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Abstract

We prove a Prodi—Serrin-type global regularity condition for the three-dimensional Magnetohydrody-
namic-Boussinesq system (3D MHD-Boussinesq) without thermal diffusion, in terms of only two velocity
and two magnetic components. To the best of our knowledge, this is the first Prodi—Serrin-type criterion for
such a 3D hydrodynamic system which is not fully dissipative, and indicates that such an approach may
be successful on other systems. In addition, we provide a constructive proof of the local well-posedness
of solutions to the fully dissipative 3D MHD-Boussinesq system, and also the fully inviscid, irresistive,
non-diffusive MHD-Boussinesq equations. We note that, as a special case, these results include the 3D non-
diffusive Boussinesq system and the 3D MHD equations. Moreover, they can be extended without difficulty
to include the case of a Coriolis rotational term.
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1. Introduction

In this paper, we address global regularity criteria for the solutions to the non-diffusive three-
dimensional MHD-Boussinesq system of equations. The MHD-Boussinesq system models the
convection of an incompressible flow driven by the buoyant effect of a thermal or density field,
and the Lorenz force, generated by the magnetic field of the fluid. Specifically, it closely re-
lates to a natural type of the Rayleigh—-Bénard convection, which occurs in a horizontal layer
of conductive fluid heated from below, with the presence of a magnetic field (cf. [1,2]). Various
physical theories and numerical experiments such as in [3] have been developed to study the
Rayleigh—-Bénard as well as the magnetic Rayleigh—-Bénard convection and related equations.
We observe that by formally setting the magnetic field b to zero, system (1) below reduces to
the Boussinesq equations while by formally setting the thermal fluctuation # = 0 we obtain the
magnetohydrodynamic equations. One also formally recovers the incompressible Navier—Stokes
equations if we set b = 0 and 6 = 0 simultaneously.

Denote by Q2 = T3 the three-dimensional periodic space R3 / 73 = [0, 1]3, and for T > 0, the
3D MHD-Boussinesq system with full fluid viscosity, magnetic resistivity, and thermal diffusion
over 2 x [0, T') is given by

9
8—?—vAu+(u-V)u+Vp=(b~V)b+g9e3,

b
o7~ 1Ab+ Vb= (b Vyu, 0

a0
5—KA9~I—(M~V)0=0,

V-u=0=V-b,

where v > 0, n > 0, and « > O stand for the constant kinematic viscosity, magnetic diffusiv-
ity, and thermal diffusivity, respectively. The constant g > 0 has unit of force, and is propor-
tional to the constant of gravitational acceleration. We denote x = (x1, x2, x3), and e3 to be
the unit vector in the x3 direction, i.e., e3 = (0,0, l)T. Here and henceforth, u = u(x,t) =
(ui(x,t),ur(x,t),u3(x,t)) is the unknown velocity field of a viscous incompressible fluid, with
divergence-free initial data u(x,0) = ug; b = b(x,t) = (b1(x,1),ba2(x, 1), b3(x,t)) is the un-
known magnetic field, with divergence-free initial data b(x, 0) = bg; and the scalar p = p(x,t)
represents the unknown pressure, while 6 = 6(x, t) can be thought of as the unknown tem-
perature fluctuation, with initial value 6y = 6(x, 0). Setting x = 0, we obtain the non-diffusive
MHD-Boussinesq system

9
8—’:—vAu+(u~V)u+Vp:(b-V)b+gGe3,

b

— —nAb -V)b=(b-V)u,

o " +u-V)b=( Ju 2
89+( V)0 =0

P u - =0,

at

V-u=0=V-b,
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which we study extensively in this paper. We also provide a proof for the local existence and
uniqueness of solutions to the fully inviscid MHD-Boussinesq system with v =n =« =0,
namely,

9
a—l:+(u~V)u+Vp=(b-V)b+g9e3,

ab

— 4+ w-VYb=(b-V)u,

a7 ( )b = ( ) 3)
96

& w-vye=o,

8t+(u )

Vu=0=V_-.b,

with the initial condition ug, bg, and 6 in H>. We note that the proof of this result differs sharply
from the proof of local existence for solutions of (1), due to a lack of compactness. Therefore,
we include the proof for the sake of completeness.

In recent years, from the perspective of mathematical fluid dynamics, much progress have
been made in the study of solutions of the Boussinesq and MHD equations. For instance, in [4,5],
Chae et al. obtained the local well-posedness of the fully inviscid 2D Boussinesq equations with
smooth initial data. A major breakthrough came in [6] and [7], where the authors independently
proved global well-posedness for the two-dimensional Boussinesq equations with the case v > 0
and k = 0 and the case v =0 and « > 0. On the other hand, Wu et al. proved in [8—12] the global
well-posedness of the MHD equations, for a variety of combinations of dissipation and diffusion
in two dimensional space. Furthermore, a series of results concerning the global regularity of
the 2D Boussinesq equations with anisotropic viscosity were obtained in [13,14,10,15]. For the
2D Boussinesq equations, the requirements on the initial data were significantly weakened in
[16-18]. Regarding the MHD-Bénard system, some progress has been made in 2D case under
various contexts, see, e.g., [19,20]. However, there has little work in the 3D case. Specifically,
outstanding open problems such as global regularity of classic solutions for the fully dissipative
system and whether the solutions blow up in finite time for the fully inviscid system remain
unresolved.

The main purpose of our paper is to obtain a Prodi—Serrin-type regularity criterion for the 3D
MHD-Boussinesq system without thermal diffusion. Unlike the case of the 3D Navier—Stokes
equations, Prodi—Serrin-type regularity criteria are not available for Euler equations in three-
dimensional space. Thus, it is difficult to obtain global regularity for u, b, and 6 simultaneously
since there is no thermal diffusivity in the equation for 8. However, we are able to handle this
by proving the higher order regularity for u and b first, before bounding || V6||;2. We emphasize
that this is the first work, to the best of our knowledge, that proves a Prodi—Serfin—type criterion
in the case where the system is not fully dissipative.

We also note that absence of diffusion can cause serious difficulties, and can even result in
certain equations being ill-posed. For example, consider the 3D Magneto-Geostrophic (MG)
equations, which are a certain physically-relevant limiting case of (1) involving two diffusion
parameters v and . In [21,22], it is shown that the case when v > 0, ¥ > 0, the MG equations
are well-posed, but when v = x = 0, the MG equations are ill-posed in Sobolev spaces in the
sense of Hadamard.

The pioneering work of Serrin, Prodi, et al. (cf. [23-29]) for the 3D Navier—Stokes equations
proved that, for any 7 > 0, if u € L1 ([0, T']; L) with 2/r +3/s < 1 and 3 < s < 00, then the
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solution for the 3D Navier—Stokes equations remains regular on the interval [0, T']. Proof for the
borderline case in various settings was obtained in [23-26]. Similar results concerning the 3D
Navier—Stokes, Boussinesq and MHD equations were obtain in [30-42]. In particular, in [43,44],
regularity criteria for MHD equations involving only two velocity components was proved but
in a smaller Lebesgue space. However, there is no literature on the regularity criteria for the so-
lutions of systems (1) and (2). In this paper, we obtain a Prodi—Serrin-type regularity criterion
involving only two components of the velocity and only two components of the magnetic field.
Specifically, our criterion is less restrictive than the corresponding criterion for the MHD equa-
tions obtain in [43,44]. Since MHD is a special case of the system we examine, our results are
more general in the sense of the functional spaces used, compared to those in [43,44]. A central
message of the present work is that with optimal and delicate application of our method, as well
as potential new techniques such as in [45-50], one might further improve the criterion on the
global regularity for system (2).

Moreover, we prove the local-in-time existence and uniqueness of the solutions to the system
(2) with H? initial datum. We obtain the necessary a priori estimates and construct the solution
via Galerkin methods for both the full and the non-diffusive systems. In particular, we show that
the existence time of solutions to the full system does not depend on «, which enables us to prove
that the solutions to the full system approaches that of the non-diffusive system as « tends to 0
on their time interval of existence.

Regarding the fully inviscid system, we remark that the local well-posedness of either of the
full system (1) or the non-diffusive system (2) is not automatically implied by that of the fully
inviscid system (3), as observed in [51] for multi-dimensional Burgers equation

ou

-Vu =vAu,
8t+(u Ju=vAu

in two and higher dimensions. One might expect to that adding more diffusion, namely in the
form of a hyper-diffusion term —v?A%u, might make the equation even easier to handle. How-
ever, the question well-posedness of the resulting equation, namely

u

o7 + - Vyu= —v2 A%+ vAu,

remains open due to the lack of maximum principle, as observed in [51]. Therefore, well-
posedness is not automatic when additional diffusion is added, and it is worth exploring the
regularity criteria of the solution to the non-diffusive and inviscid systems independent of the
results for the full system. As we show in Section 3 and in Appendix A, we require a different
approach to construct solutions, due to the lack of compactness in the non-dissipative system.
Note that the question of whether system (3) develops singularity in finite time still remains
open.

The paper is organized as follows. In Section 2, we provide the preliminaries for our subse-
quent work including the notation that we use, and state our main theorems. In Section 3, we
prove the existence of solutions to systems (1), by a slight modification of which the existence of
solutions to system (2) can be obtained. In Section 4, we prove that solutions to the non-diffusive
system (2) are unique, and the uniqueness of solutions to system (1) follows similarly. In Sec-
tion 5, we prove the regularity criterion for the solution to (2) using anisotropic estimates, that is,
using different estimates for different components of the solution vectors or their gradients (cf.
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key estimates in (14) through (20)). In Appendix A, for the sake of completeness, we obtain the
local in time well-posedness of the fully inviscid system (3) by a different argument.

2. Preliminaries and summary of results

All through this paper we denote 9; = 3/dx;, d;; = 82/8x12., & =08/0t, 9% = 3l°l/ax]" - xym,
where « is a multi-index. We also denote the horizontal gradient V;, = (91, d) and horizontal
Laplacian A;, = 311 + d2. Also, we denote the usual Lebesgue and Sobolev spaces by L% and
H} = W§’2, respectively, with the subscript x (or ¢) indicating that the underlying variable is
spatial (resp. temporal). Let F be the set of all trigonometric polynomial over T3 and define the
subset of divergence-free, zero-average trigonometric polynomials

Vi=1¢9peF:V-¢p=0, and/¢dx=0
3

We use the standard convention of denoting by H and V the closures of V in L2 and H,
respectively, with inner products

3 3
(u,v):Z/uividx and (Vu,Vv) = Z /ajuiajvidx,
i=1
T3

i.j=173

respectively, associated with the norms |u| = (u, W)Y? and |lu|| = (Vu, Vu)'/2. The latter is a
norm due to the Poincaré inequality

16112 < ClIVY 2
holding for all ¢ € V. We also have the following compact embeddings (see, e.g., [52,53])
Ves HV/,

where V' denotes the dual space of V.

The following interpolation result is frequently used in this paper (see, e.g., [54] for a detailed
proof). Assume 1 < ¢g,r <o0o,and 0 <y < 1. For v € LI(T™), such that 8%v € L7.(T"), for
|| = m, then

1— 1 s 1 m 1
losvllLr < Cl3%vl}, llvll,", where ———=<———>V+g(1—)/)~ “4)

p n ron

The following materials are standard in the study of fluid dynamics, in particular for the
Navier—Stokes equations, and we refer the reader to [52,53] for more details. We define the
Stokes operator A 2 —P, A with domain D(A) £ Hf NV, where P, is the Leray—Helmholtz

projection. Note that under periodic boundary conditions, we have A = —A P,. Moreover, the
Stokes operator can be extended as a linear operator from V to V' as

(Au,v) = (Vu,Vv) forallve V.
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It is well-known that A~! : H < D(A) is a positive-definite, self-adjoint, and compact operator
from H into itself, thus, A~! possesses an orthonormal basis of positive eigenfunctions {wi 2,
in H, corresponding to a sequence of non-increasing sequence of eigenvalues. Therefore, A has
non-decreasing eigenvalues Ay, i.e.,0 <A <A, ... since {wk},f‘; | are also eigenfunctions of A.
Furthermore, for any integer M > 0, we define Hyy £ span{wy, w2, ..., wytand Py : H — Hy
be the L)% orthogonal projection onto Hjs. Next, for any u, v, w € V, we introduce the convenient
notation for the bilinear term

B(u,v) := Py((u-V)v),

which can be extended to a continuous map B : V x V — V'’ such that

(B(u,v), w) = /(u -Vv) - wdkx,

for smooth functions u, v, w € V. Notice that 6 is a scalar function so we cannot actually apply
P, on it; hence, the notation Pys6 should be understood as projection onto the space spanned by
the first M eigenfunctions of —A only. Therefore, in order to avoid abuse of notation, we denote
B(u, 0) := u - VO for smooth functions, and extended it to a continuous map B : V x H Ny
similarly to B(-, -). We will use the following important properties of the map B. Detailed proof
can be found in, e.g., [52,55].

Lemma 2.1. For the operator B, we have

(B(u,v), w)yr = — (B(u, w), v)y, YueV,veV,weV, (5a)
(B(u,v),v)y =0, YueV,veV,weV, (5b)
| (B, v), )y | < Cllull S 19ull 51V vll 2 1Vwll 2. VueV,veV,weV, (5)
[ (B, v), w)y | < CIVull 2 IVoll 2wl S IVwly VueViveViweV, (5d)

1/2 1/2
[{Bu,v), w)y: | < Cllull2[Vvll,> ; > Al ; Vw2, YueH veDA) weV, (5

1/2 1/2
(B, v), w)y | < CIVull 2 IVol S 1AV wllz, YueViveD(A),weH, (50

1/2 1/2
[(B(u,v), why: | = ClIVull 5 ; > [l Aull ; 2 IVullzliwlizz,  YueD(A),veV,.weH, (Sg

1/2 1/2
(B, v), wyyr | = Cllull 2l Avl 2wl FIVwlf, YueHveD@yweV, Gh
1/2 1/2 .
[ (B, v), w)pay | = Cllull ZIVul vl 2 Awl 2, YueV,ve HoweDA). (5D

Moreover, essentially identical results hold for B(u, 6), mutatis mutandis.

The following lemma is a special case of the Troisi inequality from [56] and is useful for our
estimates throughout the paper.
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Lemma 2.2. There exists a constant C > 0 such that for v € C3° (R?), we have

3
1
lvllzs < [ Tlaivl,

i=1

Regarding the pressure term, we recall the fact that, for any distribution f, the equality f =
V p holds for some distribution p if and only if ( f, w) =0 for all w € V. See [57] for details.

Next, we list three fundamental lemmas needed in order to prove Theorem 2.6. Their proofs
can be found in [35] and [44], respectively.

Lemma 2.3. Assume u = (uy,u, u3) € H2(T3) NV. Then

Z /u,a UrApupdx = — Z /8 ugo; uk83u3dx—/81u182u283u3dx

jkl ]kl i

+ / 0 Urdu103uszdx.
T3

Lemma 2.4. For u and b from the solution of (2) and i = 1,2, 3, we have

/ujajukai,-ukdx — /bjajbkaiiukdx +/uj8jbk8iibk dx — /bjajukai,-bkdx
T3 sl T3 3

_z:/1auﬁuﬁuwh+/éb8bﬁuﬂh /auamamdx+/abawamdx
J.k= 1 T3 T3 T
The following Aubin-Lions Compactness Lemma is needed in order to construct solutions
for (1).

Lemma 2.5. Let T > 0, p € (1,00) and let { fy(t,-)};2.| be a bounded sequence of function in
Lp([O T1; Y) where Y is a Banach space. If{f,,}Oo L is also bounded in Lp([O T1; X), where X
is compactly imbedded in Y and {9f,/0t};2 | is bounded in LP([0, T1; Z) uniformly where Y is
continuously imbedded in Z, then { f,,}°° | is relatively compact in Lp ([0, T]; Y).

The following theorem is our main result. It provides a Prodi—Serrin-type regularity criterion

for system (2).

Theorem 2.6. Let m > 3 and let ug, bo € H' NV, 6y € H;. Let T* > 0 be the time of local
existence given by Theorem 2.9. For any T > T, the solution (u,b,0) to system (2) remains
smooth beyond T*, provided that uy, u3, by, b3 € L} ([0, T); L. (T3)) where

2 3 3 1
S+i=Z+4

—, s > 10/3.
r s 4 25
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Specifically, ||u ”Hxl’ ||b”H§’ and ||9||H)} remain bounded up to T. Consequently, we have u, b, 6 €
C*® (2 x (0,T)).

The next three theorems provide local well-posedness for systems (1) through (3). First, for
the fully inviscid system (3), we have

Theorem 2.7. For the initial data (ug, by, 6g) € Hf NV, there exists a unique solution
(u,b,0) € L0, T); H>NV)

to the fully inviscid MHD-Boussinesq system (3) for some T >0, depending on g and the initial
data.

Regarding system (1), we have

Theorem 2.8. Form > 3 and ug, bp € H' NV, and 6y € H", there exists a solution (u, b, 0) with
u,b e Cy([0,T); HYNL?((0,T); V) and 6 € C, ([0, T); L2) N L2((0, T); H)) for any T > 0
for (1). Also, the solution is unique ifu,b € L ([0, T"); H' NV)N L,z((O, T'); H;”H NV) and
0 e LX(0, T; H") N Ltz((O, T); H;"'H) with some T' depending only on v, 1, and the initial
datum.

For the non-diffusive MHD-Boussinesq system (2), which we mainly focus on, we have

Theorem 2.9. For m > 3 and ug, by € H' NV, 6y € H", there exists a unique solution
(u, b, 0) to the non-diffusive MHD-Boussinesq system (2), where u, b € L°([0, T*); H' N V)N
L,z((O, T*); H;”“ N V) divergence free, and 6 € LY° ([0, T*); H]"), where T* depends on v, n,

and the initial datum.

3. Proof of the existence part of Theorem 2.8 and Theorem 2.9 regarding systems (1) and

()]

For Theorem 2.8, we use Galerkin approximation to obtain the solution for the full MHD-
Boussinesq system (1), while for the existence part of Theorem 2.9, the proof is similar with
only minor modification so we omit the details.

Proof of existence in Theorem 2.8. Consider the following finite-dimensional ODE system,
which we think of as an approximation to system (1) after applying the Leray projection P, .

du
2 = vAuy + Py B(uar, up) = Pu B(bar. bar) + 8 P (Oures).
dby
UTE —nAby + PuB(um,by) = PuB(by, um), (6)
do
d—;” — K AByr + Py Bluy, 6y) =0,

with initial datum Ppsu(-, 0) = up;(0), Pyb(-,0) = by (0), and P60 (-, 0) = 03,(0). Notice that
all terms but the time-derivatives of the above ODE systems are at most quadratic, and therefore
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they are locally Lipschitz continuous. Thus, by the Picard—Lindelhoff Theorem, we know that
there exists a solution up to some time 73 > 0. Next we take justified inner-products with the
above three equations by u s, by, and 0, respectively, integrate by parts, and add the results to
obtain

S (||uM||i§ +lbal7; + ||0M||i§) + vl Vup 7z + 11 Voallzz +«l VOl
:/(bM-V)bMude+/g9MuMe3dx+/(bM-V)uMbde
T3 T3 ']1‘3
:g/@MuMe3dx,
T3

where we used the divergence free condition, Lemma 2.1, and the orthogonality of P, and Py,.
By the Cauchy—Schwarz and Young’s inequalities, we obtain

d 2 2 2 2 2 2
= (a2 + 10w 13 + 10w 13 ) + 201 Vuaa 12, + 201 Vou 13, +2€1V6u 1

< Cy (a2, + 10w 12,) -

Thus, by the differential form of Gronwall’s inequality, uj; and by are uniformly bounded
in L([0, Ty); H), while 6y is uniformly bounded in L°([0, Tas); L%, independently of T}y.
Namely,

luar N2 + 163 D172 + 163 172 < Co )17z + 1bar O)1I7 + 16 O)117.

for any 0 < ¢ < Ty Thus, for each M, the solutions can be extended uniquely beyond 7} to an
interval [0, T'], where T > 0 is arbitrary. In particular, the interval of existence and uniqueness is
independent of M. Using the embedding L® — Ltz, and extracting a subsequence if necessary
(which we relabel as (uy7, by, 037)), we may invoke the Banach—Alaoglu Theorem to obtain
u,be LX([0,T]; H),and 6 € L2([0, T]; L2), such that

upy —u and by — b weaklyin L2([0,T]; H),
Oy — 6 weaklyin L2([0, T1; L2).

(u, b, 0) is our candidate solution. Next, integrating (7) over time from O to ¢ < T, and using
Gronwall’s inequality, we have that u; and by, are uniformly bounded in L,2([O, t); V), while
Oy is uniformly bounded in Ltz([O, T); H)g) for any T > 0. Next, we obtain bounds on du s /d¢,
dby/dt, and d6)y/dt in certain functional space uniformly with respect to M. Note that

du
dtM = —vAuy — Py Bus. un) + Py B(bar, bar) + g Par (Oyres),
dby
— =—nAby — Py B(upy,by) + PyuBbuy, uy), (®)
dOy

— = —kAOyr — B((upr, Opp).
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Note in the first equation that Auy, is bounded in Ltz([O, T); V') due to the fact that uy, is
bounded in L,z([O, T); V). Also, we have g Py;(6)e3) is bounded in Ltz([O, T); H). On the other
hand, by Lemma 2.1, we have

1/2 3/2
1Py B, usd)llyr < Clluag |1} 1 Vua 15
X X

as well as

1/2
L}

3/2

1Pv B(ba, ban)llv: = Cllbam Nl 5 VoMl

Since the L?-norm of uy; is uniformly bounded and the L?-norm of Vuy; is uniformly inte-

grable, we see that duys/dt is bounded in L?/ 3([0, T); V’). Similarly, from the second and

third equations, we have that dby/dt and d6ys/dt are also bounded in L;w([O, T); V') and

Lf/ 3([0, T);H 1), respectively. Therefore, by Lemma 2.5 and the uniform bounds obtained
above, there exists a subsequence (which we again relabel as (17, by, 0)) if necessary) such

that

uy —u and by — b strongly in le([O, T, H),
Oym — 0 strongly in Ltz([O, TI; Li),

uy —u and by — b weaklyin L3([0,T]; V),
Oy — 6 weaklyin L2([0,T]; H)),

uy —~u and by — b weak-xin L{°([0,T]; H),

Oy — 0 weak-xin L>([0,T]; L?),

for any T > 0. Thus, by taking inner products of (6) with test function ¥ (¢, x) € C ,1([0, T1;C)
with ¥ (T') = 0, and using the standard arguments of strong/weak convergence for Navier—Stokes
equations (see, e.g., [52,53]), we have that each of the linear and nonlinear terms in (6) converges
to the appropriate limit in an appropriate weak sense. Namely, we obtain that (1) holds in the
weak sense, where the pressure term p is recovered by the approach mentioned in Section 2
and we omit the details here. Finally, we take action of (1) with an arbitrary v € V. Then, by
integrating in time over [fy, t1] C [0, T] and sending #; — f( one can prove by standard arguments
(cf. [52,53]) that u, b and 0 are in fact weakly continuous in time. Therefore, the initial condition
is satisfied in the weak sense.

Next we show that the solution is in fact regular at least for short time, provided (uq, b, 6p) €
H™ N V. We start by multiplying (1) by Au, Ab, and A6, respectively, integrate over T, and
add, to obtain

1d
2dt

= —/(u-V)uAudx+/(b-V)bAudx+g/9Aue3dx,
3 3 T3

(||W||i§ +1VbI7; + ||ve||ig) +vllAulgz + 0l AbI; + k(A8
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—/(u-V)bAbdx—}—/(b-V)uAbdx—f(u-V)OAde

T T3 T3
3/2 3/2 3/2 1/2
< CIVul I Aulyy + CIVOI AL | Aull 2 + gl Vull 3 1961 .2
1/2 3/2 1/2 1/2
+ CIIVull 2 V01 I1ABIYY + CIVI 2 1 Vul | Aull S 1 Abll 3
+CllBllLe | Vull 214612
v n K
< Sl Aulg; + JIABIZ, + 14017,
C C
53 IVullGy + HIVBIG, + CIVeN, +ClIVuly,
C C C
+ ﬁnwng Vb7, + ;Wblli; IVulys + ;nwnig,

where we applied the Holder’s inequality, Sobolev embedding, and Young’s inequality. By de-
noting

K(®) = Va7 + V6@ + VOO,

we have

dK
— <CK+CK?,
dt

which implies that there exists a 7’ > 0 such that

CeCT' 2K (0) ) )
K@) < \/1 O =) =:K1(T"), forallte[0,T]. )
— eCT' _

After integrating from r = 0 to r = T’ and the constant C depends on the initial datum, g, v, 7,
and k. This shows that (u, b,0) € L ((0, T'); H' NV) as M — oo, provided T’ < 1/K?(0)e>C.

In order to pass to the limit x — 0", we must show that the above existence time T is
independent of k. We follow the vanishing viscosity technique for the Navier—Stokes equations,
(cf. [52])i.e., let T = «t, and denote

~ 1

00 =~ (IVu)lz +IVB) g2 + V012 )
K K K K

The above H' estimates thus imply that
dQ0  ~ ~~
€ e,
dt

where C depends only on g, v, 1, and is independent of «. Thus, integrating from 7 =0to 7t =7,
we obtain
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0®) < %%%(0)'
Thus, if
CTO0)<s<1,
ie.,

~ ~ 1
o) (IVu©llzz + VB3 + V00)13) <8 <1.

it follows that é(?) <Cs Q(O). Hence, we have proved that, if

C

T < ,
<||VM(0)||L§ +IIVEO) |22 + ||V9(0)||L§>

(10)

then the above H'! estimates remain valid for any « > 0.
On the other hand, we showed earlier that

T’ T’ T’
v/||Au||i%dt+n/||Ab||i§dt+/</||A0||i%dt
0 0 0

remains bounded as M — oo. Thus, we have (u, b, 0) € L,z((O, T'); H> N V). In order to obtain
the higher-order regularity in H> and H?>, we follow standard arguments (see, e.g., [1]) and
apply the following argument successively. First, for a multi-index « of order |«| = 2, we apply
the partial differential operator 9%, to (1), and test the equations for u, b, and 6 by 0%u, d*b, and
0“0, respectively, and obtain

%%H&au”ig —I—v||V8°‘u||i§ :/3a((b-V)b)3audx—/3a((u~V)u)8audx
™ T3
+g[3a98audx=11+12+13,
T
1d a2 a2 o o o o
55”8 b||L)2£+77||V8 b”L} :/3 (b -Vyu)o bdx—/a ((u-V)b)o*bdx =14 + Is,
™ T3

1d
5 7 10°0N5; + VAol = —[a“«u - V)0)0°0 dx = .

'[[‘3
In order to estimate /1, we use Lemma 2.1 and get

n=Y <‘Z> /((8% V)% b)9%u dx
T3

[§-%



A. Larios, Y. Pei/ J. Differential Equations 263 (2017) 1419-1450 1431
1/2 1/2 1/2 1/2
< CIVbI 0%l 1Vl 1V Bll 2 + ClIVBIl 2 19%ull 5 I V0% ull I Vbl
1/2 1/2
+ CIIVbI 2 10°bI1, 5 IV bl 5 1 Va*ull
where we used Young’s inequality in the last step. Similarly, I is estimated as
C v

L< —||a“u||L2 + —||3O‘M||L§ + gnva“uni;.

By Cauchy—Schwarz inequality, we obtain,
8 8
I3 = Z10%ulg; + S107bI7,.

For the terms 14 and I5, we proceed similarly to the estimates of /. Namely, we have

c C Cc C C w2 w o
i+l <C( =+ =t =+ — ) (19912, + 0wl
vpvoopd * ¥

c C v n
o (||a“u||Lz + ||a°‘b||Lz) + Vo ull, + < [IVa*b|3,
T] v X X 8 X 8 X
Finally, the term /¢ is bounded as
c C , C o) )
Is < (K—3 + ;) 19%0117, + ;IIa"‘@IIL; + ;Ila“‘ulng
v K
+ S IV%ulZ, + = Va“ol3,
8 2 X
Summing up the above estimates and denoting
0 = I19ull gz +18°bII7, + 19901172,

we arrive at

— <C+C0, 11
5, SC+C0Q (1)

where C depends on g, v, 1, k, and K{(T") defined in (9) (i.e., the bounds on the H' norms of
u, b, and 0). Hence, by Gronwall inequality, we obtain (u, b, 0) € LY°((0, T); H?N V). Also,

we have
T/
/||8°‘u|| dt+nf||8°‘b|| dt+x/||8"‘9||izdt
0

remains finite for |o| = 2. Next, we apply 0% with |o| = 3 to (1), and multiply the equations for
u, b, and 6 by 0%u, 3%b, and 9*9, respectively, and get
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1d
5Ena"funiz + | Vo%ul?, =/8°‘((b-V)b)8°‘udx —/a“((u-V)u)a“udx
' 3 3
+g/ 0900%udx = J1 + Jo + J3,
T3
d
55”3‘1””%2 +nVa*b|3, = / (b - VYu)d*bdx — / 3% ((u - V)b)3%bdx = Js + Js,
3 I
d
5Ena"feni% +K||va“9||i§ = —/a“((u -V)0)3%0 dx = Je.

3

In order to estimate J1, we apply Lemma 2.1 and obtain

3 (“)/|a¢b||va“—fb||a“u|dx
¢)J

0<|¢|<le

Ji

A

1/2 1/2
< C|Vbl 2 18%] 5 IVl ! CIVa*bll

+Cc Yy ||afb||”2||va¢b||”2||a“u||y||va°' bl 2
I¢1=1

+C Y DS 0B, IV ull 2 + CHO“bll L 19%BI 5 19 9°D1 5 10%ull .2
[¢1=2

c C 5 c C v 2 n 5
< (E + ;) loull?, + (; + ;) 10°bllz + 2 IV3“ully; + ZNV“bI.

where we employed Young’s inequality in the last inequality. The estimates for J, are similar,
i.e., we have

C C v
Ty < < 110%ull7, + —110%ull 2 + < IVO“ull7,.
% ES) * 8 x
Using Cauchy—Schwarz inequality, we obtain
g 2 g 2
= S0 ull}, + F13°13..

Regarding J4 and Js, the estimates are similar to that of J;. Namely, we have

c ¢ Cc C C - . 2
J4+JSSC<W+;+$+;+F> (NoBI2, + 19°ul?, )

C C v n
* (; + ;) (19ulleg + 03Bl ) + VS ulyy + GIVOBIT,.
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Similarly, the term Jg can be bounded as

c C c ¢
Jo < (—3 + —) 18017, + — 110901l 2 + —1%ul7,
PE K x K X v X

V K
+ S IV ul, + S IVo*6IIE,.
Adding the above estimates and denoting
Q = I19%ulyz +118°bII> + 19901172,

we have

a0
— =<C+CQ,
a =C€Tee

where C depends on g, v, 1, k, and the bounds on the H 2 norms of u, b, and 6. Hence, us-
ing Gronwall’s inequality and combining all the above estimates, we finally obtain (u, b, 0) €
L0, T); H3N V). Furthermore, we have

T' T' T'
vf||va°‘u||§2_dt+n/||va“b||§2 dt+,<f||va“9||§2 dt
0 0 0

remains finite for || = 3, i.e., (u, b,0) € L2((0, T'); H* N V). Therefore, by slightly modifying
the proof of the uniqueness of the non-diffusive system below, we obtain the uniqueness of the
solution and Theorem 2.8 is thus proven. O

4. Proof of the uniqueness part of Theorem 2.9 regarding systems (2)

Proof of uniqueness in Theorem 2.9. In order to prove uniqueness, we use the fact that
(u,b,0) € L®([0, T*); H™). Suppose that (u", b 9Dy and @@, @, 0?) are two solu-
tions to the non-diffusive MHD-Boussinesq system (2). By subtracting the two systems for the
two solutions denoting # = u® — 4@, p=p® — p@ p=pM —p@ and§ =61 — @ and
by using Holder’s inequality, Gagliardo—Nirenberg—Sobolev inequality, and Young’s inequality,
to obtain

I . S
8—”; AT+ @ VUV + @@ F+ V= G- VB 4 P . V)b + gbes,

b ~ o~ -
Frl nAb+ @ -V)bY + w® Vb= k- Viul) + P - V)7,

0 ~
5 T V)oY + @? . v)g =0,

with V- =0 = Vb. Multiply the above equations by i, b, and 6, respectively, integrate over
T3, and add, we get
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1d
o (||u||L2+||b||L2+||9||L2)+v||wan+n||Vb||L2

=/(ﬁ-V)u<‘>ﬁdx—/(Z-V)b(1>ﬁdx+/g§e35dx
T3 'ﬂ‘3 T3
+/(i7.V)b(”i;dx—/(Z.V)u“)deJr/(’J.V)0<1>5dx
']1‘3 T3 ']1‘3

1/2 3/2 1/2 1/2
< CIvu®| 2 @5 IVl ! >+ CIVEV 2 151 ! !

HVbH HVMHH-+gWMLﬂWHm

1/2 32

1/2 1/2
+C||Vb<”||Lz||u|| / Ival / ||Vb||Lz+C||w<”||Lz||b|| VB,

1/2 1/2
+ CI@l 5 I vall ||vv0<“||Lz||0||Lz
C -2 v ~12 =2 v ~12 U ~2
< I, + IVl + —||b||L§ + e IVEl: + 1 IVEIE,

g ~
+ 1013, + S0, + — ||b|| 2+ e IVBIG, + IVl

C 2 R SR SR Yy
+ 5 Bl + T IVBIG; + I, + T IVAl, +CIAIE,.
where we used the bound in (9) and (11) on [0, T] for T < T*. Let us denote
X () = 11ll7; + 15117, + 16117,

for0 <t <T < T*. Then we have

dX(t)
dt

=CX(),

Gronwall’s inequality then gives continuity in the L°(0, T'; L?) norm. Integrating, we also ob-
tain continuity in the LZ(O, T; V) norm. If the initial data is the same, then X (0) =0, so we
obtain uniqueness of the solutions. O

5. Proof of the regularity criterion for system (2)

We follow the ideas of [32,35,41,42] and the references therein. Namely, for the smooth so-
lution to system (2) we obtained in Theorem 2.9, we show that the vertical gradient is in fact
bounded by the horizontal gradient, on its maximal time interval of existence [0, Tmax), via
anisotropic estimates (14) through (16). Working by way of contradiction, we assume Tiyax < 00.
Then, by anisotropic estimates (18) through (20), we prove that the boundedness of the gradi-
ent of the solution can be extended beyond time Tiax, provided the regularity criterion in the
statement of the theorem holds on (0, T') for T > Tiax.

The key point is that, even in the absence of diffusion in the equation for 6, our estimates
and arguments for regularity are still valid. This suggests that the Prodi—Serrin-type regularity
condition might also work for other partially inviscid systems.
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Proof of Theorem 2.6. We start by introducing the following notation. For the time interval
0 <t <t < oo, wedenote

Te(ty,n)

15)
@)= swp {IVau@I3 + IVab@I3} + / IVVau(@)l13 + 11V Vab(D) 3 d
n

(recall that Vj, = (91, d2), and A = 911 + d22). We also denote

Te(ty )

19}
(L@)?i= sup {Iosu@I3+ lasb@)I3} + / IV83u(D)113 + 1V 83b(D) 13 d .
n

Aiming at a proof by contradiction, we denote the maximum time of existence and uniqueness
of smooth solutions by

Tiax ;= sup {T* > 0|(u, b, 0) is smooth on (0, T*)}.

Since ug, by, and 9y are in Hf, Tinax € (0, 0o]. If Tiax = 00, the proof is done. Thus, we suppose
Tmax < 00, and show that the solution can be extended beyond Tpax, Which is a contradiction.
First, we choose € > 0 sufficiently small, say, € < 1/(16C,4x), where Cy,4 is the maximum of
all the constants in the following argument, depending on the space dimension, the constant g, the
first eigenvalue A1 of the operator —A, as well as the spatial-temporal LZ-norm of the solution
up to Tpay- Then, we fix T1 € (0, Tnax) such that Tiax — 71 < €, and

Tmax
/ V()72 + 1Vb@II7, + 1017, d <, (12)
T
as well as
Tmax
f lu2 (s + Nz @l + 1620 + 163017 dT <€ (13)
T

We see that the proof is complete if we show that || Vu(T2) |13 + [ VB(T2) |13 + IIVO(T2) |3 < C <
oo, forany 7> € (11, Tmax) and C in independent of the choice of 73. In fact, due to the continuity
of integral, we can extend the regularity of u beyond Tax and this becomes a contradiction to
the definition of Tpax. Therefore, it is sufficient to prove that J (T2)2 + L(T2)2 < C < o0 in view
of the equation for 6 in (2) for some constant C independent of 7>. We take the approach of [42],
which first bounds L(7>) by J(T3), then closes the estimates by obtaining an uniform upper
bound on the latter. The regularity of 6 thus follows from the higher order regularity of u and b.
To start, we multiply the equations for # and b in (2) by —832314 and —832317 respectively, integrate
over T3 x (T}, T»), and sum to obtain
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T
1
5 (Nosu(m) 12, + 136 ) + / f VIVasul2, + 0l Vasbl3, dx dr
T T3

(Nasu (T2, + l3sb (T, )

N =

3 D 3 D
-y //83uj3juk83ukdxdt+ > //33bj8jbk83ukdxdr

Jk=17y 73 Jk=17) 3
3 B 3 B
-3 //33uj8jbk33bkdxd‘r+ > //83bj8juk83bkdxdt
Jk=17) 3 Jk=1py
3 D
—gZ//Oe3833ukdxdr,
k=11y 3

where we used the divergence-free condition and Lemma 2.4. Then we denote the last five in-
tegrals on the right side of the above equation by I, I1, III, IV, and V, respectively. In order to
estimate I we first rewrite it as

2 2 D
I =— 03u i 0iupd3urdxdt — 03u jdijuzdzuzdxdrt
JY] J7]

Jk=17, 13 J=lr 13
2 T )3
—Z//83u383uk33ukdxdr—//83u383u383u3dxdt
klel T3 T T3
2 b
= Z /[uk (83uk832juj + 83u.,'832juk) dxdt — 1, —Ip — I..
jvk=1T1 T3

By Lemma 2.1, the first two integrals on the right side of I are bounded by

T

C//|u||83u||V83u|dxdr

Ty T3

I3
< [ Iullghonuly 19sdsul i d
T

)
1 1
sc/||u||Lg||asu||zz||asu||zf,||vhasu||Lg dr
X X -
T
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2 1 1 1 1
2 = i = 2 4
< ClI Vil oo 19301 2 19301 o I V950 o 1935000 VB30l 22 (14)
X X t=x t=x t=x

< CeLI(Ty)JX(T),

where the L{° norms are taken over the interval (77, 7>) and we used Lemma 2.2 in the second
to the last inequality. Regarding 1, I, and I, we first integrate by parts, then estimate as

2 B 2 b
Ia—I—Ib—{—IC:Z//u383uj832ju3dxdr+2//u38ju38323ujdxd7:

J=l7 13 J=l7 3

2 D T
+22ffu383uk833ukdxdr+2//u383u3833u3dxd‘r

k=17, 13 Ty T3
T T
§C/|u3||th||V33u|dxdr+C/|u3||83u||V83u|dxdr

T T

T I3
1-3 143 1-3 143
=C | lusllzs IVaull o IVOsull o * dt +C | Nluslzgl|9sull " IVosull,* dt
X X X X
Th T

143

1-(243) -3
< CT = '™ D s g 1 Vel 19030l 1

142

C(T> — T -CG+D) dsull =, 1V : 1>
+C( =T " usliLy s 3”||L;><>L§“ 3u”L?L)2c 4>

< CeJ' "3 (T)L'*3 (Ty) + CeLA(Ty).
where we used the fact that ||Vu||lL/22L2 is small over the interval (T, T;) and the constant C is

[
independent of 7>. Next, we estimate /I. Proceeding similarly as the estimates for 7, we first
integrate by parts and rewrite /I as

3 2 I 3 D
II=ZZ//bk33bj332jukdxdT+Z//b333bj8§ju3dxd7:

j=lk=l1y 3 J=17 73
T T
§C//|b||33b||Vh83u|dxd‘L'+C//|b3||83b||va3u|dxdr.
7| T3 Ty T3

Therefore, by Lemma 2.1 and Lemma 2.2, we get

T
11=C [ 1010102611319t e

T
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T
+C//(Iu3|+Ibsl)(|33ul+|33b|)(|V33M|+|V33b|)dxdf
T T3

T
1 1
<C / 1611211935112, V330112, Va3l 2 d e

T

T

_3 3

+C/(||u3||@ + 16301 3) 331l 2 + 18311 2) 175 (IVAsul 2 + [ Vasbll 2)1 5 d

T

2 1 1 1 1
3 3 2 3 2 106
< C”V"b”ZfCLg ||83b”2f%§ II33bIIZ%L§ IIVh33b||thL§ ”3331)”2,%; IVhd3ull 22
=243 1-3
+C(T2=T1) " (luslliy s + 10302y s ) (103ull o2 + 103D Lo g2) "
3
X (IVOsull2p2 + IIV33b||Lt2L§)1+A' (16)
1 2 1-3 1+3 2
<CeL2(Tr)J*(Tr) + CeJ " s (T)L 75 (T2) + CeL“(T»).

The terms /I and IV are estimated analogously, i.e., we have

3

HI+ 1V < CeL? (T)J3(Th) + CeJ 73 (Ty) L1+ (Ty) + CeL2(T),

where the constant C does not depend on 7>. We estimate the term V as

3 D
V== [ [oestnucdr =il iy, = Cllnlig lomul z, < CeLTy).
k:lTl T3 :

Collecting the above estimate for / through V and using Young’s inequality, we obtain
L3(Ty) < C + CeL} (Ty)JX(T2) + Ce L3 (1)1 75 (Ty) + CeL3(Ty) + CeL(T)
< C+ CeLX (Do) 4+ CeJ (Ty) + CeJX (Do) + CeL(T»).

Thus, with our choice of € > 0 earlier, we get

L(T>) <C +CJ(T»)3. (17)

Next, in order to bound J (7>), we multiply the equation for # and b in (2) by —Aju and —Ab,
respectively, integrate over T2 x (77, T), sum up, integrate by parts and get

T

1
5 (IIth(Tz)IIi% - ||Vhb(T2)||i§) - / / IV a7z + 1V Vabll7
Ty T3

1
=5 (IO 12, + 196012, )
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L 3 2 D

3 2
ZZ /au,a ukaukdxdt—i—ZZ//abBbkaukdxdr
]k=lz=1Tl 3 Jk=1li= lT1 T
3 2 D 3 2 b
ZZ/ u;d, bkabkdxdr+ZZ[fBbaukabkdxdr
jk=1 :T jk=1i= lT )

/ a
//9638”141( dxdr,
T

el

_gz
k=1i=

1

where we used the divergence-free condition and Lemma 2.4. Denote by T through V the last
five integrals on the right side of the above equation, respectively. Integrating by parts, we first
rewrite [ as

2 D
I=— Z //8u]8 ukaukdxdr—Z//Buja u3diuzdxdrt

i,j,k:lT1 i i,j= 1T1 G

— 0; U303Uy 0; ukdxdt—Z//3u383u38 usdxdrt
ik= lT] ™ i= 1T| ™

L2 T, T, T,
ZE Z f u38juk832jukdxdr—/fu381u18322u2dxdt—//u382u28321u1dxd7:

Jok=17 T3 T T3 T T3
T

+ ugaluza_%zuldxdr+//u382u]a§1u2dxdr
Tr T3 Ty T3

+ Z //uga u]83ju3dxdr—|— Z //u38 u383lujdxdr
i,j= 1T1 i i,j= lT1 e

+ Z //u333uk8”ukdxdt+ Z /[u38 uk833ukdxdr
ik= lTl ™ i k= lTl T3

+2fou3a u3d2uz dx dr,

i= ITl T3

where we applied Lemma 2.3 to the first term on the right side of the first equality above. Thus,
by Holder and Sobolev inequalities, we bound 7 as
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I
I< C//|u3|(|th|+|83u|)|Vth|dxdr
T T3
)
1-32 1+3
< C [ luslley I Vaull 5 1V Vil de
T
T
1-3 2 5 1
+C / luesllzs 193l I Vadsull s 511035l 511V Vaull 2 d
T
< C(T =T "D us 1 Va0 IV Vil
2 — 1 u3 LL hM LOOLZ hu L2L2

r72 35—10

+C(Ty = T sy 1950l L2||azu||LooL2x||va3u|| 2 IV Vil

o (18)

< C +CeJX (D) + CCeJ 35 +1+3
<C+CeJX (D),

where we used (17) and the factthat 7o — 71 <€ and 2/r +3/s =3/4+1/(2s) for s > 10/3. In
order to estimate 11, we proceed a bit differently since Lemma 2.3 is not available for convective
terms mixed with u and b. Instead, we integrate by parts and use the divergence-free condition
01b1 = —0yby — 93b3 and obtain

2
Z//ab by djug dx dt

=7 13

T
//a blalblaluldxdr+ZZ//8,b181bk8,ukdxdr
Ty T3

i=1 k=27, 13

1

2
=1

Zi:iZ//ab by djug dx dt

=17=27 1

2

2 T
Z//Gjb1(—b282—bgag)aiuldxdr
i=1

T1 T3

- upd;b1 0% by dx dt — upd1byd>by dxdr
zz/f : zz// ;

i=1 k=27, 1 i=1 k=27,

2 3
ZZZ//hajbkaﬁ.ukdxdr—ZZZ//baiukafjbkdxdr.

= _2T1']]‘3 llkl/2TT3
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Then after integration by parts to the first term on the right side of the above equation, we bound
Il as
T
INISC/f(Ibzl + 103D (IVhul| 4 |Vab| 4 [03u| + |036)) (IV Vpu| 4 |V Vyb|) dx dt
T T3
T
_3 3
< C/(nban; + 1Bl ) U Vaull 2 + V4Bl ) =5 (1Y Vaull 2 + IV Vabll2) 5 de
T
I
+ C/(IlbzllL; + 16312y ) (1193ull 2 + ||33b||L2)1"(IIVhazulle2 + V433Dl 42) ¢
T
1
< (10331ll 2 + 1033611 2) s IV Vaull 2 + [V Vbl 2) d
<C -G+
=C(T—=T) s ballres + 163l Ls)
_3 3
x (IVauell o2 + I Vbl oo r2)' 5 IV Viull 212 + 1V VibIl212) 5

C(T —TH =G (bl b
+C(L =Ty s (b2liLres + 1631 Ly Ls)

s=2 35—10
X (193l 22 + 183111220 (lsulloop2 + 19361 e 2) 5
1 2
< (1Vsull 212 + 193l 2,2)* (IV Vil 22 + 993Dl 2,2 (19)
<C+CeJ* (D) + CeJ 3w H1+5

<C+ CeJ*(T).

Regarding 11, we proceed similarly as in the estimates for 1l. Namely, we have

[S)

3 2 L
7= Z Z[/Blujajbk&bkdxdr

J.k=1i=1 Ty T3

2

T
2
Z// ulalblablddeZZ[/aulalbka b dx dt
i—1p o

i=1k= ZTI'I[‘%

2 3 3 h
-}-ZZZ//aiujajkaibkdxdt
i=1 k=1

= j:2T1 sl

_Z//a U1 (—bdy — b303)d;by dx dt

=17 13
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2
Z //bkaulallbkdxdt—ZZ//bkalbkaiziuldxdr

=27, 73 i=1 k=27, 13
2 3

ZZZ//W) by ; bkdxdr—ZZZ//uja bid}bedx dt
i=1 k=1 2T1T3 i=1k= 112TT3

SC//(IM2I+IM3|+|b2|+Ib3|)(|VhMI+|Vhb|+|33u|
i T3

1193 (IV V| + |VVb|) dx dx. (20)

Whence, by Hélder’s inequality and Gagliardo—Nirenberg—Sobolev inequality the far right side
of the above inequality is also bounded by

C+ CeJ*(Ty) + CeJ 3 5T
hence by C + Ce J2(T») in view of (17). The term IV is bounded similarly as i1 by C +
CeJ2(T»), thus, we omit the details. Next we estimate V. Observing Theorem 2.8, we have
gZZ//QegB,,ukdxd‘c < CllOll2, IV Vhull 2, < CeJ(T2).
k=li=17 13
due to (12). Combining the above estimates for T through V, we get

1
5 (IIth(Tz)IIi% - ||Vhb(T2)||2%) - / / IVVniel 7z + 1V Vabl7, dx dr
T T3

1
< 5 (VAT + IVb(TI, ) + € + Ced (o) + Ced (T,

where the constant C is independent of 7,. Therefore, we get

1
572 (T) = sup {||vhu<r)||%+||vhb<r)||%}+ / IV VAU + IV Vib(0) I3 dx dt

Te(ty,n)
1
< 5 (IVauCTOIZ, + 19 TDIZ, ) + Ced (To) + Cea*(Ty) + €.,

where we applied the €-Young inequality. Hence, by choosing € < 1/4C we obtain
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Te(f1,0)

1)
1
7 s {IVi@IB3+ 1vab@13) + f IVVau (@3 + IV Vab(@) 3 dxdr  (21)
t

1
1
= 5 (V@I + 94T, ) + € (22)

Finally, we have

| —

IVau ()72 + 1Vab(T)I7, <

= 5 (Va3 + 19T ) + €

for any T € (T1, Tnax)- Therefore we have

sup  [|Vau(To)[7, < C < oo,
Tre(T1, Tinax) X

and by (17) and (22), we obtain

sup (2T +1A(Ty) = C < o0,
Tre(T1, Tax)

which implies
u,be L([0,T); H' NV)NLA([0,T); H>NV).

Thus, by our arguments in previous sections, # and b are smooth up to time 7. In particular, u
and b are bounded in H3 N V. Whence, we multiply the equation for € in (2) by —A#, integrate
by parts over T° and obtain

3
d
Enven%z = Z fujajeal-,-edx §C/|Vu||V0|2dx
']1'3

ij=lms

= ClIVullLz V613, = Cllull 196113,

where we used V - u = 0 and the Sobolev embedding H> < L. Integrating in time from 7 to
T, and by the fact that u is bounded in H 3 independent of 7>, we have 6 € L{°([0,T); H I'nvyy
due to Gronwall’s inequality. The proof of Theorem 2.6 is thus complete. O

Appendix A. Results regarding the fully inviscid system (3)

We provide a proof following a similar argument to the one given for the existence and unique-
ness for the three-dimensional Euler equations in [58] and [1].

Proof of Theorem 2.7. The first part of the proof follows similarly to that of Theorem 2.9 and
we use the same notation here, except that we choose the orthogonal projection Py from H to

its subspaces H, generated by the functions

{eZ KT | k| = maxk; < N},
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for integer N > 0 and k € Z>. For u™,b" € H,, and 8" and p" in the corresponding projected
space for scalar functions, respectively, we consider solutions of the following ODE system,

duN

—— + PvB@",u) + Vpt = PyB®", V) + g0V es,
dbN N N N N

doN

7 + PNB(MN, GN) =0,

where we slightly abuse the notation by using B and B to denote the same type of nonlinear
terms as were introduced in Section 2. We show that the limit of the sequence of solutions ex-
ists and solves of original system (3). First, we observe that the above ODE system has solution
for any time 7 > O since all terms but the time derivatives are at least locally Lipschitz con-
tinuous. In particular, by similar arguments as in Section 3, the solution remains bounded in
L((0, T); H) N L0, T); H™ N V) for some T depending on the H>-norm of the initial
data. Next, we show that (u™, bV, 6") is a Cauchy sequence in L?. For N’ > N, by subtracting
the corresponding equations for W™, bV, 0"y and (uN/, bN/, GN/), we obtain

d !’ ! !
E(MN —u™)y=—PyBW",u™)+ Py B@" ,u™) + Py BN, bY)

— Py BN BNy = V(N — pV) + 80N —0N)es,

d ! ! ! ! !
E(b’v — by =—Py B, bN) + Py B bV + Py BN, u™) — Py BN u),

d ! ! /
E(GN —oNy=—PyBu",0™) + Py Bw™ oM.

Next, we take the inner product of the above equations with N —ul /), N —pN /), and (6N —
oy, Adding all three equations, and using (5a) and (5b) from Lemma 2.1, we obtain
1d
2dt

=g(@™ —ue3) @ — 6Ny — (Py BN, u™), u) — (Py B, uN'y, u®)

(™ =12, 4+ 16N = V12, + 167 — 6Y'12, )

—(PyBON, V), uNy — (P BON, BN, Yy + (P B@N , bV, BN
+ Py B@™ bV, bV — (PyBBN, uN), bV — (P BN, uMN'), bY)
+(Py BN, 0M), 0N — (Py BN 0N, 0N)
= g(@" —u™)e3) @Y — 0Ny + (1 — Py BN, u™), u™) + B@" —u™ 1 —uM), u)
+ (1= Py)BOY 6V, u™) + BON — bV u —u),u)
+ (1= BB, u), bV + (BGBY =N bV — V), u)

— (1= Py)B@, b™y, u™y + (B@™ —u™',bN — Ny, b1
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— (1= Py)B@™,6M), 6Ny + Bw™ —u™', 0N — o), 6")
10
=S+ 5.
i=1

where we integrated by parts and used the divergence free condition V- u”¥ =V - u¥ =Vv.pN =
V - bV =0. Then we estimate S and the two types of terms S;, i = 1, ..., 10 separately. After
integration by parts, we first have

N N’ N N’ N N N2
S+ D Si=glu® —u 210" =6Vl + 1Vu g —u™ 7

i even

+ 2095 e ™ = u [ 2 16™ = 6N 2 + 1V e 1BV = 6N
HIVON g ™ — w2 0™ — 0N 2
= € (I =13, + 1Y = BVIE, + oY — V12,
where we used Holder’s inequality and the Sobolev embedding H3 < L. Here the constant C

depends only on the H 3 norm of ug, bo, and 0. Regarding the remaining terms, we denote by
f. the Fourier transform of f € L?(T?)

A 1

f®) = G / e X f () dx,

']T3
and obtain

oS <@ VN A = Pou™ g + 10N - VIBN 2110 = Py
i odd

1Y VN 2 (= Py N2 4+ 1@ VBN (2110 = Pr)bY 2

@™ - N2 1L = Pv)O™ 2

12
, 1
< ClIVu" [l oo llu™ | 2 N )P+ k) ———
' EN (1+ N2
1/2
’ 1
+ IV Lo D™ 12 N (P (1 + k[’ =
' lk% (1+N2)
1/2
- 1
+ CIIVu oo 16V | 2 N (R (1 + k) ———
* ,Z:N (14+N?)
1/2
- 1
+ CIIVBN [l llu™ | 2 16N () (1 + k) ———
' P> (1 + N2)’

|k|>N
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1/2

+ CIIVON [l oo ™ ]| 2 16N ()21 + [k} ————
: |k|Z>:N (14 N2)*

C
<
=V
where C depends on the initial datum, and we used the fact that
1z = Y 1F A+ 1K)
keZ3

Summing up the above estimates we have

d / ! !
= (1™ =3, 16N = 61, + 16N 613

! ’ ! C
<C (||uN —uM I+ 1Y = oM + 6N — 6" ||i§) + 3

which by Gronwall’s inequality implies

N N2 N N2 N N2
— — — < —
lu™ —u IILg +167 —b IIL% + 167 =6 ”Lg =N3

Sending N — 0o, we obtain the desired Cauchy sequence. Namely, (u™,b™,0") — (u, b, 0)
with u, b € H and 6 € L2. Due to the above convergence and the fact that u™¥, bV € H3 NV
and 6 € H3, we see that u and b are also bounded in H} NV while 6 is bounded in H}. Thus,
the existence part of the theorem is proved by easily verifying that (u, b, 0) satisfies system (3)
with some pressure p as discussed below. In fact, for a test function ¢(x) € V and 0 <t < T,
@™, bV, 6N) satisfies

t t
WV 1)) = W (4 0), ) + f (P (™ - V), uN)ydt — / (Py (0" - V)p). bY) d
0 0
t
+g / O e3, ¢) dr,
0

t t
OV (1), 0) = BN ((,0), ¢) + / (Py (@™ - V)¢), by dT — / (P (BN - V)g),uM)dr,
0 0

t

OV (1), ¢) = (9N<(-,0),¢)+/(B(uN,¢),eN>.

0

Sending N — oo and extracting a subsequence if necessary, we have that the integrals of non-
linear terms converge weakly to the corresponding integrals of nonlinear terms in (3). Also, we
see that the nonlinear terms are weakly continuous in time. Whence by differentiating the first
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equation in time, we conclude that the limit indeed satisfies the equations for u in (3) in the weak
sense, i.e.,

d
E(u((" 0, ¢)=—(u-Viu,¢)+ ((b- V)b, p) + (g0e3, $),

which in turn implies that there exists some p € C([0, T]; H), such that

du
E—i—(u'V)u—l—Vp:(b‘V)b—i-g@eg.

Regarding uniqueness, suppose there are two solutions (", 5, 0Dy and u?,p®, 9?)
with the same initial data (uo, by, 90) for (3). Subtracting the corresponding equations for the two
solutions and denoting &, b, and 6 for u™ — 4@, b — p@ and 6D — 6@ respectively, we
obtain

o L .
8—”; 1@ VU + @® Vi +Vi=G-VbD 4 6P . V)b + gles,
ob Do @ NE— oD 1 h@) oy

o @V £ W® Vb= - Vu® + 6PV,

390 5

E+(u VoD + w® . vyg =0,

with V- % =0 = Vb and 7(0) = 5(0) = 6(0) = 0. Multiply the above equations by #, b, and @,
respectively, integrate over T3, and add, we get

S (||u|| 2+||b||Lz+||9||L;)
/(u V)u<1>~dx—/(b V)b(l)udx+fg9e3udx
T3

+/(a‘-V)b<1>de—/(5-V)u<1>l7dx+/(ﬁ-V)e<1>§dx
']1‘3 T3 ']1‘3

< ClluPllzge 1775 + CUO Lo il 2 151 2 + Cllu Ve 1712 151 .2
b
+ CIOVl e Il 2116 2

where we applied Holder’s inequality and the Sobolev—Nirenberg inequality. Now due to the
embedding H? < L°°(T?), and Young’s inequality, we have

3 (W B, 4 112,) = € (1, + 1B, + 112,

where C' depends on g and H3 norm of @M, pM M) Thus, by Gronwall’s inequality,
(@ (t), b(t), 0(t)) remains 0 for 0 < < T. Uniqueness is proved. O
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