
Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations 263 (2017) 1419–1450

www.elsevier.com/locate/jde

On the local well-posedness and a Prodi–Serrin-type 

regularity criterion of the three-dimensional 

MHD-Boussinesq system without thermal diffusion

Adam Larios, Yuan Pei ∗

Department of Mathematics, University of Nebraska–Lincoln, 203 Avery Hall, Lincoln, NE 68588–0130, USA

Received 19 September 2016; revised 8 March 2017
Available online 22 March 2017

Abstract

We prove a Prodi–Serrin-type global regularity condition for the three-dimensional Magnetohydrody-
namic-Boussinesq system (3D MHD-Boussinesq) without thermal diffusion, in terms of only two velocity 

and two magnetic components. To the best of our knowledge, this is the first Prodi–Serrin-type criterion for 
such a 3D hydrodynamic system which is not fully dissipative, and indicates that such an approach may 

be successful on other systems. In addition, we provide a constructive proof of the local well-posedness 
of solutions to the fully dissipative 3D MHD-Boussinesq system, and also the fully inviscid, irresistive, 
non-diffusive MHD-Boussinesq equations. We note that, as a special case, these results include the 3D non-
diffusive Boussinesq system and the 3D MHD equations. Moreover, they can be extended without difficulty 

to include the case of a Coriolis rotational term.
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1. Introduction

In this paper, we address global regularity criteria for the solutions to the non-diffusive three-
dimensional MHD-Boussinesq system of equations. The MHD-Boussinesq system models the 

convection of an incompressible flow driven by the buoyant effect of a thermal or density field, 
and the Lorenz force, generated by the magnetic field of the fluid. Specifically, it closely re-
lates to a natural type of the Rayleigh–Bénard convection, which occurs in a horizontal layer 
of conductive fluid heated from below, with the presence of a magnetic field (cf. [1,2]). Various 
physical theories and numerical experiments such as in [3] have been developed to study the 

Rayleigh–Bénard as well as the magnetic Rayleigh–Bénard convection and related equations. 
We observe that by formally setting the magnetic field b to zero, system (1) below reduces to 

the Boussinesq equations while by formally setting the thermal fluctuation θ = 0 we obtain the 

magnetohydrodynamic equations. One also formally recovers the incompressible Navier–Stokes 
equations if we set b = 0 and θ = 0 simultaneously.

Denote by � = T
3 the three-dimensional periodic space R3/Z3 = [0, 1]3, and for T > 0, the 

3D MHD-Boussinesq system with full fluid viscosity, magnetic resistivity, and thermal diffusion 

over � × [0, T ) is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ν�u + (u · ∇)u + ∇p = (b · ∇)b + gθe3,

∂b

∂t
− η�b + (u · ∇)b = (b · ∇)u,

∂θ

∂t
− κ�θ + (u · ∇)θ = 0,

∇ · u = 0 = ∇ · b,

(1)

where ν ≥ 0, η ≥ 0, and κ ≥ 0 stand for the constant kinematic viscosity, magnetic diffusiv-
ity, and thermal diffusivity, respectively. The constant g > 0 has unit of force, and is propor-
tional to the constant of gravitational acceleration. We denote x = (x1, x2, x3), and e3 to be 

the unit vector in the x3 direction, i.e., e3 = (0, 0, 1)T . Here and henceforth, u = u(x, t) =

(u1(x, t), u2(x, t), u3(x, t)) is the unknown velocity field of a viscous incompressible fluid, with 

divergence-free initial data u(x, 0) = u0; b = b(x, t) = (b1(x, t), b2(x, t), b3(x, t)) is the un-
known magnetic field, with divergence-free initial data b(x, 0) = b0; and the scalar p = p(x, t)

represents the unknown pressure, while θ = θ(x, t) can be thought of as the unknown tem-
perature fluctuation, with initial value θ0 = θ(x, 0). Setting κ = 0, we obtain the non-diffusive 

MHD-Boussinesq system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− ν�u + (u · ∇)u + ∇p = (b · ∇)b + gθe3,

∂b

∂t
− η�b + (u · ∇)b = (b · ∇)u,

∂θ

∂t
+ (u · ∇)θ = 0,

∇ · u = 0 = ∇ · b,

(2)
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which we study extensively in this paper. We also provide a proof for the local existence and 

uniqueness of solutions to the fully inviscid MHD-Boussinesq system with ν = η = κ = 0, 
namely,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ (u · ∇)u + ∇p = (b · ∇)b + gθe3,

∂b

∂t
+ (u · ∇)b = (b · ∇)u,

∂θ

∂t
+ (u · ∇)θ = 0,

∇ · u = 0 = ∇ · b,

(3)

with the initial condition u0, b0, and θ0 in H 3. We note that the proof of this result differs sharply 

from the proof of local existence for solutions of (1), due to a lack of compactness. Therefore, 
we include the proof for the sake of completeness.

In recent years, from the perspective of mathematical fluid dynamics, much progress have 

been made in the study of solutions of the Boussinesq and MHD equations. For instance, in [4,5], 
Chae et al. obtained the local well-posedness of the fully inviscid 2D Boussinesq equations with 

smooth initial data. A major breakthrough came in [6] and [7], where the authors independently 

proved global well-posedness for the two-dimensional Boussinesq equations with the case ν > 0
and κ = 0 and the case ν = 0 and κ > 0. On the other hand, Wu et al. proved in [8–12] the global 
well-posedness of the MHD equations, for a variety of combinations of dissipation and diffusion 

in two dimensional space. Furthermore, a series of results concerning the global regularity of 
the 2D Boussinesq equations with anisotropic viscosity were obtained in [13,14,10,15]. For the 

2D Boussinesq equations, the requirements on the initial data were significantly weakened in 

[16–18]. Regarding the MHD-Bénard system, some progress has been made in 2D case under 
various contexts, see, e.g., [19,20]. However, there has little work in the 3D case. Specifically, 
outstanding open problems such as global regularity of classic solutions for the fully dissipative 

system and whether the solutions blow up in finite time for the fully inviscid system remain 

unresolved.
The main purpose of our paper is to obtain a Prodi–Serrin-type regularity criterion for the 3D 

MHD-Boussinesq system without thermal diffusion. Unlike the case of the 3D Navier–Stokes 
equations, Prodi–Serrin-type regularity criteria are not available for Euler equations in three-
dimensional space. Thus, it is difficult to obtain global regularity for u, b, and θ simultaneously 

since there is no thermal diffusivity in the equation for θ . However, we are able to handle this 
by proving the higher order regularity for u and b first, before bounding ‖∇θ‖L2

x
. We emphasize 

that this is the first work, to the best of our knowledge, that proves a Prodi–Serrin-type criterion 

in the case where the system is not fully dissipative.
We also note that absence of diffusion can cause serious difficulties, and can even result in 

certain equations being ill-posed. For example, consider the 3D Magneto-Geostrophic (MG) 
equations, which are a certain physically-relevant limiting case of (1) involving two diffusion 

parameters ν and κ . In [21,22], it is shown that the case when ν ≥ 0, κ > 0, the MG equations 
are well-posed, but when ν = κ = 0, the MG equations are ill-posed in Sobolev spaces in the 

sense of Hadamard.
The pioneering work of Serrin, Prodi, et al. (cf. [23–29]) for the 3D Navier–Stokes equations 

proved that, for any T > 0, if u ∈ Lr
t ([0, T ]; Ls

x) with 2/r + 3/s < 1 and 3 < s < ∞, then the 



1422 A. Larios, Y. Pei / J. Differential Equations 263 (2017) 1419–1450

solution for the 3D Navier–Stokes equations remains regular on the interval [0, T ]. Proof for the 

borderline case in various settings was obtained in [23–26]. Similar results concerning the 3D 

Navier–Stokes, Boussinesq and MHD equations were obtain in [30–42]. In particular, in [43,44], 
regularity criteria for MHD equations involving only two velocity components was proved but 
in a smaller Lebesgue space. However, there is no literature on the regularity criteria for the so-
lutions of systems (1) and (2). In this paper, we obtain a Prodi–Serrin-type regularity criterion 

involving only two components of the velocity and only two components of the magnetic field. 
Specifically, our criterion is less restrictive than the corresponding criterion for the MHD equa-
tions obtain in [43,44]. Since MHD is a special case of the system we examine, our results are 

more general in the sense of the functional spaces used, compared to those in [43,44]. A central 
message of the present work is that with optimal and delicate application of our method, as well 
as potential new techniques such as in [45–50], one might further improve the criterion on the 

global regularity for system (2).
Moreover, we prove the local-in-time existence and uniqueness of the solutions to the system 

(2) with H 3 initial datum. We obtain the necessary a priori estimates and construct the solution 

via Galerkin methods for both the full and the non-diffusive systems. In particular, we show that 
the existence time of solutions to the full system does not depend on κ , which enables us to prove 

that the solutions to the full system approaches that of the non-diffusive system as κ tends to 0
on their time interval of existence.

Regarding the fully inviscid system, we remark that the local well-posedness of either of the 

full system (1) or the non-diffusive system (2) is not automatically implied by that of the fully 

inviscid system (3), as observed in [51] for multi-dimensional Burgers equation

∂u

∂t
+ (u · ∇)u = ν�u,

in two and higher dimensions. One might expect to that adding more diffusion, namely in the 

form of a hyper-diffusion term −ν2�2u, might make the equation even easier to handle. How-
ever, the question well-posedness of the resulting equation, namely

∂u

∂t
+ (u · ∇)u = −ν2�2u + ν�u,

remains open due to the lack of maximum principle, as observed in [51]. Therefore, well-
posedness is not automatic when additional diffusion is added, and it is worth exploring the 

regularity criteria of the solution to the non-diffusive and inviscid systems independent of the 

results for the full system. As we show in Section 3 and in Appendix A, we require a different 
approach to construct solutions, due to the lack of compactness in the non-dissipative system. 
Note that the question of whether system (3) develops singularity in finite time still remains 
open.

The paper is organized as follows. In Section 2, we provide the preliminaries for our subse-
quent work including the notation that we use, and state our main theorems. In Section 3, we 

prove the existence of solutions to systems (1), by a slight modification of which the existence of 
solutions to system (2) can be obtained. In Section 4, we prove that solutions to the non-diffusive 

system (2) are unique, and the uniqueness of solutions to system (1) follows similarly. In Sec-
tion 5, we prove the regularity criterion for the solution to (2) using anisotropic estimates, that is, 
using different estimates for different components of the solution vectors or their gradients (cf. 
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key estimates in (14) through (20)). In Appendix A, for the sake of completeness, we obtain the 

local in time well-posedness of the fully inviscid system (3) by a different argument.

2. Preliminaries and summary of results

All through this paper we denote ∂j = ∂/∂xj , ∂jj = ∂2/∂x2
j , ∂t = ∂/∂t , ∂α = ∂ |α|/∂x

α1
1 · · ·x

αn
n , 

where α is a multi-index. We also denote the horizontal gradient ∇h = (∂1, ∂2) and horizontal 
Laplacian �h = ∂11 + ∂22. Also, we denote the usual Lebesgue and Sobolev spaces by L

p
x and 

H s
x ≡ W

s,2
x , respectively, with the subscript x (or t ) indicating that the underlying variable is 

spatial (resp. temporal). Let F be the set of all trigonometric polynomial over T3 and define the 

subset of divergence-free, zero-average trigonometric polynomials

V :=

⎧
⎪⎨
⎪⎩

φ ∈ F : ∇ · φ = 0, and
∫

T3

φ dx = 0

⎫
⎪⎬
⎪⎭

.

We use the standard convention of denoting by H and V the closures of V in L2
x and H 1

x , 
respectively, with inner products

(u, v) =

3∑

i=1

∫

T3

uivi dx and (∇u,∇v) =

3∑

i,j=1

∫

T3

∂jui∂jvi dx,

respectively, associated with the norms |u| = (u, u)1/2 and ‖u‖ = (∇u, ∇u)1/2. The latter is a 

norm due to the Poincaré inequality

‖φ‖L2
x
≤ C‖∇φ‖L2

x

holding for all φ ∈ V . We also have the following compact embeddings (see, e.g., [52,53])

V →֒ H →֒ V ′,

where V ′ denotes the dual space of V .
The following interpolation result is frequently used in this paper (see, e.g., [54] for a detailed 

proof). Assume 1 ≤ q, r ≤ ∞, and 0 < γ < 1. For v ∈ L
q
x(Tn), such that ∂αv ∈ Lr

x(T
n), for 

|α| = m, then

‖∂sv‖Lp ≤ C‖∂αv‖
γ

Lr ‖v‖
1−γ

Lq , where
1

p
−

s

n
=

(
1

r
−

m

n

)
γ +

1

q
(1 − γ ). (4)

The following materials are standard in the study of fluid dynamics, in particular for the 

Navier–Stokes equations, and we refer the reader to [52,53] for more details. We define the 

Stokes operator A � −Pσ � with domain D(A) � H 2
x ∩ V , where Pσ is the Leray–Helmholtz 

projection. Note that under periodic boundary conditions, we have A = −�Pσ . Moreover, the 

Stokes operator can be extended as a linear operator from V to V ′ as

〈Au,v〉 = (∇u,∇v) for all v ∈ V.
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It is well-known that A−1 : H →֒D(A) is a positive-definite, self-adjoint, and compact operator 
from H into itself, thus, A−1 possesses an orthonormal basis of positive eigenfunctions {wk}

∞
k=1

in H , corresponding to a sequence of non-increasing sequence of eigenvalues. Therefore, A has 
non-decreasing eigenvalues λk , i.e., 0 ≤ λ1 ≤ λ2, . . . since {wk}

∞
k=1 are also eigenfunctions of A. 

Furthermore, for any integer M > 0, we define HM � span{w1, w2, . . . , wM} and PM : H → HM

be the L2
x orthogonal projection onto HM . Next, for any u, v, w ∈ V , we introduce the convenient 

notation for the bilinear term

B(u, v) := Pσ ((u · ∇)v),

which can be extended to a continuous map B : V × V → V ′ such that

〈B(u, v),w〉 =

∫

T3

(u · ∇v) · w dx,

for smooth functions u, v, w ∈ V . Notice that θ is a scalar function so we cannot actually apply 

Pσ on it; hence, the notation PMθ should be understood as projection onto the space spanned by 

the first M eigenfunctions of −� only. Therefore, in order to avoid abuse of notation, we denote 

B(u, θ) := u ·∇θ for smooth functions, and extended it to a continuous map B : V ×H 1 → H−1

similarly to B(·, ·). We will use the following important properties of the map B . Detailed proof 
can be found in, e.g., [52,55].

Lemma 2.1. For the operator B , we have

〈B(u, v),w〉V ′ = −〈B(u,w), v〉V ′ , ∀ u ∈ V,v ∈ V,w ∈ V, (5a)

〈B(u, v), v〉V ′ = 0, ∀ u ∈ V,v ∈ V,w ∈ V, (5b)

| 〈B(u, v),w〉V ′ | ≤ C‖u‖
1/2
L2

x
‖∇u‖

1/2
L2

x
‖∇v‖L2

x
‖∇w‖L2

x
, ∀ u ∈ V,v ∈ V,w ∈ V, (5c)

| 〈B(u, v),w〉V ′ | ≤ C‖∇u‖L2
x
‖∇v‖L2

x
‖w‖

1/2
L2

x
‖∇w‖

1/2
L2

x
, ∀ u ∈ V,v ∈ V,w ∈ V, (5d)

| 〈B(u, v),w〉V ′ | ≤ C‖u‖L2
x
‖∇v‖

1/2
L2

x
‖Av‖

1/2
L2

x
‖∇w‖L2

x
, ∀ u ∈ H,v ∈ D(A),w ∈ V, (5e)

| 〈B(u, v),w〉V ′ | ≤ C‖∇u‖L2
x
‖∇v‖

1/2
L2

x
‖Av‖

1/2
L2

x
‖w‖L2

x
, ∀ u ∈ V,v ∈ D(A),w ∈ H, (5f)

| 〈B(u, v),w〉V ′ | ≤ C‖∇u‖
1/2
L2

x
‖Au‖

1/2
L2

x
‖∇v‖L2

x
‖w‖L2

x
, ∀ u ∈ D(A), v ∈ V,w ∈ H, (5g)

| 〈B(u, v),w〉V ′ | ≤ C‖u‖L2
x
‖Av‖L2

x
‖w‖

1/2
L2

x
‖∇w‖

1/2
L2

x
, ∀ u ∈ H,v ∈ D(A),w ∈ V, (5h)

| 〈B(u, v),w〉D(A)′ | ≤ C‖u‖
1/2
L2

x
‖∇u‖

1/2
L2

x
‖v‖L2

x
‖Aw‖L2

x
, ∀ u ∈ V,v ∈ H,w ∈D(A). (5i)

Moreover, essentially identical results hold for B(u, θ), mutatis mutandis.

The following lemma is a special case of the Troisi inequality from [56] and is useful for our 
estimates throughout the paper.
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Lemma 2.2. There exists a constant C > 0 such that for v ∈ C∞
0 (R3), we have

‖v‖L6 ≤ C

3∏

i=1

‖∂iv‖
1
3
L2 .

Regarding the pressure term, we recall the fact that, for any distribution f , the equality f =

∇p holds for some distribution p if and only if 〈f,w〉 = 0 for all w ∈ V . See [57] for details.
Next, we list three fundamental lemmas needed in order to prove Theorem 2.6. Their proofs 

can be found in [35] and [44], respectively.

Lemma 2.3. Assume u = (u1, u2, u3) ∈ H 2(T3) ∩ V . Then

2∑

j,k=1

∫

T3

uj∂juk�huk dx =
1

2

2∑

j,k=1

∫

T3

∂juk∂juk∂3u3 dx −

∫

T3

∂1u1∂2u2∂3u3 dx

+

∫

T3

∂1u2∂2u1∂3u3 dx.

Lemma 2.4. For u and b from the solution of (2) and i = 1, 2, 3, we have

∫

T3

uj∂juk∂iiuk dx −

∫

T3

bj∂jbk∂iiuk dx +

∫

T3

uj∂jbk∂iibk dx −

∫

T3

bj∂juk∂iibk dx

=

3∑

j,k=1

∫

T3

−∂iuj∂juk∂iuk dx +

∫

T3

∂ibj∂jbk∂iuk dx −

∫

T3

∂iuj∂jbk∂ibk dx +

∫

T3

∂ibj∂juk∂ibk dx.

The following Aubin–Lions Compactness Lemma is needed in order to construct solutions 
for (1).

Lemma 2.5. Let T > 0, p ∈ (1, ∞) and let {fn(t, ·)}
∞
n=1 be a bounded sequence of function in 

L
p
t ([0, T ]; Y) where Y is a Banach space. If {fn}

∞
n=1 is also bounded in L

p
t ([0, T ]; X), where X

is compactly imbedded in Y and {∂fn/∂t}∞n=1 is bounded in L
p
t ([0, T ]; Z) uniformly where Y is 

continuously imbedded in Z, then {fn}
∞
n=1 is relatively compact in L

p
t ([0, T ]; Y).

The following theorem is our main result. It provides a Prodi–Serrin-type regularity criterion 

for system (2).

Theorem 2.6. Let m ≥ 3 and let u0, b0 ∈ Hm
x ∩ V, θ0 ∈ H 3

x . Let T ∗ > 0 be the time of local 

existence given by Theorem 2.9. For any T > T ∗, the solution (u, b, θ) to system (2) remains 

smooth beyond T ∗, provided that u2, u3, b2, b3 ∈ Lr
t ([0, T ); Ls

x(T
3)) where

2

r
+

3

s
=

3

4
+

1

2s
, s > 10/3.
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Specifically, ‖u‖H 1
x

, ‖b‖H 1
x

, and ‖θ‖H 1
x

remain bounded up to T . Consequently, we have u, b, θ ∈

C∞(� × (0, T )).

The next three theorems provide local well-posedness for systems (1) through (3). First, for 
the fully inviscid system (3), we have

Theorem 2.7. For the initial data (u0, b0, θ0) ∈ H 3
x ∩ V , there exists a unique solution

(u, b, θ) ∈ L∞
t ((0, T̃ );H 3

x ∩ V )

to the fully inviscid MHD-Boussinesq system (3) for some T̃ > 0, depending on g and the initial 

data.

Regarding system (1), we have

Theorem 2.8. For m ≥ 3 and u0, b0 ∈ Hm
x ∩V , and θ0 ∈ Hm

x , there exists a solution (u, b, θ) with 

u, b ∈ Cw([0, T ); H) ∩ L2
t ((0, T ); V ) and θ ∈ Cw([0, T ); L2

x) ∩ L2
t ((0, T ); H 1

x ) for any T > 0
for (1). Also, the solution is unique if u, b ∈ L∞

t ([0, T ′); Hm
x ∩ V ) ∩ L2

t ((0, T ′); Hm+1
x ∩ V ) and 

θ ∈ L∞
t ([0, T ′); Hm

x ) ∩ L2
t ((0, T ′); Hm+1

x ) with some T ′ depending only on ν, η, and the initial 

datum.

For the non-diffusive MHD-Boussinesq system (2), which we mainly focus on, we have

Theorem 2.9. For m ≥ 3 and u0, b0 ∈ Hm
x ∩ V , θ0 ∈ Hm

x , there exists a unique solution 

(u, b, θ) to the non-diffusive MHD-Boussinesq system (2), where u, b ∈ L∞
t ([0, T ∗); Hm

x ∩ V ) ∩

L2
t ((0, T ∗); Hm+1

x ∩ V ) divergence free, and θ ∈ L∞
t ([0, T ∗); Hm

x ), where T ∗ depends on ν, η, 

and the initial datum.

3. Proof of the existence part of Theorem 2.8 and Theorem 2.9 regarding systems (1)(1)(1) and 

(2)(2)(2)

For Theorem 2.8, we use Galerkin approximation to obtain the solution for the full MHD-
Boussinesq system (1), while for the existence part of Theorem 2.9, the proof is similar with 

only minor modification so we omit the details.

Proof of existence in Theorem 2.8. Consider the following finite-dimensional ODE system, 
which we think of as an approximation to system (1) after applying the Leray projection Pσ .

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duM

dt
− νAuM + PMB(uM , uM) = PMB(bM , bM) + gPσ (θMe3),

dbM

dt
− ηAbM + PMB(uM , bM) = PMB(bM , uM),

dθM

dt
− κ�θM + PMB(uM , θM) = 0,

(6)

with initial datum PMu(·, 0) = uM(0), PMb(·, 0) = bM(0), and PMθ(·, 0) = θM(0). Notice that 
all terms but the time-derivatives of the above ODE systems are at most quadratic, and therefore 
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they are locally Lipschitz continuous. Thus, by the Picard–Lindelhoff Theorem, we know that 
there exists a solution up to some time TM > 0. Next we take justified inner-products with the 

above three equations by uM , bM , and θM , respectively, integrate by parts, and add the results to 

obtain

1

2

d

dt

(
‖uM‖2

L2
x
+ ‖bM‖2

L2
x
+ ‖θM‖2

L2
x

)
+ ν‖∇uM‖2

L2
x
+ η‖∇bM‖2

L2
x
+ κ‖∇θM‖2

L2
x

=

∫

T3

(bM · ∇)bMuM dx +

∫

T3

gθMuMe3 dx +

∫

T3

(bM · ∇)uMbM dx

= g

∫

T3

θMuMe3 dx,

where we used the divergence free condition, Lemma 2.1, and the orthogonality of Pσ and PM . 
By the Cauchy–Schwarz and Young’s inequalities, we obtain

d

dt

(
‖uM‖2

L2
x
+ ‖bM‖2

L2
x
+ ‖θM‖2

L2
x

)
+ 2ν‖∇uM‖2

L2
x
+ 2η‖∇bM‖2

L2
x
+ 2κ‖∇θM‖2

L2
x

≤ Cg

(
‖uM‖2

L2
x
+ ‖θM‖2

L2
x

)
. (7)

Thus, by the differential form of Grönwall’s inequality, uM and bM are uniformly bounded 

in L∞
t ([0, TM ); H), while θM is uniformly bounded in L∞

t ([0, TM); L2
x , independently of TM . 

Namely,

‖uM(t)‖2
L2

x
+ ‖bM(t)‖2

L2
x
+ ‖θM(t)‖2

L2
x
≤ Cg,T ‖uM(0)‖2

L2
x
+ ‖bM(0)‖2

L2
x
+ ‖θM(0)‖2

L2
x
,

for any 0 < t < TM . Thus, for each M , the solutions can be extended uniquely beyond TM to an 

interval [0, T ], where T > 0 is arbitrary. In particular, the interval of existence and uniqueness is 
independent of M . Using the embedding L∞

t →֒ L2
t , and extracting a subsequence if necessary 

(which we relabel as (uM , bM , θM)), we may invoke the Banach–Alaoglu Theorem to obtain 

u, b ∈ L2
t ([0, T ]; H), and θ ∈ L2

t ([0, T ]; L2
x), such that

uM ⇀ u and bM ⇀ b weakly in L2
t ([0, T ];H),

θM ⇀ θ weakly in L2
t ([0, T ];L2

x).

(u, b, θ) is our candidate solution. Next, integrating (7) over time from 0 to t < T , and using 

Grönwall’s inequality, we have that uM and bM are uniformly bounded in L2
t ([0, t); V ), while 

θM is uniformly bounded in L2
t ([0, T ); H 1

x ) for any T > 0. Next, we obtain bounds on duM/dt , 
dbM/dt , and dθM/dt in certain functional space uniformly with respect to M . Note that

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

duM

dt
= −νAuM − PMB(uM , uM) + PMB(bM , bM) + gPM(θMe3),

dbM

dt
= −ηAbM − PMB(uM , bM) + PMB(bM , uM),

dθM

dt
= −κ�θM −B((uM , θM).

(8)
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Note in the first equation that AuM is bounded in L2
t ([0, T ); V ′) due to the fact that uM is 

bounded in L2
t ([0, T ); V ). Also, we have gPM(θMe3) is bounded in L2

t ([0, T ); H). On the other 
hand, by Lemma 2.1, we have

‖PMB(uM , uM)‖V ′ ≤ C‖uM‖
1/2
L2

x
‖∇uM‖

3/2
L2

x
,

as well as

‖PMB(bM , bM)‖V ′ ≤ C‖bM‖
1/2
L2

x
‖∇bM‖

3/2
L2

x
.

Since the L2-norm of uM is uniformly bounded and the L2-norm of ∇uM is uniformly inte-
grable, we see that duM/dt is bounded in L

4/3
t ([0, T ); V ′). Similarly, from the second and 

third equations, we have that dbM/dt and dθM/dt are also bounded in L
4/3
t ([0, T ); V ′) and 

L
4/3
t ([0, T ); H−1

x ), respectively. Therefore, by Lemma 2.5 and the uniform bounds obtained 

above, there exists a subsequence (which we again relabel as (uM , bM , θM) if necessary) such 

that

uM → u and bM → b strongly in L2
t ([0, T ];H),

θM → θ strongly in L2
t ([0, T ];L2

x),

uM ⇀ u and bM → b weakly in L2
t ([0, T ];V ),

θM ⇀ θ weakly in L2
t ([0, T ];H 1

x ),

uM ⇀ u and bM → b weak-∗ in L∞
t ([0, T ];H),

θM ⇀ θ weak-∗ in L∞
t ([0, T ];L2

x),

for any T > 0. Thus, by taking inner products of (6) with test function ψ(t, x) ∈ C1
t ([0, T ]; C∞

x )

with ψ(T ) = 0, and using the standard arguments of strong/weak convergence for Navier–Stokes 
equations (see, e.g., [52,53]), we have that each of the linear and nonlinear terms in (6) converges 
to the appropriate limit in an appropriate weak sense. Namely, we obtain that (1) holds in the 

weak sense, where the pressure term p is recovered by the approach mentioned in Section 2
and we omit the details here. Finally, we take action of (1) with an arbitrary v ∈ V . Then, by 

integrating in time over [t0, t1] ⊂ [0, T ] and sending t1 → t0 one can prove by standard arguments 
(cf. [52,53]) that u, b and θ are in fact weakly continuous in time. Therefore, the initial condition 

is satisfied in the weak sense.
Next we show that the solution is in fact regular at least for short time, provided (u0, b0, θ0) ∈

Hm ∩ V . We start by multiplying (1) by Au, Ab, and �θ , respectively, integrate over T3, and 

add, to obtain

1

2

d

dt

(
‖∇u‖2

L2
x
+ ‖∇b‖2

L2
x
+ ‖∇θ‖2

L2
x

)
+ ν‖�u‖2

L2
x
+ η‖�b‖2

L2
x
+ κ‖�θ‖2

L2
x

= −

∫

T3

(u · ∇)u�udx +

∫

T3

(b · ∇)b�udx + g

∫

T3

θ�ue3 dx,
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−

∫

T3

(u · ∇)b�b dx +

∫

T3

(b · ∇)u�bdx −

∫

T3

(u · ∇)θ�θ dx

≤ C‖∇u‖
3/2
L2

x
‖�u‖

3/2
L2

x
+ C‖∇b‖

3/2
L2

x
‖�b‖

1/2
L2

x
‖�u‖L2

x
+ g‖∇u‖L2

x
‖∇θ‖L2

x

+ C‖∇u‖L2
x
‖∇b‖

1/2
L2

x
‖�b‖

3/2
L2

x
+ C‖∇b‖L2

x
‖∇u‖

1/2
L2

x
‖�u‖

1/2
L2

x
‖�b‖L2

x

+ C‖θ‖L∞
x

‖∇u‖L2
x
‖�θ‖L2

x

≤
ν

2
‖�u‖2

L2
x
+

η

2
‖�b‖2

L2
x
+

κ

2
‖�θ‖2

L2
x

+
C

ν3
‖∇u‖6

L2
x
+

C

νη
‖∇b‖6

L2
x
+ C‖∇θ‖2

L2
x
+ C‖∇u‖2

L2
x

+
C

η3
‖∇u‖4

L2
x
‖∇b‖2

L2
x
+

C

νη
‖∇b‖4

L2
x
‖∇u‖2

L2
x
+

C

κ
‖∇u‖2

L2
x
,

where we applied the Hölder’s inequality, Sobolev embedding, and Young’s inequality. By de-
noting

K(t) = ‖∇u(t)‖2
L2

x
+ ‖∇b(t)‖2

L2
x
+ ‖∇θ(t)‖2

L2
x
,

we have

dK

dt
≤ CK + CK3,

which implies that there exists a T ′ > 0 such that

K(t) ≤
CeCT ′/2K(0)√

1 − K2(0)(eCT ′
− 1)

=: K1(T
′), for all t ∈ [0, T ′]. (9)

After integrating from t = 0 to t = T ′ and the constant C depends on the initial datum, g, ν, η, 
and κ . This shows that (u, b, θ) ∈ L∞

t ((0, T ′); H 1 ∩V ) as M → ∞, provided T ′ < 1/K2(0)e2C .
In order to pass to the limit κ → 0+, we must show that the above existence time T ′ is 

independent of κ . We follow the vanishing viscosity technique for the Navier–Stokes equations, 
(cf. [52]) i.e., let τ = κt , and denote

Q̃(τ ) =
1

κ

(
‖∇u(

τ

κ
)‖L2

x
+ ‖∇b(

τ

κ
)‖L2

x
+ ‖∇θ(

τ

κ
)‖L2

x

)
.

The above H 1 estimates thus imply that

dQ̃

dτ
≤ C̃ + C̃Q̃2,

where C̃ depends only on g, ν, η, and is independent of κ . Thus, integrating from τ = 0 to τ = τ̃ , 
we obtain
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Q̃(̃τ ) ≤
Q̃(0)

1 − C̃τ̃ Q̃(0)
.

Thus, if

C̃τ̃ Q̃(0) ≤ δ < 1,

i.e.,

C̃(κt̃)
1

κ

(
‖∇u(0)‖L2

x
+ ‖∇b(0)‖L2

x
+ ‖∇θ(0)‖L2

x

)
≤ δ < 1,

it follows that Q̃(̃τ ) ≤ CδQ̃(0). Hence, we have proved that, if

T ′ <
C̃(

‖∇u(0)‖L2
x
+ ‖∇b(0)‖L2

x
+ ‖∇θ(0)‖L2

x

) , (10)

then the above H 1 estimates remain valid for any κ > 0.
On the other hand, we showed earlier that

ν

T ′∫

0

‖�u‖2
L2

x
dt + η

T ′∫

0

‖�b‖2
L2

x
dt + κ

T ′∫

0

‖�θ‖2
L2

x
dt

remains bounded as M → ∞. Thus, we have (u, b, θ) ∈ L2
t ((0, T ′); H 2 ∩ V ). In order to obtain 

the higher-order regularity in H 2 and H 3, we follow standard arguments (see, e.g., [1]) and 

apply the following argument successively. First, for a multi-index α of order |α| = 2, we apply 

the partial differential operator ∂α , to (1), and test the equations for u, b, and θ by ∂αu, ∂αb, and 

∂αθ , respectively, and obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

d

dt
‖∂αu‖2

L2
x
+ ν‖∇∂αu‖2

L2
x
=

∫

T3

∂α((b · ∇)b)∂αudx −

∫

T3

∂α((u · ∇)u)∂αudx

+ g

∫

T3

∂αθ∂αudx = I1 + I2 + I3,

1

2

d

dt
‖∂αb‖2

L2
x
+ η‖∇∂αb‖2

L2
x

=

∫

T3

∂α((b · ∇)u)∂αb dx −

∫

T3

∂α((u · ∇)b)∂αb dx = I4 + I5,

1

2

d

dt
‖∂αθ‖2

L2
x
+ κ‖∇∂αθ‖2

L2
x
= −

∫

T3

∂α((u · ∇)θ)∂αθ dx = I6.

In order to estimate I1, we use Lemma 2.1 and get

I1 =
∑

ζ≤α

(
α

ζ

)∫

T3

((∂ζ b · ∇)∂α−ζ b)∂αudx



A. Larios, Y. Pei / J. Differential Equations 263 (2017) 1419–1450 1431

≤ C‖∇b‖L2
x
‖∂αu‖

1/2
L2

x
‖∇∂αu‖

1/2
L2

x
‖∇∂αb‖L2

x
+ C‖∇b‖L2

x
‖∂αu‖

1/2
L2

x
‖∇∂αu‖

1/2
L2

x
‖∇∂αb‖L2

x

+ C‖∇b‖L2
x
‖∂αb‖

1/2
L2

x
‖∇∂αb‖

1/2
L2

x
‖∇∂αu‖L2

x

where we used Young’s inequality in the last step. Similarly, I2 is estimated as

I2 ≤
C

ν3
‖∂αu‖2

L2
x
+

C

ν
‖∂αu‖L2

x
+

ν

8
‖∇∂αu‖2

L2
x
.

By Cauchy–Schwarz inequality, we obtain,

I3 ≤
g

2
‖∂αu‖2

L2
x
+

g

2
‖∂αb‖2

L2
x
.

For the terms I4 and I5, we proceed similarly to the estimates of I1. Namely, we have

I4 + I5 ≤ C

(
C

νη
+

C

ν
+

C

η3
+

C

η
+

C

ν3

)(
‖∂αb‖2

L2
x
+ ‖∂αu‖2

L2
x

)

+

(
C

η
+

C

ν

)(
‖∂αu‖L2

x
+ ‖∂αb‖L2

x

)
+

ν

8
‖∇∂αu‖2

L2
x
+

η

8
‖∇∂αb‖2

L2
x
.

Finally, the term I6 is bounded as

I6 ≤

(
C

κ3
+

C

κ

)
‖∂αθ‖2

L2
x
+

C

κ
‖∂αθ‖L2

x
+

C

ν
‖∂αu‖2

L2
x

+
ν

8
‖∇∂αu‖2

L2
x
+

κ

2
‖∇∂αθ‖2

L2
x
.

Summing up the above estimates and denoting

Q̄ = ‖∂αu‖2
L2

x
+ ‖∂αb‖2

L2
x
+ ‖∂αθ‖2

L2
x
,

we arrive at

dQ̄

dt
≤ C + CQ̄, (11)

where C depends on g, ν, η, κ , and K1(T
′) defined in (9) (i.e., the bounds on the H 1 norms of 

u, b, and θ ). Hence, by Grönwall inequality, we obtain (u, b, θ) ∈ L∞
t ((0, T ′); H 2 ∩ V ). Also, 

we have

ν

T ′∫

0

‖∂αu‖2
L2

x
dt + η

T ′∫

0

‖∂αb‖2
L2

x
dt + κ

T ′∫

0

‖∂αθ‖2
L2

x
dt

remains finite for |α| = 2. Next, we apply ∂α with |α| = 3 to (1), and multiply the equations for 
u, b, and θ by ∂αu, ∂αb, and ∂αθ , respectively, and get
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

d

dt
‖∂αu‖2

L2
x
+ ν‖∇∂αu‖2

L2
x
=

∫

T3

∂α((b · ∇)b)∂αudx −

∫

T3

∂α((u · ∇)u)∂αudx

+ g

∫

T3

∂αθ∂αudx = J1 + J2 + J3,

1

2

d

dt
‖∂αb‖2

L2
x
+ η‖∇∂αb‖2

L2
x

=

∫

T3

∂α((b · ∇)u)∂αb dx −

∫

T3

∂α((u · ∇)b)∂αb dx = J4 + J5,

1

2

d

dt
‖∂αθ‖2

L2
x
+ κ‖∇∂αθ‖2

L2
x
= −

∫

T3

∂α((u · ∇)θ)∂αθ dx = J6.

In order to estimate J1, we apply Lemma 2.1 and obtain

J1 ≤
∑

0≤|ζ |≤|α|

(
α

ζ

)∫

T3

|∂ζ b||∇∂α−ζ b||∂αu|dx

≤ C‖∇b‖L2
x
‖∂αu‖

1/2
L2

x
‖∇∂αu‖

1/2
L2

x
‖∇∂αb‖L2

x

+ C
∑

|ζ |=1

‖∂ζ b‖
1/2
L2

x
‖∇∂ζ b‖

1/2
L2

x
‖∂αu‖L2

x
‖∇∂α−ζ b‖L2

x

+ C
∑

|ζ |=2

‖∂ζ b‖
3/2
L2

x
‖∂αb‖

1/2
L2

x
‖∇∂αu‖L2

x
+ C‖∂αb‖L2

x
‖∂αb‖

1/2
L2

x
‖∇∂αb‖

1/2
L2

x
‖∂αu‖L2

x

≤

(
C

νη
+

C

η

)
‖∂αu‖2

L2
x
+

(
C

ν
+

C

η

)
‖∂αb‖L2

x
+

ν

8
‖∇∂αu‖2

L2
x
+

η

8
‖∇∂αb‖2

L2
x
,

where we employed Young’s inequality in the last inequality. The estimates for J2 are similar, 
i.e., we have

J2 ≤
C

ν3
‖∂αu‖2

L2
x
+

C

ν
‖∂αu‖L2

x
+

ν

8
‖∇∂αu‖2

L2
x
.

Using Cauchy–Schwarz inequality, we obtain

J3 ≤
g

2
‖∂αu‖2

L2
x
+

g

2
‖∂αb‖2

L2
x
.

Regarding J4 and J5, the estimates are similar to that of J1. Namely, we have

J4 + J5 ≤ C

(
C

νη
+

C

ν
+

C

η3
+

C

η
+

C

ν3

)(
‖∂αb‖2

L2
x
+ ‖∂αu‖2

L2
x

)

+

(
C

η
+

C

ν

)(
‖∂αu‖L2

x
+ ‖∂αb‖L2

x

)
+

ν

8
‖∇∂αu‖2

L2
x
+

η

8
‖∇∂αb‖2

L2
x
.
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Similarly, the term J6 can be bounded as

J6 ≤

(
C

κ3
+

C

κ

)
‖∂αθ‖2

L2
x
+

C

κ
‖∂αθ‖L2

x
+

C

ν
‖∂αu‖2

L2
x

+
ν

8
‖∇∂αu‖2

L2
x
+

κ

2
‖∇∂αθ‖2

L2
x
.

Adding the above estimates and denoting

Q = ‖∂αu‖2
L2

x
+ ‖∂αb‖2

L2
x
+ ‖∂αθ‖2

L2
x
,

we have

dQ

dt
≤ C + CQ,

where C depends on g, ν, η, κ , and the bounds on the H 2 norms of u, b, and θ . Hence, us-
ing Grönwall’s inequality and combining all the above estimates, we finally obtain (u, b, θ) ∈

L∞
t ((0, T ′); H 3 ∩ V ). Furthermore, we have

ν

T ′∫

0

‖∇∂αu‖2
L2

x
dt + η

T ′∫

0

‖∇∂αb‖2
L2

x
dt + κ

T ′∫

0

‖∇∂αθ‖2
L2

x
dt

remains finite for |α| = 3, i.e., (u, b, θ) ∈ L2
t ((0, T ′); H 4 ∩ V ). Therefore, by slightly modifying 

the proof of the uniqueness of the non-diffusive system below, we obtain the uniqueness of the 

solution and Theorem 2.8 is thus proven. ✷

4. Proof of the uniqueness part of Theorem 2.9 regarding systems (2)(2)(2)

Proof of uniqueness in Theorem 2.9. In order to prove uniqueness, we use the fact that 
(u, b, θ) ∈ L∞([0, T ∗); Hm). Suppose that (u(1), b(1), θ (1)) and (u(2), b(2), θ (2)) are two solu-
tions to the non-diffusive MHD-Boussinesq system (2). By subtracting the two systems for the 

two solutions denoting ̃u = u(1) −u(2), p̃ = p(1) −p(2), ̃b = b(1) − b(2), and ̃θ = θ (1) − θ (2), and 

by using Hölder’s inequality, Gagliardo–Nirenberg–Sobolev inequality, and Young’s inequality, 
to obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ũ

∂t
− ν�ũ + (̃u · ∇)u(1) + (u(2) · ∇ )̃u + ∇p̃ = (̃b · ∇)b(1) + (b(2) · ∇ )̃b + gθ̃e3,

∂b̃

∂t
− η�b̃ + (̃u · ∇)b(1) + (u(2) · ∇ )̃b = (̃b · ∇)u(1) + (b(2) · ∇ )̃u,

∂θ̃

∂t
+ (̃u · ∇)θ (1) + (u(2) · ∇)θ̃ = 0,

with ∇ · ũ = 0 = ∇b̃. Multiply the above equations by ũ, b̃, and θ̃ , respectively, integrate over 
T

3, and add, we get
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1

2

d

dt

(
‖ũ‖2

L2
x
+ ‖b̃‖2

L2
x
+ ‖θ̃‖2

L2
x

)
+ ν‖∇ũ‖2

L2
x
+ η‖∇b̃‖2

L2
x

=

∫

T3

(̃u · ∇)u(1)ũ dx −

∫

T3

(̃b · ∇)b(1)ũ dx +

∫

T3

gθ̃e3ũ dx

+

∫

T3

(̃u · ∇)b(1)b̃ dx −

∫

T3

(̃b · ∇)u(1)b̃ dx +

∫

T3

(̃u · ∇)θ (1)θ̃ dx

≤ C‖∇u(1)‖L2
x
‖ũ‖

1/2
L2

x
‖∇ũ‖

3/2
L2

x
+ C‖∇b(1)‖L2

x
‖b̃‖

1/2
L2

x
‖∇b̃‖

1/2
L2

x
‖∇ũ‖L2

x
+ g‖ũ‖L2

x
‖θ̃‖L2

x

+ C‖∇b(1)‖L2
x
‖ũ‖

1/2
L2

x
‖∇ũ‖

1/2
L2

x
‖∇b̃‖L2

x
+ C‖∇u(1)‖L2

x
‖b̃‖

1/2
L2

x
‖∇b̃‖

3/2
L2

x

+ C‖ũ‖
1/2
L2

x
‖∇ũ‖

1/2
L2

x
‖∇∇θ (1)‖L2

x
‖θ̃‖L2

x

≤
C

ν3
‖ũ‖2

L2
x
+

ν

16
‖∇ũ‖2

L2
x
+

C

νη
‖b̃‖2

L2
x
+

ν

16
‖∇ũ‖2

L2
x
+

η

16
‖∇b̃‖2

L2
x

+
g

2
‖θ̃‖2

L2
x
+

g

2
‖ũ‖2

L2
x
+

C

νη
‖b̃‖2

L2
x
+

η

16
‖∇b̃‖2

L2
x
+

ν

16
‖∇ũ‖2

L2
x

+
C

η3
‖b̃‖2

L2
x
+

η

16
‖∇b̃‖2

L2
x
+

C

ν
‖ũ‖2

L2
x
+

ν

16
‖∇ũ‖2

L2
x
+ C‖θ̃‖2

L2
x
,

where we used the bound in (9) and (11) on [0, T ] for T < T ∗. Let us denote

X(t) = ‖ũ‖2
L2

x
+ ‖b̃‖2

L2
x
+ ‖θ̃‖2

L2
x
,

for 0 ≤ t ≤ T < T ∗. Then we have

dX(t)

dt
≤ CX(t),

Grönwall’s inequality then gives continuity in the L∞(0, T ; L2) norm. Integrating, we also ob-
tain continuity in the L2(0, T ; V ) norm. If the initial data is the same, then X(0) = 0, so we 

obtain uniqueness of the solutions. ✷

5. Proof of the regularity criterion for system (2)(2)(2)

We follow the ideas of [32,35,41,42] and the references therein. Namely, for the smooth so-
lution to system (2) we obtained in Theorem 2.9, we show that the vertical gradient is in fact 
bounded by the horizontal gradient, on its maximal time interval of existence [0, Tmax), via 

anisotropic estimates (14) through (16). Working by way of contradiction, we assume Tmax < ∞. 
Then, by anisotropic estimates (18) through (20), we prove that the boundedness of the gradi-
ent of the solution can be extended beyond time Tmax, provided the regularity criterion in the 

statement of the theorem holds on (0, T ) for T > Tmax.
The key point is that, even in the absence of diffusion in the equation for θ , our estimates 

and arguments for regularity are still valid. This suggests that the Prodi–Serrin-type regularity 

condition might also work for other partially inviscid systems.
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Proof of Theorem 2.6. We start by introducing the following notation. For the time interval 
0 ≤ t1 < t2 < ∞, we denote

(J (t2))
2 := sup

τ∈(t1,t2)

{
‖∇hu(τ)‖2

2 + ‖∇hb(τ)‖2
2

}
+

t2∫

t1

‖∇∇hu(τ)‖2
2 + ‖∇∇hb(τ)‖2

2 dτ

(recall that ∇h = (∂1, ∂2), and �h = ∂11 + ∂22). We also denote

(L(t2))
2 := sup

τ∈(t1,t2)

{
‖∂3u(τ)‖2

2 + ‖∂3b(τ)‖2
2

}
+

t2∫

t1

‖∇∂3u(τ)‖2
2 + ‖∇∂3b(τ)‖2

2 dτ.

Aiming at a proof by contradiction, we denote the maximum time of existence and uniqueness 
of smooth solutions by

Tmax := sup {T ∗ ≥ 0|(u, b, θ) is smooth on (0, T ∗)}.

Since u0, b0, and θ0 are in H 3
x , Tmax ∈ (0, ∞]. If Tmax = ∞, the proof is done. Thus, we suppose 

Tmax < ∞, and show that the solution can be extended beyond Tmax, which is a contradiction. 
First, we choose ǫ > 0 sufficiently small, say, ǫ < 1/(16Cmax), where Cmax is the maximum of 
all the constants in the following argument, depending on the space dimension, the constant g, the 

first eigenvalue λ1 of the operator −�, as well as the spatial-temporal L2-norm of the solution 

up to Tmax . Then, we fix T1 ∈ (0, Tmax) such that Tmax − T1 < ǫ, and

Tmax∫

T1

‖∇u(τ)‖2
L2

x
+ ‖∇b(τ)‖2

L2
x
+ ‖θ‖2

L2
x
dτ < ǫ, (12)

as well as

Tmax∫

T1

‖u2(τ )‖r
Ls

x
+ ‖u3(τ )‖r

Ls
x
+ ‖b2(τ )‖r

Ls
x
+ ‖b3(τ )‖r

Ls
x
dτ < ǫ. (13)

We see that the proof is complete if we show that ‖∇u(T2)‖
2
2 + ‖∇b(T2)‖

2
2 + ‖∇θ(T2)‖

2
2 ≤ C <

∞, for any T2 ∈ (T1, Tmax) and C in independent of the choice of T2. In fact, due to the continuity 

of integral, we can extend the regularity of u beyond Tmax and this becomes a contradiction to 

the definition of Tmax. Therefore, it is sufficient to prove that J (T2)
2 + L(T2)

2 ≤ C < ∞ in view 

of the equation for θ in (2) for some constant C independent of T2. We take the approach of [42], 
which first bounds L(T2) by J (T2), then closes the estimates by obtaining an uniform upper 
bound on the latter. The regularity of θ thus follows from the higher order regularity of u and b. 
To start, we multiply the equations for u and b in (2) by −∂2

33u and −∂2
33b respectively, integrate 

over T3 × (T1, T2), and sum to obtain
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1

2

(
‖∂3u(T2)‖

2
L2

x
+ ‖∂3b(T2)‖

2
L2

x

)
+

T2∫

T1

∫

T3

ν‖∇∂3u‖2
L2

x
+ η‖∇∂3b‖2

L2
x
dx dτ

=
1

2

(
‖∂3u(T1)‖

2
L2

x
+ ‖∂3b(T1)‖

2
L2

x

)

−

3∑

j,k=1

T2∫

T1

∫

T3

∂3uj∂juk∂3uk dx dτ +

3∑

j,k=1

T2∫

T1

∫

T3

∂3bj∂jbk∂3uk dx dτ

−

3∑

j,k=1

T2∫

T1

∫

T3

∂3uj∂jbk∂3bk dx dτ +

3∑

j,k=1

T2∫

T1

∫

T3

∂3bj∂juk∂3bk dx dτ

− g

3∑

k=1

T2∫

T1

∫

T3

θe3∂33uk dx dτ,

where we used the divergence-free condition and Lemma 2.4. Then we denote the last five in-
tegrals on the right side of the above equation by I , II, III, IV , and V , respectively. In order to 

estimate I we first rewrite it as

I = −

2∑

j,k=1

T2∫

T1

∫

T3

∂3uj∂juk∂3uk dx dτ −

2∑

j=1

T2∫

T1

∫

T3

∂3uj∂ju3∂3u3 dx dτ

−

2∑

k=1

T2∫

T1

∫

T3

∂3u3∂3uk∂3uk dx dτ −

T2∫

T1

∫

T3

∂3u3∂3u3∂3u3 dx dτ

=

2∑

j,k=1

T2∫

T1

∫

T3

uk

(
∂3uk∂

2
3juj + ∂3uj∂

2
3juk

)
dx dτ − Ia − Ib − Ic.

By Lemma 2.1, the first two integrals on the right side of I are bounded by

C

T2∫

T1

∫

T3

|u||∂3u||∇∂3u|dx dτ

≤ C

T2∫

T1

‖u‖L6
x
‖∂3u‖L3

x
‖∇h∂3u‖L2

x
dτ

≤ C

T2∫

T1

‖u‖L6
x
‖∂3u‖

1
2
L2

x
‖∂3u‖

1
2
L6

x
‖∇h∂3u‖L2

x
dτ
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≤ C‖∇hu‖
2
3
L∞

t L2
x
‖∂3u‖

1
3
L∞

t L2
x
‖∂3u‖

1
2

L2
t L

2
x

‖∇h∂3u‖
1
3

L2
t L

2
x

‖∂2
33u‖

1
6

L2
t L

2
x

‖∇h∂3u‖L2
t L

2
x

(14)

≤ CǫL
1
2 (T2)J

2(T2),

where the L∞
t norms are taken over the interval (T1, T2) and we used Lemma 2.2 in the second 

to the last inequality. Regarding Ia , Ib , and Ic, we first integrate by parts, then estimate as

Ia + Ib + Ic =

2∑

j=1

T2∫

T1

∫

T3

u3∂3uj∂
2
3ju3 dx dτ +

2∑

j=1

T2∫

T1

∫

T3

u3∂ju3∂
2
33uj dx dτ

+ 2
2∑

k=1

T2∫

T1

∫

T3

u3∂3uk∂33uk dx dτ + 2

T2∫

T1

∫

T3

u3∂3u3∂33u3 dx dτ

≤ C

T2∫

T1

|u3||∇hu||∇∂3u|dx dτ + C

T2∫

T1

|u3||∂3u||∇∂3u|dx dτ

≤ C

T2∫

T1

‖u3‖Ls
x
‖∇hu‖

1− 3
s

L2
x

‖∇∂3u‖
1+ 3

s

L2
x

dτ + C

T2∫

T1

‖u3‖Ls
x
‖∂3u‖

1− 3
s

L2
x

‖∇∂3u‖
1+ 3

s

L2
x

dτ

≤ C(T2 − T1)
1−( 2

r
+ 3

s
)‖u3‖Lr

t L
s
x
‖∇hu‖

1− 3
s

L∞
t L2

x
‖∇∂3u‖

1+ 3
s

L2
t L

2
x

+ C(T2 − T1)
1−( 2

r
+ 3

s
)‖u3‖Lr

t L
s
x
‖∂3u‖

1− 3
s

L∞
t L2

x
‖∇∂3u‖

1+ 3
s

L2
t L

2
x

(15)

≤ CǫJ 1− 3
s (T2)L

1+ 3
s (T2) + CǫL2(T2),

where we used the fact that ‖∇u‖
1/2
L2

t L
2
x

is small over the interval (T1, T2) and the constant C is 

independent of T2. Next, we estimate II. Proceeding similarly as the estimates for I , we first 
integrate by parts and rewrite II as

II =

3∑

j=1

2∑

k=1

T2∫

T1

∫

T3

bk∂3bj∂
2
3juk dx dτ +

3∑

j=1

T2∫

T1

∫

T3

b3∂3bj∂
2
3ju3 dx dτ

≤ C

T2∫

T1

∫

T3

|b||∂3b||∇h∂3u|dx dτ + C

T2∫

T1

∫

T3

|b3||∂3b||∇∂3u|dx dτ.

Therefore, by Lemma 2.1 and Lemma 2.2, we get

II ≤ C

T2∫

T1

‖b‖L6
x
‖∂3b‖L3

x
‖∇h∂3u‖L2

x
dτ
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+ C

T2∫

T1

∫

T3

(|u3| + |b3|)(|∂3u| + |∂3b|)(|∇∂3u| + |∇∂3b|) dx dτ

≤ C

T2∫

T1

‖b‖L6
x
‖∂3b‖

1
2
L2

x
‖∇∂3b‖

1
2
L2

x
‖∇h∂3u‖L2

x
dτ

+ C

T2∫

T1

(‖u3‖Ls
x
+ ‖b3‖Ls

x
)(‖∂3u‖L2

x
+ ‖∂3b‖L2

x
)1− 3

s (‖∇∂3u‖L2
x
+ ‖∇∂3b‖L2

x
)1+ 3

s dτ

≤ C‖∇hb‖
2
3
L∞

t L2
x
‖∂3b‖

1
3
L∞

t L2
x
‖∂3b‖

1
2

L2
t L

2
x

‖∇h∂3b‖
1
3

L2
t L

2
x

‖∂2
33b‖

1
6

L2
t L

2
x

‖∇h∂3u‖L2
t L

2
x

+ C(T2 − T1)
1−( 2

r
+ 3

s
)(‖u3‖Lr

t L
s
x
+ ‖b3‖Lr

t L
s
x
)(‖∂3u‖L∞

t L2
x
+ ‖∂3b‖L∞

t L2
x
)1− 3

s

× (‖∇∂3u‖L2
t L

2
x
+ ‖∇∂3b‖L2

t L
2
x
)1+ 3

s (16)

≤ CǫL
1
2 (T2)J

2(T2) + CǫJ 1− 3
s (T2)L

1+ 3
s (T2) + CǫL2(T2).

The terms III and IV are estimated analogously, i.e., we have

III + IV ≤ CǫL
1
2 (T2)J

2(T2) + CǫJ 1− 3
s (T2)L

1+ 3
s (T2) + CǫL2(T2),

where the constant C does not depend on T2. We estimate the term V as

V = −

3∑

k=1

T2∫

T1

∫

T3

θe3∂33uk dτ ≤ C‖θ‖L2
x,t

‖∂33u‖L2
x,t

≤ C‖θ0‖L2
x
‖∂33u‖L2

x,t
≤ CǫL(T2).

Collecting the above estimate for I through V and using Young’s inequality, we obtain

L2(T2) ≤ C + CǫL
1
2 (T2)J

2(T2) + CǫL1+ 3
s (T2)J

1− 3
s (T2) + CǫL2(T2) + CǫL(T2)

≤ C + CǫL2(T2) + CǫJ
8
3 (T2) + CǫJ 2(T2) + CǫL(T2).

Thus, with our choice of ǫ > 0 earlier, we get

L(T2) ≤ C + CJ(T2)
4
3 . (17)

Next, in order to bound J (T2), we multiply the equation for u and b in (2) by −�hu and −�hb, 
respectively, integrate over T3 × (T1, T2), sum up, integrate by parts and get

1

2

(
‖∇hu(T2)‖

2
L2

x
+ ‖∇hb(T2)‖

2
L2

x

)
+

T2∫

T1

∫

T3

‖∇∇hu‖2
L2

x
+ ‖∇∇hb‖2

L2
x

=
1

2

(
‖∇hu(T1)‖

2
L2

x
+ ‖∇hb(T1)‖

2
L2

x

)
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−

3∑

j,k=1

2∑

i=1

T2∫

T1

∫

T3

∂iuj∂juk∂iuk dx dτ +

3∑

j,k=1

2∑

i=1

T2∫

T1

∫

T3

∂ibj∂jbk∂iuk dx dτ

−

3∑

j,k=1

2∑

i=1

T2∫

T1

∫

T3

∂iuj∂jbk∂ibk dx dτ +

3∑

j,k=1

2∑

i=1

T2∫

T1

∫

T3

∂ibj∂juk∂ibk dx dτ

− g

3∑

k=1

2∑

i=1

T2∫

T1

∫

T3

θe3∂iiuk dx dτ,

where we used the divergence-free condition and Lemma 2.4. Denote by Ĩ through Ṽ the last 
five integrals on the right side of the above equation, respectively. Integrating by parts, we first 
rewrite Ĩ as

Ĩ = −

2∑

i,j,k=1

T2∫

T1

∫

T3

∂iuj∂juk∂iuk dx dτ −

2∑

i,j=1

T2∫

T1

∫

T3

∂iuj∂ju3∂iu3 dx dτ

−

2∑

i,k=1

T2∫

T1

∫

T3

∂iu3∂3uk∂iuk dx dτ −

2∑

i=1

T2∫

T1

∫

T3

∂iu3∂3u3∂iu3 dx dτ

=
1

2

2∑

j,k=1

T2∫

T1

∫

T3

u3∂juk∂
2
3juk dx dτ −

T2∫

T1

∫

T3

u3∂1u1∂
2
32u2 dx dτ −

T2∫

T1

∫

T3

u3∂2u2∂
2
31u1 dx dτ

+

T2∫

T1

∫

T3

u3∂1u2∂
2
32u1 dx dτ +

T2∫

T1

∫

T3

u3∂2u1∂
2
31u2 dx dτ

+

2∑

i,j=1

T2∫

T1

∫

T3

u3∂iuj∂
2
3ju3 dx dτ +

2∑

i,j=1

T2∫

T1

∫

T3

u3∂ju3∂
2
3iuj dx dτ

+

2∑

i,k=1

T2∫

T1

∫

T3

u3∂3uk∂
2
iiuk dx dτ +

2∑

i,k=1

T2∫

T1

∫

T3

u3∂iuk∂
2
33uk dx dτ

+ 2
2∑

i=1

T2∫

T1

∫

T3

u3∂iu3∂
2
3iu3 dx dτ,

where we applied Lemma 2.3 to the first term on the right side of the first equality above. Thus, 
by Hölder and Sobolev inequalities, we bound Ĩ as
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Ĩ ≤ C

T2∫

T1

∫

T3

|u3|(|∇hu| + |∂3u|)|∇∇hu|dx dτ

≤ C

T2∫

T1

‖u3‖Ls
x
‖∇hu‖

1− 3
s

L2
x

‖∇∇hu‖
1+ 3

s

L2
x

dτ

+ C

T2∫

T1

‖u3‖Ls
x
‖∂3u‖

1− 3
s

L2
x

‖∇h∂3u‖
2
s

Lx2‖∂
2
33u‖

1
s

Lx2‖∇∇hu‖L2
x
dτ

≤ C(T2 − T1)
1−( 2

r
+ 3

s
)‖u3‖Lr

t L
s
x
‖∇hu‖

1− 3
s

L∞
t L2

x
‖∇∇hu‖

1+ 3
s

L2
t L

2
x

+ C(T2 − T1)
1−( 2

r
+ 3

s
)‖u3‖Lr

t L
s
x
‖∂3u‖

s−2
4s

L2
t L

2
x

‖∂3u‖
3s−10

4s

L∞
t L2

x
× ‖∇∂3u‖

1
s

L2
t L

2
x

‖∇∇hu‖
1+ 2

s

L2
t L

2
x

(18)

≤ C + CǫJ 2(T2) + CCǫJ
4
3

3s−6
4s

+1+ 2
s

≤ C + CǫJ 2(T2),

where we used (17) and the fact that T2 − T1 < ǫ and 2/r + 3/s = 3/4 + 1/(2s) for s > 10/3. In 

order to estimate ĨI, we proceed a bit differently since Lemma 2.3 is not available for convective 

terms mixed with u and b. Instead, we integrate by parts and use the divergence-free condition 

∂1b1 = −∂2b2 − ∂3b3 and obtain

ĨI =

3∑

j,k=1

2∑

i=1

T2∫

T1

∫

T3

∂ibj∂jbk∂iuk dx dτ

=

2∑

i=1

T2∫

T1

∫

T3

∂jb1∂1b1∂iu1 dx dτ +

2∑

i=1

3∑

k=2

T2∫

T1

∫

T3

∂ib1∂1bk∂iuk dx dτ

+

2∑

i=1

3∑

k=1

3∑

j=2

T2∫

T1

∫

T3

∂ibj∂jbk∂iuk dx dτ

=

2∑

i=1

T2∫

T1

∫

T3

∂jb1(−b2∂2 − b3∂3)∂iu1 dx dτ

−

2∑

i=1

3∑

k=2

T2∫

T1

∫

T3

uk∂ib1∂
2
1ibk dx dτ −

2∑

i=1

3∑

k=2

T2∫

T1

∫

T3

uk∂1bk∂
2
iib1 dx dτ

−

2∑

i=1

3∑

k=1

3∑

j=2

T2∫

T1

∫

T3

bj∂jbk∂
2
iiuk dx dτ −

2∑

i=1

3∑

k=1

3∑

j=2

T2∫

T1

∫

T3

bj∂iuk∂
2
ijbk dx dτ.
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Then after integration by parts to the first term on the right side of the above equation, we bound 

ĨI as

ĨI ≤ C

T2∫

T1

∫

T3

(|b2| + |b3|)(|∇hu| + |∇hb| + |∂3u| + |∂3b|)(|∇∇hu| + |∇∇hb|) dx dτ

≤ C

T2∫

T1

(‖b2‖Ls
x
+ ‖b3‖Ls

x
)(‖∇hu‖L2

x
+ ‖∇hb‖L2

x
)1− 3

s (‖∇∇hu‖L2
x
+ ‖∇∇hb‖L2

x
)1+ 3

s dτ

+ C

T2∫

T1

(‖b2‖Ls
x
+ ‖b3‖Ls

x
)(‖∂3u‖L2

x
+ ‖∂3b‖L2

x
)1− 3

s (‖∇h∂3u‖Lx2 + ‖∇h∂3b‖Lx2)
2
s

× (‖∂2
33u‖Lx2 + ‖∂2

33b‖Lx2)
1
s (‖∇∇hu‖L2

x
+ ‖∇∇hb‖L2

x
) dτ

≤ C(T2 − T1)
1−( 2

r
+ 3

s
)(‖b2‖Lr

t L
s
x
+ ‖b3‖Lr

t L
s
x
)

× (‖∇hu‖L∞
t L2

x
+ ‖∇hb‖L∞

t L2
x
)1− 3

s (‖∇∇hu‖L2
t L

2
x
+ ‖∇∇hb‖L2

t L
2
x
)1+ 3

s

+ C(T2 − T1)
1−( 2

r
+ 3

s
)(‖b2‖Lr

t L
s
x
+ ‖b3‖Lr

t L
s
x
)

× (‖∂3u‖L2
t L

2
x
+ ‖∂3b‖L2

t L
2
x
)

s−2
4s (‖∂3u‖L∞

t L2
x
+ ‖∂3b‖L∞

t L2
x
)

3s−10
4s

× (‖∇∂3u‖L2
t L

2
x
+ ‖∇∂3b‖L2

t L
2
x
)

1
s (‖∇∇hu‖L2

t L
2
x
+ ‖∇∇hb‖L2

t L
2
x
)1+ 2

s (19)

≤ C + CǫJ 2(T2) + CǫJ
4
3

3s−6
4s

+1+ 2
s

≤ C + CǫJ 2(T2).

Regarding ĨII, we proceed similarly as in the estimates for ĨI. Namely, we have

ĨII =

3∑

j,k=1

2∑

i=1

T2∫

T1

∫

T3

∂iuj∂jbk∂ibk dx dτ

=

2∑

i=1

T2∫

T1

∫

T3

∂ju1∂1b1∂ib1 dx dτ +

2∑

i=1

3∑

k=2

T2∫

T1

∫

T3

∂iu1∂1bk∂ibk dx dτ

+

2∑

i=1

3∑

k=1

3∑

j=2

T2∫

T1

∫

T3

∂iuj∂jbk∂ibk dx dτ

=

2∑

i=1

T2∫

T1

∫

T3

∂ju1(−b2∂2 − b3∂3)∂ib1 dx dτ
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−

2∑

i=1

3∑

k=2

T2∫

T1

∫

T3

bk∂iu1∂
2
1ibk dx dτ −

2∑

i=1

3∑

k=2

T2∫

T1

∫

T3

bk∂1bk∂
2
iiu1 dx dτ

−

2∑

i=1

3∑

k=1

3∑

j=2

T2∫

T1

∫

T3

uj∂jbk∂
2
iibk dx dτ −

2∑

i=1

3∑

k=1

3∑

j=2

T2∫

T1

∫

T3

uj∂ibk∂
2
ijbk dx dτ

≤ C

T2∫

T1

∫

T3

(|u2| + |u3| + |b2| + |b3|)(|∇hu| + |∇hb| + |∂3u|

+ |∂3b|)(|∇∇hu| + |∇∇hb|) dx dτ. (20)

Whence, by Hölder’s inequality and Gagliardo–Nirenberg–Sobolev inequality the far right side 

of the above inequality is also bounded by

C + CǫJ 2(T2) + CǫJ
4
3

3s−6
4s

+1+ 2
s

hence by C + CǫJ 2(T2) in view of (17). The term ĨV is bounded similarly as ĨII by C +

CǫJ 2(T2), thus, we omit the details. Next we estimate Ṽ . Observing Theorem 2.8, we have

Ṽ = g

3∑

k=1

2∑

i=1

T2∫

T1

∫

T3

θe3∂iiuk dx dτ ≤ C‖θ‖L2
x,t

‖∇∇hu‖L2
x,t

≤ CǫJ (T2),

due to (12). Combining the above estimates for Ĩ through Ṽ , we get

1

2

(
‖∇hu(T2)‖

2
L2

x
+ ‖∇hb(T2)‖

2
L2

x

)
+

T2∫

T1

∫

T3

‖∇∇hu‖2
L2

x
+ ‖∇∇hb‖2

L2
x
dx dτ

≤
1

2

(
‖∇hu(T1)‖

2
L2

x
+ ‖∇hb(T1)‖

2
L2

x

)
+ C + CǫJ (T2) + CǫJ 2(T2),

where the constant C is independent of T2. Therefore, we get

1

2
J 2(T2) = sup

τ∈(t1,t2)

{
‖∇hu(τ)‖2

2 + ‖∇hb(τ)‖2
2

}
+

t2∫

t1

‖∇∇hu(τ)‖2
2 + ‖∇∇hb(τ)‖2

2 dx dτ

≤
1

2

(
‖∇hu(T1)‖

2
L2

x
+ ‖∇hb(T1)‖

2
L2

x

)
+ CǫJ (T2) + CǫJ 2(T2) + C,

where we applied the ǫ-Young inequality. Hence, by choosing ǫ < 1/4C we obtain
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1

4
sup

τ∈(t1,t2)

{
‖∇hu(τ)‖2

2 + ‖∇hb(τ)‖2
2

}
+

t2∫

t1

‖∇∇hu(τ)‖2
2 + ‖∇∇hb(τ)‖2

2 dx dτ (21)

≤
1

2

(
‖∇hu(T1)‖

2
L2

x
+ ‖∇hb(T1)‖

2
L2

x

)
+ C. (22)

Finally, we have

‖∇hu(T2)‖
2
L2

x
+ ‖∇hb(T2)‖

2
L2

x
≤

1

2

(
‖∇hu(T1)‖

2
L2

x
+ ‖∇hb(T1)‖

2
L2

x

)
+ C,

for any T2 ∈ (T1, Tmax). Therefore we have

sup
T2∈(T1,Tmax)

‖∇hu(T2)‖
2
L2

x
≤ C < ∞,

and by (17) and (22), we obtain

sup
T2∈(T1,Tmax)

(
J 2(T2) + L2(T2)

)
≤ C < ∞,

which implies

u,b ∈ L∞
t ([0, T );H 1 ∩ V ) ∩ L2

t ([0, T );H 2 ∩ V ).

Thus, by our arguments in previous sections, u and b are smooth up to time T . In particular, u
and b are bounded in H 3 ∩ V . Whence, we multiply the equation for θ in (2) by −�θ , integrate 

by parts over T3 and obtain

d

dt
‖∇θ‖2

L2
x
=

3∑

i,j=1

∫

T3

uj∂j θ∂iiθ dx ≤ C

∫

T3

|∇u||∇θ |2 dx

≤ C‖∇u‖L∞
x

‖∇θ‖2
L2

x
≤ C‖u‖H 3

x
‖∇θ‖2

L2
x
,

where we used ∇ · u = 0 and the Sobolev embedding H 3 →֒ L∞. Integrating in time from T1 to 

T2 and by the fact that u is bounded in H 3 independent of T2, we have θ ∈ L∞
t ([0, T ); H 1 ∩ V )

due to Grönwall’s inequality. The proof of Theorem 2.6 is thus complete. ✷

Appendix A. Results regarding the fully inviscid system (3)(3)(3)

We provide a proof following a similar argument to the one given for the existence and unique-
ness for the three-dimensional Euler equations in [58] and [1].

Proof of Theorem 2.7. The first part of the proof follows similarly to that of Theorem 2.9 and 

we use the same notation here, except that we choose the orthogonal projection PN from H to 

its subspaces Hσ generated by the functions

{e2πik·x | |k| = maxki ≤ N},
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for integer N > 0 and k ∈ Z
3. For uN , bN ∈ Hσ , and θN and pN in the corresponding projected 

space for scalar functions, respectively, we consider solutions of the following ODE system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

duN

dt
+ PNB(uN , uN ) + ∇pN = PNB(bN , bN ) + gθNe3,

dbN

dt
+ PNB(uN , bN ) = PNB(bN , uN ),

dθN

dt
+ PNB(uN , θN ) = 0,

where we slightly abuse the notation by using B and B to denote the same type of nonlinear 
terms as were introduced in Section 2. We show that the limit of the sequence of solutions ex-
ists and solves of original system (3). First, we observe that the above ODE system has solution 

for any time T > 0 since all terms but the time derivatives are at least locally Lipschitz con-
tinuous. In particular, by similar arguments as in Section 3, the solution remains bounded in 

L∞
t ((0, ̃T ); H) ∩ L∞

t ((0, ̃T ); Hm ∩ V ) for some T̃ depending on the H 3-norm of the initial 
data. Next, we show that (uN , bN , θN ) is a Cauchy sequence in L2. For N ′ > N , by subtracting 

the corresponding equations for (uN , bN , θN ) and (uN ′
, bN ′

, θN ′
), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
(uN − uN ′

) = −PNB(uN , uN ) + PN ′B(uN ′

, uN ′

) + PNB(bN , bN )

− PN ′B(bN ′

, bN ′

) − ∇(pN − pN ′

) + g(θN − θN ′

)e3,

d

dt
(bN − bN ′

) = −PNB(uN , bN ) + PN ′B(uN ′

, bN ′

) + PNB(bN , uN ) − PN ′B(bN ′

, uN ′

),

d

dt
(θN − θN ′

) = −PNB(uN , θN ) + PN ′B(uN ′

, θN ′

).

Next, we take the inner product of the above equations with (uN − uN ′
), (bN − bN ′

), and (θN −

θN ′
). Adding all three equations, and using (5a) and (5b) from Lemma 2.1, we obtain

1

2

d

dt

(
‖uN − uN ′

‖2
L2

x
+ ‖bN − bN ′

‖2
L2

x
+ ‖θN − θN ′

‖2
L2

x

)

= g((uN − uN ′

)e3)(θ
N − θN ′

) − (PNB(uN , uN ), uN ′

) − (PN ′B(uN ′

, uN ′

), uN )

− (PNB(bN , bN ), uN ′

) − (PN ′B(bN ′

, bN ′

), uN ) + (PNB(uN , bN ), bN ′

)

+ (PN ′B(uN ′

, bN ′

), bN ) − (PNB(bN , uN ), bN ′

) − (PN ′B(bN ′

, uN ′

), bN )

+ (PNB(uN , θN ), θN ′

) − (PN ′B(uN ′

, θN ′

), θN )

= g((uN − uN ′

)e3)(θ
N − θN ′

) + ((1 − PN )B(uN , uN ), uN ′

) + (B(uN − uN ′

, uN ′

− uN ), uN )

+ ((1 − PN )B(bN , bN ), uN ′

) + (B(bN − bN ′

, uN ′

− uN ), uN )

+ ((1 − PN )B(bN , uN ), bN ′

) + (B(bN − bN ′

, bN ′

− bN ), uN )

− ((1 − PN )B(uN , bN ), uN ′

) + (B(uN − uN ′

, bN ′

− bN ), bN )
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− ((1 − PN )B(uN , θN ), θN ′

) + (B(uN − uN ′

, θN ′

− θN ), θN )

= S +

10∑

i=1

Si,

where we integrated by parts and used the divergence free condition ∇ ·uN = ∇ ·uN ′
= ∇ ·bN =

∇ · bN ′
= 0. Then we estimate S and the two types of terms Si , i = 1, . . . , 10 separately. After 

integration by parts, we first have

S +
∑

i even

Si ≤ g‖uN − uN ′

‖L2
x
‖θN − θN ′

‖L2
x
+ ‖∇uN‖L∞

x
‖uN − uN ′

‖2
L2

x

+ 2‖∇bN‖L∞
x

‖uN − uN ′

‖L2
x
‖bN − bN ′

‖L2
x
+ ‖∇uN‖L∞

x
‖bN − bN ′

‖2
L2

x

+ ‖∇θN‖L∞
x

‖uN − uN ′

‖L2
x
‖θN − θN ′

‖L2
x

≤ C
(
‖uN − uN ′

‖2
L2

x
+ ‖bN − bN ′

‖2
L2

x
+ ‖θN − θN ′

‖2
L2

x

)
,

where we used Hölder’s inequality and the Sobolev embedding H 3 →֒ L∞. Here the constant C
depends only on the H 3 norm of u0, b0, and θ0. Regarding the remaining terms, we denote by 

f̂ , the Fourier transform of f ∈ L2(T3)

f̂ (k) =
1

(2π)3/2

∫

T3

e−ik·xf (x)dx,

and obtain

∑

i odd

Si ≤ ‖(uN · ∇)uN‖L2
x
‖(1 − PN )uN ′

‖L2
x
+ ‖(bN · ∇)bN‖L2

x
‖(1 − PN )uN ′

‖L2
x

+ ‖(bN · ∇)uN‖L2
x
‖(1 − PN )bN ′

‖L2
x
+ ‖(uN · ∇)bN‖L2

x
‖(1 − PN )bN ′

‖L2
x

+ ‖(uN · ∇)θN‖L2
x
‖(1 − PN )θN ′

‖L2
x

≤ C‖∇uN‖L∞
x

‖uN‖L2
x

⎛
⎝ ∑

|k|>N

|ûN ′

(k)|2(1 + |k|2)3 1

(1 + N2)
3

⎞
⎠

1/2

+ C‖∇bN‖L∞
x

‖bN‖L2
x

⎛
⎝ ∑

|k|>N

|ûN ′

(k)|2(1 + |k|2)3 1

(1 + N2)
3

⎞
⎠

1/2

+ C‖∇uN‖L∞
x

‖bN‖L2
x

⎛
⎝ ∑

|k|>N

|b̂N ′

(k)|2(1 + |k|2)3 1

(1 + N2)
3

⎞
⎠

1/2

+ C‖∇bN‖L∞
x

‖uN‖L2
x

⎛
⎝ ∑

|k|>N

|b̂N ′

(k)|2(1 + |k|2)3 1

(1 + N2)
3

⎞
⎠

1/2
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+ C‖∇θN‖L∞
x

‖uN‖L2
x

⎛
⎝ ∑

|k|>N

|θ̂N ′

(k)|2(1 + |k|2)3 1

(1 + N2)
3

⎞
⎠

1/2

≤
C

N3
,

where C depends on the initial datum, and we used the fact that

‖f ‖H 3
x

=
∑

k∈Z3

|f̂ (k)|2(1 + |k|2)3.

Summing up the above estimates we have

d

dt

(
‖uN − uN ′

‖2
L2

x
+ ‖bN − bN ′

‖2
L2

x
+ ‖θN − θN ′

‖2
L2

x

)

≤ C
(
‖uN − uN ′

‖2
L2

x
+ ‖bN − bN ′

‖2
L2

x
+ ‖θN − θN ′

‖2
L2

x

)
+

C

N3
,

which by Grönwall’s inequality implies

‖uN − uN ′

‖2
L2

x
+ ‖bN − bN ′

‖2
L2

x
+ ‖θN − θN ′

‖2
L2

x
≤

C

N3
.

Sending N → ∞, we obtain the desired Cauchy sequence. Namely, (uN , bN , θN ) → (u, b, θ)

with u, b ∈ H and θ ∈ L2
x . Due to the above convergence and the fact that uN , bN ∈ H 3

x ∩ V

and θ ∈ H 3
x , we see that u and b are also bounded in H 3

x ∩ V while θ is bounded in H 3
x . Thus, 

the existence part of the theorem is proved by easily verifying that (u, b, θ) satisfies system (3)
with some pressure p as discussed below. In fact, for a test function φ(x) ∈ V and 0 < t < T̃ , 
(uN , bN , θN ) satisfies
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uN (·, t), φ) = (uN ((·,0),φ) +

t∫

0

(PN ((uN · ∇)φ,uN ) dτ −

t∫

0

(PN ((bN · ∇)φ), bN ) dτ

+ g

t∫

0

(θNe3, φ) dτ,

(bN ((·, t), φ) = (bN ((·,0),φ) +

t∫

0

(PN ((uN · ∇)φ), bN ) dτ −

t∫

0

(PN ((bN · ∇)φ),uN ) dτ,

(θN ((·, t), φ) = (θN ((·,0),φ) +

t∫

0

(B(uN , φ), θN ).

Sending N → ∞ and extracting a subsequence if necessary, we have that the integrals of non-
linear terms converge weakly to the corresponding integrals of nonlinear terms in (3). Also, we 

see that the nonlinear terms are weakly continuous in time. Whence by differentiating the first 
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equation in time, we conclude that the limit indeed satisfies the equations for u in (3) in the weak 

sense, i.e.,

d

dt
(u((·, t), φ) = −((u · ∇)u,φ) + ((b · ∇)b,φ) + (gθe3, φ),

which in turn implies that there exists some p ∈ C([0, ̃T ]; H 1), such that

du

dt
+ (u · ∇)u + ∇p = (b · ∇)b + gθe3.

Regarding uniqueness, suppose there are two solutions (u(1), b(1), θ (1)) and (u(2), b(2), θ (2))

with the same initial data (u0, b0, θ0) for (3). Subtracting the corresponding equations for the two 

solutions and denoting ũ, b̃, and θ̃ for u(1) − u(2), b(1) − b(2), and θ (1) − θ (2), respectively, we 

obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ũ

∂t
+ (̃u · ∇)u(1) + (u(2) · ∇ )̃u + ∇p̃ = (̃b · ∇)b(1) + (b(2) · ∇ )̃b + gθ̃e3,

∂b̃

∂t
+ (̃u · ∇)b(1) + (u(2) · ∇ )̃b = (̃b · ∇)u(1) + (b(2) · ∇ )̃u,

∂θ̃

∂t
+ (̃u · ∇)θ (1) + (u(2) · ∇)θ̃ = 0,

with ∇ · ũ = 0 = ∇b̃ and ̃u(0) = b̃(0) = θ̃ (0) = 0. Multiply the above equations by ̃u, ̃b, and θ̃ , 
respectively, integrate over T3, and add, we get

1

2

d

dt

(
‖ũ‖2

L2
x
+ ‖b̃‖2

L2
x
+ ‖θ̃‖2

L2
x

)

=

∫

T3

(̃u · ∇)u(1)ũ dx −

∫

T3

(̃b · ∇)b(1)ũ dx +

∫

T3

gθ̃e3ũ dx

+

∫

T3

(̃u · ∇)b(1)b̃ dx −

∫

T3

(̃b · ∇)u(1)b̃ dx +

∫

T3

(̃u · ∇)θ (1)θ̃ dx

≤ C‖u(1)‖L∞
x

‖ũ‖2
L2

x
+ C‖b(1)‖L∞

x
‖ũ‖L2

x
‖b̃‖L2

x
+ C‖u(1)‖L∞

x
‖ũ‖L2

x
‖b̃‖L2

x

+ C‖θ (1)‖L∞
x

‖ũ‖L2
x
‖θ̃‖L2

x
,

where we applied Hölder’s inequality and the Sobolev–Nirenberg inequality. Now due to the 

embedding H 3 →֒ L∞(T3), and Young’s inequality, we have

1

2

d

dt

(
‖ũ‖2

L2
x
+ ‖b̃‖2

L2
x
+ ‖θ̃‖2

L2
x

)
≤ C

(
‖ũ‖2

L2
x
+ ‖b̃‖2

L2
x
+ ‖θ̃‖2

L2
x

)
,

where C depends on g and H 3 norm of (u(1), b(1), θ (1)). Thus, by Grönwall’s inequality, 
(̃u(t), ̃b(t), ̃θ(t)) remains 0 for 0 ≤ t ≤ T̄ . Uniqueness is proved. ✷
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