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Abstract. We propose several continuous data assimilation (downscaling) algorithms based on feedback control for the 2D
magnetohydrodynamic (MHD) equations. We show that for sufficiently large choices of the control parameter and resolution
and assuming that the observed data is error-free, the solution of the controlled system converges exponentially (in L2 and H1

norms) to the reference solution independently of the initial data chosen for the controlled system. Furthermore, we show that
a similar result holds when controls are placed only on the horizontal (or vertical) variables, or on a single Elsässer variable,
under more restrictive conditions on the control parameter and resolution. Finally, using the data assimilation system, we show
the existence of abridged determining modes, nodes and volume elements.
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1. Introduction

In the study of solar storms, space weather forecasting, earth’s geodynamo, and other areas, predict-
ing the motion of fluids with magnetic properties is a central concern. The governing equations are
often taken to be the magnetohydrodynamic (MHD) equations, or some modification of them. These
equations are notoriously difficult to solve both analytically and computationally. Moreover, accurately
initializing the system is challenging due to the sparsity of the available data. Fortunately, data is often
given not just at a single time, but can be streaming in (e.g., from devices monitoring space plasma
dynamics), or given in history (e.g., from surface geomagnetic observations, which in the earth can be
traced back up to 7000 years [1–3]). This situation is similar to the problem of weather prediction on
earth. Therefore the techniques of data assimilation, which were developed in weather prediction, have
been applied to the MHD equations in recent years (see, e.g., [4–13]). It has also been speculated in [14]
that data assimilation for magnetohydrodynamics may be useful in liquid sodium experiments modeling
the Earth’s core.
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Data assimilation has been the subject of a very large body of work. Classically, these techniques
are based on linear quadratic estimation, also known as the Kalman Filter. The Kalman Filter has the
drawback of assuming that the underlying system and any corresponding observation models are linear.
It also assumes that measurement noise is Gaussian distributed. This has been somewhat corrected via
modifications, such as the Extended Kalman Filter and the Unscented Kalman Filter. For more about the
Kalman Filter and its modifications, see, e.g., [15–17], and the references therein. Recently, a promising
new approach to data assimilation was pioneered by Azouani, Olson, and Titi in [18, 19] (see also [20–
22] for early ideas in this direction). This new approach is based on feedback control at the PDE level.
The first works in this area assumed noise-free observations, but [23] adapted the method to the case of
noisy data, and [24] adapted it to the case where measurements are obtained discretely in time and may
be contaminated by systematic errors. Computational experiments on this technique were carried out
in the cases of the 2D Navier-Stokes equations [25], the 2D Bénard convection equations [26], and the
1D Kuramoto-Sivashinsky equations [27, 28]. In [28], several nonlinear versions of this approach were
proposed and studied. In addition to the results discussed here, a large amount of recent literature has
built upon this idea; see, e.g., [29–42].

In the present work, we adapt the approach of [18, 19, 32] to the 2D MHD equations. In Theorem
3.1, we show that solutions of the feedback-controlled system converge exponentially in the L2-norm to
solutions of the MHD system when feedback control is applied to all variables (here, we use Elsässer
variables for simplicity). This convergence holds under certain conditions on the spacing of the data and
the weight given to the feedback control. Moreover, in Theorems 3.2 and 3.3, we establish abridged data

assimilation, i.e., we show that feedback control need only be applied to a reduced set of the variables
(horizontal variables or a single Elsässer variable, respectively) to obtain exponential convergence, at
the cost of more restrictive conditions on the data resolution h and control weight µ. In Theorem 3.4, we
establish exponential convergence in the H1-norm. Next, in Theorem 3.8, we show that if one makes
weaker assumptions on the data interpolation function, and if feedback control is applied only to hor-
izontal variables, then exponential convergence in the H1 norm holds as well. Finally, in Section 3.3,
we establish a rigorous connection between data assimilation and the concept of determining quantities,
first introduced in [43], and further studied in [44–48].

1.1. Background on Data Assimilation

We now describe the general idea of the data assimilation scheme we use for the 2D MHD equations,
based on the idea of feedback control, that was developed by Azouni, Olson and Titi in [18, 19] in the
context of the 2D Navier-Stokes equations. In the study of a dynamical system in the form,

d

dt
Y = F(Y),

subject to certain boundary conditions, one normally tries to show that unique solutions will arise given
any initial value

Y(0) = Y0,

in a certain space, and that the solution will change in a continuous way with respect to a change in the
initial value.
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The problem arises in practice that the initial value may not be known exactly, but it may approximate
the true initial value of a given observable, for example the temperature, which we’d like to predict the
value of in the future. The continuous dependence on initial data addresses this issue, in that if the initial
approximation is close enough to the true value, then the solution we obtain will accurately approximate
the true value of the observable for some period of time. However, usual theory shows that the length
of time the approximation is guaranteed to be good is short, in that the error may grow exponentially
in time. Also, the initial measurement may need to give a very close approximation to the true initial
value, but in practice measurements may only be available on a coarse grid, limiting the accuracy of the
initial approximation and thus limiting both the accuracy the solution can be guaranteed to have, as well
as the duration for which this accuracy can be guaranteed.

Data assimilation is the method where, to compensate for this lower bound on the accuracy of the
measured initial condition, measurements are taken of the observable as time goes on (over the same
possibly coarse grid on which the initial value is approximated) and fed back into the differential equa-
tion (giving a different equation, called the data assimilation equation) in such a way that the solution
will become a better approximation as time goes on. This gives us the accuracy we need to apply the
continuous dependence on initial data and say the prediction will be accurate for some duration from
that time onwards.

The data assimilation algorithm (the way measurements are introduced to the differential equation)
can take different forms, but the one we consider here was first introduced by Azouani, Olson, and
Titi in [18, 19]. Given that the true value of the observable at time t is Y(t), then the data assimilation
equation will be:

d

dt
Ỹ = F(Ỹ) + µ(Ih(Y)− Ih(Ỹ))

= F(Ỹ) + µ Ih(Y − Ỹ),

where the second equality in the above equation follows because we’ll assume the interpolant operator,
Ih, is linear. Here, µ will be an adequately chosen tuning parameter. In addition, we will assume that for
all u ∈ H1, Ih satisfies one of the following:

‖u − Ih(u)‖L2 6 c1h‖∇u‖L2 , (1)

or

‖u − Ih(u)‖L2 6 c2h‖∇u‖L2 + c3h2‖∆u‖L2 . (2)

Many relevant examples of operators satisfy one of these two conditions, including the projection onto
the low modes, finite volume element operators, and nodal interpolant operators. For more information,
see, e.g. [18, 27, 49].

1.2. Background on the MHD equations

We consider the 2D MHD equations for a fluid and magnetic field under periodic boundary conditions
and with zero space average. Let u = (u1, u2)

T , b = (b1, b2)
T , and p represent the fluid velocity,
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magnetic field, and fluid pressure, respectively, and let the spatial domain be [0, L]2. The system can be
written as (see, e.g., [50]):

∂tu − ν∆u + (u · ∇) u − 1
ρ0µ0

(b · ∇) b = − 1
ρ0
∇
(

p + 1
2µ0

|b|2
)

+ f ,

∂t b − λ∆b + (u · ∇) b − (b · ∇) u = g,

∇ · b = 0, ∇ · u = 0.

Here, ν > 0 is the kinematic fluid viscosity, ρ0 is the fluid density, µ0 := 4π × 10−7H/m is the perme-
ability of free space, λ = (µ0σ)

−1 > 0 is the magnetic diffusivity, and σ is the electrical conductivity of
the fluid. We impose initial conditions u(0, x, y) = u0(x, y) and b(0, x, y) = b0(x, y) in an appropriate
function space, and allow for time-dependent forcing functions, denoted above by f and g.

Our analyses will have to take into account the amount of energy being added to the system by the
forcing functions, so to this end we define the Grashof number, G, to be

G := 8
λ1

max{ 1
ν2
, 1
λ2
} lim sup

t→∞

(

max
{

‖f(t)‖L2([0,L]),
1√
ρ0µ0

‖g(t)‖L2([0,L])

})

.

where λ1 := 4π2

L2 is the smallest eigenvalue of the Stokes operator on the space of functions with space
average zero on [0, L]2 under periodic boundary conditions [51].

Note that we have constructed G to be dimensionless. We will also non-dimensionalize the system
so that we can later reformulate it in terms of the Elsässer variables. Let U be a reference velocity and
use L as a reference length. We denote the dimensionless fluid Reynolds number and the dimensionless
magnetic Reynolds number by Re := UL/ν and Rm := UL/λ, respectively. In non-dimensional form,
the system can be written as:

∂tu − 1
Re
∆u + (u · ∇)u − (b · ∇) b = −∇P + f , (3a)

∂t b − 1
Rm

∆b + (u · ∇) b − (b · ∇) u = g, (3b)

∇ · b = 0, ∇ · u = 0. (3c)

with the initial conditions u(0, x, y) = u0(x, y) and b(0, x, y) = b0(x, y), and where P is the (non-
dimensionalized) sum of the fluid and magnetic pressures, and u, b, u0, b0, f , and g have been replaced
by their appropriate non-dimensional versions. Note the bilinearity in (u, b) on the left-hand side of (3b)
allows for the important fact that the four non-linear terms in (3) can be written with coefficients ±1.
We will denote the non-dimensionalized spatial domain by

Ω := [0, 1]2 ⊂ R
2.

Global existence and uniqueness of solutions to (3) was proven in [52] and [53]. Recent work on
connection to magnetohydrdynamic turbulence can be found in [54, 55]. For a derivation and physical
discussion of the MHD equations, see, e.g., [56]. For an overview of the classical and recent mathemat-
ical results pertaining to the MHD equations, see, e.g., [50, 52].
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2. preliminaries

In this section, we briefly lay out some notation, discuss some of the standard results and inequalities
we use, and give the specific equations we will discuss.

For a matrix A, we denote |A|2 :=
∑

i, j |Ai, j|2. We denote the standard L2 inner-product and norm

by 〈u, v〉 :=
∫

Ω u · v dxdy and ‖u‖L2 :=
(∫

Ω |u|2 dxdy
) 1

2

, respectively (note that the integral is taken

over the non-dimensionalized domain, Ω, so ‖u‖L2 has the same units as u). We also denote ‖u‖H1 :=
‖∇u‖L2 , which is equivalent to the standard H1 norm, due to the Poincaré inequality (6).

We recall some standard inequalities. Here ǫ > 0, a, b > 0, and u, v, and w are divergence-free
periodic functions, with sufficient regularity to make all the norms involved finite.

We will frequently use the following forms of Young’s inequality and Hölder’s inequality:

ab 6
ǫ

2
a2 +

1

2ǫ
b2 (4)

∣
∣
∣
∣

∫

Ω
uvw dxdy

∣
∣
∣
∣
6 ‖u‖L2‖v‖L4‖w‖L4 (5)

We also recall the following version of Poincaré’s inequality, valid for periodic functions with zero
space average on Ω:

‖∇u‖L2 > 2π‖u‖L2 (6)

The following inequality due to Ladyzhenskaya will be used to bound the nonlinear terms for the
cases where we have measurements on all the components and when we only measure one Elsässer
variable:

‖u‖2L4 6 cL‖u‖L2‖∇u‖L2 (7)

The next two inequalities are extensions of the Brezis-Gallouet and are due to Titi [57]. They will be
necessary to bound the nonlinear terms in the case of measuring only one component of the reference
velocity and magnetic fields:

∣
∣
∣
∣

∫

Ω
u∂ivw dxdy

∣
∣
∣
∣
6 cB‖∇u‖L2‖∇v‖L2‖w‖L2

(

1 + ln

( ‖∇w‖L2

2π‖w‖L2

))1/2

, (8)

∣
∣
∣
∣

∫

Ω
u∂iv∆w dxdy

∣
∣
∣
∣
6 cT‖∇u‖L2‖∇v‖L2‖∆w‖L2

(

1 + ln

( ‖∆z‖L2

2π‖∇z‖L2

))1/2

, (9)

where in (9), z can be u or v.
The following generalization of the Grönwall Lemma will be useful, which was first shown by Foias

et al. in [58]. For a proof of an even more general version due to Jones and Titi, see [51].
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Proposition 2.1 (Generalized Gronwall Inequality). Let ψ : [0,∞) → R be a locally integrable func-

tion such that for some T > 0 the following two conditions hold:

lim inf
t→∞

1

T

∫ t+T

t

ψ(s)ds > 0, (10a)

lim sup
t→∞

1

T

∫ t+T

t

ψ−(s)ds <∞, (10b)

where ψ−(t) := max{0,−ψ(t)}. Then if Y : [0,∞) → [0,∞) is absolutely continuous and for almost

all t,

d

dt
Y + ψY 6 φ, (10c)

where φ(t) → 0 as t → ∞, then Y(t) → 0 as well. Furthermore, if φ ≡ 0 then Y(t) → 0 exponentially

as t → ∞.

Next, in order to simplify our calculations we will reformulate the MHD equations in terms of new
variables which we call v and w, in such a way as to symmetrize the system.

We assume, without loss of generality, that 1
Re

> 1
Rm

, and denote the Elsässer variables [59] by
v = u + b and w = u − b (if 1

Re
< 1

Rm
then we would denote w = b − u and proceed similarly).

Then we can derive evolution equations for v and w by considering both the sum and difference of
(3a) and (3b) and obtain the following system:

System 2.2.

∂tv − α∆v − β∆w + (w · ∇) v = −∇P + f , (11a)

∂tw − α∆w − β∆v + (v · ∇)w = −∇P + g, (11b)

∇ · v = 0, ∇ · w = 0, (11c)

subject to the initial conditions v(0) = v0 := u0 + b0 and w(0) = w0 := u0 − b0.

Here we relabeled the forcing terms as f := f + g and g := f − g, and we denote α := 1
2(

1
Re

+ 1
Rm

)

and β := 1
2(

1
Re

− 1
Rm

). It will be important to note that α − β = 1
Rm

> 0 and that α > 0 and β > 0 (this
last inequality is true by the assumption that 1

Re
> 1

Rm
, however if 1

Re
< 1

Rm
then we would arrive at the

above system except with a different sign on the pressure, and β = 1
Rm

− 1
Re

, so still we have β > 0, and
in general we will have α− β = min{ 1

Re
, 1

Rm
}).

We note here that G can be expressed in terms of the forcing functions for the reformulated system:

G = max{Re2,Rm2}
π2

lim sup
t→∞

(max{‖ f(t) + g(t)‖L2 , ‖ f(t)− g(t)‖L2}) ,
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hence,

G > 1
π2(α−β)2 lim sup

t→∞
(max{‖ f(t)‖L2 , ‖g(t)‖L2}) ,

Now, we describe the data assimilation algorithms studied in this paper. Following the ideas of [18, 19]
we incorporate measurements obtained from a fixed reference solution (of which we want to predict fu-
ture values) through a damping term. This will “steer” the data assimilation solutions to the reference
solution exponentially in time. In what sense we will have convergence depends on the type of inter-
polant Ih with which we take measurements.

The results are separated by the type of interpolant considered and by which measurements are
recorded. We frame our results in terms of the Elsässer variables, not in terms of u and b. Also, we
consider algorithms which require measurements taken only on the first components, u1 and b1 (which
is the same as measuring v1 and w1), by measuring all the components of u and b, or by measuring
either the sum u + b or the difference u − b only.

In the following, let (v,w) be a fixed solution of (11), and we denote the data assimilation variables
by ṽ and w̃, which will approximate v and w respectively. Ih may satisfy either (1) or (2), and we will
analyze each case separately. Because we are introducing the feedback term into the equations, the mag-
netic field will no loner be divergence free (in general). Therefore, to explicitly enforce the divergence
free conditions on the data assimilation variables without making the systems overdetermined, we also
introduce a potential field, ∇q.

First, we have the following algorithm which utilizes measurements taken on all components (so
measuring u and b):

System 2.3.

∂tṽ − α∆ṽ − β∆w̃ + (w̃ · ∇) ṽ = −∇P̃ −∇q + f + µ Ih(v − ṽ) (12a)

∂tw̃ − α∆w̃ − β∆ṽ + (ṽ · ∇) w̃ = −∇P̃ +∇q + g + µ Ih(w − w̃) (12b)

∇ · ṽ = 0, ∇ · w̃ = 0, (12c)

subject to the initial conditions ṽ(0) ≡ w̃(0) ≡ 0.

Next, using measurements only on the first components of v and w (which is equivalent to measuring
u1 and b1):

System 2.4.

∂tṽ − α∆ṽ − β∆w̃ + (w̃ · ∇) ṽ = −∇P̃ −∇q + f + µ Ih(v1 − ṽ1)e1 (13a)

∂tw̃ − α∆w̃ − β∆ṽ + (ṽ · ∇) w̃ = −∇P̃ +∇q + g + µ Ih(w1 − w̃1)e1 (13b)

∇ · ṽ = 0, ∇ · w̃ = 0, (13c)

subject to the initial conditions ṽ(0) ≡ w̃(0) ≡ 0.

Finally, only taking measurements on v (which would in practice still require recording measurements
on both u and b):
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System 2.5.

∂tṽ − α∆ṽ − β∆w̃ + (w̃ · ∇) ṽ = −∇P̃ −∇q + f + µ Ih(v − ṽ) (14a)

∂tw̃ − α∆w̃ − β∆ṽ + (ṽ · ∇) w̃ = −∇P̃ +∇q + g (14b)

∇ · ṽ = 0, ∇ · w̃ = 0, (14c)

subject to the initial conditions ṽ(0) ≡ w̃(0) ≡ 0.

Remark 2.6. Although we chose to consider taking measurements on the first components of v and w

in System 2.4, we could instead use the second components with no substantial differences. Likewise,
in System 2.5 we could also consider taking measurements on w and we would obtain similar results.

Remark 2.7. In the above we chose to make the initial conditions 0, but in fact the initial conditions
may be chosen essentially arbitrarily, albeit in accordance with the existence theorems. Theorem 3.8
additionally requires that the initial conditions satisfy an upper bound of the form (16).

Remark 2.8. Here we first constructed the Elsässer variables from the original variables u and b after
nondimensionalizing, and then proceeded to define the various data assimilation algorithms and vari-
ables. However, since the transformations were linear, if we were to define each data assimilation algo-
rithm using the original variables, in the process defining data assimilation variables ũ and b̃, and then
nondimensionalize and change to the Elsässer variables, we would arrive at the same systems above.
So, all our results apply to the corresponding algorithms formulated in terms of the original variables.
Note also that although the results are framed in terms of the Elsässer variables, by the triangle inequal-
ity convergence of ṽ to v and w̃ to w implies convergence of ũ and b̃ to u and b respectively.

We define weak solutions for all the systems mentioned in the distributional sense in the usual way.
See [53] for a precise definition in the case of (3) (the other systems are similar). In addition to being a
weak solution, we say (v,w) (or (ṽ, w̃)) is a global strong solution of (11) (or (12), (13), or (14)) if

v,w ∈ L2(0,T ; H2) ∩ L∞(0,T ; H1), ∀T > 0.

In [53], it was shown that if ess sup[0,∞) ‖f‖L2 < ∞ and u0, b0 ∈ H1, then there exists a unique global
strong solution to (3) (which can be transformed to a solution of (11)). Therefore, we will be assuming
that, in addition to being space periodic and divergence free,

ess sup
[0,∞)

max{‖ f‖L2 , ‖g‖L2} <∞ and ‖∇u0‖L2 , ‖∇b0‖L2 <∞.

The proofs of the corresponding existence and uniqueness results for Systems 2.3-2.5 are similar, and
are omitted. We only state and prove the corresponding convergence results.

Before we get to the main theorems, we first state the following bounds for the reference solution to
the MHD system. Moreover, we prove (15), which follows standard arguments from the Navier-Stokes
theory (see, e.g., [60, 61]). The proofs of (16) and (17) can be obtained by modifying the corresponding
proofs from the Navier-Stokes theory in a similar way (see, e.g. [52, 53] for more details on (16) and
the appendix of [32] for (17)).
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Proposition 2.9 (Upper Bounds on Solutions of the MHD). Let (v,w) be a solution of (11). Then there

is a t0 > 0 and constants cM > 0 and C = 81
4 c8L such that for all t > t0 and any T > 0,

∫ t+T

t

(
‖∇v(s)‖2L2 + ‖∇w(s)‖2L2

)
ds 6 (1 + Tπ2(α− β))(α− β)G2, (15)

‖∇v(t)‖2L2 + ‖∇w(t)‖2L2 6 10π2(α− β)2G2eCG4

. (16)

‖∆v(t)‖2L2 + ‖∆w(t)‖2L2 6 cM(α− β)2G2
(

1 +
(

1 + G2eCG4
)(

1 + eCG4

+ G4eCG4
))

. (17)

Proof of (15). See the appendix. ✷

3. Statements of the Results

3.1. Results for Type 1 Interpolants

Theorem 3.1. Let (v,w) be a strong solution of (11) which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Let Ih satisfy (1), where

h 6 c−1
1 (α− β)

1

2µ−
1

2 , and µ >
π2(c4L+(α−β)4)

α−β G2

(so h ∼ G−1). Then there is a unique strong solution, (ṽ, w̃), of (12) corresponding to (v,w) which exists

globally in time, and furthermore ‖v(t)− ṽ(t)‖L2 + ‖w(t)− w̃(t)‖L2 → 0 exponentially as t → ∞.

Theorem 3.2. Let (v,w) be a strong solution of (11) which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Let Ih satisfy (1), where

h 6 c−1
1 (α− β)

1

2µ−
1

2 , and µ > 32π2c2(α− β)
(
c̃ + 2 lnG + CG4

)
G2

(so h ∼ G−3). Then there is a unique strong solution, (ṽ, w̃), of (13) corresponding to (v,w) which exists

globally in time, and furthermore ‖v(t)− ṽ(t)‖L2 + ‖w(t)− w̃(t)‖L2 → 0 exponentially as t → ∞.

Theorem 3.3. Let (v,w) be a strong solution of (11) which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Let Ih satisfy (1), where

h 6 c−1
1 (α− β)

1

2µ−
1

2 , and µ >
π2c4LG2(4 + (α− β)2G2)2

16(α− β)

(so h ∼ G−3). Then there is a unique strong solution, (ṽ, w̃), of (14) corresponding to (v,w) which exists

globally in time, and furthermore ‖v(t)− ṽ(t)‖L2 + ‖w(t)− w̃(t)‖L2 → 0 exponentially as t → ∞.

In the next three theorems, by using the L2 convergence results we just established, we show that
solutions of (12), (13), and (14) will converge exponentially in time to the reference solution in the
stronger topology of the H1-norm.
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Theorem 3.4. Let (v,w) be a strong solution of (11) which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Let Ih satisfy (1), where

h < (2
√
2c1)

−1(α− β)
1

2µ−
1

2 , and µ >
π2(c4L + (α− β)4)

α− β
G2

(so h ∼ G−1). Then there is a unique strong solution, (ṽ, w̃), of (12) corresponding to (v,w) which exists

globally in time, and furthermore ‖v(t)− ṽ(t)‖H1 + ‖w(t)− w̃(t)‖H1 → 0 exponentially as t → ∞.

Theorem 3.5. Let (v,w) be a strong solution of (11) which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Let Ih satisfy (1), where

h < (2
√
2c1)

−1(α− β)
1

2µ−
1

2 , and µ > 32π2c2(α− β)
(
c̃ + 2 lnG + CG4

)
G2

(so h ∼ G−3). Then there is a unique strong solution, (ṽ, w̃), of (13) corresponding to (v,w) which exists

globally in time, and furthermore ‖v(t)− ṽ(t)‖H1 + ‖w(t)− w̃(t)‖H1 → 0 exponentially as t → ∞.

Theorem 3.6. Let (v,w) be a strong solution of (11) which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Let Ih satisfy (1), where

h < (2
√
2c1)

−1(α− β)
1

2µ−
1

2 , and µ >
π2c4LG2(4 + (α− β)2G2)2

16(α− β)

(so h ∼ G−3). Then there is a unique strong solution, (ṽ, w̃), of (14) corresponding to (v,w) which exists

globally in time, and furthermore ‖v(t)− ṽ(t)‖H1 + ‖w(t)− w̃(t)‖H1 → 0 exponentially as t → ∞.

Remark 3.7. Observing the Poincaré inequality, the results of Theorems 3.4-3.6 seem to imply those of
Theorems 3.1-3.3, but the spatial resolution is required to be slightly finer for the H1 results. Also, based
on our analysis, there may be a longer period of time that must pass before exponential convergence
is observed in the H1-norm than in the L2-norm (see the estimates in (44) and (47)). However, we
point out that in computational results regarding data assimilation in the context of the one-dimensional
Kuramoto-Sivasinsky equation, convergence times for both norms are almost identical (c.f. [28] for
more details).

3.2. Results for Type 2 Interpolants

Theorem 3.8. Let (v,w) be a strong solution of (11), which at time t = 0 has evolved enough so that

Proposition 2.9 holds with t0 = 0. Then h ∼ G−6e−CG4

and µ ∼ G12e2CG4

can be chosen so that if

Ih satisfies (2) then there is a unique strong solution (ṽ, w̃) of (13) corresponding to (v,w) which exists

globally in time, and ‖v(t)− ṽ(t)‖H1 + ‖w(t)− w̃(t)‖H1 → 0 exponentially as t → ∞.

Remark 3.9. Similar theorems hold for the cases of measurements on all variables and one Elsässer
variable (although not as direct corollaries, since the dynamical systems involved are slightly different).
However, in the case of measuring all variables we do not find much improvement in the restrictions on
h and µ.
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3.3. Determining Interpolants

In order to prove that there are finitely many (say N) determining modes, one needs to show that
if (v(1),w(1)) and (v(2),w(2)) are different solutions of (11) with possibly different forcing terms and
initial data, then knowledge that ‖PN(v

(1),w(1))− PN(v
(2),w(2))‖L2 → 0 is sufficient to conclude that

‖(v(1),w(1))− (v(2),w(2))‖L2 → 0, where PN denotes the projection onto the modes with magnitude at
most N. In general, we replace PN by a different operator, say Ih, and ask the question of whether the
knowledge inherent in Ih is “determining".

In the following theorems, we show that the data assimilation results we have obtained can be adapted
to show that the interpolant operators, Ih, are determining. We do this by first generalizing the conver-
gence results we developed in the previous theorems to allow for the evolution equations of the refer-
ence solution and the data assimilation solution to have different forcing terms, which converge in L2 as
t → ∞, at the cost of losing the exponential rate of convergence of the solutions. We also allow for the
reference solution to be perturbed by a function which decays in L2.

We illustrate the ideas for the algorithm studied in Theorem 3.1, i.e. with measurements taken on all
variables and for Ih satisfying (1), but the results can be obtained for all the other cases as well. So,
we can show that operators which satisfy (1) or (2) and use measurements on (v,w), (v1,w1), or v, are
determining in the sense of convergence in L2 and H1.

Theorem 3.10. Let Ih satisfy (1) and let (v,w) be a reference solution of (11). Then if µ and h satisfy the

hypotheses of Theorem 3.1, and if ‖δ(1)(t)‖L2 , ‖δ(2)(t)‖L2 → 0 and ‖ Ih(ǫ
(1)(t))‖L2 , ‖ Ih(ǫ

(2)(t))‖L2 → 0
as t → ∞, there are unique ṽ, w̃, q and P̃ which satisfy the following modified version of (12):

System 3.11.

∂tṽ − α∆ṽ + β∆w̃ + (w̃ · ∇) ṽ = −∇P̃ −∇q + f + δ(1) + µ Ih(v + ǫ(1) − ṽ), (18a)

∂tw̃ − α∆w̃ + β∆ṽ + (ṽ · ∇) w̃ = −∇P̃ +∇q + g + δ(2) + µ Ih(w + ǫ(2) − w̃), (18b)

∇ · ṽ = 0, (18c)

∇ · w̃ = 0, (18d)

subject to the initial conditions ṽ(0) ≡ 0, w̃(0) ≡ 0,

and furthermore, ‖v − ṽ‖L2 , ‖w − w̃‖L2 → 0 as t → ∞.

In the next theorem we illustrate the result that if an interpolant Ih satisfies the conditions for the
generalized data assimilation theorem then Ih is determining, for the case of the generalized version of
Theorem 3.1. Note that the projection onto the low modes, PN , is an example of an interpolant operator
Ih for which the theorem applies, provided that h := 1

N
. G−1. Hence, the following theorem shows

that there are finitely many determining modes for instance.

Theorem 3.12. Let (v(1),w(1)) and (v(2),w(2)) be solutions of (11) with forcing terms f (1), g(1) and

f (2), g(2) respectively, and suppose that ‖ f (1) − f (2)‖L2 , ‖g(1) − g(2)‖L2 → 0.
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Let Ih satisfy (1) where

h <
α− β

πc1
√

c4L + (α− β)4
G−1, and

G :=
1

π2(α− β)2
lim sup

t→∞

(

max{‖ f (1)(t)‖L2 , ‖g(1)(t)‖L2}
)

=
1

π2(α− β)2
lim sup

t→∞

(

max{‖ f (2)(t)‖L2 , ‖g(2)(t)‖L2}
)

,

and suppose that ‖ Ih(v
(1)(t)− v(2)(t))‖L2 , ‖ Ih (w

(1)(t)− w(2)(t))‖L2 → 0 as t → ∞.

Then ‖v(1)(t)− v(2)(t)‖L2 , ‖w(1)(t)− w(2)(t)‖L2 → 0 as well.

4. Proofs of the Results

4.1. Proofs of L2 Convergence Results with Type 1 Interpolants

Before we get to the proofs of the main theorems, we first collect the various estimates needed for the
bilinear term in the following lemma.

Lemma 4.1. Let u, v,w ∈ H1 be divergence free. Then the following inequalities hold for any ǫ, δ > 0 :

(a)

∣
∣
∣
∣

∫

Ω
(u · ∇) v · w dxdy

∣
∣
∣
∣

6
cLδ

4
‖∇u‖2L2 +

ǫ

2
‖∇w‖2L2 +

cLδ

4
‖∇v‖2L2‖u‖2L2 +

c2L
8ǫδ2

‖∇v‖2L2‖w‖2L2 , (19)

or

∣
∣
∣
∣

∫

Ω
(u · ∇) v · w dxdy

∣
∣
∣
∣

6
cLδ

4
‖∇w‖2L2 +

ǫ

2
‖∇u‖2L2 +

cLδ

4
‖∇v‖2L2‖w‖2L2 +

c2L
8ǫδ2

‖∇v‖2L2‖u‖2L2 , (20)

(b)

∣
∣
∣
∣

∫

Ω
(u · ∇) v · w dxdy

∣
∣
∣
∣

6 cδ‖∇u‖2L2 + cδ‖∇w‖2L2 +
c

δ
‖∇v‖2L2

(
‖u1‖2L2 + ‖w1‖2L2

)

+
c

δ
‖∇v‖2L2

(

1 + ln
‖∇u1‖L2

2π‖u1‖L2

)

‖u1‖2L2 +
c

δ
‖∇v‖2L2

(

1 + ln
‖∇w1‖L2

2π‖w1‖L2

)

‖w1‖2L2 . (21)

Proof. See the appendix. ✷
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The following lemma will be used in our analyses of the algorithms using measurements on only the
first components of the reference solutions, where we will need to make use of (8), (9), or (21). The
proof is elementary, and therefore omitted.

Lemma 4.2. Let φ(r) = r − γ(1 + ln(r)), for some γ > 0. Then ∀r > 1,

φ(r) > −γ ln(γ).

Proof of Theorem 3.1.

Let η = v − ṽ and ζ = w − w̃.

Then η satisfies:

∂tη− α∆η− β∆ζ + (w · ∇) v − (w̃ · ∇) ṽ = −∇(P − P̃ − q)− µ Ih(η).

Using the fact that (w · ∇) v − (w̃ · ∇) ṽ = (ζ · ∇) v + (w̃ · ∇) η we write:

∂tη− α∆η− β∆ζ + (ζ · ∇) v + (w̃ · ∇) η = −∇(P − P̃ − q)− µ Ih(η).

Taking the inner product with η we obtain:

1

2

d

dt
‖η‖2L2 + α‖∇η‖2L2 + β 〈∇ζ,∇η〉+ 〈(ζ · ∇) v, η〉 = −〈∇(P − P̃ − q), η〉 − µ 〈Ih(η), η〉 .

Now, by the divergence free condition,

−〈∇(P − P̃ − q), η〉 := −
∫

Ω
∇(P − P̃ − q) · η dxdy =

∫

Ω
(P − P̃ − q) · (∇ · η) dxdy = 0.

By applying Cauchy-Schwarz inequality and (4),

|β 〈∇ζ,∇η〉| 6 β

2
‖∇η‖2L2 +

β

2
‖∇ζ‖2L2 ,

and by rewriting 〈Ih(η), η〉 = 〈Ih(η)− η, η〉+ 〈η, η〉 , we have:

−µ 〈Ih(η), η〉 = −µ 〈Ih(η)− η, η〉 − µ‖η‖2L2 .

Thus, we obtain:

1

2

d

dt
‖η‖2L2 +

(

α− β

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 + µ‖η‖2L2

6 −〈(ζ · ∇) v, η〉 − µ 〈Ih(η)− η, η〉
6 |〈(ζ · ∇) v, η〉|+ µ |〈Ih(η)− η, η〉|
6 |〈(ζ · ∇) v, η〉|+ µ‖ Ih(η)− η‖L2‖η‖L2
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6 |〈(ζ · ∇) v, η〉|+ µc1h‖∇η‖L2‖η‖L2

6 |〈(ζ · ∇) v, η〉|+ µc21h2

2
‖∇η‖2L2 +

µ

2
‖η‖2L2 ,

where in the last three lines we used Cauchy-Schwarz inequality, the definition of Ih, and Young’s
inequality. This leaves us with:

1

2

d

dt
‖η‖2L2 +

(

α− β

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 +

µ

2
‖η‖2L2 6 |〈(ζ · ∇) v, η〉|+ µc21h2

2
‖∇η‖2L2 .

Proceeding the same way for ζ, we have the following equations:

1

2

d

dt
‖η‖2L2 +

(

α− β

2
− µc21h2

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 +

µ

2
‖η‖2L2 6

∣
∣
∣
∣

∫

Ω
(ζ · ∇) v · η dxdy

∣
∣
∣
∣
, (22)

1

2

d

dt
‖ζ‖2L2 +

(

α− β

2
− µc21h2

2

)

‖∇ζ‖2L2 −
β

2
‖∇η‖2L2 +

µ

2
‖ζ‖2L2 6

∣
∣
∣
∣

∫

Ω
(η · ∇)w · ζ dxdy

∣
∣
∣
∣
. (23)

We estimate the integrals in these equations using (19), with ǫ = α−β
2 and δ = α−β

cL
, and obtain

1

2

d

dt
‖η‖2L2 +

(

α− β

2
− µc21h2

2
− α− β

4

)

‖∇η‖2L2 +

(

−β
2
− α− β

4

)

‖∇ζ‖2L2

+

(
µ

2
− c4L

4(α− β)3
‖∇v‖2L2

)

‖η‖2L2 +

(

−α− β

4
‖∇v‖2L2

)

‖ζ‖2L2 6 0, (24)

1

2

d

dt
‖ζ‖2L2 +

(

α− β

2
− µc21h2

2
− α− β

4

)

‖∇ζ‖2L2 +

(

−β
2
− α− β

4

)

‖∇η‖2L2

+

(
µ

2
− c4L

4(α− β)3
‖∇w‖2L2

)

‖ζ‖2L2 +

(

−α− β

4
‖∇w‖2L2

)

‖η‖2L2 6 0. (25)

Then, adding (24) and (25), we obtain

1

2

d

dt
‖η‖2L2 +

1

2

d

dt
‖ζ‖2L2 +

(
α− β

2
− µc21h2

2

)
(
‖∇η‖2L2 + ‖∇ζ‖2L2

)

+

[
µ

2
−
(

c4L
4(α− β)3

+
α− β

4

)
(
‖∇v‖2L2 + ‖∇w‖2L2

)
]
(
‖η‖2L2 + ‖ζ‖2L2

)
6 0. (26)

Thus, defining Y(t) = ‖η(t)‖2
L2 + ‖ζ(t)‖2

L2 and Z(t) = ‖∇v(t)‖2
L2 + ‖∇w(t)‖2

L2 , we have

d

dt
Y + ψY 6 0, (27)



A. Biswas et al. / Abridged Title–Data assimilation for 2D MHD equations 15

where ψ(t) := µ−
(

c4L+(α−β)4
2(α−β)3

)

Z(t), provided that µc21h2 6 α− β.

By Proposition 2.9 with T = 1
π2(α−β) , ψ satisfies (10b) and if

µ− c4L + (α− β)4

2T (α− β)3
(1 + Tπ2(α− β))(α− β)G2 > 0 ⇐⇒ µ >

π2(c4L + (α− β)4)

α− β
G2,

then ψ also satisfies (10a), so we can apply Proposition 2.1 to Y and conclude that (ṽ, w̃) converges
exponentially in time to (v,w).
The requirement on h is

h <

(
α− β

c21µ

)1/2

<
α− β

πc1
√

c4L + (α− β)4
G−1,

so h ∼ G−1.
✷

Proof of Theorem 3.2.

Let η = v − ṽ and ζ = w − w̃. Then η satisfies:

∂tη− α∆η− β∆ζ + (w · ∇) v − (w̃ · ∇) ṽ = −∇(P − P̃ − q)− µ Ih(η1)e1.

Using the fact that (w · ∇) v − (w̃ · ∇) ṽ = (ζ · ∇) v + (w̃ · ∇) η we write:

∂tη− α∆η− β∆ζ + (ζ · ∇) v + (w̃ · ∇) η = −∇(P − P̃ − q)− µ Ih(η1)e1.

Taking the inner product with η we obtain:

1

2

d

dt
‖η‖2L2 + α‖∇η‖2L2 + β 〈∇ζ,∇η〉+ 〈(ζ · ∇) v, η〉 = −〈∇(P − P̃ − q), η〉 − µ 〈Ih(η1), η1〉 .

Now, by the divergence free condition, we have:

−〈∇(P − P̃ − q), η〉 := −
∫

Ω
∇(P − P̃ − q) · η dxdy =

∫

Ω
(P − P̃ − q) · (∇ · η) dxdy = 0.

By applying Cauchy-Schwarz inequality and (4),

|β 〈∇ζ,∇η〉| 6 β

2
‖∇η‖2L2 +

β

2
‖∇ζ‖2L2 ,

and by rewriting 〈Ih(η1), η1〉 = 〈Ih(η1)− η1, η1〉+ 〈η1, η1〉 , we have:

−µ 〈Ih(η1), η1〉 = −µ 〈Ih(η1)− η1, η1〉 − µ‖η1‖2L2 .
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Thus, we obtain:

1

2

d

dt
‖η‖2L2 +

(

α− β

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 + µ‖η1‖2L2

6 −〈(ζ · ∇) v, η〉 − µ 〈Ih(η1)− η1, η1〉
6 |〈(ζ · ∇) v, η〉|+ µ |〈Ih(η1)− η1, η1〉|
6 |〈(ζ · ∇) v, η〉|+ µ‖ Ih(η1)− η1‖L2‖η1‖L2

6 |〈(ζ · ∇) v, η〉|+ µc1h‖∇η1‖L2‖η1‖L2

6 |〈(ζ · ∇) v, η〉|+ µc21h2

2
‖∇η1‖2L2 +

µ

2
‖η1‖2L2 ,

where in the last three lines we used the Cauchy-Schwarz inequality, the definition of Ih, and Young’s
inequality. This leaves us with:

1

2

d

dt
‖η‖2L2 +

(

α− β

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 +

µ

2
‖η1‖2L2 6 |〈(ζ · ∇) v, η〉|+ µc21h2

2
‖∇η1‖2L2 ,

or equivalently,

1

2

d

dt
‖η‖2L2 +

(

α− β

2
− µc21h2

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 +

µ

2
‖η1‖2L2 6

∣
∣
∣
∣

∫

Ω
(ζ · ∇) v · η dxdy

∣
∣
∣
∣
. (28)

Now we apply Lemma 4.1 to estimate the nonlinear term with (21), yielding:

1

2

d

dt
‖η‖2L2 +

(

α− β

2
− µc21h2

2
− cδ

)

‖∇η‖2L2 +

(

−β
2
− cδ

)

‖∇ζ‖2L2

+

[
µ

2
− c

δ
‖∇v‖2L2 −

c

δ
‖∇v‖2L2

(

1 + ln
‖∇η1‖L2

2π‖η1‖L2

)]

‖η1‖2L2

+

[

−c

δ
‖∇v‖2L2 −

c

δ
‖∇v‖2L2

(

1 + ln
‖∇ζ1‖L2

2π‖ζ1‖L2

)]

‖ζ1‖2L2 6 0. (29)

Proceeding similarly with ζ we obtain:

1

2

d

dt
‖ζ‖2L2 +

(

α− β

2
− µc21h2

2
− cδ

)

‖∇ζ‖2L2 +

(

−β
2
− cδ

)

‖∇η‖2L2

+

[
µ

2
− c

δ
‖∇w‖2L2 −

c

δ
‖∇w‖2L2

(

1 + ln
‖∇ζ1‖L2

2π‖ζ1‖L2

)]

‖ζ1‖2L2

+

[

−c

δ
‖∇w‖2L2 −

c

δ
‖∇w‖2L2

(

1 + ln
‖∇η1‖L2

2π‖η1‖L2

)]

‖η1‖2L2 6 0. (30)
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Now, adding (29) and (30) and defining Z(t) = ‖∇v(t)‖2
L2 + ‖∇w(t)‖2

L2 ,

1

2

d

dt
‖η‖2L2 +

1

2

d

dt
‖ζ‖2L2 +

(

α− β− µc21h2

2
− 2cδ

)

‖∇η‖2L2 +

(

α− β− µc21h2

2
− 2cδ

)

‖∇ζ‖2L2

+

[
µ

2
− c

δ
Z − c

δ
Z

(

1 + ln
‖∇η1‖L2

2π‖η1‖L2

)]

‖η1‖2L2

+

[
µ

2
− c

δ
Z − c

δ
Z

(

1 + ln
‖∇ζ1‖L2

2π‖ζ1‖L2

)]

‖ζ1‖2L2 6 0. (31)

Since α > β,

γ := (α− β)− µc21h2

2
− 2cδ >

(α− β)

4
> 0,

provided that h 6 (α− β)
1

2 c−1
1 µ−

1

2 and by choosing δ = (α−β)
8c

.

We want to apply Lemma 4.2 to the logarithmic terms in (31). To this end note that by (6),
‖∇η1‖L2

2π‖η1‖L2
> 1,

so ln
‖∇η1‖2

L2

4π2‖η1‖2
L2

> ln
‖∇η1‖L2

2π‖η1‖L2
. Next, we write

γ‖∇η‖2L2 >
γ

2
‖∇η‖2L2 +

4π2γ

2

‖∇η1‖2L2

4π2‖η1‖2L2

‖η1‖2L2 ,

and consider

2π2γ
‖∇η1‖2L2

4π2‖η1‖2L2

‖η1‖2L2 −
c

δ
Z

(

1 + ln
‖∇η1‖2L2

4π2‖η1‖2L2

)

‖η1‖2L2

= 2π2γ

( ‖∇η1‖2L2

4π2‖η1‖2L2

− c

2π2γδ
Z

(

1 + ln
‖∇η1‖2L2

4π2‖η1‖2L2

))

‖η1‖2L2 .

By Lemma 4.2,

‖∇η1‖2L2

4π2‖η1‖2L2

− c

2π2γδ
Z

(

1 + ln
‖∇η1‖2L2

4π2‖η1‖2L2

)

> − c

2π2γδ
Z

(

ln
c

2π2γδ
Z

)

. (32)

Hence, using (32) and defining Y(t) = ‖η(t)‖2
L2 + ‖ζ(t)‖2

L2 , we rewrite (31) as

1

2

d

dt
Y +

γ

2

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
+

[
µ

2
− c

δ
Z

(

1 + ln
c

2π2γδ
Z

)]
(
‖η1‖2L2 + ‖ζ1‖2L2

)
6 0.

By (6),

‖∇η‖2L2 + ‖∇ζ‖2L2 > 4π2
(
‖η‖2L2 + ‖ζ‖2L2

)
> 4π2

(
‖η2‖2L2 + ‖ζ2‖2L2

)
,
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and so

d

dt
Y +min

{

4π2γ , µ− 2c

δ
Z

(

1 + ln
c

2π2γδ
Z

)}

Y 6 0. (33)

Let

ψ(t) := min

{

4π2γ , µ− 2c

δ
Z(t)

(

1 + ln
c

2π2γδ
Z(t)

)}

,

and in order to apply Proposition 2.1 we only need to show that ψ satisfies (10a) and (10b). It is sufficient
to show that for some T, t0 > 0,

µ− lim sup
t→∞

1

T

∫ t+T

t

2c

δ
Z(s)

(

1 + ln
c

2π2γδ
Z(s)

)

ds > 0, (34)

and

sup
s>t0

Z(s)

(

1 + ln
c

2π2γδ
Z(s)

)

ds <∞. (35)

In fact, (35) follows directly from (16) with the t0 given there.
To see (34), by Proposition 2.9 with T = 1

π2(α−β) , we have:

lim
t→∞

1

T

∫ t+T

t

2c

δ
Z(s)

(

1 + ln
c

2π2γδ
Z(s)

)

ds

6
2c

δT

(

1 + ln
c

2π2γδ
10π2(α− β)2G2eCG4

)

lim
t→∞

∫ t+T

t

Z(s) ds

6
2c

δT

(
c̃ + 2 lnG + CG4

)
(1 + Tπ2(α− β))(α− β)G2,

= 32π2c2(α− β)
(
c̃ + 2 lnG + CG4

)
G2.

Therefore, (34) holds by choosing µ > 32π2c2(α− β)
(
c̃ + 2 lnG + CG4

)
G2. In addition, the require-

ment h 6
(α−β)

1
2

c1
µ−

1

2 implies h ∼ G−3.
✷

Proof of Theorem 3.3.

Let η = v − ṽ and ζ = w − w̃. Similarly to how we showed (28), the equation we obtain for η is

1

2

d

dt
‖η‖2L2 +

(

α− β

2
− µc21h2

2

)

‖∇η‖2L2 −
β

2
‖∇ζ‖2L2 +

µ

2
‖η‖2L2 6

∣
∣
∣
∣

∫

Ω
(ζ · ∇) v · η dxdy

∣
∣
∣
∣
, (36)
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but now the equation for ζ is

1

2

d

dt
‖ζ‖2L2 +

(

α− β

2

)

‖∇ζ‖2L2 −
β

2
‖∇η‖2L2 6

∣
∣
∣
∣

∫

Ω
(η · ∇)w · ζ dxdy

∣
∣
∣
∣
. (37)

We estimate the integral in (36) using (19), so (36) becomes:

1

2

d

dt
‖η‖2L2 +

(

α− β

2
− µc21h2

2
− ǫ

2

)

‖∇η‖2L2 +

(

−β
2
− cLδ

4

)

‖∇ζ‖2L2

+

(
µ

2
− c2L

8ǫδ2
‖∇v‖2L2

)

‖η‖2L2 +

(

−cLδ

4
‖∇v‖2L2

)

‖ζ‖2L2 6 0, (38)

Similarly, we estimate the integral in (37) using (20), and get:

1

2

d

dt
‖ζ‖2L2 +

(

α− β

2
− cLδ

4

)

‖∇ζ‖2L2 +

(

−β
2
− ǫ

2

)

‖∇η‖2L2

+

(

−cLδ

4
‖∇w‖2L2

)

‖ζ‖2L2 +

(

− c2L
8ǫδ2

‖∇w‖2L2

)

‖η‖2L2 6 0. (39)

Adding (38) and (39),

1

2

d

dt
‖η‖2L2 +

1

2

d

dt
‖ζ‖2L2 +

(

α− β− µc21h2

2
− ǫ

)

‖∇η‖2L2 +

(

α− β− cLδ

2

)

‖∇ζ‖2L2

+

(
µ

2
− c2L

8ǫδ2
(
‖∇v‖2L2 + ‖∇w‖2L2

)
)

‖η‖2L2 +

(

−cLδ

4

(
‖∇v‖2L2 + ‖∇w‖2L2

)
)

‖ζ‖2L2 6 0.

Now, if we choose

h 6
(α− β)1/2

c1
µ−1/2,

and ǫ = α−β
2 , then α− β− µc2

1
h2

2 − ǫ > 0.
Also, by choosing δ < α−β

cL
, we have

γ := α− β− cLδ

2
>
α− β

2
> 0.

Then by applying (6) we obtain γ‖∇ζ‖2
L2 > γ4π2‖ζ‖2

L2 . Hence, defining Y(t) = ‖η(t)‖2
L2 + ‖ζ(t)‖2

L2

and Z(t) = ‖∇v(t)‖2
L2 + ‖∇w(t)‖2

L2 , we have:

d

dt
Y + ψY 6 0, (40)
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where ψ(t) := min
{

µ− c2L
4ǫδ2

Z(t) , 8π2γ − cLδ
2 Z(t)

}

. Using Proposition 2.9 similarly as before, with

T = 1
π2(α−β) , ψ satisfies (10b) as well as (10a) provided that

δ <
α− β

cL

4

4 + (α− β)2G2
=⇒ 8π2γ − cLδ

2T
(1 + Tπ2(α− β))(α− β)G2 > 4(α− β) > 0,

and

µ >
π2c4LG2(4 + (α− β)2G2)2

16(α− β)
=⇒ µ− c2L

4ǫδ2T
(1 + Tπ2(α− β))(α− β)G2 > 0.

By choosing such a µ and δ, we can apply Proposition 2.1 to conclude that (ṽ, w̃) converges exponen-
tially in time to (v,w).
Now the requirement we needed on h implies

h <
4(α− β)

πc1c2LG(4 + (α− β)2G2)
,

so h ∼ G−3.

✷

4.2. Proof of H1 Convergence Results with Type 1 Interpolants

Proof of Theorem 3.4..

By denoting η = v− ṽ and ζ = w− w̃ and subtracting the equations for (v,w) and (ṽ, w̃), we obtain the
following equations for η and ζ

∂tη− α∆η− β∆ζ + (ζ · ∇) v + (w̃ · ∇) η = −∇(P − P̃ − q)− µ Ih(η),

∂tζ − α∆ζ − β∆η+ (η · ∇)w + (ṽ · ∇) ζ = −∇(P − P̃ − q)− µ Ih(ζ).

Taking the inner product with −∆η and −∆ζ, respectively, we obtain:

1

2

d

dt
‖∇η‖2L2 + α‖∆η‖2L2 = −β 〈∆ζ,∆η〉+ 〈(ζ · ∇) v,∆η〉+ 〈(w̃ · ∇) η,∆η〉

+ 〈∇(P − P̃ − q),∆η〉+ µ 〈Ih(η),∆η〉 ,
1

2

d

dt
‖∇ζ‖2L2 + α‖∆ζ‖2L2 = −β 〈∆η,∆ζ〉+ 〈(η · ∇)w,∆ζ〉+ 〈(ṽ · ∇) ζ,∆ζ〉

+ 〈∇(P − P̃ − q),∆ζ〉+ µ 〈Ih(ζ),∆ζ〉 .

Then, by the divergence-free condition,

〈∇(P − P̃ − q),∆η〉 = −
∫

Ω
(P − P̃ − q) ·∆(∇ · η) dxdy = 0,
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and similarly

〈∇(P − P̃ − q),∆ζ〉 = 0.

Also, by applying Cauchy-Schwarz inequality and (4), we have

−β 〈∆ζ,∆η〉 6 β

2
‖∆η‖2L2 +

β

2
‖∆ζ‖2L2 .

Rewriting 〈Ih(η),−∆η〉 = 〈Ih(η)− η,−∆η〉+ 〈η,∆η〉 , we have,

−µ 〈Ih(η),−∆η〉 = −µ 〈Ih(η)− η,−∆η〉 − µ‖∇η‖2L2 ,

and similarly,

−µ 〈Ih(ζ),−∆ζ〉 = −µ 〈Ih(ζ)− ζ,−∆ζ〉 − µ‖∇ζ‖2L2 .

Adding up the equations for η and ζ, we obtain

1

2

d

dt

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
+ (α− β)

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

6 |〈(ζ · ∇) v,∆η〉|+ |〈(η · ∇)w,∆ζ〉|+ |〈(w̃ · ∇) η,∆η〉|+ |〈(ṽ · ∇) ζ,∆ζ〉|

+ µ |〈Ih(η)− η,∆η〉|+ µ |〈Ih(ζ)− ζ,∆ζ〉| − µ
(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
.

Due to the properties of Ih, we have

µ |〈Ih(η)− η,∆η〉| 6 µ‖ Ih(η)− η‖L2‖∆η‖L2 6 µc1h‖∇η‖L2‖∆η‖L2

6
4µ2c21h2

α− β
‖∇η‖2L2 +

α− β

16
‖∆η‖2L2 ,

and similarly, we obtain

µ |〈Ih(ζ)− ζ,∆ζ〉| 6
4µ2c21h2

α− β
‖∇ζ‖2L2 +

α− β

16
‖∆ζ‖2L2 .

Next, we estimate the nonlinear terms. First, by Hölder’s and Sobolev inequalities, we obtain

|〈(ζ · ∇) v,∆η〉| 6
∫

Ω
|ζ||∇v||∆η| dxdy 6 ‖ζ‖L4‖∇v‖L4‖∆η‖L2

6 ‖ζ‖1/2
L2 ‖∇ζ‖1/2

L2 ‖∇v‖1/2
L2 ‖∆v‖1/2

L2 ‖∆η‖L2

6
4

α− β
‖∇v‖L2‖∆v‖L2‖ζ‖L2‖∇ζ‖L2 +

α− β

16
‖∆η‖2L2

6
4

2π(α− β)
‖∇v‖L2‖∆v‖L2‖ζ‖L2‖∆ζ‖L2 +

α− β

16
‖∆η‖2L2
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6
1

4π2

(
4

α− β

)3

‖∇v‖2L2‖∆v‖2L2‖ζ‖2L2 +
α− β

16

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)
,

where we used Poincaré’s and Young’s inequalities. The estimate for 〈(η · ∇)w,∆ζ〉 is similarly, i.e.,
we have

|〈(η · ∇)w,∆ζ〉| 6 1

4π2

(
4

α− β

)3

‖∇w‖2L2‖∆w‖2L2‖η‖2L2 +
α− β

16

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)
.

Regarding 〈(w̃ · ∇) η,∆η〉, we first rewrite it as

〈(w̃ · ∇) η,∆η〉 = 〈(w · ∇) η,∆η〉 − 〈(ζ · ∇) η,∆η〉 = I + II.

In order to estimate I, we first observe that by the periodic boundary conditions, we have

‖∇η‖2L2 =

∫

Ω
∇η · ∇η dxdy = −

∫

Ω
η∆η dxdy 6 ‖η‖L2‖∆η‖L2 . (41)

Thus, we integrate by parts and proceed to estimate I as

〈(w · ∇) η,∆η〉 =
2∑

i, j,k=1

∫

Ω
wi∂iηk∂

2
j jηk dxdy = −

2∑

i, j,k=1

∫

Ω
∂ jwi∂iηk∂ jηk dxdy

6

∫

Ω
|∇w||∇η|2 dxdy 6 ‖∇w‖L2‖∇η‖L2‖∆η‖L2

6
4

α− β
‖∇w‖2L2‖∇η‖2L2 +

α− β

16
‖∆η‖2L2

6
4

α− β
‖∇w‖2L2‖η‖L2‖∆η‖L2 +

α− β

16
‖∆η‖2L2

6

(
4

α− β

)3

‖∇w‖4L2‖η‖2L2 +
α− β

8
‖∆η‖2L2 .

By similar estimates and the analogy of (41) for ζ, i.e.,

‖∇ζ‖2L2 6 ‖ζ‖L2‖∆ζ‖L2 ,

we estimate II as

−〈(ζ · ∇) η,∆η〉 6
∫

Ω
|∇ζ||∇η|2 dxdy 6 ‖∇ζ‖L2‖∇η‖L2‖∆η‖L2

6
4

α− β
‖∇η‖2L2‖∇ζ‖2L2 +

α− β

16
‖∆η‖2L2

6
4

α− β
‖η‖L2‖ζ‖L2‖∆η‖L2‖∆ζ‖L2 +

α− β

16
‖∆η‖2L2
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6
2

α− β
‖η‖L2‖ζ‖L2

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)
+
α− β

16
‖∆η‖2L2 .

By a similar approach, we have

〈(ṽ · ∇) ζ,∆ζ〉 = 〈(v · ∇) ζ,∆ζ〉 − 〈(η · ∇) ζ,∆ζ〉 = III + IV ,

and III is bounded by

|〈(v · ∇) ζ,∆ζ〉| 6
(

4

α− β

)3

‖∇v‖4L2‖ζ‖2L2 +
α− β

8
‖∆ζ‖2L2 ,

while we estimate IV as

−〈(η · ∇) ζ,∆ζ〉 6 2

α− β
‖η‖L2‖ζ‖L2

(
‖∆ζ‖2L2 + ‖∆η‖2L2

)
+
α− β

16
‖∆ζ‖2L2 .

Combining all the above estimates, we obtain

1

2

d

dt

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
+

(
α− β

2
− 4

α− β
‖η‖L2‖ζ‖L2

)

︸ ︷︷ ︸

V

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

6

[
1

4π2

(
4

α− β

)3
(
‖∇v‖2L2‖∆v‖2L2 + ‖∇w‖2L2‖∆w‖2L2

)

︸ ︷︷ ︸

VI

+

(
4

α− β

)3
(
‖∇v‖4L2 + ‖∇w‖4L2

)

︸ ︷︷ ︸

VII

]
(
‖η‖2L2 + ‖ζ‖2L2

)

+

(
4µ2c21h2

α− β
︸ ︷︷ ︸

VIII

−µ
)
(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
. (42)

Now choose h such that

VIII =
4µ2c21h2

α− β
<
µ

2
.

Thus, we have

h2 <
α− β

8µc21
. (43)
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Moreover, by Theorem 3.1, we know that after a sufficiently large time T1, ‖η‖L2 and ‖ζ‖L2 are small
enough. so that we have

‖η‖L2‖ζ‖L2 6
(α− β)2

16
, (44)

which implies that V > 0, so we have:

1

2

d

dt

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
+
µ

2

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
6 (VI + VII)

(
‖η‖2L2 + ‖ζ‖2L2

)
.

Define Y(t) = ‖∇η(t)‖2
L2 + ‖∇ζ(t)‖2

L2 , and by appealing to Proposition 2.9, we see that VI + VII is
bounded by some number MG

2 . Also, by Theorem 3.1 we know that there exists constants K, a > 0 such
that ‖η(t)‖2

L2 + ‖ζ(t)‖2
L2 6 Ke−at, ∀t > T1. Putting all of this together, we have the following for all

t > T1:

d

dt
Y(t) + µY(t) 6 MGKe−at,

⇒ d

dt
(eµtY(t)) 6 MGKe(µ−a)t,

⇒ eµtY(t)− eµT1Y(T1) 6
MGK

µ− a
e(µ−a)t − MGK

µ− a
e(µ−a)T1 ,

⇒ Y(t) 6 Y(T1)e
−µ(t−T1) +

MGK

µ− a

(

e−at − e−µ(t−T1)−aT1

)

.

Therefore, Y(t) = ‖∇η(t)‖2
L2 + ‖∇ζ(t)‖2

L2 → 0 exponentially as t → ∞ as long as µ and h satisfy the
conditions of Theorem 3.1, as well as the new requirement (43). So, choosing

µ >
π2(c4L + (α− β)4)

α− β
G2, and h <

α− β

2
√
2πc1

√

c4L + (α− β)4
G−1,

we have exponential convergence. ✷

Next, we prove the H1 decay estimates for the data assimilation scenario where measurement is only
on v1 and w1.

Proof of Theorem 3.5..

We still denote the difference of solutions to (11) and (13) by η = v − ṽ and ζ = w − w̃. Similarly to
the beginning of the proof of Theorem 3.4, we have

1

2

d

dt

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
+ (α− β)

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

6 |〈(ζ · ∇) v,∆η〉|+ |〈(η · ∇)w,∆ζ〉|+ |〈(w̃ · ∇) η,∆η〉|+ |〈(ṽ · ∇) ζ,∆ζ〉|

+ µ |〈Ih(η1)− η1,∆η1〉|+ µ |〈Ih(ζ1)− ζ1,∆ζ1〉| − µ‖∇η1‖2L2 − µ‖∇ζ1‖2L2 ,
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as well as

µ |〈Ih(η1)− η1,∆η1〉| 6
4µ2c21h2

α− β
‖∇η1‖2L2 +

α− β

16
‖∆η1‖2L2 ,

and

µ |〈Ih(ζ1)− ζ1,∆ζ1〉| 6
4µ2c21h2

α− β
‖∇ζ1‖2L2 +

α− β

16
‖∆ζ1‖2L2 .

The estimates for the nonlinear terms are also similar. Namely, we have

|〈(ζ · ∇) v,∆η〉| 6 1

4π2

(
4

α− β

)3

‖∇v‖2L2‖∆v‖2L2‖ζ‖2L2 +
α− β

16

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)
,

and

|〈(η · ∇)w,∆ζ〉| 6 1

4π2

(
4

α− β

)3

‖∇w‖2L2‖∆w‖2L2‖η‖2L2 +
α− β

16

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)
.

Also, by rewriting

〈(w̃ · ∇) η,∆η〉 = 〈(w · ∇) η,∆η〉 − 〈(ζ · ∇) η,∆η〉

we obtain

〈(w · ∇) η,∆η〉 6
(

4

α− β

)3

‖∇w‖4L2‖η‖2L2 +
α− β

8
‖∆η‖2L2 ,

and

−〈(ζ · ∇) η,∆η〉 6 2

α− β
‖η‖L2‖ζ‖L2

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)
+
α− β

16
‖∆η‖2L2 .

Estimates for

〈(ṽ · ∇) ζ,∆ζ〉 = 〈(v · ∇) ζ,∆ζ〉 − 〈(η · ∇) ζ,∆ζ〉

also follow similarly, and we obtain

〈(v · ∇) ζ,∆ζ〉 6
(

4

α− β

)3

‖∇v‖4L2‖ζ‖2L2 +
α− β

8
‖∆ζ‖2L2 ,

and

−〈(η · ∇) ζ,∆ζ〉 6 2

α− β
‖η‖L2‖ζ‖L2

(
‖∆ζ‖2L2 + ‖∆η‖2L2

)
+
α− β

16
‖∆ζ‖2L2 .
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Combining all the above estimates, we obtain

1

2

d

dt

(
‖∇η‖2L2 + ‖∇ζ‖2L2

)
+

(
α− β

2
− 4

α− β
‖η‖L2‖ζ‖L2

)

︸ ︷︷ ︸

V

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

6

[(

1

4π2

(
4

α− β

)3
(
‖∇v‖2L2‖∆v‖2L2 + ‖∇w‖2L2‖∆w‖2L2

)

)

︸ ︷︷ ︸

VI

+

(
4

α− β

)3
(
‖∇v‖4L2 + ‖∇w‖4L2

)

︸ ︷︷ ︸

VII

]
(
‖η‖2L2 + ‖ζ‖2L2

)

+

(
4µ2c21h2

α− β
︸ ︷︷ ︸

VIII

−µ
)
(
‖∇η1‖2L2 + ‖∇ζ1‖2L2

)
. (45)

We choose h such that

VIII =
4µ2c21h2

α− β
<
µ

2
. (46)

In view of Theorem 3.2, after sufficiently large time T2 > 0, ‖η‖L2 and ‖ζ‖L2 are small enough so that

‖η‖L2‖ζ‖L2 <
(α− β)2

16
. (47)

Thus, V > 1
4(α − β) > 0. Let us denote Y(t) = ‖∇η‖2

L2 + ‖∇ζ‖2
L2 . Then, for all t > T2, by applying

Poincaré’s inequality to the second term on the left-hand side of (45), it follows, due to (46), that

1

2

d

dt
Y(t) + π2(α− β)Y(t) 6 MG

(
‖η‖2L2 + ‖ζ‖2L2

)
+ (VIII − µ)

(
‖∇η1‖2L2 + ‖∇ζ1‖2L2

)

6 MG

(
‖η‖2L2 + ‖ζ‖2L2

)

6 K′MGe−a′t,

where K′ > 0 and a′ > 0 chosen so that is such that ‖η‖2
L2 + ‖ζ‖2

L2 6 K′MGe−a′t for all t > T2 (this is
permitted due to Theorem 3.2). This implies

d

dt

(

Y(t)e2π
2(α−β)t

)

6 K′MGe2π
2(α−β)te−a′t.

Integrating, we arrive at

Y(t) 6 Y(T2)e
−2π2(α−β)(t−T2) +

K′MG

2π2(α− β)− a′

(

e−ta′ − e−2π2(α−β)(t−T2)−a′T2

)

.
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(Note that, if necessary, one may choose a′ slightly smaller so that 2π2(α − β) 6= a′.) In particular,
Y(t) = ‖∇η‖2

L2 + ‖∇ζ‖2
L2 decays exponentially in time for all t > T2, with h and µ chosen so that

µ > 32π2c2(α− β)
(
c̃ + 2 lnG + CG4

)
G2

and

h < (2
√
2c1)

−1(α− β)
1

2µ−
1

2 < (8
√
2πc1c)−1

(
c̃ + 2 lnG + CG4

)− 1

2 G−1.

Thus, the proof of Theorem 3.5 is complete. ✷

Proof of Theorem 3.6..

The proof goes similarly as that of Theorem 3.5. For the sake of simplicity, we omit the details here. ✷

4.3. Proofs of the Results for Type 2 Interpolants

Lemma 4.3. Let u, v,w ∈ H2 be divergence free. Then the following inequalities hold:

(a)

∣
∣
∣
∣

∫

Ω
(u · ∇) v ·∆w dxdy

∣
∣
∣
∣
6 3cT‖∇u1‖L2‖∇v‖L2‖∆w‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2

+(cT + 4cB)‖∆u‖L2‖∇v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

+2cT‖∇u‖L2‖∆v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

, (48)

(b)

∣
∣
∣
∣

∫

Ω
(u · ∇) v ·∆v dxdy

∣
∣
∣
∣
6 (2cB + 5cT )‖∇u‖L2‖∇v1‖L2‖∆v‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

.

(49)

Proof. See the appendix. ✷

In the following proof of Theorem 3.8, we simultaneously establish a bound like (16) for the data
assimilation solution, because the proof requires such an estimate.

Proof of Theorem 3.8.

Since (ṽ, w̃) is a strong solution and ṽ0 ≡ w̃0 ≡ 0, there is a largest time T0 ∈ (0,∞] such that

sup
t∈[0,T0)

(‖∇ṽ(t)‖2L2 + ‖∇w̃(t)‖2L2) 6 50π2(α− β)2G2eCG4

.
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Suppose that T0 <∞.
Then we know that

lim sup
t→T

−

0

(‖∇ṽ(t)‖2L2+‖∇w̃(t)‖2L2) = sup
t∈[0,T0)

(‖∇ṽ(t)‖2L2+‖∇w̃(t)‖2L2) = 50π2(α−β)2G2eCG4

. (50)

Let η = v − ṽ and ζ = w − w̃. Then we have the following equation for η:

∂tη− α∆η− β∆ζ + (ζ · ∇) v + (w̃ · ∇) η = −∇(P − P̃ − q)− µ Ih(η1)e1.

Taking the inner product with −∆η, we obtain:

1

2

d

dt
‖∇η‖2L2 + α‖∆η‖2L2 + β 〈∆ζ,∆η〉 − 〈(ζ · ∇) v,∆η〉 − 〈(w̃ · ∇) η,∆η〉

= 〈∇(P − P̃ − q),∆η〉 − µ 〈Ih(η1),−∆η1〉

Now, by the divergence free condition, we have:

〈∇(P − P̃ − q),∆η〉 = −
∫

Ω
(P − P̃ − q) ·∆(∇ · η) dxdy = 0,

and by applying Cauchy-Schwarz inequality and (4),

|β 〈∆ζ,∆η〉| 6 β

2
‖∆η‖2L2 +

β

2
‖∆ζ‖2L2 .

Rewriting 〈Ih(η1),−∆η1〉 = 〈Ih(η1)− η1,−∆η1〉+ 〈η1,∆η1〉 , we have,

−µ 〈Ih(η1),−∆η1〉 = −µ 〈Ih(η1)− η1,−∆η1〉 − µ‖∇η1‖2L2 ,

so we obtain:

1

2

d

dt
‖∇η‖2L2 +

(

α− β

2

)

‖∆η‖2L2 −
β

2
‖∆ζ‖2L2 + µ‖∇η1‖2L2

6 |〈(ζ · ∇) v,∆η〉|+ |〈(w̃ · ∇) η,∆η〉|+ µ |〈Ih(η1)− η1,∆η1〉| .

By the properties of Ih, we have

µ |〈Ih(η1)− η1,∆η1〉| 6 µ‖ Ih(η1)− η1‖L2‖∆η1‖L2

6 µ
(
c2h‖∇η1‖L2 + c3h2‖∆η1‖L2

)
‖∆η1‖L2

6
µ2

2(α− β)
(c2h‖∇η1‖L2 + c3h2‖∆η1‖L2)2 +

α− β

2
‖∆η1‖2L2

6
µ2c22h2

α− β
‖∇η1‖2L2 +

µ2c23h4

α− β
‖∆η1‖2L2 +

α− β

2
‖∆η1‖2L2 .
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Therefore,

1

2

d

dt
‖∇η‖2L2 +

(
α

2
− µ2c23h4

α− β

)

‖∆η‖2L2 −
β

2
‖∆ζ‖2L2 + µ

(

1− µc22h2

α− β

)

‖∇η1‖2L2

6 |〈(ζ · ∇) v,∆η〉|+ |〈(w̃ · ∇) η,∆η〉| . (51)

Note that 1− µc2
2

h2

α−β > 1
2 , and µ2c2

3
h4

α−β <
α−β
4 as long as

h2 <
α− β

2µmax{c22, c3}
. (52)

Now we estimate the nonlinear terms using Lemma 4.3. By (48), we obtain

|〈(ζ · ∇) v,∆η〉| 6 3cT‖∇ζ1‖L2‖∇v‖L2‖∆η‖L2

(

1 + ln
‖∆ζ1‖L2

2π‖∇ζ1‖L2

)1/2

+ (cT + 4cB)‖∆ζ‖L2‖∇v‖L2‖∇η1‖L2

(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)1/2

+ 2cT‖∇ζ‖L2‖∆v‖L2‖∇η1‖L2

(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)1/2

,

so by applying (4), we obtain

|〈(ζ · ∇) v,∆η〉| 6 α− β

32

(
‖∆η‖2L2 + ‖∆ζ‖2L2 + 4π2‖∇ζ‖2L2

)

+
72c2T

(α− β)
‖∇ζ1‖2L2‖∇v‖2L2

(

1 + ln
‖∆ζ1‖L2

2π‖∇ζ1‖L2

)

+
64(1 + 4π2)(c2T + c2B)

4π2(α− β)

(
‖∇v‖2L2 + ‖∆v‖2L2

)
‖∇η1‖2L2

(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)

.

Also, we use (6) to write 4π2‖∇ζ‖2
L2 6 ‖∆ζ‖L2 .

For the other term, we first apply (49), and obtain

|〈(w̃ · ∇) η,∆η〉| 6 (2cB + 5cT )‖∇w̃‖L2‖∇η1‖L2‖∆η‖L2

(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)1/2

.

Then, by (4), we have

|〈(w̃ · ∇) η,∆η〉| 6 α− β

32
‖∆η‖2L2 +

200(cB + cT )
2

α− β
‖∇w̃‖2L2‖∇η1‖2L2

(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)

.
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Combining these estimates with (51), we have:

1

2

d

dt
‖∇η‖2L2 +

(
α

2
− 5(α− β)

16

)

‖∆η‖2L2 −
(
β

2
+
α− β

16

)

‖∆ζ‖2L2

+

[
µ

2
− γ0

(
‖∇w̃‖2L2 + ‖∇v‖2L2 + ‖∆v‖2L2

)
(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)]

‖∇η1‖2L2

− γ0‖∇v‖2L2

(

1 + ln
‖∆ζ1‖L2

2π‖∇ζ1‖L2

)

‖∇ζ1‖2L2 6 0, (53)

where

γ0 :=
200(cB + cT )

2

α− β
= max

{
72c2T

(α− β)
,
64(1 + 4π2)(c2T + c2B)

4π2(α− β)
,
200(cB + cT )

2

α− β

}

.

Adding (53) with the corresponding inequality for
d

dt
‖∇ζ‖2

L2 , we obtain:

1

2

d

dt
‖∇η‖2L2 +

1

2

d

dt
‖∇ζ‖2L2 +

α− β

8

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

+

[
µ

2
− γ0

(
‖∇w̃‖2L2 + ‖∇v‖2L2 + ‖∇w‖2L2 + ‖∆v‖2L2

)
(

1 + ln
‖∆η1‖L2

2π‖∇η1‖L2

)]

‖∇η1‖2L2

+

[
µ

2
− γ0

(
‖∇ṽ‖2L2 + ‖∇v‖2L2 + ‖∇w‖2L2 + ‖∆w‖2L2

)
(

1 + ln
‖∆ζ1‖L2

2π‖∇ζ1‖L2

)]

‖∇ζ1‖2L2

6 0. (54)

Next, we write

α− β

8
‖∆η‖2L2 >

α− β

16
‖∆η‖2L2 +

α− β

16

‖∆η1‖2L2

4π2‖∇η1‖2L2

4π2‖∇η1‖2L2

and

α− β

8
‖∆ζ‖2L2 >

α− β

16
‖∆ζ‖2L2 +

α− β

16

‖∆ζ1‖2L2

4π2‖∇ζ1‖2L2

4π2‖∇ζ1‖2L2 .

Then, by defining

r(u) =
‖∆u1‖2L2

4π2‖∇u1‖2L2

and

γ =
4

π2(α− β)
γ0
(
‖∇ṽ‖2L2 + ‖∇w̃‖2L2 + ‖∇v‖2L2 + ‖∇w‖2L2 + ‖∆v‖2L2 + ‖∆w‖2L2

)
,
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by (6) we can rewrite (54) as:

1

2

d

dt
(‖∇η‖2L2 + ‖∇ζ‖2L2) +

α− β

16

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

+

[
µ

2
+
π2(α− β)

4
(r(η)− γ (1 + ln r(η)))

]

‖∇η1‖2L2

+

[
µ

2
+
π2(α− β)

4
(r(ζ)− γ (1 + ln r(ζ)))

]

‖∇ζ1‖2L2 6 0.

Now we apply Lemma 4.2 and conclude that

1

2

d

dt
(‖∇η‖2L2 + ‖∇ζ‖2L2) +

α− β

16

(
‖∆η‖2L2 + ‖∆ζ‖2L2

)

+

[
µ

2
− π2(α− β)

4
γ ln(γ)

]

‖∇η1‖2L2 +

[
µ

2
− π2(α− β)

4
γ ln(γ)

]

‖∇ζ1‖2L2 6 0.

Using (6) again, we have

‖∆η‖2L2 + ‖∆ζ‖2L2 > 4π2(‖∇η‖2L2 + ‖∇ζ‖2L2),

so by defining

Y = ‖∇η‖2L2 + ‖∇ζ‖2L2 ,

and

ψ = min

{
π2(α− β)

2
, µ− π2(α− β)

2
γ ln(γ)

}

we obtain:

d

dt
Y + ψY 6 0. (55)

Thus, as long as we choose µ > π2(α−β)
2 (1 + γ ln(γ)), we conclude by Gronwall’s inequality that

Y(t) 6 Y(0)e−π
2(α−β)t/2, ∀t ∈ [0,T0).

By (50), (16), and (17),

γ 6
4

π2(α− β)
γ0

(

60π2(α− β)2G2eCG4

+ cM(α− β)2

×G2
[

1 +
(

1 + G2eCG4
)(

1 + eCG4

+ G4eCG4
)])

<∞,
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so on the time interval [0,T0), such a µ is available. Specifically, it is sufficient to choose

µ > 2000(cB + cT )
2(20π2 + cM)G

2(1 + G2)3e2CG4 (
c̃ + ln(1 + G) + CG4

)
, (56)

where c̃ := ln(250(cB + cT )
2(20π2 + cM))/8, so

µ ∼ G12e2CG4

. (57)

Therefore, for all t ∈ [0,T0), we obtain

Y(t) 6 Y(0) 6 2‖∇v0‖2L2 + 2‖∇ṽ0‖2L2 + 2‖∇w0‖2L2 + 2‖∇w̃0‖2L2 6 20π2(α− β)2G2eCG4

.

This implies that, in fact,

sup
t∈[0,T0)

(‖∇ṽ(t)‖2L2 + ‖∇w̃(t)‖2L2) 6 40π2(α− β)2G2eCG4

,

which is a contradiction to (50).
Hence we have T0 = ∞, and (ṽ(t), w̃(t)) converges exponentially in time to (v(t),w(t)) in the H1

norm, and we have established the estimate:

sup
t∈[0,∞)

(‖∇ṽ(t)‖2L2 + ‖∇w̃(t)‖2L2) 6 50π2(α− β)2G2eCG4

.

Also, our restriction on µ (57) is in fact sufficient to guarantee convergence on [0,∞), with our
restriction (52) on h, which we see now means we can choose

h ∼ G−6e−CG4

.

✷

4.4. Determining Interpolants

Proof of Theorem 3.10.

The proof proceeds exactly as that of Theorem 3.1, where δ(1) ≡ δ(2) ≡ ǫ(1) ≡ ǫ(2) ≡ 0, with a few
differences. As before, we let η = v − ṽ and then we obtain a differential inequality for ‖η‖L2 . We get
the same inequality as before but with two extra terms.

After subtracting the equations for v and ṽ, we have f − ( f + δ(1)) = −δ(1) for the forcing term, and
after taking the inner product with η we have

∣
∣
∣
∣

∫

Ω
δ(1) · η dxdy

∣
∣
∣
∣
6 ‖δ(1)‖L2‖η‖L2 6

1

µ
‖δ(1)‖2L2 +

µ

4
‖η‖2L2 .

Also, we have µ Ih

(
v + ǫ(1) − ṽ

)
= µ Ih (v − ṽ) + µ Ih

(
ǫ(1)
)
, and after taking the inner product with η,

we obtain
∣
∣
∣
∣
µ

∫

Ω
Ih(ǫ

(1)) · η dxdy

∣
∣
∣
∣
6 µ‖ Ih(ǫ

(1))‖L2‖η‖L2 6 µ‖ Ih(ǫ
(1))‖2L2 +

µ

4
‖η‖2L2 .
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We have similar additions for the inequality we derive for ζ := w − w̃.
Thus, letting Y(t) = ‖η(t)‖2

L2 + ‖ζ(t)‖2
L2 and proceeding as before, we eventually get:

d

dt
Y + ψY 6 φ,

where

ψ(t) :=
µ

2
−
(

c4L + (α− β)4

2(α− β)3

)
(
‖∇v‖2L2 + ‖∇w‖2L2

)
,

and

φ(t) :=
1

µ

(

‖δ(1)‖2L2 + ‖δ(2)‖2L2

)

+ µ
(

‖ Ih(ǫ
(1))‖2L2 + ‖ Ih(ǫ

(2))‖2L2

)

.

Since ‖δ(1)‖L2 , ‖δ(2)‖L2 → 0 and ‖ Ih(ǫ
(1))‖L2 , ‖ Ih(ǫ

(2))‖L2 → 0, we have ‖φ‖L2 → 0. Therefore, by
Proposition 2.1, ‖v − ṽ‖L2 , ‖w − w̃‖L2 → 0 as t → ∞. ✷

Proof of Theorem 3.12.

Let µ = (α−β)
c2
1

h2
. Then h, Ih, and µ satisfy Theorem 3.1 with (v(1),w(1)) as the reference solution.

Let (ṽ, w̃) be the corresponding solution.
Then ‖v(1)(t) − ṽ(t)‖L2 → 0 and ‖w(1)(t) − w̃(t)‖L2 → 0, and for some q and P, ṽ and w̃ satisfy the
following equations:

∂tṽ − α∆ṽ + β∆w̃ + (w̃ · ∇) ṽ +∇P +∇q = f (1) + µ Ih

(

v(1) − ṽ
)

= f (2) + ( f (1) − f (2)) + µ Ih

(

v(2) + (v(1) − v(2))− ṽ
)

,

∂tw̃ − α∆w̃ + β∆ṽ + (ṽ · ∇) w̃ +∇P −∇q = g(1) + µ Ih

(

w(1) − w̃
)

= g(2) + (g(1) − g(2)) + µ Ih

(

w(2) + (w(1) − w(2))− w̃
)

.

Therefore, setting δ(1) := f (1) − f (2) and δ(2) := g(1) − g(2), and ǫ(1) := v(1) − v(2) and ǫ(2) :=
w(1)−w(2), we see that (ṽ, w̃) must be the unique solution guaranteed by Theorem 3.10, with (v(2),w(2))
as the reference solution.
Therefore ‖v(2)(t)− ṽ(t)‖L2 → 0 and ‖w(2)(t)− w̃(t)‖L2 → 0.
Thus,

‖v(1)(t)− v(2)(t)‖L2 6 ‖v(1)(t)− ṽ(t)‖L2 + ‖ṽ(t)− v(2)(t)‖L2 → 0,

and

‖w(1)(t)− w(2)(t)‖L2 6 ‖w(1)(t)− w̃(t)‖L2 + ‖w̃(t)− w(2)(t)‖L2 → 0.

✷
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5. Concluding Remarks

We have shown that, in the language of the reformulated equations, solutions (ṽ, w̃) of the data as-
similation equations will converge to the corresponding true values (v,w) in L2, even if measurements
are only taken for only one of v and w. This equates to having to take measurements on either u + b or
u − b. Could one prove that it is sufficient to collect data on just u or just b and still get convergence,
similar to the result for the reformulated variables?

If one were to consider collecting data only on the magnetic field, b, then the problem is evident
when we take b(t) ≡ b̃(t) ≡ g ≡ 0 for all t > 0, because we then have u and ũ satisfying the Navier-
Stokes equations with different initial conditions and no data assimilation. Hence, there is an asymmetry
between the original system and the reformulated system.

The answer to the question for collecting data on the velocity field, u, is open. However, since we’ve
demonstrated that the algorithm works with knowledge of only the sum of measurements on u and b,
it may be that the knowledge of the velocity field is what makes this work, and so a u-measurement
only algorithm is hopeful. However, since it seems we shouldn’t be able to prove the convergence of a
b-measurement only algorithm, and the Elsässer variable formulation does not distinguish u and b, a
proof of a u-measurement only algorithm would have to be in terms of the original variables.

Appendix

Proof of Proposition 2.9 . We provide only a formal proof of (15) here. A rigorous proof can be carried
out by, e.g., first proving the bounds at the level of finite-dimensional Galerkin truncation, and then
passing to a limit.

Taking a (formal) inner-product of (11a) with v, and of (11b) with w, using (11c) and adding the
results, we obtain

1

2

d

dt

(
‖v‖2L2 + ‖w‖2L2

)
+ (α− β)

(
‖∇v‖2L2 + ‖∇w‖2L2

)

6 〈 f , v〉+ 〈g,w〉 6 ‖ f‖L2‖v‖L2 + ‖g‖L2‖w‖L2

6 1
8π2(α−β)

(
‖ f‖2L2 + ‖g‖2L2

)
+ (α−β)

2 4π2
(
‖v‖2L2 + ‖w‖2L2

)

6 1
8π2(α−β)

(
‖ f‖2L2 + ‖g‖2L2

)
+ (α−β)

2

(
‖∇v‖2L2 + ‖∇w‖2L2

)
,

where we used the Poincaré inequality and Young’s inequality. Therefore, after collecting terms,

d

dt

(
‖v‖2L2 + ‖w‖2L2

)
+ (α− β)

(
‖∇v‖2L2 + ‖∇w‖2L2

)
6 1

4π2(α−β)
(
‖ f‖2L2 + ‖g‖2L2

)
, (58)

and by using the Poincaré inequality on the left hand side,

d

dt

(
‖v‖2L2 + ‖w‖2L2

)
+ 4π2(α− β)

(
‖v‖2L2 + ‖w‖2L2

)
6 1

4π2(α−β)
(
‖ f‖2L2 + ‖g‖2L2

)
. (59)
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Then by Grönwall’s inequality,

‖v(t)‖2L2 + ‖w(t)‖2L2

6 (‖v(0)‖2L2 + ‖w(0)‖2L2)e
−4π2(α−β)t

+ 1
16π4(α−β)2 ess sup

s∈[0,t]

(
‖ f(s)‖2L2 + ‖g(s)‖2L2

)
. (60)

Let t∗ > 0 be large enough so that

ess sup
t>t∗

(
‖ f(t)‖2L2 + ‖g(t)‖2L2

)
6 2 lim sup

t→∞

(
‖ f(t)‖2L2 + ‖g(t)‖2L2

)
, (61)

and choose t0 > t∗ so that

(‖v(t∗)‖2L2 + ‖w(t∗)‖2L2)e
−4π2(α−β)(t0−t∗) 6 3

8π4(α−β)2 lim sup
t→∞

(
‖ f(t)‖2L2 + ‖g(t)‖2L2

)
.

Then by using Grönwall’s inequality again on (59) with initial time t∗, we see that for all t > t0,

‖v(t)‖2L2 + ‖w(t)‖2L2 6 (‖v(t∗)‖2L2 + ‖w(t∗)‖2L2)e
−4π2(α−β)(t−t∗)

+ 1
16π4(α−β)2 ess sup

s∈[t∗,t]

(
‖ f(s)‖2L2 + ‖g(s)‖2L2

)

6 1
2π4(α−β)2 lim sup

s→∞

(
‖ f(s)‖2L2 + ‖g(s)‖2L2

)
. (62)

Next, integrating (58) on [t, t + T ], and using (61),

‖v(t + T )‖2L2 + ‖w(t + T )‖2L2 + (α− β)

∫ t+T

t

(
‖∇v(s)‖2L2 + ‖∇w(s)‖2L2

)
ds

6 ‖v(t)‖2L2 + ‖w(t)‖2L2 + T
2π2(α−β) lim sup

s→∞

(
‖ f(s)‖2L2 + ‖g(s)‖2L2

)
.

Thus, using (62), for t > t0,

∫ t+T

t

(
‖∇v(s)‖2L2 + ‖∇w(s)‖2L2

)
ds

6 (1 + π2(α− β)T )(α− β) lim sup
s→∞

‖ f(s)‖2
L2 + ‖g(s)‖2

L2

2π4(α− β)4
, (63)

which implies (15). ✷

Proof of Lemma 4.1. To show (19), we first apply (5) and (4) then (7) and (4):

∣
∣
∣
∣

∫

Ω
(u · ∇) v · w dxdy

∣
∣
∣
∣
6

∫

Ω
|u| |∇v| |w| dxdy 6 ‖∇v‖L2‖u‖L4‖w‖L4
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6
δ

2
‖∇v‖L2‖u‖2L4 +

1

2δ
‖∇v‖L2‖w‖2L4

6
cLδ

2
‖∇v‖L2‖u‖L2‖∇u‖L2 +

cL

2δ
‖∇v‖L2‖w‖L2‖∇w‖L2 .

6
cLδ

2

(
1

2
‖∇v‖2L2‖u‖2L2 +

1

2
‖∇u‖2L2

)

+
1

2

c2L
4ǫδ2

‖∇v‖2L2‖w‖2L2 +
ǫ

2
‖∇w‖2L2 .

We obtain (20) by switching the roles of u and w after applying (5).
The proof of (21) requires us to estimate the components of the product differently. First, write

∣
∣
∣
∣

∫

Ω
(u · ∇) v · w dxdy

∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∫

Ω

2∑

i, j=1

ui∂iv jw j dxdy

∣
∣
∣
∣
∣
∣

6

2∑

i, j=1

∣
∣
∣
∣

∫

Ω
ui∂iv jw j dxdy

∣
∣
∣
∣
,

and then we estimate the terms of the sum separately.
(Case: i = 1, j = 1) For this case we proceed similarly as in the proof of (19), to obtain:

∣
∣
∣
∣

∫

Ω
u1∂1v1w1 dxdy

∣
∣
∣
∣
6 ‖∇v1‖L2‖u1‖L4‖w1‖L4

6
cL

2
‖∇v1‖L2‖u1‖L2‖∇u1‖L2 +

cL

2
‖∇v1‖L2‖w1‖L2‖∇w1‖L2

6
cLδ

4
‖∇u1‖2L2 +

cL

4δ
‖∇v1‖2L2‖u1‖2L2 +

cLδ

4
‖∇w1‖2L2 +

cL

4δ
‖∇v1‖2L2‖w1‖2L2 .

(Case: i = 1, j = 2) For this and the next case, we use (8):

∣
∣
∣
∣

∫

Ω
u1∂1v2w2 dxdy

∣
∣
∣
∣
6 cB‖∇w2‖L2‖∇v2‖L2‖u1‖L2

(

1 + ln

( ‖∇u1‖L2

2π‖u1‖L2

))1/2

6
cBδ

2
‖∇w2‖2L2 +

cB

2δ
‖∇v2‖2L2‖u1‖2L2

(

1 + ln

( ‖∇u1‖L2

2π‖u1‖L2

))

6
cBδ

2
‖∇w2‖2L2 +

cB

2δ
‖∇v‖2L2‖u1‖2L2

(

1 + ln

( ‖∇u1‖L2

2π‖u1‖L2

))

(Case: i = 2, j = 1) Similarly, we obtain:

∣
∣
∣
∣

∫

Ω
u2∂2v1w1 dxdy

∣
∣
∣
∣
6

cBδ

2
‖∇u2‖2L2 +

cB

2δ
‖∇v‖2L2‖w1‖2L2

(

1 + ln

( ‖∇w1‖L2

2π‖w1‖L2

))

(Case: i = 2, j = 2) Now we use the divergence free conditions (i.e. ∂1u1 = −∂2u2) and integrate by
parts in order to obtain integrals in which the second components of u and w do not appear together:

∫

Ω
u2∂2v2w2 dxdy = −

∫

Ω
∂2u2v2w2 dxdy −

∫

Ω
u2v2∂2w2 dxdy
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=

∫

Ω
∂1u1v2w2 dxdy +

∫

Ω
u2v2∂1w1 dxdy

= −
∫

Ω
u1∂1v2w2 dxdy −

∫

Ω
u1v2∂1w2 dxdy

−
∫

Ω
∂1u2v2w1 dxdy −

∫

Ω
u2∂1v2w1 dxdy.

Now, each of these terms can be estimated similarly to the cases where i 6= j :

∣
∣
∣
∣

∫

Ω
u1∂1v2w2 dxdy

∣
∣
∣
∣
6

cBδ

2
‖∇w2‖2L2 +

cB

2δ
‖∇v‖2L2‖u1‖2L2

(

1 + ln

( ‖∇u1‖L2

2π‖u1‖L2

))

∣
∣
∣
∣

∫

Ω
u1v2∂1w2 dxdy

∣
∣
∣
∣
6

cBδ

2
‖∇w2‖2L2 +

cB

2δ
‖∇v‖2L2‖u1‖2L2

(

1 + ln

( ‖∇u1‖L2

2π‖u1‖L2

))

∣
∣
∣
∣

∫

Ω
∂1u2v2w1 dxdy

∣
∣
∣
∣
6

cBδ

2
‖∇u2‖2L2 +

cB

2δ
‖∇v‖2L2‖w1‖2L2

(

1 + ln

( ‖∇w1‖L2

2π‖w1‖L2

))

∣
∣
∣
∣

∫

Ω
u2∂1v2w1 dxdy

∣
∣
∣
∣
6

cBδ

2
‖∇u2‖2L2 +

cB

2δ
‖∇v‖2L2‖w1‖2L2

(

1 + ln

( ‖∇w1‖L2

2π‖w1‖L2

))

Taking the sum of these 7 inequalities obtained from the 4 cases, we have:

∣
∣
∣
∣

∫

Ω
(u · ∇) v · w dxdy

∣
∣
∣
∣
6

cLδ

4
‖∇u1‖2L2 +

3cBδ

2
‖∇u2‖2L2 +

cLδ

4
‖∇w1‖2L2 +

3cBδ

2
‖∇w2‖2L2

+
cL

4δ
‖∇v‖2L2‖u1‖2L2 +

cL

4δ
‖∇v‖2L2‖w1‖2L2

+
3cB

2δ
‖∇v‖2L2‖u1‖2L2

(

1 + ln

( ‖∇u1‖L2

2π‖u1‖L2

))

+
3cB

2δ
‖∇v‖2L2‖w1‖2L2

(

1 + ln

( ‖∇w1‖L2

2π‖w1‖L2

))

.

Setting c = max{ cL

4 ,
3cB

2 } now yields (21). ✷

Proof of Lemma 4.3. We start by writing

∫

Ω
(u · ∇) v ·∆w dxdy =

∫

Ω
u1∂xv1∆w1 dxdy +

∫

Ω
u2∂yv1∆w1 dxdy

+

∫

Ω
u1∂xv2∆w2 dxdy +

∫

Ω
u2∂yv2∆w2 dxdy.

Now we’ll estimate each term individually.
By (9) we have:

∣
∣
∣
∣

∫

Ω
u1∂xv1∆w1 dxdy

∣
∣
∣
∣
6 cT‖∇u1‖L2‖∇v1‖L2‖∆w1‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2



38 A. Biswas et al. / Abridged Title–Data assimilation for 2D MHD equations

6 cT‖∇u1‖L2‖∇v‖L2‖∆w‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2

, (64)

and

∣
∣
∣
∣

∫

Ω
u1∂xv2∆w2 dxdy

∣
∣
∣
∣
6 cT‖∇u1‖L2‖∇v2‖L2‖∆w2‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2

6 cT‖∇u1‖L2‖∇v‖L2‖∆w‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2

. (65)

Using integration by parts and the divergence free condition, we have:

∫

Ω
u2∂yv1∆w1 dxdy = −

∫

Ω
∂xu2∂yv1∂xw1 dxdy −

∫

Ω
∂yu2∂yv1∂yw1 dxdy

+

∫

Ω
u2∂yyv2∂xw1 dxdy −

∫

Ω
u2∂yyv1∂yw1 dxdy,

so applying (8) to the first two integrals and (9) to the second two, we obtain:

∣
∣
∣
∣

∫

Ω
u2∂yv1∆w1 dxdy

∣
∣
∣
∣
6 cB‖∆u‖L2‖∇v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

(66)

+ cT‖∇u‖L2‖∇w1‖L2‖∆v‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

. (67)

Again by integrating by parts and using the divergence free condition, we obtain

∫

Ω
u2∂yv2∆w2 dxdy =

∫

Ω
∂xu1v2∆w2 dxdy

+

∫

Ω
∆u2v2∂xw1 dxdy +

∫

Ω
u2∆v2∂xw1 dxdy

+ 2

∫

Ω
∂xu2∂xv2∂xw1 dxdy + 2

∫

Ω
∂yu2∂yv2∂xw1 dxdy.

Now, estimating with (8) and (9) we have:

∣
∣
∣
∣

∫

Ω
u2∂yv2∆w2 dxdy

∣
∣
∣
∣
6 cT‖∇u1‖L2‖∇v‖L2‖∆w‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2

+ cT‖∆u‖L2‖∇v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

+ cT‖∇u‖L2‖∆v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2
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+ 4cB‖∆u‖L2‖∇v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

. (68)

Combining (64), (65), (67), and (68), we obtain:

∣
∣
∣
∣

∫

Ω
(u · ∇) v ·∆w dxdy

∣
∣
∣
∣
6 3cT‖∇u1‖L2‖∇v‖L2‖∆w‖L2

(

1 + ln
‖∆u1‖L2

2π‖∇u1‖L2

)1/2

+ (cT + 4cB)‖∆u‖L2‖∇v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

+ 2cT‖∇u‖L2‖∆v‖L2‖∇w1‖L2

(

1 + ln
‖∆w1‖L2

2π‖∇w1‖L2

)1/2

,

so (a) is proven.
In order to prove (b), we first write

∫

Ω
(u · ∇) v ·∆v dxdy =

∫

Ω
u1∂xv1∆v1 dxdy +

∫

Ω
u2∂yv1∆v1 dxdy

+

∫

Ω
u1∂xv2∆v2 dxdy +

∫

Ω
u2∂yv2∆v2 dxdy.

Similar to the proof of (a), we proceed to estimate each term individually by appealing to (8) or (9), by
integrating by parts and using the divergence free conditions.
By applying (9), we have:

∣
∣
∣
∣

∫

Ω
u1∂xv1∆v1 dxdy

∣
∣
∣
∣
6 cT‖∇u‖L2‖∇v1‖L2‖∆v‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

, (69)

and

∣
∣
∣
∣

∫

Ω
u2∂yv1∆v1 dxdy

∣
∣
∣
∣
6 cT‖∇u‖L2‖∇v1‖L2‖∆v‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

, (70)

and using the divergence free condition, we obtain

∣
∣
∣
∣

∫

Ω
u2∂yv2∆v2 dxdy

∣
∣
∣
∣
=

∣
∣
∣
∣
−
∫

Ω
u2∂xv1∆v2 dxdy

∣
∣
∣
∣

6 cT‖∇u‖L2‖∇v1‖L2‖∆v‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

. (71)

To estimate the remaining integral, we write:

∫

Ω
u1∂xv2∆v2 dxdy =

∫

Ω
u1∂xv2∂xxv2 dxdy +

∫

Ω
u1∂xv2∂yyv2 dxdy.
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Now,

∫

Ω
u1∂xv2∂yyv2 dxdy = −

∫

Ω
u1∂xv2∂y∂xv1 dxdy

=

∫

Ω
∂xu1∂xv2∂yv1 dxdy +

∫

Ω
u1∂xxv2∂yv1 dxdy,

so

∣
∣
∣
∣

∫

Ω
u1∂xv2∂yyv2 dxdy

∣
∣
∣
∣
6 (cB + cT )‖∇u‖L2‖∆v‖L2‖∇v1‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

. (72a)

For the other term, we have

∫

Ω
u1∂xv2∂xxv2 dxdy = −

∫

Ω
∂xu1∂xv2∂xv2 dxdy −

∫

Ω
u1∂xxv2∂xv2 dxdy,

so,

∫

Ω
u1∂xv2∂xxv2 dxdy = −1

2

∫

Ω
∂xu1∂xv2∂xv2 dxdy.

Next,

−1

2

∫

Ω
∂xu1∂xv2∂xv2 dxdy =

1

2

∫

Ω
∂yu2∂xv2∂xv2 dxdy

= −
∫

Ω
u2∂x∂yv2∂xv2 dxdy =

∫

Ω
u2∂xxv1∂xv2 dxdy

= −
∫

Ω
∂xu2∂xv1∂xv2 dxdy −

∫

Ω
u2∂xv1∂xxv2 dxdy.

Therefore,

∣
∣
∣
∣

∫

Ω
u1∂xv2∂xxv2 dxdy

∣
∣
∣
∣
6 (cB + cT )‖∇u‖L2‖∇v1‖L2‖∆v‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

. (72b)

Hence, by combining (69), (70), (71), (72a), and (72b), we obtain:

∣
∣
∣
∣

∫

Ω
(u · ∇) v ·∆v dxdy

∣
∣
∣
∣
6 (2cB + 5cT )‖∇u‖L2‖∇v1‖L2‖∆v‖L2

(

1 + ln
‖∆v1‖L2

2π‖∇v1‖L2

)1/2

,

as claimed.
✷
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