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Abstract We report the results of a computational investigation of two blow-up criteria for the 3D incom-
pressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here.
These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler–Voigt
equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler–Voigt equations
also require less resolution than simulations of the 3D Euler equations for fixed values of the regularization
parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity
formation in the 3D Euler equations indirectly, namely by simulating the better-behaved 3D Euler–Voigt equa-
tions. The new criteria are only known to be sufficient criterion for blow-up. Therefore, to test the robustness
of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers
equation, where blow-up is well known to occur.
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1 Introduction

The 3D Euler equations for incompressible inviscid fluid flow are a source of muchmathematical and scientific
interest. In particular, these equations exhibit many of the same difficulties as the 3D Navier–Stokes equations
in the case of largeReynolds numbers. The question ofwhether these equations develop a finite-time singularity
remains an extremely challenging open problem.

A blow-up criterion for the 3D Euler equations for ideal incompressible flow was reported in [1]. This
criterion is of a different character than, e.g., the well-known Beale–Kato–Majda criterion [2]. Traditional
computational searches for blow-up seek to identify singularities by analyzing the vorticity coming from the
3D Euler equations themselves, which are not known to be globally well-posed, and moreover, are extremely
difficult to simulate accurately. In contrast, the blow-up criterion in [1] only relies on analyzing the vorticity
of the 3D Euler–Voigt equations, which are globally well-posed and can be less computationally intensive to
simulate accurately.

An important aspect of the Euler–Voigt model, when used as a regularization for the Euler equations, is
that the regularization is inviscid in the sense that it does not add artificial viscosity. Hence, we refer to the
Voigt regularization as an inviscid regularization. Moreover, the Voigt regularization can be used to stabilize
simulations of the Euler equations by amethod different from adding artificial viscosity, as is done, e.g., in LES
(Large-Eddy Simulation) models (see, e.g., [3], and the references therein). Inviscid regularization is distinct
from regularizations that use artificial viscosity: while artificial viscosity removes energy from the system, the
Euler–Voigt equations conserve a modified energy for all time (see (1.2) below). We use this conservation as
one test of the validity of our simulations. Moreover, the blow-up criterion we test is derived from (1.2) and
the short-time energy conservation of the 3D Euler equations.

In this article, we describe the first computational search for blow-up of the 3D Euler equations based
on a Voigt-type blow-up criterion. We also provide a new blow-up criterion that is similar in character to
the criterion in [1], but that has several advantages over it. One interesting result of the present work is that
extrapolation to α = 0 suggests the development of a singularity in the 3D Euler equations. The blow-up time
T∗ coincides approximately with the prediction T∗ ≈ 4.4 ± 0.2 in [4] (see also [5]). However, the purpose of
this work is chiefly to motivate the fluid mechanics computational community toward further investigation of
this type of criterion, rather than to make a definite claim about blow-up. Because this is a new approach to
studying blow-up, we show how the method provides evidence for blow-up in a case where blow-up is well
understood, namely in the inviscid Burgers equation. For additional corroboration of the method, we also show
that blow-up is not detected in the viscous Burgers equation, where it is known that blow-up does not occur.

The Euler–Voigt equations were proposed as an inviscid regularization of the Euler equations in [6], where
they were first studied. Their viscous counterpart, called the Navier–Stokes–Voigt equations, was studiedmuch
earlier in [7,8]. The Euler–Voigt equations are given by

⎧
⎪⎨

⎪⎩

− α2∂t∇2u + ∂tu + (u · ∇)u + ∇ p = 0,

∇ · u = 0,

u(x, 0) = u0(x).

(1.1a)

(1.1b)

(1.1c)

Here α > 0 is a regularization parameter having units of length. Note that the usual incompressible Euler
equations are formally obtained by setting α = 0. The unknowns are the fluid velocity field u(x, t) =
(u1, u2, u3), and the fluid pressure p(x, t), where x = (x1, x2, x3), and t ≥ 0. In the present work, we consider
only the case of periodic boundary conditions. (Periodic boundary conditions are often used in computational
studies; the review [9] cites more than twenty such studies.) Without loss of generality, we also assume that∫

�
u0(x) dx = 0, which with (1.1a) and (1.1b) implies

∫

�
u(x, t) dx = 0 for all t . We denote by uα the solution

to (1.1), and by u a solution to the Euler equations, both starting from the same initial condition u0. In addition,
we denote the corresponding vorticities ω := ∇ × u, and also ωα := ∇ × uα .

System (1.1)was introduced in [6], where existence and uniqueness of solutionswas proven for all times t ∈
(−∞, ∞). The Euler–Voigt and Navier–Stokes–Voigt equations have been studied analytically and extended
in a wide variety of contexts (see, e.g., [1,6–8,10–20], and the references therein). The first computational
study of the Navier–Stokes–Voigt and MHD-Voigt equations was carried out in [21]. A recent computational
study [22] studied the energy spectrum and other properties of the Euler–Voigt equations. Energy decay for
Navier–Stokes–Voigt was studied in [23].

In [6], an “α-energy” equality was proved to hold for solutions of (1.1) for all t ∈ R, namely

Eα(t) := ‖uα(t)‖2L2 + α2‖∇uα(t)‖2L2 = Eα(0). (1.2)
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One aim of this paper is to investigate the connection between the Euler equations and Euler–Voigt equations
as α → 0. In [1], it was shown that, for sufficiently smooth initial data, on the time interval [0, T ] of existence
and uniqueness for strong solutions of the Euler equations, the following estimate holds:

‖u(t) − uα(t)‖2L2 + α2‖∇(u(t) − uα(t))‖2L2 ≤ Cα2(eCt − 1), (1.3)

where the constant C depends on ‖u‖L∞(0,T ;H3). In particular, as α → 0, solutions to (1.1) converge to the
solution the Euler equations in the L∞([0, T ]; L2) norm at a rate no worse than O(α). Combining this with
(1.2) and the equality ‖u(t)‖L2 = ‖u0‖L2 , which holds on [0, T ], it was proved in [1], by contradiction, that if

sup
t∈[0,T ∗]

lim sup
α→0+

(α‖∇uα(t)‖L2) > 0, (1.4)

then the 3D Euler equations must develop a singularity at or before time T ∗. We shall show in Sect. 2 that if

lim sup
α→0+

(

α sup
t∈[0,T ∗]

‖∇uα(t)‖L2

)

> 0, (1.5)

then again the 3D Euler equations must develop a singularity at or before time T ∗. As noted below, (1.4)
implies (1.5), and hence (1.5) is a stronger criterion than (1.4), i.e., singularities indicated by (1.4) will also
be indicated by (1.5).

Remark 1 (Comparison with original criterion) The new blow-up criterion (1.5) is stronger than (1.4), since,
for any uα ∈ C([0, T ], L2) ∩ L1([0, T ], H1),

sup
t∈[0,T ]

α‖∇uα(t)‖L2 ≥ α‖∇uα(t)‖L2 , (1.6)

for any t ∈ [0, T ], so we may take the lim supα→0+ of both sides to obtain

lim sup
α→0+

sup
t∈[0,T ]

α‖∇uα(t)‖L2 ≥ lim sup
α→0+

α‖∇uα(t)‖L2 . (1.7)

The left-hand side is constant, and the right-hand side depends on t. Thus,

lim sup
α→0+

sup
t∈[0,T ]

α‖∇uα(t)‖L2 ≥ sup
t∈[0,T ]

lim sup
α→0+

α‖∇uα(t)‖L2 . (1.8)

Therefore, if the right-hand side is positive, the left-hand side is positive. Hence, (1.4) implies (1.5).

The computational search for blow-up has a rich recent history, see, e.g., [4,24–40] and the references
therein. Since it is unknown whether the 3D Euler equations become singular in a finite interval of time,
several criteria for the blow-up of solutions have arisen in the literature, e.g., [2,41–47]. Perhaps the most
celebrated is the Beale–Kato–Majda criterion [2] which states that the solution is non-singular on [0, T ] if and
only if

∫ T

0
‖ω(t)‖L∞ dt < ∞. (1.9)

Hence, in many computational searches for blow-up of solutions of the Euler equations (see, e.g., [27,30,33–
36], and references therein), ‖ω(t)‖L∞ is the main quantity of interest. Thanks to the identity ‖∇v‖L2 =
‖∇ × v‖L2 , holding for all smooth divergence-free functions v, one can view (1.4) and (1.5) as conditions on
the vorticity ωα of the Euler–Voigt equations. In Fig. 1, we plot the time evolution of the L2 energy spectrum,
which is captured within an accuracy of 10−12.

Remark 2 We emphasize that quantity (1.9) is computed from solutions of the 3D Euler equations, which are
not known to be globally well-posed. In contrast, the quantity ‖∇uα‖L2 in (1.4) and (1.5) is computed from
solutions to (1.1), which is known to be well-posed globally in time. This gives a mathematical foundation for
reliably computing ‖∇uα‖L2 . Moreover, due to (1.2), the growth of the gradient—and hence the development
of small length scales—is limited. This is important in numerical simulations, where one has only finite
resolution. In contrast, the 3D Euler equations are not known to possess such a quality.
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Fig. 1 The L2 spectrum versus wave number the solution of the Euler–Voigt equations with α = 12/1024 at times
t = 0.0, 0.1, . . . , 4.9, 5.0. At t = 0.0, the spectrum is blue. It becomes increasing red as time evolves. The black spectrum
corresponds to time 4.2, where the smallest slope is observed in Fig. 3. Resolution: N 3 = 10243 (color figure online)

In Sect. 2, we improve criterion (1.4) to criterion (1.5). Numerical methods are described in Sect. 3. The
main work is in Sect. 4, where we computationally investigate the dependence of ‖∇uα(t)‖L2 on α and t ,
for some given initial data, as α → 0. It is unknown whether (1.5) (or (1.4)) is a necessary condition for the
blow-up of solutions of the 3D Euler equations. Hence, to further support the notion that blow-up may be
indicated by (1.5), we consider the 1D inviscid Burgers equation, which is well known to have solutions that
blow up in finite time. In Sect. 5, we apply a Voigt-type regularization to the 1D Burgers equation (yielding the
Benjamin–Bona–Mahoney (BBM) equation (5.1)), and show computationally that the analogues of (1.4) and
(1.5) appear to be satisfied when T ∗ approaches the blow-up time of the Burgers equation. Moreover, we show
that (1.5) is no longer satisfied after the addition of viscosity, which conforms with the global well-posedness
of the viscous Burgers equation.

2 Improved blow-up criterion

In this section, we improve blow-up criterion (1.4) to blow-up criterion (1.5). Both criteria are derived from
(1.2) and the short-time energy conservation of the 3D Euler equations; hence, we briefly discuss recent work
relating energy conservation to smoothness.

We denote by L p and Hs the usual Lebesgue and Sobolev spaces over the periodic domain � ≡ [0, 1]3 :=
R
3/Z3, respectively. It is a classical result (see, e.g., [48,49]) that, for initial data u0 ∈ H3 satisfying∇·u0 = 0,

a unique strong solution u of the 3D Euler equations exists and is unique on a maximal time interval that we
denote by [0, T ∗). Moreover, one has
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‖u(t)‖L2 = ‖u0‖L2 on [0, T ∗). (2.1)

Equation (2.1) holds under weaker conditions on the smoothness of the solutions of the 3D Euler equations, as
it was conjectured by Onsager (see, e.g., [50–54]). However, the existence of such weak solutions for arbitrary
admissible initial data is still out of reach. In [55], it was shown that a certain class of shear flows are weak
solutions in L∞((0, T ); L2) that conserve energy. Furthermore, families of weak solutions that do not satisfy
the regularity assumed in the Onsager conjecture have been constructed that do not satisfy (2.1), see, e.g.,
[56–61].

The following theorem was proved in [1]. It is based on a similar theorem for the surface quasi-geostrophic
(SQG) equations in [16].

Theorem 1 ([1]) Assume u0 ∈ Hs, for some s ≥ 3, with ∇ · u0 = 0. Suppose there exists a T > 0 such that
solutions uα of (1.1) satisfy (1.4). Then the 3D Euler equations, with initial data u0, must develop a singularity
within the interval [0, T ].

A technical difficulty arises in computational tests of Theorem 1. Mathematically, one may imagine fixing
a t > 0 and computing

lim sup
α→0+

(
α‖∇uα(t)‖L2

)
. (2.2)

However, computationally, it is more natural to first fix α > 0 as a parameter, and then to compute uα(t)
as t increases up to a time T (e.g., by a standard time-stepping method). Therefore, to construct curves of
α‖∇uα(t)‖L2 versus α for each fixed t , one must jump from solution to solution as α varies. This gives rise to
some of the technical issues discussed above. However, suppose for a moment that one is allowed to commute
the two limiting operations in (1.4). One would then obtain criterion (1.5). The quantity in (1.5) is arguably
easier to track, as discussed above. It is the purpose of this section to show rigorously that (1.5) implies that
the 3D Euler equations develop a singularity within the interval [0, T ].

Let T > 0 be given. Assume that a given solution to the Euler equations is smooth on [0, T ], so that in
particular, (2.1) holds. We emphasize that (2.1) depends on the regularity of the 3D Euler equations, and if a
finite-time singularity develops, (2.1) might not hold.

Theorem 2 Let u0 ∈ Hs, s ≥ 3, with ∇ · u0 = 0, and let uα be the corresponding unique solution of (1.1).
Suppose that (1.4) holds for some T > 0. Then the Euler equations must develop a singularity within the
interval [0, T ].
Proof We prove the contrapositive. Assume that u is a solution of the 3D Euler equations, with initial data
u0 ∈ Hs , s ≥ 3, that remains smooth on the interval [0, T ]. In particular, the smoothness implies that (2.1)
holds. From (1.3), for any t ∈ [0, T ], it follows that

‖uα(t)‖L2 ≥ ‖u(t)‖L2 − Cα(eCt − 1)1/2 (2.3)

≥ ‖u(t)‖L2 − Cα(eCT − 1)1/2

= ‖u0‖L2 − Cα(eCT − 1)1/2. (2.4)

Here, we have used (2.1). Let α > 0 be sufficiently small so that the right-hand side is positive (e.g., choose,
α < ‖u0‖L2/(C(eCT − 1)1/2). Squaring, we obtain,

‖uα(t)‖2L2 ≥ ‖u0‖2L2 − 2Cα‖u0‖L2(eCT − 1)1/2 + C2α2(eCT − 1). (2.5)

Combining (2.5) and (1.2), we discover

α2‖∇uα(t)‖2L2 ≤ α2‖∇u0‖2L2 + 2Cα‖u0‖L2(eCT − 1)1/2 − C2α2(eCT − 1).

Thus, lim supα→0+ supt∈[0,T ] α2‖∇uα(t)‖2
L2 = 0, which contradicts assumption (1.4), and therefore the solu-

tion u of the Euler equations must become singular within the interval [0, T ]. 
�
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Fig. 2 Energy and enstrophy (scaled by α2) versus time for the 3D Euler–Voigt equations. (red “+”: ‖uα(t)‖2
L2 , blue “∗”:

α2‖∇uα(t)‖2
L2 , black “◦”: ‖uα(t)‖2

L2 + α2 ∇uα(t)‖2
L2 ). Resolution: 256

3 (color figure online)

3 Numerical methods

All simulations were carried out using a pseudospectral method on the periodic unit cube, namely with deriva-
tives computed in Fourier space, and products computed in physical space with the 2/3’s dealiasing rule
applied. Time stepping for the inviscid equations was done using a fully explicit fourth-order Runge–Kutta-4
scheme complying with the advective CFL condition. (For the viscous Burgers equation, an integrating-factor
method adapted to Runge–Kutta-4 was used to avoid the viscous CFL restriction.) The pressure was com-
puted explicitly by the standard Chorin–Temam projection method [62,63]. For the Euler–Voigt simulations,
Taylor–Green initial data were used on the domain [0, 1]3, namely

u1 = sin(2πx) cos(2πy) cos(2π z),

u2 = − cos(2πx) sin(2πy) cos(2π z),

u3 = 0.
(3.1)

This choice of initial data is very commonly used in computational studies of blow-up for the 3D Euler
equations. See, e.g., [4,24].

It is important for this study that the energy and the enstrophy are properly captured. Therefore, we consider
the maximum relative error in the α-energy by

εrel := max
t∈[0,T ]

∣
∣
∣
∣
Eα(t) − Eα(0)

Eα(0)

∣
∣
∣
∣ .

Due to the Runge–Kutta-4 time stepping, perfect α-energy conservation is not expected. However, every
Euler–Voigt simulation at resolution 10243 and 5123 reported in this article had εrel < 2.2 × 10−11 over the
time interval of integration. For the inviscid BBM simulations, εrel < 2.4 × 10−14. For the viscous BBM
simulations, εrel < 2.8 × 10−13 (for the viscous simulations the definition of Eα(t) was adapted to include
the term 2ν

∫ t
0 ‖ux (s)‖L2 ds, computed using Runge–Kutta-4 integration). In Fig. 2, one can see the typical

behavior of the terms comprising the α-energy Eα(t), with a transfer of the energy (‖uα‖2
L2 ) to the scaled

enstrophy (α2‖∇uα‖2
L2 ).

Remark 3 We emphasize that, since (1.1) is globally well-posed in time, we are allowed to integrate the
equations beyond the point of possible singularity for the 3D Euler equations. That is, if the Euler equations
develop a singularity at time T ∗, for given initial data, we may safely integrate (1.1) with the same initial data
up to and beyond T ∗. We believe this to be a major distinction of the blow-up criteria (1.4) and (1.5) from
other blow-up criteria for the 3D Euler equations, such as (1.9).

4 Singularity detection

In this section, we computationally investigate the blow-up criterion (1.5). We simulate solutions of (1.1) with
initial data (3.1), tracking the quantity

‖∇uα(t)‖L2 ≡ ‖ωα(t)‖L2 , (4.1)
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Fig. 3 Log–log plot of maxt∈[0,T ∗] ‖∇uα(t)‖L2 versus α for the 3D Euler–Voigt equations at T = 0.0, 0.1, . . . , 4.9, 5.0, α =
12/1024, . . . , 36/1024. The thick black line is Cα−1 versus α. Green curve corresponds to T = 4.2. Resolution: N 3 = 10243

for α ≤ 24/1024, N 3 = 5123 α ≥ 28/1024. Inset slope between α = 12/1024 and α = 16/1024. Minimum value of −1.0931
at T = 4.2 (color figure online)

Fig. 4 Log–log plot of max0≤t≤T ‖uα
x (t)‖L2 versus α or the inviscid (ν = 0) BBM equations at various values of T =

0.65, . . . , 1.25. Green curve corresponds to T ≈ 1.138. Inset slope near smallest α-values drops below −1 at T ≈ 1.138,
indicating a blow-up at or before this time. Resolution: N = 8192 (color figure online)
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Fig. 5 Log–log plot of max0≤t≤T ‖uα
x (t)‖L2 versus α for the viscous (ν = 0.005 > 0) BBM equations at various values of T.

Same T values as in Fig. 4. Inset slope never drops below −1, meaning no blow-up is detected. Resolution: N = 8192

for several values of t , as α → 0, shown in Fig. 3 as contours of constant t . Let us make the ansatz that

sup
t∈[0,T ∗]

‖∇uα(t)‖L2 ∼ O(α p), (4.2)

for T ∗ > 0 sufficiently large and for some power p. If p ≤ −1, then (1.5) holds, and the Euler equations
develop a singularity within the interval [0, T ∗]. The quantity in (4.2) is shown in Fig. 3 as a function of α
with various values of T ∗. The slope of the lines corresponding to T ∗ ≈ 4.2 is strictly less than −1 for small
α, indicating a possible blow-up of the Euler equations near time T ∗ ≈ 4.2.

5 Blow-up for Burgers via the Benjamin–Bona–Mahony equations

In this section, we consider the 1D Benjamin–Bona–Mahony (BBM) equation for water waves, given by

−α2utxx + ut + uux = 0, u(x, 0) = u0(x). (5.1)

This equation was derived in [64] as a model for water waves, where it was shown to be globally well-posed. It
can be viewed as a regularization of the inviscid Burgers equation by formally setting α = 0 in (5.1). Notably,
we do not propose here that the solution of (5.1) converges to the unique entropy solution of Burgers equation.
We view this equation as a 1D analogue of the Euler–Voigt equations, with a crucial difference being that the
pressure and the divergence-free condition are absent. One advantage of considering equation (5.1) is that that
solutions to the Burgers equation are known to develop a singularity in finite time; a fact that is unknown for
solutions of the 3D Euler equations. By following arguments similar to those in [1], it is straight-forward to
show that the analogue of (1.5) implies blow-up for the Burgers equation on [0, T ∗].
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Fig. 6 The quantity Smin versus ν. This shows the dependence on the minimal slope of the blow-up quantity for values α1 =
128/8192 and α2 = 138/8192. Resolution: N = 8192

We use the method described in Sect. 4 to try to identify the known singularity in Burgers equation
(ut + uux = 0). That is, we test the analogue of criterion (1.5) for problem (5.1), as α → 0. The domain is
the periodic interval [−π, π], and the initial data is u0(x) = − sin(x). The solution of Burgers equation with
this initial data develops a singularity at time T ∗ = 1.

Figure 4 is analogous to Fig. 5. In Fig. 4, before the (Burgers) blow-up time T ∗ = 1, the curves tend to
decay faster than α as α → 0. However, slightly after T = 1.0, the curves become slightly convex on the
log–log plot for small α. If this trend continues as α → 0, the analogue of criterion (1.5) implies Burgers
equation develops a singularity at or before time T ∗ ≈ 1.138. This is already known by other means (e.g., the
method of characteristics), but the results here serve to corroborate criterion (1.5) as a test for blow-up.

Finally, we repeat the simulation carried out to generate Fig. 4, except that we use the viscous BBM
equation (ν = 0.005 > 0) instead of equation (5.1). Namely, we consider

−α2utxx + ut + uux = νuxx . (5.2)

Due to the well-known fact that the viscous Burgers equation (ut +uux = νuxx ) does not develop a singularity,
and we expect that criterion (1.5) will not detect a singularity. Indeed, in Fig. 5 we see that the curves do not
obtain the critical slope value of p = −1 as α → 0, and indeed the lowest value is ≈ −0.235, far away from
the critical value. Thus, in the case of Burgers equation, criterion 1.5 detects a singularity in the inviscid case
and does not detect one in the viscous case, exactly as expected.

Finally, for two fixed values of α, namely α1 = 128/8192 and α2 = 138/8192, we compute the value of
the minimum slope as ν → 0; that is,

Smin(ν) := min
0<t<T

(‖uα2
x (t)‖L2 − ‖uα1

x (t)‖L2)/(α2 − α1)
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as ν → 0, where uα1 and uα1 are solutions to (5.2). This idea was suggested to us by one of the reviewers.
It demonstrates the dependence of the blow-up quantity on ν, at least for a given resolution. One can see a
smooth transition from right to left as ν → 0, crossing the blow-up criterion value of −1 roughly at viscosity
ν∗ = 2.3 × 10−4. Since Burgers equation is globally well-posed for any ν > 0, for 0 < ν � 2.3 × 10−4, the
detection yields a false positive for singularity formation here. This underscores the need for higher-resolution
studies (which would allow for smaller α-values), as well as enhanced extrapolation methods.

6 Conclusion

The results in Sect. 4 provide computational evidence for the development of a singularity of the 3D Euler
equations with Taylor–Green initial data (3.1), near time T = 4.2. Future studies at smaller α-values (and thus
higher resolution), combined with state-of-the-art extrapolation methods, may either corroborate or contradict
these findings. In any case, the approach presented here represents a new method in the computational search
for singularities, and its effectiveness has been demonstrated in the case of Burgers equation.
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