 are compatible with Φ;φ, where m ∈
dom (φ). Also, suppose 〈C0, σ0, μ0〉

φ
�−→∗ 〈D, τ , ν〉. Then there is n ≥ 0 and there are configurations

〈Ci , σi , μi 〉, variables zi and states τi such that for all i (0 < i ≤ n):

(1) 〈Ci−1, σi−1, μi−1〉
φ
�−→∗ 〈m(zi );Ci , τi , μi 〉 without any intermediate configurations in which

m is the active command.

(2) 〈m(zi );Ci , τi , μi 〉
φ
�−→ 〈Ci , σi , μi 〉 and σi ∈ φ (m) (τi ,τi (zi )).

(3) 〈Cn , σn , μn〉
φ
�−→∗ 〈D, τ , ν〉without any completed invocations ofm—but allowing a topmost

call that is incomplete.

A.2 Soundness of the ImpureLink Rule

Suppose that Θ ism : (x :T )R � S [η]. Suppose the premises of the rule are valid:

Φ,Θ;ψ |=Γ,x :T B : R � S [rdx ,η] and Φ,Θ;ψ |=Γ C : P � Q [ε]. (44)

We must prove the conclusion is valid:

Φ;ψ |=Γ letm(x :T ) = B inC : P � Q [ε]. (45)

That judgment is about about executions via
φ
�−→ but the premises pertain to execution via Φ,Θ-

interpretations that extendψ . For any Φ-interpretation φ that extendsψ , we will use φ ∪ θ where
θ is given by Definition A.8. Lemma A.10 says that φ ∪ θ is a Φ,Θ-interpretation. Using this inter-
pretation, we get the following recursion lemma.

Lemma A.13 (Recursion for Impure). Let x ′ not be in dom (Γ) ∪ {x }. Let Γ′ be Γ,x ′ : T . Let σ
be any Γ′-state such that σ |=ψ Rx

x ′ . Let μ̇ be any Γ′-environment such that μ̇ (m) = (x : T .B). Then

the computation from 〈Bx
x ′, σ , μ̇〉 via

φ
�−→ does not fault and if it reaches 〈skip, τ , μ̇〉, then τ �x ′ is in

θ (m) (σ �x ′,σ (x ′)).

The proof of the lemma is deferred. We proceed to prove (45).

To that end, let φ be a Φ-interpretation such thatψ ⊆ φ and let σ be a state such that σ |=Γ,sigs(Φ)
φ

P . We only need to consider executions from the empty environment, since by well-formedness
all method calls in C are tom or to methods let-bound within C or to methods in context Φ. For
notational clarity, let us write μ for the empty environment. To prove (45), we consider executions
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from 〈letm(x :T ) = B inC, σ , μ〉. By transition semantics, there is a single transition from the initial
configuration as follows:

〈letm(x :T ) = B inC, σ , μ〉
φ
�−→ 〈C ; elet(m), σ , μ̇〉,

where μ̇ = [μ +m: (x : T .B)]. Any trace of C ; elet(m) corresponds step by step with a trace of C
containing a trailing elet(m) in every configuration and having exactly the same states, followed
by a final step that executes elet(m). The final step just removesm from μ̇, which means it does
not fault or change the state. Thus to finish the proof it is enough to prove, owing to Lemma 8.5,
the following:

(i) it is not the case that 〈C, σ , μ̇〉
φ
�−→∗ �,

(ii) for any τ , if 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉 then τ |=φ Q and σ→τ |=φ ε ,

(iii) for all τ ,σ ′,τ ′,π if σ ′ |=Γ
φ P and Agree(σ ,σ ′, ε,π ,φ)

and 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉 and 〈C, σ ′, μ̇〉

φ
�−→∗ 〈skip, τ ′, μ̇〉, then there is ρ with ρ ⊇ π ,

ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )).

We prove (i)—(iii) using the following claim:

Claim A. For all C ′,σ ′, μ̇ ′ andm-truncated trace 〈C, σ , μ̇〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉, there

is a trace 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉, where μ ′ = μ̇ ′�m. Also, if C ′ =m(z);D for

some z,D then σ ′ |=φ∪θ Rx
z .

(i) Suppose 〈C, σ , μ̇〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉

φ
�−→ �. If the part of this trace before faulting is m-

truncated then we have 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉 by Claim A. In this case, from 〈C ′, σ ′, μ̇ ′〉

φ
�−→

� we have by semantics that Active(C ′) is a field access/update or a context call, and hence not

a call tom. Thus by the independence Lemma 8.1, we get 〈C ′, σ ′, μ ′〉
φ∪θ
�−→ �. But this contradicts

validity of the correctness judgment (44) forC (instantiated by φ ∪ θ ). Now suppose that the trace

〈C, σ , μ̇〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉 is notm-truncated. From Lemma A.11, it can be decomposed as

〈C, σ , μ̇〉
φ
�−→∗〈m(z);D, τ , ν̇〉

φ
�−→ 〈Bx

x ′ ; ecall(x ′);D, υ, ν̇〉 where x ′ is a fresh variable and υ is [τ + x ′:τ (z)]
φ
�−→∗〈A; ecall(x ′);D, σ ′, μ̇ ′〉 where C ′ is A; ecall(x ′);D

φ
�−→ �.

So we have 〈Bx
x ′, υ, ν̇〉

φ
�−→∗ �. On the other hand, 〈C, σ , μ̇〉

φ
�−→∗ 〈m(z);D, τ , ν̇〉 is anm-truncated

trace. So by Claim A, we have τ |=φ∪θ Rx
z and thus υ |=φ Rx

x ′ [using Equation (6)], whence by
Lemma A.13 〈Bx

x ′, υ, ν̇〉 does not fault—a contradiction. To be precise, note that υ may have addi-
tional variables (locals and parameters) besides those of Γ,x ′ : T ; but since B does not touch them,
they can be projected out to obtain a trace to which the Lemma applies literally. So, (i) is proved.

(ii) Suppose 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉. This is m-truncated, so by Claim A, we get 〈C, σ ,

μ〉
φ∪θ
�−→∗ 〈skip, τ , μ〉. Also by the hypothesis, we have σ |=φ P . Sincem is impure, |=φ∪θ is |=φ and

wlocs(σ ,φ, ε ) = wlocs(σ ,φ ∪ θ , ε ). So we have σ |=φ∪θ P , and again we can instantiate the premise
for C with φ ∪ θ , obtaining τ |=φ Q and σ→τ |=φ ε .
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(iii) Suppose 〈C, σ , μ̇〉
φ
�−→∗ 〈skip, τ , μ̇〉, 〈C, σ ′, μ̇〉

φ
�−→∗ 〈skip, τ ′, μ̇〉 and there is a refperm π

such thatAgree(σ ,σ ′, ε,π ,φ) and σ ′ |=Γ
φ P . The traces arem-truncated. By Claim A, we have traces

〈C, σ , μ̇〉
φ∪θ
�−→∗ 〈skip, τ , μ̇〉 and 〈C, σ ′, μ̇〉

φ∪θ
�−→∗ 〈skip, τ ′, μ̇〉. Since rlocs(σ ,φ, ε ) = rlocs(σ ,φ ∪

θ , ε ), we have Agree(σ ,σ ′, ε,π ,φ ∪ θ ). By the Read property of the premise for C , there is ref-
perm ρ ⊇ π , such that ρ (freshLocs(σ ,τ )) ⊆ freshLocs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪
freshLocs(σ ,τ )).
To prove Claim A, we consider the following claim.

Claim B. For any n ≥ 0, we have the following. For allC0,σ0, μ̇0,C
′,σ ′, μ̇ ′, and for

anym-truncated trace

〈C, σ , μ̇〉
φ
�−→∗ 〈C0, σ0, μ̇0〉

φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉,

if the trace 〈C0, σ0, μ̇0〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉 has exactly n completed topmost calls of

m, and there is a trace 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C0, σ0, μ0〉 then there is a trace

〈C0, σ0, μ0〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉,

where μ0 = μ̇0�m and μ ′ = μ̇ ′�m.

To prove Claim A, take 〈C0, σ0, μ̇0〉 to be 〈C, σ , μ̇〉. Using Claim B, from trace 〈C, σ , μ〉
φ
�−→∗

〈C ′, σ ′, μ̇ ′〉, we get trace 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉. For the second part of Claim A, suppose

C ′ is m(z);D for some z,D. If σ ′ �|=φ∪θ Rx
z , then we would have 〈C ′, σ ′, μ ′〉

φ∪θ
�−→∗ � and hence

〈C, σ , μ〉
φ∪θ
�−→∗ �. But this would contradict the premise forC , since we assumed at the outset that

σ |=φ P . This proves Claim A.

To prove Claim B, we build the needed trace via
φ∪θ
�−→ , by induction on the numbern of completed

topmost calls ofm in the trace via
φ
�−→. Accordingly, consider anm-truncated trace

〈C, σ , μ̇〉
φ
�−→∗ 〈C0, σ0, μ̇0〉

φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉.

Using Lemma A.11, we obtain intermediate states τi ,υ, σ̇ ,σi and environments μ̇i (using names μ̇i

to indicate that each bindsm to (x : T .B)) such that

〈C0, σ0, μ̇0〉
φ
�−→∗〈m(z1);C1, τ1, μ̇1〉 with no invocations ofm

φ
�−→ 〈Bx

x1
; ecall(x1);C1, υ1, μ̇1〉 where υ1 = [τ1 + x1:τ1 (z1)] and x1 is fresh

φ
�−→∗〈ecall(x1);C1, σ̇1, μ̇1〉 where 〈Bx

x1
, υ1, μ̇1〉

φ
�−→∗ 〈skip, σ̇1, μ̇1〉

φ
�−→ 〈C1, σ1, μ̇1〉 where σ1 = σ̇1�x1
... containing n − 1 topmost invocations ofm

φ
�−→ 〈Cn , σn , μ̇n〉

φ
�−→∗〈C ′, σ ′, μ̇ ′〉 with no completed topmost invocations ofm.

Recall that any two configurations 〈A, τ , μ̇〉 and 〈A′, σ ′, μ〉 arematching configurations iffA = A′,
τ = τ ′, and μ̇ = [μ +m: (x : T .B)] and hence μ = μ̇�m.
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In accord with Lemma A.12, we will construct a trace via
φ∪θ
�−→ that looks as follows:

〈C0, σ0, μ0〉
φ∪θ
�−→∗〈m(z1);C1, τ1, μ1〉 matching the configurations above, so μ1 = μ̇1�m
φ∪θ
�−→ 〈C1, σ1, μ1〉 a single step by Lemma 8.4 (2) (∗)
... containing n − 1 additional invocations ofm
φ∪θ
�−→ 〈Cn , σn , μn〉
φ∪θ
�−→∗〈C ′, σ ′, μ ′〉 again matching configurations.

By induction on n, we prove that 〈Ci , σi , μ̇i 〉 and 〈Ci , σi , μi 〉 are matching configurations for
i = 1, 2, . . . ,n in two traces. In the base case of the induction, n = 0, all but one line of the given

decomposed trace is empty. That is, we have 〈C0, σ0, μ̇0〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉without any intermedi-

ate calls ofm (but possibly a call in the last configuration). Using Lemma 8.1, we can dropm from

each environment to get a step by step matching trace 〈C0, σ0, μ0〉
φ∪θ
�−→∗ 〈C ′, σ ′, μ ′〉.

For the inductive case,n > 0, the initial steps 〈C0, σ0, μ̇0〉
φ
�−→∗ 〈m(z1);C1, τ1, μ̇1〉 are matched as

in the base case, up to the first invocation ofm, in state τ1, environment μ̇1, and with continuation
C1. At that point, we have τ1 |=φ Qx

z1
, otherwise we can derive a contradiction: We just established

〈C0, σ0, μ0〉
φ∪θ
�−→∗ 〈m(z1);C1, τ1, μ1〉, and if τ1 � |=φ∪θ Qx

z1
, then we get 〈m(z1);C1, τ1, μ1〉

φ∪θ
�−→ �.

Furthermore, by hypothesis of the claim we have 〈C, σ , μ〉
φ∪θ
�−→∗ 〈C0, σ0, μ0〉. Putting these to-

gether, we would obtain a faulting trace from 〈C, σ , μ〉 via
φ∪θ
�−→ . This contradicts the validity of

the correctness judgment (44) for C , which we can appeal to since σ |=φ P gives us σ |=φ∪θ P
by (6). Since τ1 |=φ Qx

z1
, we get υ1 |=φ Qx

x1
. From the given trace and its decomposition, we have

〈Bx
x1
, υ1, μ̇1〉

φ
�−→∗ 〈skip, σ̇1, μ̇1〉, so we have σ̇1�x1 ∈ θ (m) (υ1�x1,τ1 (z1)) by LemmaA.13. So by def-

initions of σ1 and υ1, we have σ1 ∈ θ (m) (τ1,τ1 (z1)). (Strictly speaking, if there are any extra vari-
ables in τ1, they should be dropped from υ1 and the subsequent configurations before applying
the Lemma; then added back to the conclusion of the Lemma using the implicit coercion for in-
terpretations, cf. Section 3.2.) Now we can instantiate the transition semantics for impure call in

Figure 9, to get 〈m(z1);C1, τ1, μ〉
φ∪θ
�−→ 〈C1, σ1, μ〉. Thus 〈C1, σ1, μ̇1〉 and 〈C1, σ1, μ1〉 in both traces

are matching configurations.
What remains from configuration 〈C1, σ1, μ̇1〉 onward is a trace with n − 1 completed invoca-

tions ofm, from a configuration reachable from 〈C, σ , μ̇〉. Sowe can apply the inductive hypothesis

to the trace 〈C1, σ1, μ̇1〉
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉 to obtain the needed trace via

φ∪θ
�−→ and conclude the proof

of Claim B.

Recursion Lemma. It remains to prove Lemma A.13. We just give a sketch, as most of the details
are similar to the argument for (i)–(iii). Here we only review the major differences. To deal with
recursion, we prove the following, which applies to σ , μ̇ and so on, satisfying the hypotheses of
the Lemma, and uses depth-bounded semantics.

Main Claim. For all k ≥ 0, the computation from 〈Bx
x ′, σ , μ̇〉

k via
φ
�−→ (a) does not

fault and (b) if reaches 〈skip, τ , μ̇〉k , then τ �x ′ is in θk+1 (m) (σ �x ′,σ (x ′)).

Lemma A.13 follows directly from the Main Claim using Lemmas A.9 and 8.7, and Lemma A.10.
We proceed to prove the Main Claim by induction on k .
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For the base case of k = 0 the argument of (a) is as follows. Suppose that 〈Bx
x ′, σ , μ̇〉

0
φ
�−→∗

〈C ′, σ ′, μ̇〉0
φ
�−→ �. Since k = 0, there is no call to m in this trace before the last configuration.

So, there is a matching trace 〈Bx
x ′, σ , μ̇〉

0
φ∪θ ′

�−→∗ 〈C ′, σ ′, μ̇〉0, for any θ ′ such that φ ∪ θ ′ is a Φ,Θ-
interpretation. On the other hand, Active(C ′) is field access/update or context call. Thus we have

〈C ′, σ ′, μ̇〉0
φ∪θ ′

�−→ �. Using Lemma 8.7, we get

〈Bx
x ′, σ , μ̇〉

φ∪θ ′

�−→∗ 〈C ′, σ ′, μ̇〉
φ∪θ ′

�−→ �.

This contradicts the premise (44) for B. Thus the computation form 〈Bx
x ′, σ , μ̇〉

0 via
φ
�−→ does not

fault. To prove (b) for k = 0, suppose we have 〈Bx
x ′, σ , μ̇〉

0
φ
�−→∗ 〈skip, τ , μ̇〉0. For abbreviation, let

σx ′
x be σ with x ′ renamed to x , i.e., σx ′

x = [σ + x :σ (x ′)]�x ′ (and the same for τ x ′
x ). By renaming

each state in the trace we get 〈B, σx ′
x , μ̇〉0

φ
�−→∗ 〈skip, τ x ′

x , μ̇〉0. So by definition of [[. . .]], using
Lemma 8.7, we get τ x ′

x ∈ [[sigs(Φ,Θ), Γ,x : T � B]]φ (σx ′
x ) By definition of θ1 (m) we get τ x ′

x �x ∈
θ1 (m) (σx ′

x �x ,σx ′
x (x )), which simplifies to τ �x ′ ∈ θ1 (m) (σ �x ′,σ (x ′)) and we are done with the base

case.
To prove the inductive case k > 0, we need the following claim:

Claim A′: For allC ′,σ ′, μ̇ ′,k ′ andm-truncated trace 〈C, σ , μ̇〉k
φ
�−→∗ 〈C ′, σ ′, μ̇ ′〉k ′ ,

there is a trace 〈C, σ , μ〉k
φ∪θk�−→ ∗ 〈C ′, σ ′, μ ′〉k ′ , where μ ′ = μ̇ ′�m. Also, if C ′ =

m(z);D for some z,D then σ ′ |=φ∪θk
Rx

z .

Using Claim A′ and the induction hypothesis, the proof of (a) in the main claim is similar

to the argument for (i) earlier, and is omitted. To prove (b), suppose we have 〈Bx
x ′, σ , μ̇〉

k
φ
�−→∗

〈skip, τ , μ̇〉k . By Claim A′, we get 〈Bx
x ′, σ , μ̇〉

k
φ∪θk�−→ ∗ 〈skip, τ , μ̇〉k . By reasoning similar to the ar-

gument above for (b) in the base case, but using the definition of θk+1, we get τ �x ′ ∈ θk+1 (m) (σ �
x ′,σ (x ′)).
It remains to prove Claim A′. The proof follows the lines of the argument for Claim A, including

its supporting Claim B, but in place of appeals to the premise (44) for C and to Lemma A.13 for B,
we appeal to the induction hypothesis for k − 1.

A.3 Read for While Rule

The While rule is similar to the one proved sound in Reference [8]. Here, we only show the Read
property.

While

Φ;ψ � C : P ∧ x � 0 � P [ε,wrH ‘f , rdH ‘f ] ε has framed reads

ε is P ;Φ;ψ/(ε,wrH ‘f )-immune Φ;ψ |= P ⇒ H#r wr r � ε

Φ;ψ � while x do C : P ∧ r = alloc � P ∧ x = 0 [ε, rdx]
Let D = while x do C and η = ε, rdx . To prove Read property for this rule, consider any Φ-
interpretation φ that extendsψ . Suppose for states σ ,σ ′,τ ,τ ′, and refperm π , we have

σ |=φ P ∧ r = alloc, σ ′ |=φ P ∧ r = alloc, Agree(σ ,σ ′,η,π ,φ), (46)

and

〈D, σ , _〉
φ
�−→∗ 〈skip, τ , _〉 and 〈D, σ ′, _〉

φ
�−→∗ 〈skip, τ ′, _〉.

We show that there is a refperm ρ such that ρ ⊇ π , ρ (freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′), and
Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocsσ ,τ )).
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By semantics (as pointed out in Theorem 7.4 in Reference [8]), the two traces can be decomposed
into iterations. That is, there arem,n ≥ 0 and states σ0, . . . ,σm , and σ ′0, . . . ,σ

′
n such that σ0 = σ ,

σ ′0 = σ ′, σm = τ , and σ ′n = τ
′. And for 0 < i ≤ m and 0 < j ≤ n, we have traces

〈C, σi−1, _〉
φ
�−→∗ 〈skip, σi , _〉 and 〈C, σ ′j−1, _〉

φ
�−→∗ 〈skip, σ ′j , _〉.

Also, we have σi (x ) � 0, σ ′j (x ) � 0, for 0 ≤ i < m and 0 ≤ j < n, and σm (x ) = 0 and σ ′n (x ) = 0.
To finish the proof, we prove the following claim:

Claim. For all k , 0 ≤ k ≤ m, we have k ≤ n, σk |=φ P and there is a refperm ρk ⊇ π
such that rlocs(σk ,φ,η) = rlocs(σ0,φ,η) and rlocs(σ ′

k
,φ,η) = rlocs(σ ′0,φ,η),

Agree(σk ,σ
′
k
, (η, rdH ‘f ), ρk ,φ) and Agree(σ ′

k
,σk , (η, rdH ‘f ), ρ−1

k
,φ),

ρk (freshRefs(σ0,σk )) ⊆ freshRefs(σ ′0,σ
′
k

),
Lagree(σk ,σ

′
k
, ρk ,written(σ0,σk ) ∪ freshLocs(σ0,σk )), and

Lagree(σ ′
k
,σk , ρ

−1
k
, freshLocs(σ ′0,σ

′
k

)).

To prove Read, first note that from the claim we havem ≤ n and Agree(σm ,σ
′
m ,η, ρm ,φ). Hence

σ ′m (x ) = σm (x ) = 0. This means that the computation starting at σ ′ stops at state σ ′m . Thusm = n.
So, τ ′ = σ ′n = σ ′m . The last statements of the claim for k =m give us

ρ (freshRefs(σ ,τ )) ⊆ freshRefs(σ ′,τ ′) and Lagree(τ ,τ ′, ρ,written(σ ,τ ) ∪ freshLocs(σ ,τ )),

where ρ = ρm . This finishes the soundness proof.
Proof of the claim is by induction on k . For base case of k = 0, we take ρ0 = π . From Equa-

tion (46), we know that Agree(σ ,σ ′,η,π ,φ). Since Φ;ψ |= P ⇒ H#r and σ |=φ P ∧ r = alloc, we

have σ0 |= H ⊆ {null}, so rlocs(σ0,φ, rdH ‘f ) = ∅. Thus, we have Agree(σ0,σ
′
0, (η, rdH ‘f ), ρ0,φ).

On the other hand, since ε has framed reads, η has also framed reads. So using Lemma 6.11, we
have Agree(σ0,σ

′
0,η, ρ

−1
0 ,φ). With a similar argument for σ ′0, we get rlocs(σ ′0,φ, rdH ‘f ) = ∅. Thus,

we have Agree(σ ′0,σ0, (η, rdH ‘f ), ρ−10 ,φ). We also have ρ0 (freshRefs(σ0,σ0)) ⊆ freshRefs(σ ′0,σ
′
0 ),

Lagree(σ0,σ
′
0,π ,written(σ0,σ0) ∪ freshLocs(σ0,σ0)), and Lagree(σ ′0,σ0,π

−1, freshLocs(σ ′0,σ
′
0 ), be-

cause written(σ0,σ0) = freshRefs(σ0,σ0) = freshRefs(σ ′0,σ
′
0 ) = ∅.

To prove the induction step for k � 0, we assume that the claim holds for k − 1. Since k � 0, we
have σk−1 (x ) � 0 (by semantics). From induction hypothesis for k − 1, we know that

Agree(σk−1,σ
′
k−1, (η, rdH ‘f ), ρk−1,φ) and Agree(σ ′k−1,σk−1, (η, rdH ‘f ), ρ−1k−1,φ). (47)

Thus, σ ′
k−1 (x ) � 0. This means k ≤ n, i.e., the computation starting from state σ ′0 has at least k

iterations. Since η is ε, rdx , the agreement (47) implies

Agree(σk−1,σ
′
k−1, (ε, rwH ‘f ), ρk−1,φ) and Agree(σ ′k−1,σk−1, (ε, rwH ‘f ), ρ−1k−1,φ).

So, from the Read property of the premise for C in the rule, there exists refperm ρk ⊇ ρk−1 such
that

ρk (freshRefs(σk−1,σk )) ⊆ freshRefs(σ ′
k−1,σ

′
k

)
Lagree(σk ,σ

′
k
, ρk ,written(σk−1,σk ) ∪ freshLocs(σk−1,σk )).

(48)

Also, from the Write property of the premise for C , we have σk−1→σk |=φ ε,wrH ‘f , rdH ‘f .

Since ε is P ,Φ,ψ/(ε,wrH ‘f )-immune, we have η is P ,Φ,ψ/(ε,wrH ‘f )-immune. From Lemma 6.9
and induction hypothesis for k − 1, we have

rlocs(σk ,φ,η) = rlocs(σk−1,φ,η) = rlocs(σ0,φ,η). (49)

With a similar argument we get

rlocs(σ ′k ,φ,η) = rlocs(σ ′k−1,φ,η) = rlocs(σ ′0,φ,η).
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FromPost condition of the premise forC and the induction hypothesis, we haveσk |=φ P . From side
conditions Φ;ψ |= P ⇒ H#r andwr r � ε ofWhile, using also σ0 |=φ r = alloc, we have [[H ]]φσk ⊆
freshRefs(σ0,σk ). Thus,

rlocs(σk ,φ, rdH ‘f ) ⊆ freshLocs(σ0,σk ). (50)

With a similar argument, we get

rlocs(σ ′k ,φ, rdH ‘f ) ⊆ freshLocs(σ ′0,σ
′
k ). (51)

From induction hypothesis, we have Lagree(σk−1,σ
′
k−1, ρk−1,written(σ0,σk−1) ∪ freshLocs

(σ0,σk−1)). From the premise for C and (47), we have

σk−1,σ
′
k−1⇒σk ,σ

′
k
|=φ ε,wrH ‘f , rdH ‘f ,

σ ′
k−1,σk−1⇒σ ′

k
,σk |=φ ε,wrH ‘f , rdH ‘f ,

Agree(σk−1,σ
′
k−1, (ε, rwH ‘f ), ρk−1,φ), and

Agree(σ ′
k−1,σk−1, (ε, rwH ‘f ), ρ−1

k−1,φ).

(52)

Lemma 6.12 yields Lagree(σk ,σ
′
k
, ρk ,written(σ0,σk−1) ∪ freshLocs(σ0,σk−1)). Since written(σ0,

σk ) ⊆ written(σ0,σk−1) ∪ written(σk−1,σk ) and freshLocs(σ0,σk ) = freshLocs(σ0,σk−1) ∪ freshLocs

(σk−1,σk ), from (48), we have

Lagree(σk ,σ
′
k , ρk ,written(σ0,σk ) ∪ freshLocs(σ0,σk )),

and from the induction hypothesis and (48) we have

ρk (freshRefs(σ0,σk )) = ρk (freshRefs(σ0,σk−1)) ∪ ρk (freshRefs(σk−1,σk ))
⊆ freshRefs(σ ′0,σ

′
k−1) ∪ freshRefs(σ ′

k−1,σ
′
k

)
= freshRefs(σ ′0,σ

′
k

).

Thus, we get
Lagree(σk ,σ

′
k
, ρk ,written(σ0,σk ) ∪ freshLocs(σ0,σk ))

ρk (freshRefs(σ0,σk )) ⊆ freshRefs(σ ′0,σ
′
k

).
(53)

From (52) and (48), using Lemma 6.13, we get

Lagree(σ ′k ,σk , ρ
−1
k , freshLocs(σ ′k−1,σ

′
k )). (54)

By induction hypothesis, we have

Lagree(σ ′k−1,σk−1, ρ
−1
k−1, freshLocs(σ ′0,σ

′
k−1)).

Using Lemma 6.12 from (52), we get

Lagree(σ ′k ,σk , ρ
′, freshLocs(σ ′0,σ

′
k−1))

for some ρ ′ ⊇ ρ−1
k−1. Since freshRefs(σ ′0,σ

′
k−1) ⊆ σ ′

k−1 (alloc), any fresh references in ρ ′ are not rel-
evant, so we get

Lagree(σ ′k ,σk , ρ
−1
k−1, freshLocs(σ ′0,σ

′
k−1)).

Since the restriction of ρ−1
k

to σ ′
k−1 (alloc) is equal to ρ−1

k−1, we get

Lagree(σ ′k ,σk , ρ
−1
k , freshLocs(σ ′0,σ

′
k−1)).

Combining with (54), since freshRefs(σ ′0,σ
′
k

) = freshRefs(σ ′0,σ
′
k−1) ∪ freshRefs(σ ′

k−1,σ
′
k

), we have

Lagree(σ ′k ,σk , ρ
−1
k , freshLocs(σ ′0,σ

′
k )). (55)

The remaining part of the claim is the agreements on effects. Note, (47) implies

Lagree(σk−1,σ
′
k−1, ρk−1, rlocs(σk−1,φ,η)).
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From (52) and (49), using Lemma 6.12, we get Lagree(σk ,σ
′
k
, ρk , rlocs(σk ,φ,η)). This means

Agree(σk ,σ
′
k ,η, ρk ,φ). (56)

Using Lemma 6.11, since η has framed reads, we get

Agree(σ ′k ,σk ,η, ρ
−1
k ,φ). (57)

Now, for rdH ‘f , from (50) and (53), we get

Lagree(σk ,σ
′
k , ρk , rlocs(σk ,φ, rdH ‘f )), (58)

and from Equation (51) and (55)

Lagree(σ ′k ,σk , ρ
−1
k , rlocs(σ ′k ,φ, rdH ‘f )). (59)

So, using (56) and (58), we get Agree(σk ,σ
′
k
, (η, rdH ‘f ), ρk ,φ), and from (57) and (59) we get

Agree(σ ′
k
,σk , (η, rdH ‘f ), ρ−1

k
,φ). This finishes the proof.
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