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Comments on “Upper and Lower Bounds for Controllable Subspaces of
Networks of Diffusively Coupled Agents”

Mengran Xue and Sandip Roy

Abstract—A condition for controllability of a network of diffu-
sively coupled linear agents with sparse actuation, which was de-
veloped in [1], is examined. An example is presented which demon-
strates that the condition is not always sufficient for controllability.
The gap in the original proof is clarified, and issues related to devel-
oping a necessary and sufficient condition are briefly discussed.

Index Terms—Controllability of dynamical networks, eigenvalue
decomposition.

Several recent studies have considered manipulation of multiagent
networks via actuation at a subset of the agents, e.g., [1]–[4]. Theorem 1
proposed in [1], which gives a condition for the controllability of a net-
work of diffusively coupled linear agents where some leaders can be
actuated, is an important contribution in this direction. The network
controllability question considered in [1] can be expressed formally as

the controllability of the pair (L̂, M̂ ), where: L̂ = In ⊗ A − L ⊗ CK ,

M̂ = M ⊗ B, n is the number of agents, A is the (common) state ma-
trix of each agent, L is an n × n symmetric Laplacian matrix that spec-
ifies the diffusive coupling topology, CK indicates the (homogeneous)
structure of the interagent couplings, M is a matrix whose columns are
0–1 indicators of the leader agents, and B is a local input matrix that
specifies how the external input signals actuate the leader agents. Theo-

rem 1 proposed in [1] decomposes controllability of (L̂, M̂ ) into local
and network-level controllability conditions. Specifically, it claims that

the pair (L̂, M̂ ) is controllable if and only if the following conditions
both hold:

i) the pair (L, M ) is controllable (network-level condition);

ii) the pairs (A − λiCK, B) are controllable for i = 1, . . . , n, where

λi are the eigenvalues of L (local conditions).
The conditions given in Theorem 1 of [1] are incomplete. In partic-

ular, while the conditions i) and ii) in the theorem are necessary for

controllability of (L̂, M̂ ), they may not be sufficient, as shown by the

following example with n = 3 agents: A =

[

−1.5 −0.5
−0.5 −1.5

]

, B =

[

1
0

]

,

C = I2 , K =

[

1.5 0.5
0.5 1.5

]

, L =

[

1 −1 0
−1 2 −1
0 −1 1

]

, and M =

[

1
0
0

]

. For

this example, the pair (L, M ) can be readily checked to be controllable.
Likewise, the pairs (A − λiCK, B) for i = 1, 2, 3 are controllable.

However, (L̂, M̂ ) is not controllable: specifically, the controllability
matrix has rank 4 rather than 6.

The proof of sufficiency in [1] relies on a similarity transform which

equivalences controllability of (L̂, M̂ ) to that of an alternate pair
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(L̃, M̃ ), where L̃ = blockdiag(A − λiCK), M̃ =

⎡

⎢

⎣

M̃1

...

M̃n

⎤

⎥

⎦
(with the

blocks having commensurate dimension to the diagonal blocks of L̃),

M̃i = Qi ⊗ B, and each Qi is a function of the eigenvectors of L and
the matrix M , see [1] for details. The gap in the proof arises from the

fact that controllability of the pairs (A − λiCK, M̃i ) is not sufficient

for controllability of (L̃, M̃ ). Insufficiency may arise, specifically, in

the case that the diagonal blocks A − λiCK of L̃ have repeated (non-

defective) eigenvalues across them. Under these circumstances, L̃ may
have a left eigenvector with nonzero entries across multiple blocks

which is in the null space of M̃ , even though none of the left eigen-
vectors of each diagonal block A − λiCK are in the null space of

M̃i . In consequence, it is possible that (L, M ) and (A − λiCK, B),

i = 1, . . . , n, are all controllable, yet (L̃, M̃ ) and hence (L̂, M̂ ) are
uncontrollable. Indeed, for the example presented above, the matrix

L̃ has eigenvalues at −2 and −4, which are each repeated across two
diagonal blocks.

Importantly, sufficiency of the condition in [1] can only be lost when

the diagonal blocks A − λiCK of L̃ corresponding to distinct λi share
a common eigenvalue. Thus, the necessary and sufficient condition
of [1] is valid, when the analysis is restricted to models which do
not have shared eigenvalues across the diagonal blocks A − λiCK .
It is therefore of interest to develop conditions on A, L, and CK
which guarantee that the diagonal blocks A − λiCK do not share
eigenvalues. Alternately, to give a treatment for arbitrary models, the

left eigenspaces of L̃ corresponding to the shared eigenvalues need to
be characterized. These issues are considered in more depth, as part of a
broader study on input–output processes in dynamical networks, in [5].

Broadly, the discussion here exposes that the eigenvector analysis of
diffusive network models is incompletely understood, in contrast with
the classical eigenvalue analysis for these models [6]. The subtleties in
the eigenvector analysis need to be resolved to fully characterize the
input–output dynamics of diffusive networks. We believe this to be a
fruitful direction of future work.
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