
Relational Reasoning for Markov
Chains in a Probabilistic Guarded

Lambda Calculus

Alejandro Aguirre1(B), Gilles Barthe1, Lars Birkedal2, Aleš Bizjak2,
Marco Gaboardi3, and Deepak Garg4

1 IMDEA Software Institute, Madrid, Spain
alejandro.aguirre@imdea.org

2 Aarhus University, Aarhus, Denmark
3 University at Buffalo, SUNY, Buffalo, USA

4 MPI-SWS, Kaiserslautern and Saarbrücken, Germany

Abstract. We extend the simply-typed guarded λ-calculus with discrete
probabilities and endow it with a program logic for reasoning about rela-
tional properties of guarded probabilistic computations. This provides
a framework for programming and reasoning about infinite stochastic
processes like Markov chains. We demonstrate the logic sound by inter-
preting its judgements in the topos of trees and by using probabilistic
couplings for the semantics of relational assertions over distributions on
discrete types.

The program logic is designed to support syntax-directed proofs in
the style of relational refinement types, but retains the expressiveness of
higher-order logic extended with discrete distributions, and the ability
to reason relationally about expressions that have different types or syn-
tactic structure. In addition, our proof system leverages a well-known
theorem from the coupling literature to justify better proof rules for
relational reasoning about probabilistic expressions. We illustrate these
benefits with a broad range of examples that were beyond the scope of
previous systems, including shift couplings and lump couplings between
random walks.

1 Introduction

Stochastic processes are often used in mathematics, physics, biology or finance
to model evolution of systems with uncertainty. In particular, Markov chains
are “memoryless” stochastic processes, in the sense that the evolution of the
system depends only on the current state and not on its history. Perhaps the
most emblematic example of a (discrete time) Markov chain is the simple random
walk over the integers, that starts at 0, and that on each step moves one position
either left or right with uniform probability. Let pi be the position at time i.
Then, this Markov chain can be described as:

p0 = 0 pi+1 =

{
pi + 1 with probability 1/2
pi − 1 with probability 1/2

c© The Author(s) 2018
A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 214–241, 2018.
https://doi.org/10.1007/978-3-319-89884-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_8&domain=pdf

Relational Reasoning for Markov Chains 215

The goal of this paper is to develop a programming and reasoning frame-
work for probabilistic computations over infinite objects, such as Markov chains.
Although programming and reasoning frameworks for infinite objects and proba-
bilistic computations are well-understood in isolation, their combination is chal-
lenging. In particular, one must develop a proof system that is powerful enough for
proving interesting properties of probabilistic computations over infinite objects,
and practical enough to support effective verification of these properties.

Modelling Probabilistic Infinite Objects. A first challenge is to model probabilistic
infinite objects. We focus on the case of Markov chains, due to its importance. A
(discrete-time) Markov chain is a sequence of random variables {Xi} over some
fixed type T satisfying some independence property. Thus, the straightforward
way of modelling a Markov chain is as a stream of distributions over T . Going
back to the simple example outlined above, it is natural to think about this
kind of discrete-time Markov chain as characterized by the sequence of positions
{pi}i∈N, which in turn can be described as an infinite set indexed by the natural
numbers. This suggests that a natural way to model such a Markov chain is to
use streams in which each element is produced probabilistically from the previous
one. However, there are some downsides to this representation. First of all, it
requires explicit reasoning about probabilistic dependency, since Xi+1 depends
on Xi. Also, we might be interested in global properties of the executions of
the Markov chain, such as “The probability of passing through the initial state
infinitely many times is 1”. These properties are naturally expressed as properties
of the whole stream. For these reasons, we want to represent Markov chains as
distributions over streams. Seemingly, one downside of this representation is that
the set of streams is not countable, which suggests the need for introducing heavy
measure-theoretic machinery in the semantics of the programming language,
even when the underlying type is discrete or finite.

Fortunately, measure-theoretic machinery can be avoided (for discrete dis-
tributions) by developing a probabilistic extension of the simply-typed guarded
λ-calculus and giving a semantic interpretation in the topos of trees [1]. Infor-
mally, the simply-typed guarded λ-calculus [1] extends the simply-typed lambda
calculus with a later modality, denoted by �. The type �A ascribes expressions
that are available one unit of logical time in the future. The � modality allows
one to model infinite types by using “finite” approximations. For example, a
stream of natural numbers is represented by the sequence of its (increasing) pre-
fixes in the topos of trees. The prefix containing the first i elements has the type
Si � N× �N× . . .× �(i−1)

N, representing that the first element is available now,
the second element a unit time in the future, and so on. This is the key to repre-
senting probability distributions over infinite objects without measure-theoretic
semantics: We model probability distributions over non-discrete sets as discrete
distributions over their (the sets’) approximations. For example, a distribution
over streams of natural numbers (which a priori would be non-discrete since the
set of streams is uncountable) would be modelled by a sequence of distributions
over the finite approximations S1, S2, . . . of streams. Importantly, since each Si

is countable, each of these distributions can be discrete.

216 A. Aguirre et al.

Reasoning About Probabilistic Computations. Probabilistic computations exhibit
a rich set of properties. One natural class of properties is related to probabilities
of events, saying, for instance, that the probability of some event E (or of an
indexed family of events) increases at every iteration. However, several inter-
esting properties of probabilistic computation, such as stochastic dominance or
convergence (defined below) are relational, in the sense that they refer to two
runs of two processes. In principle, both classes of properties can be proved
using a higher-order logic for probabilistic expressions, e.g. the internal logic of
the topos of trees, suitably extended with an axiomatization of finite distribu-
tions. However, we contend that an alternative approach inspired from refine-
ment types is desirable and provides better support for effective verification.
More specifically, reasoning in a higher-order logic, e.g. in the internal logic of
the topos of trees, does not exploit the structure of programs for non-relational
reasoning, nor the structural similarities between programs for relational rea-
soning. As a consequence, reasoning is more involved. To address this issue, we
define a relational proof system that exploits the structure of the expressions
and supports syntax-directed proofs, with necessary provisions for escaping the
syntax-directed discipline when the expressions do not have the same structure.
The proof system manipulates judgements of the form:

Δ | Σ | Γ | Ψ � t1 : A1 ∼ t2 : A2 | φ

where Δ and Γ are two typing contexts, Σ and Ψ respectively denote sets of
assertions over variables in these two contexts, t1 and t2 are well-typed expres-
sions of type A1 and A2, and φ is an assertion that may contain the special
variables r1 and r2 that respectively correspond to the values of t1 and t2. The
context Δ and Γ , the terms t1 and t2 and the types A1 and A2 provide a specifi-
cation, while Σ, Ψ , and φ are useful for reasoning about relational properties over
t1, t2, their inputs and their outputs. This form of judgement is similar to that
of Relational Higher-Order Logic [2], from which our system draws inspiration.

In more detail, our relational logic comes with typing rules that allow one to
reason about relational properties by exploiting as much as possible the syntactic
similarities between t1 and t2, and to fall back on pure logical reasoning when
these are not available. In order to apply relational reasoning to guarded compu-
tations the logic provides relational rules for the later modality � and for a related
modality �, called “constant”. These rules allow the relational verification of
general relational properties that go beyond the traditional notion of program
equivalence and, moreover, they allow the verification of properties of guarded
computations over different types. The ability to reason about computations
of different types provides significant benefits over alternative formalisms for
relational reasoning. For example, it enables reasoning about relations between
programs working on different data structures, e.g. a relation between a program
working on a stream of natural numbers, and a program working on a stream of
pairs of natural numbers, or having different structures, e.g. a relation between
an application and a case expression.

Importantly, our approach for reasoning formally about probabilistic com-
putations is based on probabilistic couplings, a standard tool from the analysis

Relational Reasoning for Markov Chains 217

of Markov chains [3,4]. From a verification perspective, probabilistic couplings
go beyond equivalence properties of probabilistic programs, which have been
studied extensively in the verification literature, and yet support compositional
reasoning [5,6]. The main attractive feature of coupling-based reasoning is that it
limits the need of explicitly reasoning about the probabilities—this avoids com-
plex verification conditions. We provide sound proof rules for reasoning about
probabilistic couplings. Our rules make several improvements over prior rela-
tional verification logics based on couplings. First, we support reasoning over
probabilistic processes of different types. Second, we use Strassen’s theorem [7]
a remarkable result about probabilistic couplings, to achieve greater expressivity.
Previous systems required to prove a bijection between the sampling spaces to
show the existence of a coupling [5,6], Strassen’s theorem gives a way to show
their existence which is applicable in settings where the bijection-based approach
cannot be applied. And third, we support reasoning with what are called shift
couplings, coupling which permits to relate the states of two Markov chains at
possibly different times (more explanations below).

Case Studies. We show the flexibility of our formalism by verifying several exam-
ples of relational properties of probabilistic computations, and Markov chains in
particular. These examples cannot be verified with existing approaches.

First, we verify a classic example of probabilistic non-interference which
requires the reasoning about computations at different types. Second, in the con-
text of Markov chains, we verify an example about stochastic dominance which
exercises our more general rule for proving the existence of couplings modelled by
expressions of different types. Finally, we verify an example involving shift rela-
tions in an infinite computation. This style of reasoning is motivated by “shift”
couplings in Markov chains. In contrast to a standard coupling, which relates the
states of two Markov chains at the same time t, a shift coupling relates the states
of two Markov chains at possibly different times. Our specific example relates a
standard random walk (described earlier) to a variant called a lazy random walk;
the verification requires relating the state of standard random walk at time t to
the state of the lazy random walk at time 2t. We note that this kind of reasoning
is impossible with conventional relational proof rules even in a non-probabilistic
setting. Therefore, we provide a novel family of proof rules for reasoning about
shift relations. At a high level, the rules combine a careful treatment of the later
and constant modalities with a refined treatment of fixpoint operators, allowing
us to relate different iterates of function bodies.

Summary of Contributions

With the aim of providing a general framework for programming and reasoning
about Markov chains, the three main contributions of this work are:

1. A probabilistic extension of the guarded λ-calculus, that enables the definition
of Markov chains as discrete probability distributions over streams.

2. A relational logic based on coupling to reason in a syntax-directed manner
about (relational) properties of Markov chains. This logic supports reasoning

218 A. Aguirre et al.

about programs that have different types and structures. Additionally, this
logic uses results from the coupling literature to achieve greater expressivity
than previous systems.

3. An extension of the relational logic that allows to relate the states of two
streams at possibly different times. This extension supports reasoning prin-
ciples, such as shift couplings, that escape conventional relational logics.

Omitted technical details can be found in the full version of the paper with
appendix at https://arxiv.org/abs/1802.09787.

2 Mathematical Preliminaries

This section reviews the definition of discrete probability sub-distributions and
introduces mathematical couplings.

Definition 1 (Discrete probability distribution). Let C be a discrete (i.e.,
finite or countable) set. A (total) distribution over C is a function μ : C → [0, 1]
such that

∑
x∈C μ(x) = 1. The support of a distribution μ is the set of points

with non-zero probability, supp μ � {x ∈ C | μ(x) > 0}. We denote the set of
distributions over C as D(C). Given a subset E ⊆ C, the probability of sampling
from μ a point in E is denoted Prx←μ[x ∈ E], and is equal to

∑
x∈E μ(x).

Definition 2 (Marginals). Let μ be a distribution over a product space C1 ×
C2. The first (second) marginal of μ is another distribution D(π1)(μ) (D(π2)(μ))
over C1 (C2) defined as:

D(π1)(μ)(x) =
∑

y∈C2

μ(x, y)

(
D(π2)(μ)(y) =

∑
x∈C1

μ(x, y)

)

Probabilistic Couplings. Probabilistic couplings are a fundamental tool in the
analysis of Markov chains. When analyzing a relation between two probability
distributions it is sometimes useful to consider instead a distribution over the
product space that somehow “couples” the randomness in a convenient manner.

Consider for instance the case of the following Markov chain, which counts
the total amount of tails observed when tossing repeatedly a biased coin with
probability of tails p:

n0 = 0 ni+1 =
{

ni + 1 with probability p
ni with probability (1 − p)

If we have two biased coins with probabilities of tails p and q with p ≤ q and
we respectively observe {ni} and {mi} we would expect that, in some sense,
ni ≤ mi should hold for all i (this property is known as stochastic dominance).
A formal proof of this fact using elementary tools from probability theory would
require to compute the cumulative distribution functions for ni and mi and then
to compare them. The coupling method reduces this proof to showing a way to
pair the coin flips so that if the first coin shows tails, so does the second coin.

We now review the definition of couplings and state relevant properties.

https://arxiv.org/abs/1802.09787

Relational Reasoning for Markov Chains 219

Definition 3 (Couplings). Let μ1 ∈ D(C1) and μ2 ∈ D(C2), and R ⊆ C1×C2.

– A distribution μ ∈ D(C1 × C2) is a coupling for μ1 and μ2 iff its first and
second marginals coincide with μ1 and μ2 respectively, i.e. D(π1)(μ) = μ1 and
D(π2)(μ) = μ2.

– A distribution μ ∈ D(C1×C2) is a R-coupling for μ1 and μ2 if it is a coupling
for μ1 and μ2 and, moreover, Pr(x1,x2)←μ[R x1 x2] = 1, i.e., if the support of
the distribution μ is included in R.

Moreover, we write �μ1,μ2 .R iff there exists a R-coupling for μ1 and μ2.

Couplings always exist. For instance, the product distribution of two distribu-
tions is always a coupling. Going back to the example about the two coins, it
can be proven by computation that the following is a coupling that lifts the
less-or-equal relation (0 indicating heads and 1 indicating tails):{

(0, 0) w/ prob (1 − q) (0, 1) w/ prob (q − p)
(1, 0) w/ prob 0 (1, 1) w/ prob p

The following theorem in [7] gives a necessary and sufficient condition for the
existence of R-couplings between two distributions. The theorem is remarkable in
the sense that it proves an equivalence between an existential property (namely
the existence of a particular coupling) and a universal property (checking, for
each event, an inequality between probabilities).

Theorem 1 (Strassen’s theorem). Consider μ1 ∈ D(C1) and μ2 ∈ D(C2),
and R ⊆ C1 × C2. Then �μ1,μ2 .R iff for every X ⊆ C1, Prx1←μ1 [x1 ∈ X] ≤
Prx2←μ2 [x2 ∈ R(X)], where R(X) is the image of X under R, i.e. R(X) = {y ∈
C2 | ∃x ∈ X. R x y}.

An important property of couplings is closure under sequential composition.

Lemma 1 (Sequential composition couplings). Let μ1 ∈ D(C1), μ2 ∈
D(C2), M1 : C1 → D(D1) and M2 : C2 → D(D2). Moreover, let R ⊆ C1 × C2

and S ⊆ D1 ×D2. Assume: (1) �μ1,μ2 .R; and (2) for every x1 ∈ C1 and x2 ∈ C2

such that R x1 x2, we have �M1(x1),M2(x2).S. Then �(bind μ1 M1),(bind μ2 M2).S,
where bind μ M is defined as

(bind μ M)(y) =
∑

x

μ(x) · M(x)(y)

We conclude this section with the following lemma, which follows from Strassen’s
theorem:

Lemma 2 (Fundamental lemma of couplings). Let R ⊆ C1×C2, E1 ⊆ C1

and E2 ⊆ C2 such that for every x1 ∈ E1 and x2 ∈ C2, R x1 x2 implies x2 ∈ E2,
i.e. R(E1) ⊆ E2. Moreover, let μ1 ∈ D(C1) and μ2 ∈ D(C2) such that �μ1,μ2 .R.
Then

Pr
x1←μ1

[x1 ∈ E1] ≤ Pr
x2←μ2

[x2 ∈ E2]

220 A. Aguirre et al.

This lemma can be used to prove probabilistic inequalities from the existence of
suitable couplings:

Corollary 1. Let μ1, μ2 ∈ D(C):

1. If �μ1,μ2 .(=), then for all x ∈ C, μ1(x) = μ2(x).
2. If C = N and �μ1,μ2 .(≥), then for all n ∈ N, Prx←μ1 [x ≥ n] ≥ Prx←μ2 [x ≥ n]

In the example at the beginning of the section, the property we want to prove
is precisely that, for every k and i, the following holds:

Pr
x1←ni

[x1 ≥ k] ≤ Pr
x2←mi

[x2 ≥ k]

Since we have a ≤-coupling, this proof is immediate. This example is formalized
in Subsect. 3.3.

3 Overview of the System

In this section we give a high-level overview of our system, with the details on
Sects. 4, 5 and 6. We start by presenting the base logic, and then we show how
to extend it with probabilities and how to build a relational reasoning system
on top of it.

3.1 Base Logic: Guarded Higher-Order Logic

Our starting point is the Guarded Higher-Order Logic [1] (Guarded HOL)
inspired by the topos of trees. In addition to the usual constructs of HOL to
reason about lambda terms, this logic features the � and � modalities to reason
about infinite terms, in particular streams. The � modality is used to reason
about objects that will be available in the future, such as tails of streams. For
instance, suppose we want to define an All(s, φ) predicate, expressing that all
elements of a stream s ≡ n::xs satisfy a property φ. This can be axiomatized as
follows:

∀(xs : �StrN)(n : N).φ n ⇒ � [s ← xs] .All(s, x.φ) ⇒ All(n::xs, x.φ)

We use x.φ to denote that the formula φ depends on a free variable x, which will
get replaced by the first argument of All. We have two antecedents. The first
one states that the head n satisfies φ. The second one, � [s ← xs] .All(s, x.φ),
states that all elements of xs satisfy φ. Formally, xs is the tail of the stream and
will be available in the future, so it has type �StrN. The delayed substitution
�[s ← xs] replaces s of type StrN with xs of type �StrN inside All and shifts the
whole formula one step into the future. In other words, � [s ← xs] .All(s, x.φ)
states that All(−, x.φ) will be satisfied by xs in the future, once it is available.

Relational Reasoning for Markov Chains 221

3.2 A System for Relational Reasoning

When proving relational properties it is often convenient to build proofs guided
by the syntactic structure of the two expressions to be related. This style of
reasoning is particularly appealing when the two expressions have the same
structure and control-flow, and is appealingly close to the traditional style of
reasoning supported by refinement types. At the same time, a strict adherence to
the syntax-directed discipline is detrimental to the expressiveness of the system;
for instance, it makes it difficult or even impossible to reason about structurally
dissimilar terms. To achieve the best of both worlds, we present a relational proof
system built on top of Guarded HOL, which we call Guarded RHOL. Judgements
have the shape:

Δ | Σ | Γ | Ψ � t1 : A1 ∼ t2 : A2 | φ

where φ is a logical formula that may contain two distinguished variables r1
and r2 that respectively represent the expressions t1 and t2. This judgement
subsumes two typing judgements on t1 and t2 and a relation φ on these two
expressions. However, this form of judgement does not tie the logical property
to the type of the expressions, and is key to achieving flexibility while supporting
syntax-directed proofs whenever needed. The proof system combines rules of two
different flavours: two-sided rules, which relate expressions with the same top-
level constructs, and one-sided rules, which operate on a single expression.

We then extend Guarded HOL with a modality � that lifts assertions over
discrete types C1 and C2 to assertions over D(C1) and D(C2). Concretely, we
define for every assertion φ, variables x1 and x2 of type C1 and C2 respectively,
and expressions t1 and t2 of type D(C1) and D(C2) respectively, the modal
assertion �[x1←t1,x2←t2]φ which holds iff the interpretations of t1 and t2 are
related by the probabilistic lifting of the interpretation of φ. We call this new
logic Probabilistic Guarded HOL.

We accordingly extend the relational proof system to support reasoning about
probabilistic expressions by adding judgements of the form:

Δ | Σ | Γ | Ψ � t1 : D(C1) ∼ t2 : D(C2) | �[x1←r1,x2←r2]φ

expressing that t1 and t2 are distributions related by a φ-coupling. We call
this proof system Probabilistic Guarded RHOL. These judgements can be built
by using the following rule, that lifts relational judgements over discrete types
C1 and C2 to judgements over distribution types D(C1) and D(C2) when the
premises of Strassen’s theorem are satisfied.

Δ | Σ | Γ | Ψ � ∀X1 ⊆ C1.Pry1←t1 [y1 ∈ X1] ≤ Pry2←t2 [∃y1 ∈ X1.φ]
Δ | Σ | Γ | Ψ � t1 : D(C1) ∼ t2 : D(C2) | �[y1←r1,y2←r2]φ

COUPLING

Recall that (discrete time) Markov chains are “memoryless” probabilistic
processes, whose specification is given by a (discrete) set C of states, an initial
state s0 and a probabilistic transition function step : C → D(C), where D(S)
represents the set of discrete distributions over C. As explained in the intro-
duction, a convenient modelling of Markov chains is by means of probabilistic

222 A. Aguirre et al.

streams, i.e. to model a Markov chain as an element of D(StrS), where S is its
underlying state space. To model Markov chains, we introduce a markov oper-
ator with type C → (C → D(C)) → D(StrC) that, given an initial state and a
transition function, returns a Markov chain. We can reason about Markov chains
by the [Markov] rule (the context, omitted, does not change):

� t1 : C1 ∼ t2 : C2 | φ
� h1 : C1 → D(C1) ∼ h2 : C2 → D(C2) | ψ3

� ψ4

� markov(t1, h1) : D(StrD1) ∼ markov(t2, h2) : D(StrD2) | �[y1←r1
y2←r2]

φ′ Markov

where

⎧⎪⎨
⎪⎩

ψ3 ≡ ∀x1x2.φ[x1/r1][x2/r2] ⇒ �[y1←r1 x1,y2←r2 x2]φ[y1/r1][y2/r2]
ψ4 ≡ ∀x1 x2 xs1 xs2.φ[x1/r1][x2/r2] ⇒ � [y1 ← xs1, y2 ← xs2] .φ′ ⇒

φ′[x1::xs1/y1][x2::xs2/y2]

Informally, the rule stipulates the existence of an invariant φ over states. The
first premise insists that the invariant hold on the initial states, the condition
ψ3 states that the transition functions preserve the invariant, and ψ4 states that
the invariant φ over pairs of states can be lifted to a stream property φ′.

Other rules of the logic are given in Fig. 1. The language construct munit
creates a point distribution whose entire mass is at its argument. Accordingly,
the [UNIT] rule creates a straightforward coupling. The [MLET] rule internalizes
sequential composition of couplings (Lemma1) into the proof system. The con-
struct let x = t in t′ composes a distribution t with a probabilistic computation
t′ with one free variable x by sampling x from t and running t′. The [MLET-L]
rule supports one-sided reasoning about let x = t in t′ and relies on the fact
that couplings are closed under convex combinations. Note that one premise of
the rule uses a unary judgement, with a non-relational modality �[x←r]φ whose
informal meaning is that φ holds with probability 1 in the distribution r.

The following table summarizes the different base logics we consider, the
relational systems we build on top of them, including the ones presented in [2],
and the equivalences between both sides:

Relational logic Base logic

RHOL [2]
Γ | Ψ � t1 ∼ t2 | φ

[2]⇐⇒ HOL [2]
Γ | Ψ � φ[t1/r1][t2/r2]

Guarded RHOL §6
Δ | Σ | Γ | Ψ � t1 ∼ t2 | φ

Thm 3⇐⇒ Guarded HOL [1]
Δ | Σ | Γ | Ψ � φ[t1/r1][t2/r2]

Probabilistic Guarded RHOL §6
Δ | Σ | Γ | Ψ � t1 ∼ t2 | �[y1←r1,y2←r2].φ

Thm 3⇐⇒ Probabilistic Guarded HOL §5
Δ | Σ | Γ | Ψ � �[y1←t1,y2←t2].φ

3.3 Examples

We formalize elementary examples from the literature on security and Markov
chains. None of these examples can be verified in prior systems. Uniformity of

Relational Reasoning for Markov Chains 223

Fig. 1. Proof rules for probabilistic constructs

one-time pad and lumping of random walks cannot even be stated in prior sys-
tems because the two related expressions in these examples have different types.
The random walk vs lazy random walk (shift coupling) cannot be proved in prior
systems because it requires either asynchronous reasoning or code rewriting.
Finally, the biased coin example (stochastic dominance) cannot be proved in
prior work because it requires Strassen’s formulation of the existence of coupling
(rather than a bijection-based formulation) or code rewriting. We give additional
details below.

One-Time Pad/Probabilistic Non-interference. Non-interference [8] is a
baseline information flow policy that is often used to model confidentiality of
computations. In its simplest form, non-interference distinguishes between public
(or low) and private (or high) variables and expressions, and requires that the
result of a public expression not depend on the value of its private parameters.
This definition naturally extends to probabilistic expressions, except that in this
case the evaluation of an expression yields a distribution rather than a value.
There are deep connections between probabilistic non-interference and several
notions of (information-theoretic) security from cryptography. In this paragraph,
we illustrate different flavours of security properties for one-time pad encryption.
Similar reasoning can be carried out for proving (passive) security of secure
multiparty computation algorithms in the 3-party or multi-party setting [9,10].

One-time pad is a perfectly secure symmetric encryption scheme. Its space
of plaintexts, ciphertexts and keys is the set {0, 1}�—fixed-length bitstrings of
size �. The encryption algorithm is parametrized by a key k—sampled uniformly
over the set of bitstrings {0, 1}�—and maps every plaintext m to the ciphertext
c = k ⊕ m, where the operator ⊕ denotes bitwise exclusive-or on bitstrings. We
let otp denote the expression λm.let k = U{0,1}� in munit(k ⊕ m), where UX is
the uniform distribution over a finite set X.

One-time pad achieves perfect security, i.e. the distributions of ciphertexts is
independent of the plaintext. Perfect security can be captured as a probabilistic
non-interference property:

� otp : {0, 1}� → D({0, 1}�) ∼ otp : {0, 1}� → D({0, 1}�) | ∀m1m2.r1 m1
�= r2 m2

224 A. Aguirre et al.

where e1
�= e2 is used as a shorthand for �[y1←e1,y2←e2]y1 = y2. The crux of the

proof is to establish

m1,m2 : {0, 1}� � U{0,1}� : D({0, 1}�) ∼ U{0,1}� : D({0, 1}�) | r1 ⊕ m2
�= r2 ⊕ m1

using the [COUPLING] rule. It suffices to observe that the assertion induces a
bijection, so the image of an arbitrary set X under the relation has the same
cardinality as X, and hence their probabilities w.r.t. the uniform distributions
are equal. One can then conclude the proof by applying the rules for monadic
sequenciation ([MLET]) and abstraction (rule [ABS] in appendix), using algebraic
properties of ⊕.

Interestingly, one can prove a stronger property: rather than proving that the
ciphertext is independent of the plaintext, one can prove that the distribution
of ciphertexts is uniform. This is captured by the following judgement:

c1, c2 : {0, 1}� � otp : {0, 1}� → D({0, 1}�) ∼ otp : {0, 1}� → D({0, 1}�) | ψ

where ψ � ∀m1 m2.m1 = m2 ⇒ �[y1←r1 m1,y2←r2 m2]y1 = c1 ⇔ y2 = c2. This
style of modelling uniformity as a relational property is inspired from [11]. The
proof is similar to the previous one and omitted. However, it is arguably more
natural to model uniformity of the distribution of ciphertexts by the judgement:

� otp : {0, 1}� → D({0, 1}�) ∼ U{0,1}� : D({0, 1}�) | ∀m. r1 m
�= r2

This judgement is closer to the simulation-based notion of security that is used
pervasively in cryptography, and notably in Universal Composability [12]. Specif-
ically, the statement captures the fact that the one-time pad algorithm can
be simulated without access to the message. It is interesting to note that the
judgement above (and more generally simulation-based security) could not be
expressed in prior works, since the two expressions of the judgement have differ-
ent types—note that in this specific case, the right expression is a distribution
but in the general case the right expression will also be a function, and its domain
will be a projection of the domain of the left expression.

The proof proceeds as follows. First, we prove

� U{0,1}� ∼ U{0,1}� | ∀m. �[y1←r1,y2←r2] y1 ⊕ m = y2

using the [COUPLING] rule. Then, we apply the [MLET] rule to obtain

� let k = U{0,1}� in
munit(k ⊕ m) ∼ let k = U{0,1}� in

munit(k) | �[y1←r1,y2←r2]y1 = y2

We have let k = U{0,1}� in munit(k) ≡ U{0,1}� ; hence by equivalence (rule [Equiv]
in appendix), this entails

� let k = U{0,1}� in munit(k ⊕ m) ∼ U{0,1}� | �[y1←r1,y2←r2]y1 = y2

We conclude by applying the one-sided rule for abstraction.

Relational Reasoning for Markov Chains 225

Stochastic Dominance. Stochastic dominance defines a partial order between
random variables whose underlying set is itself a partial order; it has many dif-
ferent applications in statistical biology (e.g. in the analysis of the birth-and-
death processes), statistical physics (e.g. in percolation theory), and economics.
First-order stochastic dominance, which we define below, is also an important
application of probabilistic couplings. We demonstrate how to use our proof sys-
tem for proving (first-order) stochastic dominance for a simple Markov process
which samples biased coins. While the example is elementary, the proof method
extends to more complex examples of stochastic dominance, and illustrates the
benefits of Strassen’s formulation of the coupling rule over alternative formula-
tions stipulating the existence of bijections (explained later).

We start by recalling the definition of (first-order) stochastic dominance for
the N-valued case. The definition extends to arbitrary partial orders.

Definition 4 (Stochastic dominance). Let μ1, μ2 ∈ D(N). We say that μ2

stochastically dominates μ1, written μ1 ≤SD μ2, iff for every n ∈ N,

Pr
x←μ1

[x ≥ n] ≤ Pr
x←μ2

[x ≥ n]

The following result, equivalent to Corollary 1, characterizes stochastic domi-
nance using probabilistic couplings.

Proposition 1. Let μ1, μ2 ∈ D(N). Then μ1 ≤SD μ2 iff �μ1,μ2 .(≤).

We now turn to the definition of the Markov chain. For p ∈ [0, 1], we consider
the parametric N-valued Markov chain coins � markov(0, h), with initial state 0
and (parametric) step function:

h � λx.let b = B(p) in munit(x + b)

where, for p ∈ [0, 1], B(p) is the Bernoulli distribution on {0, 1} with probability
p for 1 and 1 − p for 0. Our goal is to establish that coins is monotonic, i.e. for
every p1, p2 ∈ [0, 1], p1 ≤ p2 implies coins p1 ≤SD coins p2. We formalize this
statement as

� coins : [0, 1] → D(StrN) ∼ coins : [0, 1] → D(StrN) | ψ

where ψ � ∀p1, p2.p1 ≤ p2 ⇒ �[y1←r1,y2←r2] All(y1, y2, z1.z2.z1 ≤ z2). The crux
of the proof is to establish stochastic dominance for the Bernoulli distribution:

p1 : [0, 1], p2 : [0, 1] | p1 ≤ p2 � B(p1) : D(N) ∼ B(p2) : D(N) | r1
�≤ r2

where we use e1
�≤ e2 as shorthand for �[y1←e1,y2←e2]y1 ≤ y2. This is proved

directly by the [COUPLING] rule and checking by simple calculations that the
premise of the rule is valid.

We briefly explain how to conclude the proof. Let h1 and h2 be the step
functions for p1 and p2 respectively. It is clear from the above that (context
omitted):

x1 ≤ x2 � h1 x1 : D(B) ∼ h2 x2 : D(B) | �[y1←r1,y2←r2].y1 ≤ y2

226 A. Aguirre et al.

and by the definition of All:

x1 ≤ x2 ⇒ All(xs1, xs2, z1.z2.z1 ≤ z2) ⇒ All(x1:: � xs1, x2:: � xs2, z1.z2.z1 ≤ z2)

So, we can conclude by applying the [Markov] rule.
It is instructive to compare our proof with prior formalizations, and in par-

ticular with the proof in [5]. Their proof is carried out in the pRHL logic, whose
[COUPLING] rule is based on the existence of a bijection that satisfies some prop-
erty, rather than on our formalization based on Strassen’s Theorem. Their rule
is motivated by applications in cryptography, and works well for many examples,
but is inconvenient for our example at hand, which involves non-uniform proba-
bilities. Indeed, their proof is based on code rewriting, and is done in two steps.
First, they prove equivalence between sampling and returning x1 from B(p1);
and sampling z1 from B(p2), z2 from B(p1/p2) and returning z = z1 ∧ z2. Then,
they find a coupling between z and B(p2).

Shift Coupling: Random Walk vs Lazy Random Walk. The previous
example is an instance of a lockstep coupling, in that it relates the k-th element
of the first chain with the k-th element of the second chain. Many examples from
the literature follow this lockstep pattern; however, it is not always possible to
establish lockstep couplings. Shift couplings are a relaxation of lockstep couplings
where we relate elements of the first and second chains without the requirement
that their positions coincide.

We consider a simple example that motivates the use of shift couplings. Con-
sider the random walk and lazy random walk (which, at each time step, either
chooses to move or stay put), both defined as Markov chains over Z. For sim-
plicity, assume that both walks start at position 0. It is not immediate to find a
coupling between the two walks, since the two walks necessarily get desynchro-
nized whenever the lazy walk stays put. Instead, the trick is to consider a lazy
random walk that moves two steps instead of one. The random walk and the
lazy random walk of step 2 are defined by the step functions:

step � λx.let z = U{−1,1} in munit(z + x)
lstep2 � λx.let z = U{−1,1} in let b = U{0,1} in munit(x + 2 ∗ z ∗ b)

After 2 iterations of step, the position has either changed two steps to the left or
to the right, or has returned to the initial position, which is the same behaviour
lstep2 has on every iteration. Therefore, the coupling we want to find should
equate the elements at position 2i in step with the elements at position i in
lstep2. The details on how to prove the existence of this coupling are in Sect. 6.

Lumped Coupling: Random Walks on 3 and 4 Dimensions. A Markov
chain is recurrent if it has probability 1 of returning to its initial state, and
transient otherwise. It is relatively easy to show that the random walk over
Z is recurrent. One can also show that the random walk over Z

2 is recurrent.
However, the random walk over Z

3 is transient.

Relational Reasoning for Markov Chains 227

For higher dimensions, we can use a coupling argument to prove transience.
Specifically, we can define a coupling between a lazy random walk in n dimensions
and a random walk in n+m dimensions, and derive transience of the latter from
transience of the former. We define the (lazy) random walks below, and sketch
the coupling arguments.

Specifically, we show here the particular case of the transience of the 4-
dimensional random walk from the transience of the 3-dimensional lazy random
walk. We start by defining the stepping functions:

step4 : Z4 → D(Z4) � λz1.let x1 = UU4 in munit(z1 +4 x1)
lstep3 : Z3 → D(Z3) � λz2.let x2 = UU3 in let b2 = B(3/4) in munit(z2 +3 b2 ∗ x2)

where Ui = {(±1, 0, . . . 0), . . . , (0, . . . , 0,±1)} are the vectors of the basis of Zi

and their opposites. Then, the random walk of dimension 4 is modelled by
rwalk4 � markov(0, step4), and the lazy walk of dimension 3 is modelled by
lwalk3 � markov(0, step3). We want to prove:

� rwalk4 : D(StrZ4) ∼ lwalk3 : D(StrZ3) | �[y1←r1
y2←r2]

All(y1, y2, z1.z2.pr43(z1) = z2)

where prn2
n1

denotes the standard projection from Z
n2 to Z

n1 .
We apply the [Markov] rule. The only interesting premise requires proving

that the transition function preserves the coupling:

p2 = pr43(p1) � step4 ∼ lstep3 | ∀x1x2.x2 = pr43(x1) ⇒ �[y1←r1 x1
y2←r2 x2]

pr43(y1) = y2

To prove this, we need to find the appropriate coupling, i.e., one that pre-
serves the equality. The idea is that the step in Z

3 must be the projection of the
step in Z

4. This corresponds to the following judgement:

λz1. let x1 = UU4 in
munit(z1 +4 x1)

∼
λz2. let x2 = UU3 in

let b2 = B(3/4) in
munit(z2 +3 b2 ∗ x2)

∣∣∣∣∣∣
∀z1z2.pr43(z1) = z2 ⇒
pr43(r1 z1)

�= r2 z2

which by simple equational reasoning is the same as

λz1. let x1 = UU4 in
munit(z1 +4 x1)

∼ λz2. let p2 = UU3 × B(3/4) in
munit(z2 +3 π1(p2) ∗ π2(p2))

∣
∣
∣
∣

∀z1z2. pr43(z1) = z2 ⇒
pr43(r1 z1)

�
= r2 z2

We want to build a coupling such that if we sample (0, 0, 0, 1) or (0, 0, 0,−1)
from UU3 , then we sample 0 from B(3/4), and otherwise if we sample (x1, x2, x3, 0)
from UU4 , we sample (x1, x2, x3) from U3. Formally, we prove this with the
[Coupling] rule. Given X : U4 → B, by simple computation we show that:

Pr
z1∼UU4

[z1 ∈ X] ≤ Pr
z2∼UU3×B(3/4)

[z2 ∈ {y | ∃x ∈ X.pr43(x) = π1(y) ∗ π2(y)}]

This concludes the proof. From the previous example, it follows that the
lazy walk in 3 dimensions is transient, since the random walk in 3 dimensions
is transient. By simple reasoning, we now conclude that the random walk in 4
dimensions is also transient.

228 A. Aguirre et al.

4 Probabilistic Guarded Lambda Calculus

To ensure that a function on infinite datatypes is well-defined, one must check
that it is productive. This means that any finite prefix of the output can be
computed in finite time. For instance, consider the following function on streams:

letrec bad (x : xs) = x : tail(bad xs)

This function is not productive since only the first element can be computed.
We can argue this as follows: Suppose that the tail of a stream is available one
unit of time after its head, and that x:xs is available at time 0. How much time
does it take for bad to start outputting its tail? Assume it takes k units of time.
This means that tail(bad xs) will be available at time k + 1, since xs is only
available at time 1. But tail(bad xs) is exactly the tail of bad(x:xs), and
this is a contradiction, since x:xs is available at time 0 and therefore the tail of
bad(x:xs) should be available at time k. Therefore, the tail of bad will never
be available.

The guarded lambda calculus solves the productivity problem by distinguish-
ing at type level between data that is available now and data that will be avail-
able in the future, and restricting when fixpoints can be defined. Specifically,
the guarded lambda calculus extends the usual simply typed lambda calculus
with two modalities: � (pronounced later) and � (constant). The later modality
represents data that will be available one step in the future, and is introduced
and removed by the term formers � and prev respectively. This modality is used
to guard recursive occurrences, so for the calculus to remain productive, we must
restrict when it can be eliminated. This is achieved via the constant modality,
which expresses that all the data is available at all times. In the remainder of
this section we present a probabilistic extension of this calculus.

Syntax. Types of the calculus are defined by the grammar

A,B ::= b | N | A × B | A + B | A → B | StrA | � A | �A | D(C)

where b ranges over a collection of base types. StrA is the type of guarded streams
of elements of type A. Formally, the type StrA is isomorphic to A × �StrA. This
isomorphism gives a way to introduce streams with the function (::) : A →
�StrA → StrA and to eliminate them with the functions hd : StrA → A and
tl : StrA → �StrA. D(C) is the type of distributions over discrete types C.
Discrete types are defined by the following grammar, where b0 are discrete base
types, e.g., Z.

C,D ::= b0 | N | C × D | C + D | StrC | � C.

Note that, in particular, arrow types are not discrete but streams are. This is due
to the semantics of streams as sets of finite approximations, which we describe
in the next subsection. Also note that �StrA is not discrete since it makes the
full infinite streams available.

Relational Reasoning for Markov Chains 229

We also need to distinguish between arbitrary types A,B and constant types
S, T , which are defined by the following grammar

S, T ::= bC | N | S × T | S + T | S → T | � A

where bC is a collection of constant base types. Note in particular that for any
type A the type � A is constant.

The terms of the language t are defined by the following grammar

t ::= x | c | 0 | St | case t of 0 �→ t;S �→ t | μ | munit(t) | let x = t in t

| 〈t, t〉 | π1t | π2t | inj1t | inj2t | case t of inj1x.t; inj2y.t | λx.t | t t | fix x. t

| t::ts | hd t | tl t | box t | letb x ← t in t | letc x ← t in t | �ξ.t | prev t

where ξ is a delayed substitution, a sequence of bindings [x1 ← t1, . . . , xn ← tn].
The terms c are constants corresponding to the base types used and munit(t)
and let x = t in t are the introduction and sequencing construct for probability
distributions. The meta-variable μ stands for base distributions like UC and B(p).

Delayed substitutions were introduced in [13] in a dependent type theory to
be able to work with types dependent on terms of type �A. In the setting of a
simple type theory, such as the one considered in this paper, delayed substitu-
tions are equivalent to having the applicative structure [14] � for the � modality.
However, delayed substitutions extend uniformly to the level of propositions, and
thus we choose to use them in this paper in place of the applicative structure.

Denotational Semantics. The meaning of terms is given by a denotational model
in the category S of presheaves over ω, the first infinite ordinal. This category
S is also known as the topos of trees [15]. In previous work [1], it was shown
how to model most of the constructions of the guarded lambda calculus and its
internal logic, with the notable exception of the probabilistic features. Below we
give an elementary presentation of the semantics.

Informally, the idea behind the topos of trees is to represent (infinite) objects
from their finite approximations, which we observe incrementally as time passes.
Given an object x, we can consider a sequence {xi} of its finite approximations
observable at time i. These are trivial for finite objects, such as a natural number,
since for any number n, ni = n at every i. But for infinite objects such as streams,
the ith approximation is the prefix of length i + 1.

Concretely, the category S consists of:

– Objects X: families of sets {Xi}i∈N together with restriction functions rX
n :

Xn+1 → Xn. We will write simply rn if X is clear from the context.
– Morphisms X → Y : families of functions αn : Xn → Yn commuting with

restriction functions in the sense of rY
n ◦ αn+1 = αn ◦ rX

n .

The full interpretation of types of the calculus can be found in Fig. 8 in the
appendix. The main points we want to highlight are:

– Streams over a type A are interpreted as sequences of finite prefixes of elements
of A with the restriction functions of A:

�StrA� � �A�0 × {∗} r0×!←−−− �A�1 × �StrA�0
r1×r0×!←−−−−− �A�2 × �StrA�1 ← · · ·

230 A. Aguirre et al.

– Distributions over a discrete object C are defined as a sequence of distributions
over each �C�i:

�D(C)� � D(�C�0)
D(r0)←− D(�C�1)

D(r1)←− D(�C�2)
D(r2)←− . . . ,

where D(�C�i) is the set of (probability density) functions μ : �C�i → [0, 1]
such that

∑
x∈X μx = 1, and D(ri) adds the probability density of all the

points in �C�i+1 that are sent by ri to the same point in the �C�i. In other
words, D(ri)(μ)(x) = Pry←μ[ri(y) = x]

An important property of the interpretation is that discrete types are inter-
preted as objects X such that Xi is finite or countably infinite for every i. This
allows us to define distributions on these objects without the need for measure
theory. In particular, the type of guarded streams StrA is discrete provided A is,
which is clear from the interpretation of the type StrA. Conceptually this holds
because �StrA�i is an approximation of real streams, consisting of only the first
i + 1 elements.

An object X of S is constant if all its restriction functions are bijections.
Constant types are interpreted as constant objects of S and for a constant type
A the objects ��A� and �A� are isomorphic in S.

Typing Rules. Terms are typed under a dual context Δ | Γ , where Γ is a usual
context that binds variables to a type, and Δ is a constant context containing
variables bound to types that are constant. The term letc x ← u in t allows us
to shift variables between constant and non-constant contexts. The typing rules
can be found in Fig. 2.

The semantics of such a dual context Δ | Γ is given as the product of types
in Δ and Γ , except that we implicitly add � in front of every type in Δ. In the
particular case when both contexts are empty, the semantics of the dual context
correspond to the terminal object 1, which is the singleton set {∗} at each time.

The interpretation of the well-typed term Δ | Γ � t : A is defined by induc-
tion on the typing derivation, and can be found in Fig. 9 in the appendix.

Applicative Structure of the Later Modality. As in previous work we can define
the operator � satisfying the typing rule

Δ | Γ � t : �(A → B) Δ | Γ � u : �A

Δ | Γ � t � u : �B

and the equation (�t) � (�u) ≡ �(t u) as the term t � u � � [f ← t, x ← u] .f x.

Example: Modelling Markov Chains. As an application of � and an example
of how to use guardedness and probabilities together, we now give the precise
definition of the markov construct that we used to model Markov chains earlier:

markov : C → (C → D(C)) → D(StrC)
markov � fix f. λx.λh.

let z = h x in let t = swapStrC
�D (f � �z � �h) in munit(x::t)

Relational Reasoning for Markov Chains 231

Fig. 2. A selection of the typing rules of the guarded lambda calculus. The rules for
products, sums, and natural numbers are standard.

The guardedness condition gives f the type �(C → (C → D(C)) → D(StrC))
in the body of the fixpoint. Therefore, it needs to be applied functorially (via
�) to �z and �h, which gives us a term of type �D(StrC). To complete the
definition we need to build a term of type D(�StrC) and then sequence it with ::
to build a term of type D(StrC). To achieve this, we use the primitive operator
swapC

�D : �D(C) → D(�C), which witnesses the isomorphism between �D(C) and
D(�C). For this isomorphism to exist, it is crucial that distributions be total
(i.e., we cannot use subdistributions). Indeed, the denotation for �D(C) is the
sequence {∗} ← D(C1) ← D(C2) ← . . . , while the denotation for D(�C) is the
sequence D({∗}) ← D(C1) ← D(C2) ← . . . , and {∗} is isomorphic to D({∗}) in
Set only if D considers only total distributions.

5 Guarded Higher-Order Logic

We now introduce Guarded HOL (GHOL), which is a higher-order logic to reason
about terms of the guarded lambda calculus. The logic is essentially that of [1],
but presented with the dual context formulation analogous to the dual-context
typing judgement of the guarded lambda calculus. Compared to standard intu-
itionistic higher-order logic, the logic GHOL has two additional constructs, corre-
sponding to additional constructs in the guarded lambda calculus. These are the
later modality (�) on propositions, with delayed substitutions, which expresses
that a proposition holds one time unit into the future, and the “always” modality
�, which expresses that a proposition holds at all times. Formulas are defined
by the grammar:

φ, ψ ::=� | φ ∧ ψ | φ ∨ ψ | ¬ψ | ∀x.φ | ∃x.φ | � [x1 ← t1 . . . xn ← tn] .φ | �φ

232 A. Aguirre et al.

The basic judgement of the logic is Δ | Σ | Γ | Ψ � φ where Σ is a logical context
for Δ (that is, a list of formulas well-formed in Δ) and Ψ is another logical
context for the dual context Δ | Γ . The formulas in context Σ must be constant
propositions. We say that a proposition φ is constant if it is well-typed in context
Δ | · and moreover if every occurrence of the later modality in φ is under the �
modality. Selected rules are displayed in Fig. 3. We highlight [Loeb] induction,
which is the key to reasoning about fixpoints: to prove that φ holds now, one can
assume that it holds in the future. The interpretation of the formula Δ | Γ � φ
is a subobject of the interpretation �Δ | Γ �. Concretely the interpretation A of
Δ | Γ � φ is a family {Ai}∞

i=0 of sets such that Ai ⊆ �Δ | Γ �i. This family must
satisfy the property that if x ∈ Ai+1 then ri(x) ∈ Ai where ri are the restriction
functions of �Δ | Γ �. The interpretation of formulas is defined by induction on
the typing derivation. In the interpretation of the context Δ | Σ | Γ | Ψ the
formulas in Σ are interpreted with the added � modality. Moreover all formulas
φ in Σ are typeable in the context Δ | · � φ and thus their interpretations are
subsets of ��Δ�. We treat these subsets of �Δ | Γ � in the obvious way.

The cases for the semantics of the judgement Δ | Γ � φ can be found in the
appendix. It can be shown that this logic is sound with respect to its model in
the topos of trees.

Theorem 2 (Soundness of the semantics). The semantics of guarded
higher-order logic is sound: if Δ | Σ | Γ | Ψ � φ is derivable then for all
n ∈ N, ��Σ�n ∩ �Ψ�n ⊆ �φ�.

In addition, Guarded HOL is expressive enough to axiomatize standard prob-
abilities over discrete sets. This axiomatization can be used to define the � modal-
ity directly in Guarded HOL (as opposed to our relational proof system, were
we use it as a primitive). Furthermore, we can derive from this axiomatization
additional rules to reason about couplings, which can be seen in Fig. 4. These
rules will be the key to proving the soundness of the probabilistic fragment of
the relational proof system, and can be shown to be sound themselves.

Proposition 2 (Soundness of derived rules). The additional rules are
sound.

6 Relational Proof System

We complete the formal description of the system by describing the proof rules
for the non-probabilistic fragment of the relational proof system (the rules of the
probabilistic fragment were described in Sect. 3.2).

6.1 Proof Rules

The rules for core λ-calculus constructs are identical to those of [2]; for conve-
nience, we present a selection of the main rules in Fig. 7 in the appendix.

Relational Reasoning for Markov Chains 233

Fig. 3. Selected Guarded Higher-Order Logic rules

Fig. 4. Derived rules for probabilistic constructs

We briefly comment on the two-sided rules for the new constructs (Fig. 5).
The notation Ω abbreviates a context Δ | Σ | Γ | Ψ . The rule [Next] relates two
terms that have a � term constructor at the top level. We require that both have
one term in the delayed substitutions and that they are related pairwise. Then
this relation is used to prove another relation between the main terms. This rule
can be generalized to terms with more than one term in the delayed substitution.
The rule [Prev] proves a relation between terms from the same delayed relation
by applying prev to both terms. The rule [Box] proves a relation between two
boxed terms if the same relation can be proven in a constant context. Dually,
[LetBox] uses a relation between two boxed terms to prove a relation between
their unboxings. [LetConst] is similar to [LetBox], but it requires instead a relation
between two constant terms, rather than explicitly �-ed terms. The rule [Fix]
relates two fixpoints following the [Loeb] rule from Guarded HOL. Notice that in

234 A. Aguirre et al.

the premise, the fixpoints need to appear in the delayed substitution so that the
inductive hypothesis is well-formed. The rule [Cons] proves relations on streams
from relations between their heads and tails, while [Head] and [Tail] behave as
converses of [Cons].

Figure 6 contains the one-sided versions of the rules. We only present the
left-sided versions as the right-sided versions are completely symmetric. The
rule [Next-L] relates at φ a term that has a � with a term that does not have a �.
First, a unary property φ′ is proven on the term u in the delayed substitution,
and it is then used as a premise to prove φ on the terms with delays removed.
Rules for proving unary judgements can be found in the appendix. Similarly,
[LetBox-L] proves a unary property on the term that gets unboxed and then
uses it as a precondition. The rule [Fix-L] builds a fixpoint just on the left, and
relates it with an arbitrary term t2 at a property φ. Since φ may contain the
variable r2 which is not in the context, it has to be replaced when adding �φ to
the logical context in the premise of the rule. The remaining rules are similar to
their two-sided counterparts.

6.2 Metatheory

We review some of the most interesting metatheoretical properties of our rela-
tional proof system, highlighting the equivalence with Guarded HOL.

Theorem 3 (Equivalence with Guarded HOL). For all contexts Δ,Γ ;
types σ1, σ2; terms t1, t2; sets of assertions Σ,Ψ ; and assertions φ:

Δ | Σ | Γ | Ψ � t1 : σ1 ∼ t2 : σ2 | φ ⇐⇒ Δ | Σ | Γ | Ψ � φ[t1/r1][t2/r2]

The forward implication follows by induction on the given derivation. The reverse
implication is immediate from the rule which allows to fall back on Guarded
HOL in relational proofs. (Rule [SUB] in the appendix). The full proof is in the
appendix. The consequence of this theorem is that the syntax-directed, relational
proof system we have built on top of Guarded HOL does not lose expressiveness.

The intended semantics of a judgement Δ | Σ | Γ | Ψ � t1 : A1 ∼ t2 : A2 | φ
is that, for every valuation δ |= Δ, γ |= Γ , if �Σ�(δ) and �Ψ�(δ, γ), then

�φ�(δ, γ[r1 ← �t1�(δ, γ), r2 ← �t2�(δ, γ)])

Since Guarded HOL is sound with respect to its semantics in the topos of trees,
and our relational proof system is equivalent to Guarded HOL, we obtain that
our relational proof system is also sound in the topos of trees.

Corollary 2 (Soundness and consistency). If Δ | Σ | Γ | Ψ � t1 : σ2 ∼ t2 :
σ2 | φ, then for every valuation δ |= Δ, γ |= Γ :

�Δ � �Σ�(δ) ∧ �Δ | Γ � Ψ�(δ, γ) ⇒
�Δ | Γ, r1 : σ1, r1 : σ2 � φ�(δ, γ[r1 ← �Δ | Γ � t1�(δ, γ)][r2 ← �Δ | Γ � t2�(δ, γ)])

In particular, there is no proof of Δ | ∅ | Γ | ∅ � t1 : σ1 ∼ t2 : σ2 | ⊥.

Relational Reasoning for Markov Chains 235

Fig. 5. Two-sided rules for Guarded RHOL

6.3 Shift Couplings Revisited

We give further details on how to prove the example with shift couplings
from Sect. 3.3. (Additional examples of relational reasoning on non-probabilistic
streams can be found in the appendix) Recall the step functions:

step � λx.let z = U{−1,1} in munit(z + x)
lstep2 � λx.let z = U{−1,1} in let b = U{0,1} in munit(x + 2 ∗ z ∗ b)

We axiomatize the predicate All2,1, which relates the element at position 2i in
one stream to the element at position i in another stream, as follows.

∀x1x2xs1xs2y1.φ[z1/x1][z2/x2] ⇒
� [ys1 ← xs1] . � [zs1 ← ys1, ys2 ← xs2] .All2,1(zs1, ys2, z1.z2.φ) ⇒

All2,1(x1::y1::xs1, x2::xs2, z1.z2.φ)

In fact, we can assume that, in general, we have a family of Allm1,m2 predi-
cates relating two streams at positions m1 · i and m2 · i for every i.

236 A. Aguirre et al.

Fig. 6. One-sided rules for Guarded RHOL

We can now express the existence of a shift coupling by the statement:

p1 = p2 � markov(p1, step) ∼ markov(p2, lstep2) | �[y1←r1
y2←r2]

All2,1(y1, y2, z1.z2.z1 = z2)

For the proof, we need to introduce an asynchronous rule for Markov chains:

Ω � t1 : C1 ∼ t2 : C2 | φ
Ω � (λx1.let x′

1 = h1 x1 in h1 x′
1) : C1 → D(C1) ∼ h2 : C2 → D(C2) |

∀x1x2.φ[x1/z1][x2/z2] ⇒ �[z1←r1 x1,z2←r2 x2]φ

Ω � markov(t1, h1) : D(StrC1) ∼ markov(t2, h2) : D(StrC2) |
�[y1←r1,y2←r2] All2,1(y1, y2, z1.z2.φ)

Markov-2-1

This asynchronous rule for Markov chains shares the motivations of the rule for
loops proposed in [6]. Note that one can define a rule [Markov-m-n] for arbitrary
m and n to prove a judgement of the form Allm,n on two Markov chains.

Relational Reasoning for Markov Chains 237

We show the proof of the shift coupling. By equational reasoning, we get:

λx1.let x′
1 = h1 x1 in h1 x′

1 ≡ λx1.let z1 = U{−1,1} in h1 (z1 + x1)
≡ λx1.let z1 = U{−1,1} in let z′

1 = U{−1,1} in munit(z′
1 + z1 + x′

1)

and the only interesting premise of [Markov-2-1] is:

λx1. let z1 = U{−1,1} in
let z′

1 = U{−1,1} in
munit(z′

1 + z1 + x′
1)

∼
λx2. let z2 = U{−1,1} in

let b2 = U{1,0} in
munit(x2 + 2 ∗ b2 ∗ z2)

∣∣∣∣∣∣
∀x1x2.x1 = x2 ⇒
r1 x1

�= r2 x2

Couplings between z1 and z2 and between z′
1 and b2 can be found by simple

computations. This completes the proof.

7 Related Work

Our probabilistic guarded λ-calculus and the associated logic Guarded HOL
build on top of the guarded λ-calculus and its internal logic [1]. The guarded
λ-calculus has been extended to guarded dependent type theory [13], which can
be understood as a theory of guarded refinement types and as a foundation for
proof assistants based on guarded type theory. These systems do not reason
about probabilities, and do not support syntax-directed (relational) reasoning,
both of which we support.

Relational models for higher-order programming languages are often defined
using logical relations. [16] showed how to use second-order logic to define and
reason about logical relations for the second-order lambda calculus. Recent work
has extended this approach to logical relations for higher-order programming
languages with computational effects such as nontermination, general references,
and concurrency [17–20]. The logics used in loc. cit. are related to our work in
two ways: (1) the logics in loc. cit. make use of the later modality for reasoning
about recursion, and (2) the models of the logics in loc. cit. can in fact be defined
using guarded type theory. Our work is more closely related to Relational Higher
Order Logic [2], which applies the idea of logic-enriched type theories [21,22]
to a relational setting. There exist alternative approaches for reasoning about
relational properties of higher-order programs; for instance, [23] have recently
proposed to use monadic reification for reducing relational verification of F ∗ to
proof obligations in higher-order logic.

A series of work develops reasoning methods for probabilistic higher-order
programs for different variations of the lambda calculus. One line of work has
focused on operationally-based techniques for reasoning about contextual equiv-
alence of programs. The methods are based on probabilistic bisimulations [24,25]
or on logical relations [26]. Most of these approaches have been developed for
languages with discrete distributions, but recently there has also been work
on languages with continuous distributions [27,28]. Another line of work has
focused on denotational models, starting with the seminal work in [29]. Recent
work includes support for relational reasoning about equivalence of programs

238 A. Aguirre et al.

with continuous distributions for a total programming language [30]. Our app-
roach is most closely related to prior work based on relational refinement types
for higher-order probabilistic programs. These were initially considered by [31]
for a stateful fragment of F ∗, and later by [32,33] for a pure language. Both
systems are specialized to building probabilistic couplings; however, the latter
support approximate probabilistic couplings, which yield a natural interpreta-
tion of differential privacy [34], both in its vanilla and approximate forms (i.e. ε-
and (ε, δ)-privacy). Technically, approximate couplings are modelled as a graded
monad, where the index of the monad tracks the privacy budget (ε or (ε, δ)).
Both systems are strictly syntax-directed, and cannot reason about computa-
tions that have different types or syntactic structures, while our system can.

8 Conclusion

We have developed a probabilistic extension of the (simply typed) guarded λ-
calculus, and proposed a syntax-directed proof system for relational verification.
Moreover, we have verified a series of examples that are beyond the reach of prior
work. Finally, we have proved the soundness of the proof system with respect to
the topos of trees.

There are several natural directions for future work. One first direction is
to enhance the expressiveness of the underlying simply typed language. For
instance, it would be interesting to introduce clock variables and some type
dependency as in [13], and extend the proof system accordingly. This would
allow us, for example, to type the function taking the n-th element of a guarded
stream, which cannot be done in the current system. Another exciting direction
is to consider approximate couplings, as in [32,33], and to develop differential
privacy for infinite streams—preliminary work in this direction, such as [35],
considers very large lists, but not arbitrary streams. A final direction would be
to extend our approach to continuous distributions to support other application
domains.

Acknowledgments. We would like to thank the anonymous reviewers for their time
and their helpful input. This research was supported in part by the ModuRes Sapere
Aude Advanced Grant from The Danish Council for Independent Research for the
Natural Sciences (FNU), by a research grant (12386, Guarded Homotopy Type Theory)
from the VILLUM foundation, and by NSF under grant 1718220.

References

1. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: The guarded lambda-
calculus: programming and reasoning with guarded recursion for coinductive types.
Log. Methods Comput. Sci. 12(3) (2016)

2. Aguirre, A., Barthe, G., Gaboardi, M., Garg, D., Strub, P.: A relational logic for
higher-order programs. PACMPL 1(ICFP), 21:1–21:29 (2017)

3. Lindvall, T.: Lectures on the Coupling Method. Courier Corporation (2002)

Relational Reasoning for Markov Chains 239

4. Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York
(2000)

5. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Stefanesco, L., Strub, P.-Y.: Rela-
tional reasoning via probabilistic coupling. In: Davis, M., Fehnker, A., McIver,
A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 387–401. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7 27

6. Barthe, G., Grégoire, B., Hsu, J., Strub, P.: Coupling proofs are probabilistic prod-
uct programs. In: POPL 2017, Paris, France, 18–20 January 2017 (2017)

7. Strassen, V.: The existence of probability measures with given marginals. Ann.
Math. Stat. 36, 423–439 (1965)

8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

9. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

10. Cramer, R., Damgard, I.B., Nielsen, J.B.: Secure Multiparty Computation and
Secret Sharing, 1st edn. Cambridge University Press, New York (2015)

11. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving uniformity and
independence by self-composition and coupling. CoRR abs/1701.06477 (2017)

12. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of Foundations of Computer Science. IEEE (2001)

13. Bizjak, A., Grathwohl, H.B., Clouston, R., Møgelberg, R.E., Birkedal, L.: Guarded
dependent type theory with coinductive types. In: Jacobs, B., Löding, C. (eds.)
FoSSaCS 2016. LNCS, vol. 9634, pp. 20–35. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49630-5 2

14. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008)

15. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8(4) (2012)

16. Plotkin, G., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0037118

17. Dreyer, D., Ahmed, A., Birkedal, L.: Logical step-indexed logical relations. Log.
Methods Comput. Sci. 7(2) (2011)

18. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: Morrisett, G., Uustalu, T. (eds.) ICFP
2013, Boston, MA, USA, 25–27 September 2013. ACM (2013)

19. Krebbers, R., Timany, A., Birkedal, L.: Interactive proofs in higher-order concur-
rent separation logic. In: Castagna, G., Gordon, A.D. (eds.) POPL 2017, Paris,
France, 18–20 January 2017. ACM (2017)

20. Krogh-Jespersen, M., Svendsen, K., Birkedal, L.: A relational model of types-and-
effects in higher-order concurrent separation logic. In: POPL 2017, Paris, France,
18–20 January 2017, pp. 218–231 (2017)

21. Aczel, P., Gambino, N.: Collection principles in dependent type theory. In:
Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds.) TYPES 2000.
LNCS, vol. 2277, pp. 1–23. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45842-5 1

22. Aczel, P., Gambino, N.: The generalised type-theoretic interpretation of construc-
tive set theory. J. Symb. Log. 71(1), 67–103 (2006)

https://doi.org/10.1007/978-3-662-48899-7_27
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1007/BFb0037118
https://doi.org/10.1007/3-540-45842-5_1
https://doi.org/10.1007/3-540-45842-5_1

240 A. Aguirre et al.

23. Grimm, N., Maillard, K., Fournet, C., Hritcu, C., Maffei, M., Protzenko, J.,
Rastogi, A., Swamy, N., Béguelin, S.Z.: A monadic framework for relational veri-
fication (functional pearl). CoRR abs/1703.00055 (2017)

24. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 12

25. Sangiorgi, D., Vignudelli, V.: Environmental bisimulations for probabilistic higher-
order languages. In: Bod́ık, R., Majumdar, R. (eds.) POPL 2016, St. Petersburg,
FL, USA, 20–22 January 2016. ACM (2016)

26. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 279–294. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46678-0 18

27. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Garrigue, J., Keller, G., Sumii,
E. (eds.) ICFP 2016, Nara, Japan, 18–22 September 2016. ACM (2016)

28. Culpepper, R., Cobb, A.: Contextual equivalence for probabilistic programs with
continuous random variables and scoring. In: Yang, H. (ed.) ESOP 2017. LNCS,
vol. 10201, pp. 368–392. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54434-1 14

29. Jones, C., Plotkin, G.D.: A probabilistic powerdomain of evaluations. In: LICS
1989, Pacific Grove, California, USA, 5–8 June 1989. IEEE Computer Society
(1989)

30. Staton, S., Yang, H., Wood, F., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: LICS 2016, New York, NY, USA, 5–8 July 2016. ACM (2016)

31. Barthe, G., Fournet, C., Grégoire, B., Strub, P., Swamy, N., Béguelin, S.Z.: Proba-
bilistic relational verification for cryptographic implementations. In: Jagannathan,
S., Sewell, P. (eds.) POPL 2014 (2014)

32. Barthe, G., Gaboardi, M., Gallego Arias, E.J., Hsu, J., Roth, A., Strub, P.Y.:
Higher-order approximate relational refinement types for mechanism design and
differential privacy. In: POPL 2015, Mumbai, India, 15–17 January 2015 (2015)

33. Barthe, G., Farina, G.P., Gaboardi, M., Arias, E.J.G., Gordon, A., Hsu, J., Strub,
P.: Differentially private Bayesian programming. In: CCS 2016, Vienna, Austria,
24–28 October 2016. ACM (2016)

34. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

35. Kellaris, G., Papadopoulos, S., Xiao, X., Papadias, D.: Differentially private event
sequences over infinite streams. PVLDB 7(12), 1155–1166 (2014)

https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1007/978-3-662-54434-1_14

Relational Reasoning for Markov Chains 241

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Relational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
	1 Introduction
	2 Mathematical Preliminaries
	3 Overview of the System
	3.1 Base Logic: Guarded Higher-Order Logic
	3.2 A System for Relational Reasoning
	3.3 Examples

	4 Probabilistic Guarded Lambda Calculus
	5 Guarded Higher-Order Logic
	6 Relational Proof System
	6.1 Proof Rules
	6.2 Metatheory
	6.3 Shift Couplings Revisited

	7 Related Work
	8 Conclusion
	References

