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a b s t r a c t

Motivated by network resource allocation needs, we study the problem of minimizing the dominant
eigenvalue of an essentially-nonnegativematrixwith respect to a trace-preserving or fixed-trace diagonal
perturbation, in the case where only a subset of the diagonal entries can be perturbed. Graph-theoretic
characterizations of the optimal subset design are obtained: in particular, the design is connected to the
structure of a reduced effective graph defined from the essentially-nonnegative matrix. Also, the change
in the optimum is studiedwhen additional diagonal entries are constrained to be undesignable, from both
an algebraic and graph-theoretic perspective. These results are developed in part using properties of the
Perron complement of nonnegative matrices, and the concept of line-sum symmetry. Some results apply
to general essentially-nonnegative matrices, while others are specialized for sub-classes (e.g., diagonally-
symmetrizable, or having a single node cut).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of allocating or redistributing limited local control

resources to shape a network’s dynamics is of interest in several

domains, including in the mitigation of network spread processes,

management of various compartmental systems, and control of

transients in large-scale infrastructures. In many of these applica-

tion domains, control resources can only be placed or recruited in a

limited subset of network locations. The limited control resources

thus must be designed to leverage the intrinsic interconnectivity

of the network, so as to meet performance criteria. Further, the

scale and complexity of the networks often dictate that simple

topological rubrics rather than formal methods are needed for

resource allocation. Also, in many of these application domains,

resource redesign as constraints change is often needed in lieu of

or in addition to ab initio design.

The purpose of this paper is to study a canonical optimization

problem which arises in the design of limited control resources to
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shape an associated network dynamics. Specifically, a network dy-
namics defined by an essentially-nonnegative (Metzler) matrix – a
matrix whose off-diagonal entries are nonnegative – is considered.
Placement of local control resources is abstracted as perturbing
diagonal entries of the Metzler matrix (altering local dynamical
characteristics). The goal of the design is to optimize this diagonal
perturbation, subject to the constraints that (1) only a subset of
entries may be perturbed (resource allocations are only permitted
at some network locations); and (2) the sum of the perturbed
entries is zero (resource re-distribution) or fixed (allocation on a
fixed resource budget). The aim of the design is to optimize the
dominant eigenvalue of the Metzler matrix, which captures or
approximates a dominant propagative dynamics in the network.
Succinctly, the problem addressed here is the design of trace-
preserving or fixed-trace diagonal perturbations of an essentially
nonnegative matrix to minimize a dominant eigenvalue, in the
case where only a subset of entries can be designed. We study
this fixed-trace subset design problem, with a focus on developing
graph-theoretic insights into the optimal solution and addressing
resource re-design when constraints are changed.

This study extends a research effort in the linear-algebra lit-
erature on optimizing the dominant eigenvalue of an essentially-
nonnegative matrix over trace-preserving or fixed-trace diagonal
perturbations (Johnson, Loewy, Olesky, & Van Den Driessche,
1996; Johnson, Stanford, Dale Olesky, & van den Driessche, 1994),
which is part of a broader effort on the fast eigen-decomposition of
thesematrices (see Johnson, Pitkin, and Stanford (2000), Schneider
and Zenios (1990), Zhang, Qi, Luo, and Xu (2013)). These works
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exploit the convexity of the dominant eigenvalue with respect to
the diagonal entries along with a similarity transformation to a
line-sum-symmetric form (where each row sum is equal to the cor-
responding column sum), to develop computationally-appealing
solutions and some structural insights into the optimiza-
tion (Eaves, Hoffman, Rothblum, & Schneider, 1985; Johnson et
al., 1994). This study also contributes to a thrust on resource-
constrained control of spread dynamics in the controls com-
munity (Enyioha, Preciado, & Pappas, 2013; Preciado, Zargham,
Enyioha, Jadbabaie, & Pappas, 2014; Ramirez-Llanos & Martinez,
2014; Ramírez-Llanos & Martínez, 2015; Robertson, Eisenberg, &
Tien, 2013;Wan, Roy, & Saberi, 2008),which has addressed parallel
optimization problems and generalizations to those considered in
the linear-algebra literature, using both structural and numerical
approaches (Preciado et al., 2014; Ramírez-Llanos & Martínez,
2015). Of particular relevance, algebraic characterizations of the
optimum and numerical optimization algorithms were developed
for the subset-design problem in Abad Torres, Roy, andWan (2017,
2015). The presented research also contributes to a growing effort
to characterize the input–output dynamics of sparsely actuated
and measured network dynamics (Abad Torres & Roy, 2015b,
c; Dhal & Roy, 2013; Liu, Slotine, & Barabási, 2013; Pasqualetti,
Zampieri, & Bullo, 2014; Rahmani, Ji, Mesbahi, & Egerstedt, 2009;
Roy, Xue, & Das, 2012; Xue, Wang, & Roy, 2014).

Relative to the literature, the main contribution of this study
is to (1) develop graph-theoretic insights into the optimal subset
design and its performance and (2) systematically address resource
re-design as constraints are changed. In particular, we show that
the pattern of resource distribution at the optimum is closely tied
to the network’s graph (the pattern of zero and nonzero entries
of the matrix) and the locations of control channels (or designable
resources) relative to the graph. Algorithms for resource re-design
are also obtained, and the re-allocation is shown to be specially
patterned for certain network structures. As a whole, the study
shows how resource placements can account for the undesignable
structure of a network in shaping response characteristics. We
note that some results apply to arbitrary essentially-nonnegative
matrices, while are specialized to particular sub-classes (e.g., di-
agonally symmetrizable, line-sum symmetric, or having a special
graph structure).

The article is organized as follows. The design problem is in-
troduced in Section 2. Preliminary algebraic analyses and design
algorithms are reviewed in Section 3. Graph-theoretic results on
the optimal design are described in Section 4, and the re-design
problem is addressed in Section 5. An example is presented (Sec-
tion 6), and brief conclusions are given (Section 7). Initial results in
this direction were given in Abad Torres and Roy (2015a).

2. Problem formulation and notation

An n × n real essentially-nonnegative (or Metzler) matrix A is
considered. The problem of interest is to find a fixed-trace diagonal
perturbation matrix D = diag(D1, . . . ,Dn) such that the dominant
eigenvalue of A+ D is minimized, subject to the further constraint
that some entries of D are restricted to be zero (say, Di = 0 for
i = m + 1, . . . , n, without loss of generality). This problem can be
formalized as follows:

argmin
D1,...,Dm

λmax(A + D)

s.t. Di = 0 ∀i = m + 1, . . . , n,

m
∑

i=1

Di = Γ ,

(1)

where Γ specifies the trace of the imposed perturbation, and λmax

refers to the dominant eigenvalue, i.e. the eigenvalue whose real

part is largest (most positive). Since A + D is essentially nonneg-

ative, this dominant eigenvalue is real, see Cohen (1981). Some

results are focused specifically on the trace-preserving case, where

Γ = 0.

The problem can be interpreted as a resource allocation task,

where finite resources Di are being placed at a subset of network

locations to suppress a linear propagative dynamics governed by

the state matrix A (with more negative Di corresponding to higher

resource levels). For such network applications, the zero–nonzero

pattern of the matrix A specifies the network’s topology. Thus, to

enable graph-theoretic analysis, we associate with the matrix A a

weighted digraph G = (V , E : W ), where the vertices contained in

V are labeled 1, . . . , n, an arc (directed edge) is drawn from vertex

i to vertex j (i ̸= j) if and only if Aj,i ̸= 0, and the arc is assigned a

weight Aj,i.

Some matrix and graph terminology/notation is used in our

development. The entries in D that are not constrained to be zero

(and corresponding graph vertices) are termed designable entries

(vertices); the constrained entries/vertices are called undesignable.

The diagonal matrix D that minimizes the dominant eigenvalue of

A+D is denoted as D̄. The dominant eigenvalue and corresponding

eigenvectors of A + D̄ are denoted as λ̄max, w̄max and v̄max. Fur-

ther, wmax,i and vmax,i refer to the ith entries of left- and right-

eigenvectors associated with the dominant eigenvalue. A couple

of standard graph-theoretic terms are also used: a vertex cut set

is a set of vertices whose removal results in a disconnected graph,

while an (edge) cut set is a set of edges whose removal results in a

disconnected graph.

3. Preliminaries: algebraic analysis and algorithms

In Abad Torres et al. (2017), an algebraic analysis was con-

ducted of the spectrum of A + D for the optimal fixed trace subset

perturbation design D = D̄, and used to develop an algorithm

for finding the optimal perturbation. These analyses, which are

preliminary to the results developed here, are reviewed (without

proof) in the following theorem and lemma.

Theorem1. Consider thematrix A+D, where D = diag(D1, . . . ,Dm,

0, . . . , 0) and A is a real essentially-nonnegative matrix (which may

or may not be irreducible). Consider any D = D̄ that minimizes the

dominant eigenvalue of A + D subject to
∑m

i=1Di = Γ . Assume

that A + D̄ has a real simple dominant eigenvalue. The left and right

dominant eigenvectors, w̄max and v̄max, of A + D̄ satisfy one of the

following conditions: (1) There exists µ̄ > 0 such that w̄max,iv̄max,i =
µ̄ ∀i = 1, 2, . . . .,m; (2) w̄max,iv̄max,i = 0 ∀i = 1, 2, . . . .,m.
Furthermore, if A is irreducible, then A+ D̄ has a real simple dominant

eigenvalue, and the optimizing D̄ and the dominant eigenvectors

always satisfy condition 1.

The algorithm for computing the optimal trace-preserving diag-

onal perturbation matrix requires some further notation. Specif-

ically, it is useful to partition the topology matrix A as A =
[

A11 A12
A21 A22

]

, where A11 is an m × m matrix. The result also draws

on the fact that there always exists a diagonal similarity transfor-
mation matrix P such that PAP−11⃗ = P−1A′P 1⃗, where 1⃗ is the all

ones vector of the appropriate dimension and A′ is the transpose

of A (see Eaves et al. (1985), Schneider and Zenios (1990) for

the computation of the row-sum-symmetrizing transformation P).

Here is the algorithm:

Lemma 1. Consider the matrix A + D, where D = diag(D1, . . . ,Dm,

0, . . . , 0), and A is an irreducible essentially-nonnegative matrix. The
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diagonal matrix D = D̄ that minimizes the dominant eigenvalue of
A + D subject to

∑m
i=1 Di = Γ can be found as follows:

1. Solve the following system of equations for P and λmax:

PAr (λmax)P
−11⃗ − P−1Ar (λmax)

′P 1⃗ =0

1⃗′PAr (λmax)P
−11⃗ + Γ − λmax1⃗

′1⃗ =0
(2)

where Ar (λmax) = A11 + A12(λmaxI − A22)
−1A21, and P =

diag(p1, . . . , pm)
2. Calculate D̄(1) = diag(λmax1⃗ − PAr (λmax)P

−11⃗) and D̄ =
[

D̄(1) 0
0 0

]

.

Remarks. (1) Eqs. (2) admit simple numerical solutions in gen-
eral, and can be reduced to a single polynomial equation for
diagonally symmetrizable A (Abad Torres et al., 2017). (2) Per
Theorem 1, the optimal design can be viewed as equalizing the
participation factors wmax,ivmax,i of the designable channels in the
dominantmodal dynamics (Pérez-Arriaga, Verghese, & Schweppe,
1982), or equivalently equalizing the sensitivity of the dominant
mode to further differential resource placements. (3) The proofs
of Theorem 1 and Lemma 1 draw on eigenvalue sensitivity anal-
ysis (Wilkinson, Wilkinson, & Wilkinson, 1965), Lagrange multi-
plier constructs, non-negative matrix analysis, and line-sum sym-
metrization, see Abad Torres et al. (2017). (4) Theorem 1 slightly
generalizes the result given in Abad Torres et al. (2017), in that the
irreducible case is explicitly addressed.

4. Graph-theoretic analysis

The subset design algorithm in Lemma 1 can be interpreted as
a full trace-preserving diagonal perturbation design for a special
‘‘reduced’’ matrix. This reduced matrix is the Perron complement
Ar (λ) = A11 + A12(λI − A22)

−1A21, evaluated at the particular
value λ that achieves the maximum (λ = λ̄max). The original
problem is then translated to the design of a trace-preserving diag-
onal perturbation, where all the diagonal entries can be designed,
to minimize the dominant eigenvalue of the reduced or effective
matrix Ar (λmax). Consequently, it is natural to associate with the
matrix Ar (λmax) a weighted digraph Ge, which we call the effective
graph. The effective graph is defined as Ge = (Ve, Ee : We),
where the vertices contained in Ve are the designable vertices, an
arc (directed edge) is drawn from vertex i to vertex j if and only
if Ar (λmax)j,i ̸= 0, and the arc is assigned a weight Ar (λmax)j,i.
The effective graphAr (λmax) summarizes interconnections not only
within the designable vertices, but also indirect influences through
the undesignable part of the graph.

Next, characterizations of the optimal subset design are given
in terms of the effective graph Ge and the original graph G. As a
preliminary step, the edge weights in the original graph G and the
effective graph Ge are related:

Theorem 2. The effective graph has a directed edge from i to j
(i = 1, . . . ,m, j = 1, . . . ,m) if and only if (1) G has an edge from
i to j, or (2) there is a directed path from i to j in G that passes only
through the undesignable vertices (except for i and j). Furthermore,
the weight of an edge (i, j) in Ge is at least the weight of an edge (i, j)
in G, i.e. Ar (λmax)j,i ≥ Aj,i.

Proof. The proof is by induction. First, the effective graph is
characterized when only one entry of D is undesignable. Then, the
effective graph with k+ 1 undesignable entries is characterized in
terms of the case with k designable entries.

The proof requires some notation. Let A(k)(λmax) be the n −
k × n − k effective matrix when k vertices are considered undes-
ignable, i.e. at the kth step in the induction. Further, the matrix

is partitioned as A(k)(λmax) =

[

A
(k)
11

A
(k)
12

A
(k)
21

A
(k)
22

]

where A
(k)
11 is a n − k −

1 × n − k − 1 matrix and A
(k)
22 is the scalar A

(k)
n−k,n−k. The effective

graph matrix associated with A(k)(λmax) is G
(k) = (V (k), E(k) : W (k)),

where V (k) contains the designable vertices. Further, A(0) = A and
G
(0) = G.
Basis:
WLOG, let the nth entry be undesignable. Then, the effective

graph matrix is A(1)(λmax) = A
(0)
11 + A

(0)
12 (λmax − A

(0)
22 )

−1A
(0)
21 , where

A
(0)
22 is the diagonal entry An,n. Additionally, we see that Q

(0)
a =

A
(0)
12 (λmax − A

(0)
22 )

−1A
(0)
21 is a nonnegative matrix, from the definition

of A and the fact that the inverse of λmax − A
(0)
22 is positive (see

properties of M-matrices (Fiedler, 2008)). In fact, Q
(0)
a,(i,j) ̸= 0 if and

only if there exists the directed path from j to i that passes through

the vertex n. If such a path exists, then we have A
(1)
i,j > A

(0)
i,j for

i, j ∈ {1, . . . ., n− 1}. Thus, G(k) has an edge from j to i, i.e. A
(1)
i,j > 0,

if and only if there is an edge from j to i in the graph G, or a path
from j to i that passes entirely through the undesignable vertex.

Induction:
Suppose that the undesignable subset has k entries and A

(k)
i,j >

A
(k−1)
i,j for i, j ∈ {1, . . . ., n − k} if and only if there is a path from

j to i that passes through the vertices in the undesignable subset
{n − k + 1, . . . , n}. Additionally, assume that the graph G

(k) has a

directed edge (j, i), i.e. A
(k)
i,j ̸= 0, if and only if G has a directed path

from j to i that passes entirely through vertices corresponding to
the undesignable subset {n− k+ 1, . . . ., n}, or it has an edge from
j to i.

Let us add onemore component to the undesignable subset, say
component n − k. The effective network matrix is A(k+1)(λmax) =

A
(k)
11 + A

(k)
12 (λmax − A

(k)
22 )

−1A
(k)
21 , where A

(k)
22 is the diagonal entry

A
(k)
n−k,n−k. It is clear that Q

(k+1)
a = A

(k)
12 (λmax −A

(k)
22 )

−1A
(k)
21 is a nonneg-

ativematrix. In fact, an entry i, j ofQ
(k+1)
a is nonzero, {Q

(k+1)
a }i,j ̸= 0,

if and only if there is a directed path from j to i that passes through
the component n − k in G

(k). This implies that either the path
j → n − k → i exists in G

(0) or there is a path from j to n − k that
passes through the vertices {n−k+1, . . . ., n}. If such a path exists,

then A
(k+1)
i,j > A

(k)
i,j for i, j ∈ {1, . . . ., n− k−1}. Also, it immediately

follows that G(k+1) has a directed edge (j, i), i.e. A
(k+1)
i,j ̸= 0, if and

only if G has a directed path from j to i that passes entirely through
vertices corresponding to the undesignable subset {n − k, . . . ., n},
or it has an edge from j to i. This proves the induction.

Consider applying the induction until n − m vertices are un-
designable, i.e. the designable vertices are 1, . . . ,m. In this case,
we have that Ar (λmax) = A(n−m) and Ge = G

(n−m). Thus, from the
induction, the theorem statement follows immediately.

Fig. 1 shows the original graph G and the effective graph Ge,
for a small example. The reduced graph is seen to encapsulate di-
rect links among the designable vertices and indirect connections
through the undesignable graph.

Theorem 2 provides a graph-theoretic interpretation for the
subset-design problem. This is valuable because operators of many
networks (e.g., critical infrastructures) design resource placements
based on simple graph-theoretic insights rather than formal op-
timizations. The graph-theoretic approach is appealing because it
can (1) provide simple-to-implement and intuitive rubrics for de-
sign and (2) allow robust solutions that work reasonably well even
ifmodels are incomplete/uncertain. The above theorem shows that
resource design is closely connected to a network’s graph even
when only some locations are permitted resources, however the
design should be done based on a modified effective graph.
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Fig. 1. Graph G (left), and effective graph Ge (right).

The following theorem describes a simpler computation of the
optimal diagonal trace preserving matrix for the special case that
the undesignable and designable vertices in G are separated by a
single-vertex-cut (see Chartrand (2006)). This case is reflective of
circumstances where one authority has the wherewithal to enact
resource changes in a network partition, while the remainder of
the network is undesignable. For this case, the line-sum trans-
formation matrix can be directly computed using only A11, thus
simplifying solution of Eq. (2). This analysis follows Johnson et
al. (1994), which addresses the full trace-preserving design in the
single-vertex-cut case.

Theorem 3. Suppose the digraph G associated with the essentially
nonnegative matrix A has a single-vertex cut-set. Without loss of
generality, let us label the cut-vertex as k, and label the vertices in one
partition formed by removal of this vertex by 1, . . . , k − 1 and in the
other by k + 1, . . . , n. We assume that the vertices in V1 = 1, . . . , k
are designable, while those in V2 = k + 1, . . . , n are not. Then the
optimal trace preserving diagonal perturbation D̄ can be computed as
follows:

1. Find a diagonal matrix P such that PA11P
−11⃗ = P−1A′

11P 1⃗.

2. Solve for λmax: 1⃗
′PAr (λmax)P

−11⃗ − λmax1⃗
′1⃗ = 0

3. Compute D̄(1) = diag(PAr (λmax)P
−11⃗ − λmax1⃗) and D̄ =

[

D̄(1) 0
0 0

]

.

Proof. According to Theorem 2, the effective graph Ge has iden-
tical structure to the induced subgraph of G on V1. Further,
Ar (λmax)(i,j) = A11(i,j), for i, j = 1, . . . , k, with the exception that
Ar (λmax)(k,k) > A11(k,k). Since the only entry in Ar (λmax) and A11

that is different is a diagonal one, the same matrix P transforms
Ar (λmax) and A11 to line-sum symmetric matrices. The remainder
of the proof follows directly from Lemma 1.

The simplification in Theorem3depends on the fact thatA11 and
Ar admit the same transformation to line-sum symmetry. This sim-
plification may also arise for other graph structures, for instance if
the undesignable part of the graph is symmetric with respect to
the designable part (i.e. A22 is symmetric and A12 = AT

21). Similar
simplified algorithms for finding the optimal diagonal perturbation
can be developed in these cases. Unfortunately, Theorem 3 does
not directly generalize to the multi-vertex-cut case, because the
modification to A11 that yields Ar is no longer diagonal. However,
the design obtained fromTheorem2 is simplified even for this case,
in the sense that the perturbation is sparse.

The optimal designs developed here are connected to graph-
theoretic studies of grounded-Laplacian matrices, see Fitch and
Leonard (2013), Pirani, Shahrivar, and Sundaram (2015) and Dor-
fler and Bullo (2013). These studies characterize performancemea-
sures of the network process (e.g., coherence and convergence
measures), and some of the papers consider selection of grounding

locations to shape the performance measures is also pursued.
Relative to this literature, themain contributions of thiswork are to
(1) address the optimal design of constrained resources at a subset
of network nodes, (2) show that the designs are fundamentally tied
to the Kron reduction, and (3) develop graph-theoretic analyses
for the broader class of essentially-nonnegative matrices which
correspond to directed graphs.

5. Redesign for changed subsets

We next study how the entries of the optimal diagonal trace-
preserving perturbation change when an originally designable
entry is constrained to a fixed value. This analysis is useful for
redesigning resources when new restrictions on resource allo-
cations come into play, or conversely are alleviated. The results
also permit comparison of optimal designs for different designable
subsets, and give insight into the design when the design variables
are constrained to be within a range (see e.g. Abad Torres et
al. (2015), Ramírez-Llanos and Martínez (2015)). The results are
developed as follows: first some spectral characterizations and
equivalences of the further-constrained design are obtained, then
limited-computation algorithms for redesign are presented, and
finally some insights into the redesigned solution are developed.

Throughout this development, we primarily compare the opti-
mal trace-preserving design for the original subset design prob-
lem, and for a modified problem where a single additional
entry has been set to 0. Formally, we consider the matrix A + D
where D = diag(D1, . . . ,Dm, 0, . . . , 0), and A is an irreducible
essentially-nonnegative matrix. The notation D = D̄ is used for
the trace-preserving diagonal matrix thatminimizes the dominant
eigenvalue of A + D, i.e. for the solution to the original problem

(1). Meanwhile, the notation D̂ is used for the trace-preserving
diagonalmatrixD thatminimizes the dominant eigenvalue ofA+D,
when additionally the qth entry of D (q ∈ 1, . . . ,m) has been

set to zero. The bar ¯( ) and hat ˆ( ) notations are also used to
distinguish other characteristics of the two optima, e.g. the opti-
mized dominant eigenvalue, corresponding eigenvectors, etc. The
two optima are referred to as the original and further-constrained
or redesigned solutions. In a couple of results, we consider the
case where multiple diagonal entries are set to zero in the further-
constrained solution; these cases are made explicit in the theorem
statements.

First, the dominant eigenvectors for the original and redesigned
optima are compared:

Lemma 2. The entries of the dominant left and right eigenvectors of

A + D̄ (the original optimum) A + D̂ (the redesigned optimum) are
related as follows:

• ŵmax,iv̂max,i = µ̂ > ŵmax,qv̂max,q for all i = 1, . . . , q − 1, q +
1, . . . ,m if D̄q > 0;

• ŵmax,iv̂max,i = µ̂ < ŵmax,qv̂max,q for all i = 1, . . . , q − 1, q +
1, . . . ,m if D̄q < 0;

where the eigenvectors are assumed scaled to unit length.

Proof. This lemma is proved using a sensitivity analysis of the
dominant eigenvalue together with the fact that the dominant
eigenvalue of an essentially-nonnegative matrix is a convex func-

tion of its diagonal entries (Cohen, 1981). Let D̂ − D̄ = ∆, where
∆ = diag(δ1, . . . , δm, 0, . . . , 0), be the difference between the
further-constrained and original optima. Notice that

∑m
i=1δi =

0. Suppose that the qth entry in the optimal solution D̄ satisfies
D̄q = δ > 0. Then we have that δq = −δ, since the qth

entry of D̂ is zero. Further, since the trace of ∆ is zero, it fol-
lows that δi, for i ̸= q, are functionally dependent on δ. The
sensitivity of the dominant eigenvalue with respect to δ, which
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impacts the diagonal entries of A + D̂, can be found using the
standard eigenvalue sensitivity formula, and then applying the

chain rule. Doing this, we find ∂λmax(A+ D̂)/∂δ = −ŵmax,qv̂max,q +
∑m

i=1,i̸=qŵmax,iv̂max,i∂δi(δ)/∂δ = −ŵmax,qv̂max,q + µ̂, where we

have used that ŵmax,iv̂max,i are identically µ̂ for i = 1, . . . , q−1, q+
1, . . . ,m according to Theorem 1, and have also used the fact that
the sum of δi, where i = 1, . . . ,m∀i ̸= q, is δ.

However, since λmax(A + D̂) is the optimal solution, it is known

that ∂λmax(A + D̂)/∂δ ≥ 0, and further ŵmax,qv̂max,q ̸= µ̂. We thus

have that D̂ minimizes λmax(A + D) after setting D̄q > 0 to zero, if
and only if ŵmax,iv̂max,i > ŵmax,qv̂max,q.

The second condition follows from an identical analysis.

The lemma can be interpreted as follows, from a network dy-
namics perspective. If the control resource allocation at a node is
decreased due to a constraint (moved from a negative value to 0)
and the system is re-optimized, the participation and sensitivity of
that node in the dominant modal dynamics increases compared to
the other designable nodes. That is, there is more to be gained by
replacing resources at that location, if it were still permitted, than
to place resources at other designable locations.

The remainder of the section is concerned with developing
algorithms for finding the further-constrained optimal solution,
and gaining insight into the change. In addition to the spectral
result, this analysis requires a classical lemma that expresses the
dominant eigenvalue of a nonnegative matrix as a minimization,
see Eaves et al. (1985) for the proof:

Lemma 3. Consider a nonnegative matrix Q in R
n×n let x and y

positive vectors inRn, and let g(y, x) = y′Qx be a real function defined
on H = {(x, y) : x, y ∈ R

n, x, y > 0, xiyi = µi∀i = 1, . . . , n}. The
following two conditions are equivalent: (1) The pair (ỹ, x̃)minimizes
the function g(y, x) over H. (2) The matrix diag(ỹ)Qdiag(x̃) is line-
sum symmetric.

It is clear that if we define µi = wmax,ivmax,i, where wmax

and vmax are the left- and right-eigenvectors associated with the
dominant eigenvalue of Q , the pair (ỹ, x̃) minimizing the function
g(y, x) over H are wmax and vmax.

Next, we show that, as an alternative to finding the redesigned

solution D̂ directly using Lemma 1, D̂ can be found as a further
perturbation of the known optimal solution when m entries are
designable (i.e., as a further perturbation of D̄). Specifically, the
following lemma shows that this further perturbation can be found
by solving a subset design problem on m − 1 entries where the
perturbation matrix has a fixed trace. The performance gap be-
tween the original and the additionally-constrained solutions is
also characterized.

Lemma 4. The further-constrained subset design problem can be
solved instead by solving the following optimization problem for
∆1, . . . , ∆q−1, ∆q+1, . . . , ∆m:

argmin
∆i∀i̸=q
i=1,...,m

λmax(A + D̄ − Γ eqe
′
q + ∆)

s.t. ∆i = 0 ∀i = q,m + 1,m + 2, . . . , n,

m
∑

i=1,i̸=q

∆i = Γ ,

(3)

where eq ∈ R
n is a 0− 1 indicator vector whose qth is 1 and Γ = D̄q.

The solution then is D̂ = D̄ + ∆ − Γ eqe
′
q.

The minimum dominant eigenvalues λ̄max and λ̂max achieved by
the designs without and with the additional constraint, respectively,
are related by λ̄max ≤ λ̂max ≤ λ̄max + Γ

(

µ̂ − µ
)

/ŵ′
maxv̂max, where

ŵmax and v̂max are the left and right eigenvectors associated with the

eigenvalue λ̂max, µ = ŵmax,qv̂max,q and µ̂ = ŵmax,iv̂max,i where i
indicates any other designable entry.

Proof. The equivalence follows immediately from the change
of variables ∆ = D − D̄ + Γ eqe

′
q, where we note that only

∆1, . . . , ∆q−1, ∆q+1, . . . , ∆m are nonzero.
To prove the bound on the dominant eigenvalue, we use

the new formulation together with properties of essentially-
nonnegativematrices and Lemma 3. To simplify the proof, without
loss of generality, we suppose that q = m. Additionally, we
define Z0 = A + D̄, and notice that the dominant eigenvalue of
Z0 is λ̄max. Also, we let Z1 = Z0 − Γ eme

′
m + ∆, where ∆ =

diag(∆1, . . . , ∆m−1, 0, 0, . . . , 0) and
∑m−1

i=1 ∆i = Γ . The dominant

eigenvalue of Z1 is λ̂max. Additionally, we let ŵmax, v̂max, w̄max

and v̄max be the left- and right-eigenvectors associated with the
dominant eigenvalues λ̂max and λ̄max, respectively.

It is immediate that λ̂max ≥ λ̄max, since the optimal solution
for the further-constrained problem is a feasible solution for the
original problem. To prove the second inequality, let H = {(x, y) :
x, y ∈ R

n, x, y > 0, xiyi = ŵmax,iv̂max,i∀i = 1, . . . , n}. Additionally,
ŵmax,iv̂max,i = µ̂ for i = 1, . . . ,m − 1, ŵmax,mv̂max,m = µ since
Z1 is the matrix that minimizes the dominant eigenvalue after
Dm is set to zero. Let us choose the pair (v0, s) ∈ H such that
v′
0 =

[

1⃗′
m v̄0

′
]

and s′ =
[

µ̂1⃗′
m−1 µ q⃗′

]

, where each entry of

the vector q⃗ is qi =
ŵmax,i+m v̂max,i+m

v̄0 i
. We note that v̄0 contains the

last n − m components of the right eigenvector of Z0. Now, we
write λ̂ as the minimization: λ̂maxŵ

′
maxv̂max = minx,y∈Hy

′Z1x =
minx,y∈Hy

′(Z0 − Γ eme
′
m + ∆)x = minx,y∈Hy

′Z0x − Γ µ + Γ µ̂.

Further, minx,y∈Hy
′Z0x ≤ s′Z0v0 = λ̄maxs

′v0 = λ̄maxŵ
′
maxv̂max.

Consequently, λ̄max ≤ λ̂max ≤ λ̄max + (Γ µ̂ − Γ µ)/ŵ′
maxv̂max.

The inequality in the above lemma shows that withdrawal of
control resources at one network location does not cause much
degradation in the performance of the optimal resource allocation,
if either few resources were allocated originally (Γ is small), or
the participation/sensitivity of the dominant mode to the resource
withdrawal is limited.

Lemma 4 is a starting point for comparing the optimal so-
lutions for the original and further-constrained problems. These
comparisons are of interest in control applications since they
show how design resources should be re-allocated, if control ca-
pabilities become unavailable (or, conversely, available) at certain
network locations. They also provide a means for understanding
design if resources at some network locations are subject to con-
straint (Abad Torres et al., 2015). Our first result in this direction
focuses on diagonally symmetrizable matrices, and shows that
reducing the optimal entries D̄i > 0 to zero, or any other fixed
value, will only increase the other entries Di in the new optimal
solution:

Theorem 4. Assume that A is an irreducible diagonal symmetrizable
matrix. Consider the index set I+ = {i : D̄i > 0}. Suppose that
the diagonal entries of D whose indices are in IC ⊂ I+ are also
constrained, i.e. Dj = 0 ∀j ∈ IC . Then the entries of the optimal

solution D̂ with the additional constraints satisfy D̂i ≥ D̄i for i ̸= j ∈
IC .

Proof. Without loss of generality suppose that IC = {k, k +
1, . . . ,m}, for k > 1 and A is a symmetric matrix. We prove this
theorem by induction.
Basis:

Suppose we set Dm = 0; noting that D̄m = Γ . Let λ̄max, v̄max,
λ̂max, and v̂max be the dominant eigenvalues and its respective right

eigenvector of A + D̄ and A + D̂, respectively. From Lemma 2, it is
clear that the optimal solution for the firstm−1 entries will satisfy
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v̂2
max,i > v̂2

max,m for i = 1, . . . ,m − 1. Further, λ̂max > λ̄max since

λ̄max is the optimal solution over the firstm entries.

Let Z0 = Ar (λ̄)+ D̄, and Z1 = Z0 −Γ eme
′
m +

[

∆(1)

0

]

. We want

to prove that the entries of the diagonal matrix ∆(1) are positive.
The Perron complements of the Z0 and Z1 are Z0,r (λ̄max) =

Z0,11 + (λ̄max − Z0,22)
−1Z0,12Z0,21, where Z0,22 = {Z0}m,m, and

Z1,r (λ̂max) = Z0,11 + ∆(1) + (λ̂max + Γ − Z0,22)
−1Z0,12Z0,21, re-

spectively. Noting that Z0,r , and Z1,r are also symmetric matrix

whose dominant eigenvector is a scaling of 1⃗, the all one vector
of appropriate dimension.

Let β0 = λ̄max − Z0,22 and β1 = λ̂max + Γ − Z0,22 =
λ̄max + δ + Γ − Z0,22 with δ > 0. Then, 0 < β0 < β1 and

0 < β−1
1 < β−1

0 . Additionally, the Perron complement of Z1 can

be written as Z1,r (λ̂max) = Z0,r (λ̄max) + ∆(1) − γ Z0,12Z0,21, where
γ > 0. The eigenvector equation of Z1,r can be written as follows:

Z1,r (λ̂max)1⃗ = Z0,r (λ̄max)1⃗ + ∆(1)1⃗ − γ Z0,12Z0,211⃗ where λ̂max1⃗ =
λ̄max1⃗+∆(1)1⃗−γ Z0,12Z0,211⃗. Therefore,∆

(1)1⃗ = δ1⃗+γ Z0,12Z0,211⃗ >

0 since Z0,12Z0,21 is a nonnegative matrix and δ = λ̂max − λ̄max.
Inductive Step:

Suppose we have set l entries of IC to zero. Let us also suppose
that v̂max,i > v̂max,j for j = m,m − 1, . . . ,m − l − 1 and i =
1, . . . ,m − l (optimal condition). Additionally, suppose that the
entries Di for i = k, k + 1, . . . ,m − l are at least 0. We would
like to prove that after setting another entry of D, say Dm−l, to zero,
we still have the appropriate eigenvector pattern ( Lemma 2) and

satisfy the condition on the entries of D. Let λ
(l)
max be the optimal

dominant eigenvalue after setting l entries of IC to zero and λ
(l+1)
max

the dominant eigenvalue after setting one more entry of IC to

zero. Since λ
(l)
max is the optimal dominant eigenvalue when one

can design m − l + 1 entries of D, it is clear that λ
(l+1)
max > λ

(l)
max.

Following similar analysis than the one used in the basis step, we
see that the firstm− l−1 entries of the diagonal perturbation have
increase. Consequently, we can set all the entries in IC to zero and
the designable entries not in IC will increase.

If A is a diagonally symmetrizable matrix, one can apply a diag-
onal similar transformation P such that Ã = PAP−1 is symmetric. It
follows that the optimal trace-preserving diagonal perturbation D̄
minimizes the dominant eigenvalue of both A+D and Ã+D. Hence,
the result also holds for the diagonally-symmetrizable case.

The following theorem studies the case when the qth entry is
set to zero, where the original optimal satisfies D̄q < 0. In this
case, the new optimal on m − 1 entries can increase or decrease
depending on the specifics of the graph topology. Specifically, the
change depends on how the vertex q is connected to other vertices
in the effective graph.

Theorem 5. Consider an irreducible diagonal symmetrizable matrix
A. Consider the index set I− = {i : D̄i < 0}. Suppose an entry
q ∈ IC , where IC ⊂ I−, is set to zero. Then the entries of the further-

constrained optimal solution D̂ satisfy:

• D̂i > D̄i for all i ∈ I− such that there is no directed path
i → q → k to a vertex k ∈ I− in the effective graph Ge.

• D̂i < D̄i for some i ∈ I− such that there is directed path
i → q → k to a vertex k ∈ I− in the effective graph Ge.

Proof. Without loss of generality suppose that A is symmetric and
m ∈ I− is set to zero, i.e. m = q. Let D̄m = Γ = −α for α > 0.

Let λ̄max, v̄max, λ̂max, and v̂max be the dominant eigenvalues and its

respective right eigenvector of A+ D̄ and A+ D̂, respectively. From
Lemma 4, it is clear that the optimal solution for the first m − 1
entries will satisfy v̂2

max,i < v̂2
max,m for i = 1, . . . ,m − 1. Further,

λ̂max > λ̄max since λ̄max is the optimal solution over the first m
entries.

Let Z0 = Ar (λ̄max) + D̄, and Z1 = Z0 − Γ eme
′
m +

[

∆(1)

0

]

. First,

we want to prove that the entries of the diagonal ∆
(1)
i are positive

if there is no directed path i → m → k.

The Perron complements of the Z0 and Z1 are Z0,r (λ̄max) =
Z0,11 + (λ̄max − Z0,22)

−1Z0,12Z0,21, where Z0,22 = {Z0}m,m, and

Z1,r (λ̂max) = Z0,11 + ∆(1) + (λ̂max + Γ − Z0,22)
−1Z0,12Z0,21,

respectively. Noting that Z0,r and Z1,r are also symmetric matrix

whose dominant eigenvector is a scaling of 1⃗, the all one vector of

appropriate dimension.
Let β0 = λ̄max − Z0,22 and β1 = λ̂max + Γ − Z0,22 = λ̄max +

δ + Γ − Z0,22 with δ > 0. Further, δ = ∂λmax(Z1)

∂α
=

α(v̂2max,m−µ̂)

v̂′
max v̂max

,

and δ − α = δ + Γ =
α(v̂2max,m−µ̂−v̂′

max v̂max)

v̂′
max v̂max

< 0 since the product

v̂2
max,m < v̂′

maxv̂max. Consequently, 0 < β1 < β0, or equivalently

0 < β−1
0 < β−1

1 .

The Perron complement of Z1 can be written as Z1,r (λ̂max) =
Z0,r (λ̄max) + ∆(1) + γ Z0,12Z0,21, where γ > 0. The eigenvector

equation of Z1,r can be written as Z1,r (λ̂max)1⃗ = Z0,r (λ̄max)1⃗ +
∆(1)1⃗+ γ Z0,12Z0,211⃗, where λ̂max1⃗ = λ̄max1⃗+ ∆(1)1⃗+ γ Z0,12Z0,211⃗.

Therefore,∆(1)1⃗ = δ1⃗−γ Z0,12Z0,211⃗.We note thatQ = Z0,12Z0,21 is

a nonnegative matrix. Further, the entries Qk,i and Qi,k are strictly

positive if and only if the path i → m → k and k → m → i

exist. Hence, ∆
(1)
i and ∆

(1)
k are positive if such paths does not exist.

If such paths exist then ∆
(1)
i and ∆

(1)
k may be positive, but since

the trace of ∆(1) is negative at least one of these entries should be

nonpositive.

The previous two theorems show an interesting dichotomy in

the re-distribution of resources in a dynamical network. If the

resource level at a node is fixed above its original level (i.e., Dq

is changed from a positive value to 0), then resource allocations

are reduced at all other designable locations in achieving the new

optimum. However, if the resource level is fixed below its original

level, then the resource allocations at individual designable loca-

tions may either increase or decrease.

Next, the original and further-constrained optima are com-

paredwhen the effective graph has a single-edge cut. Interestingly,

when an end of the single-edge-cut is the further-constrained

vertex, the change in the optimal solution has a particular spatial

pattern:

Theorem 6. Consider an irreducible essentially-nonnegative matrix

A, and suppose the effective graph Ge has a single-edge-cut, where

p and q are the vertices on the two ends of the cut. Further, as-

sume that the only arcs from/to vertex q in the effective graph orig-

inate/terminate at vertex p. Suppose the entry associated with vertex

q is further constrained to be zero. Let D̄q = Γ be the qth entry of the

optimal solution D̄. Then the entries of the further-constrained optimal

solution D̂ satisfy the following:

• D̂i ≥ D̄i for i ̸= q if Γ > 0

• D̂i ≥ D̄i for i ̸= p, q if Γ < 0.

Proof. Let λ̄max, v̄max, λ̂max, and v̂max be the dominant eigenval-

ues and its respective right eigenvector of A + D̄ and A + D̂,

respectively.

First, consider that Γ > 0. Let Z0 = PAr (λ̄max)P
−1 + D̄, i.e. the

matrix with the optimal dominant eigenvalue when there are m

designable entries. Without loss of generality consider the q = m

and p = m − 1. Few remarks about Z0: Z0 is line-sum symmetric
and the left- and right-eigenvector are 1⃗, or a scaling of this vector.

Let also Z0,r (λ̄max) = Z0,11 + (λ̄max − Z0,22)
−1Z0,12Z0,21, where

Z0,22 = {Z0}m,m. Z0,r is the Perron complement of Z0 and hence has
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the same dominant eigenvalue than Z0 and the eigenvectors of Z0,r
are them − 1 entries of the dominant eigenvector of Z0.

Let Z1 = Z0 − Γ eme
′
m +

[

∆(1)

0

]

, i.e. the new optimal for the

first m − 1 entries. The Perron complement of Z1 is Z1,r (λ̂max) =
Z0,11 + ∆(1) + (λ̂max + Γ − Z0,22)

−1Z0,12Z0,21. λ̂max = λ̄max + δ and
δ > 0. Let β0 = λ̄max − Z0,22 and β1 = λ̄max + δ + Γ − Z0,22. We

note that 0 < β0 < β1, or equivalently 0 < β−1
1 < β−1

0 .

We can re-write Z1,r (λ̂max) as Z1,r (λ̂max) = Z0,r (λ̄max) + ∆(1) −
γ Z0,12Z0,21, where γ > 0. Noting that the only entries of Z0,r (λ̄max)

that change to form Z1,r (λ̂max) are the diagonal ones. Consequently,
Z1,r is line-sum symmetric and its dominant right- and left-

eigenvalue is a scaling of 1⃗ (see Lemma 3 and Eaves et al. (1985)).
We have that Z1,r (λ̂max)1⃗ = Z0,r (λ̄max)1⃗ + ∆(1)1⃗ − γ Z0,12Z0,211⃗

and λ̂max1⃗ = λ̄max1⃗ + ∆(1)1⃗ − γ Z0,12Z0,211⃗. Therefore, ∆(1)1⃗ =
δ1⃗ + γ Z0,12Z0,211⃗ > 0.

Now suppose that Γ < 0. For simplicity let Γ = −α, where

α > 0. Then, Z1 = Z0+αeme
′
m+

[

∆(1)

0

]

. The Perron complements

of the Z0 and Z1 are Z0,r (λ̄max) = Z0,11 + (λ̄max − Z0,22)
−1Z0,12Z0,21,

where Z0,22 = {Z0}m,m, and Z1,r (λ̂max) = Z0,11 + ∆(1) + (λ̂max +
Γ − Z0,22)

−1Z0,12Z0,21, respectively. Noting that Z0,r , and Z1,r are
also line-sum symmetric matrices whose dominant eigenvector is
a scaling of 1⃗.

Let β0 = λ̄max − Z0,22 and β1 = λ̂max + Γ − Z0,22 = λ̄max + δ +

Γ − Z0,22 with δ > 0. Further, δ = ∂λmax(Z1)

∂α
=

α(ŵmax,m v̂max,m−µ̂)

ŵ′
max v̂max

,

and δ + Γ =
α(ŵmax,m v̂max,m−µ̂−ŵ′

max v̂max)

ŵ′
max v̂max

< 0 since the product

ŵmax,mv̂max,m < ŵ′
maxv̂max. Consequently, 0 < β1 < β0, or

equivalently 0 < β−1
0 < β−1

1 .

The Perron complement of Z1 can be written as Z1,r (λ̂max) =
Z0,r (λ̄)+∆(1)+γ Z0,12Z0,21, where γ > 0. The eigenvector equation

of Z1,r can be written as Z1,r (λ̂max)1⃗ = Z0,r (λ̄max)1⃗ + ∆(1)1⃗ +
γ Z0,12Z0,211⃗, where λ̂max1⃗ = λ̄max1⃗ + ∆(1)1⃗ + γ Z0,12Z0,211⃗. There-

fore,∆(1)1⃗ = δ1⃗−γ Z0,12Z0,211⃗. Since vertexm is only connected to

vertex m − 1, the entries ∆
(1)
i > 0 for i = 1, . . . ,m − 2. However,

the entry ∆
(1)
m−1 = −α − (m − 2)δ < 0 since the trace of ∆(1) is

negative.

6. Example

The effective-graph concept and re-design results are illus-
trated in an example, which is focused on optimal infection-
spread control using multi-group or contact-network models
(see Abad Torres et al., (2017)). Here, a multi-group model for
spread is considered, which tracks infection prevalences in inter-
connected subpopulations or groups within a community. Control
resources (e.g., quarantine or treatment) can be directed to a subset
of these groups, but are expensive and hence budget-constrained.
We are interested in designing or redesigning the limited control
resources to minimize the dominant time constant of the spread
process, so as to achieve the fastest possible elimination of the
infection. This design problem can be phrased as the subset design
problem considered here, see Abad Torres et al. (2017, 2015).

Specifically, a network with 35 nodes or groups or subpopula-
tions is considered, see Fig. 2. A subset of 20 nodes is amenable to
control (Node Set 1). To illustrate the redesign results (Theorems 4
and 5), we also consider that five more nodes may be subject to
constraint and become undesignable. We stress that the network
matrix is a grounded-Laplacian matrix associated with a weighted
digraph.

The optimized dominant eigenvalue and participation factors
are shown in Table 1, as nodes are sequentially made undesignable
(from20 designable nodes down to 15 designable nodes). The table

Fig. 2. Network graph.

also shows the optimal resource allocation for the node that was
made undesignable. One can observe that the participation factors
for each node set move according to Lemma 2. Also, the change
in the eigenvalue is correlated with the change in the participation
factor and the original value of the diagonal entry that is set to zero,
per Lemma 4.

The optimized designs for the six node sets are shown in Fig. 3.
The changes in the optimal distributions for the node sets show a
pattern, which follows Theorems 4 and 5. For instance, we notice
that the optimal resource allocation for Node Set 5 (i.e., values of
Di) are all slightly greater than for Node Set 4. This matches the
result of Theorem 4, since the additionally-constrained resource in
Node Set 5 (D17) is positive. We note that the optimized designs
involve both positive and negative resource allocations at nodes:
such designs are acceptable for some spread control problems
while others have a sign constraint, see Abad Torres et al. (2107)
for further discussion.

Fig. 4 compares the effective graphs when 20 and 15 nodes are
designable (Node Set 1 and Node Set 6, respectively). The figure
highlights new directed edges (gray edges) that encapsulate the
interactions among the designable and the undesignable nodes
(Theorem 2). For Node Set 6, the node 15 is seen to have many
incident gray edges, since it starts/finishesmany paths through the
undesignable nodes.

As a whole, the example shows that additional constraints on
the designable locations only cause a limited degradation in the
performance, with the optimal eigenvalue only increasing from
−0.59 to −0.49 between the case with 20 designable nodes and
the case with 15 designable nodes.

7. Conclusions

The problem of designing a fixed-trace additive diagonal per-
turbation to minimize the dominant eigenvalue of an essentially-
nonnegative matrix has been studied, in the case where only a
subset of the diagonal entries can be designed. The study resulted
in two primary contributions: (1) graph-theoretic interpretations
of the optimal design and its performance, and (2) insights into
re-optimization when additional constraints are placed on the
diagonal entries. In particular, the subset-design problem was
equivalenced to a full-diagonal-perturbation design problem for a
reduced matrix and associated effective graph. This equivalence
was then used to give some insight into the optimal resource-
distribution pattern. Additionally, redesign of the optimum when
additional diagonal entries were constrained to be zero was
studied, yielding: (1) comparisons of the dominant eigenvector
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Table 1

Optimal dominant eigenvalue.

Designable nodes Constrained Di λmax wmax,ivmax,i

Node Set 1 1-20 −0.59129 0.00791

Node Set 2 1-19 D20 = −0.02111 −0.59129 0.00791

Node Set 3 1-18 D19 = −1.45565 −0.56084 0.00607

Node Set 4 1-17 D18 = −1.70717 −0.52312 0.00391

Node Set 5 1-16 D17 = 0.17046 −0.52298 0.00393

Node Set 6 1-15 D16 = −2.32504 −0.49302 0.00263

Fig. 3. Resource distribution among the designable nodes.

Fig. 4. Effective graph with 20 (left) and 15 (right) designable nodes.

entries, (2) performance bounds between the original and further-

constrained design problems, and (3) graph-theoretic results on

the resource re-distribution. As a whole, the analyses show that

the optimal subset design is closely tied to the structure of the

essentially-nonnegative matrix or, equivalently, the topology of

the associated graph. These graph-theoretic results are appealing

in the context of network resource allocationproblems, in that they

may enable simple strategies for resource design or re-design to

shape performancemetrics. Two particular applications of interest

are in (1) control of infection spread (e.g., Abad Torres et al. (2017))

and (2) design of leader behavior in network synchronization

processes that are subject to noise inputs, see Fitch and Leonard

(2013) and Pirani et al. (2015). These applications also motivate

similar optimization problems with alternate cost metrics (e.g. the

trace of the matrix inverse) and design variables (e.g., multiplica-

tive perturbations, off-diagonal design elements). We anticipate

that these alternate problems may admit similar graph-theoretic

analyses, but leave the details to further work.
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