
A Cloaking Mechanism to Mitigate Market Manipulation

Xintong Wang,1 Yevgeniy Vorobeychik,2 Michael P. Wellman1

1 University of Michigan, Ann Arbor
2 Vanderbilt University

xintongw@umich.edu, yevgeniy.vorobeychik@vanderbilt.edu, wellman@umich.edu

Abstract
We propose a cloaking mechanism to deter spoof-
ing, a form of manipulation in financial markets.
The mechanism works by symmetrically conceal-
ing a specified number of price levels from the in-
side of the order book. To study the effectiveness
of cloaking, we simulate markets populated with
background traders and an exploiter, who strategi-
cally spoofs to profit. The traders follow two repre-
sentative bidding strategies: the non-spoofable zero
intelligence and the manipulable heuristic belief
learning. Through empirical game-theoretic anal-
ysis across parametrically different environments,
we evaluate surplus accrued by traders, and char-
acterize the conditions under which cloaking mit-
igates manipulation and benefits market welfare.
We further design sophisticated spoofing strategies
that probe to reveal cloaked information, and find
that the effort and risk exceed the gains.

1 Introduction
The automation of trading has transformed today’s finan-
cial landscape, with low transaction costs, high convenience,
and unprecedented levels of automated trading. With its un-
deniable virtues, this new marketplace also opens doors to
new threats, such as vulnerability to manipulation. One re-
cent lawsuit claimed evidence of thousands of manipulation
episodes in US Treasury futures observed 2013 and 2014
[Hope, 2015b]. In January 2018, US government agencies
filed civil and criminal charges against three major banks for
manipulating metals and equities futures [Price, 2018]. New
allegations emerge regularly.

We study spoofing, a common variety of manipulation, and
potential means to deter it. Formally defined in the 2010
Dodd-Frank Act §747 as “bidding or offering with the in-
tent to cancel the bid or offer before execution”, spoof or-
ders, rather than expressing genuine buy or sell intent, are
designed to falsely signal demand or supply. In terms of ad-
versarial learning, this can be viewed as a poisoning attack
[Barreno et al., 2006] targeting the order book. It may lead
other investors—those who learn from the order stream—to
believe that prices may soon rise or fall, and thus alter their
own behavior in a way that will directly move the price.

To design low-risk but effective strategies, manipulators
often rely on the instant order book information disclosed
by standard market mechanisms [Hope, 2015a; Montgomery,
2016]. Spoof orders are typically placed at price levels just
outside the current best quotes to mislead other investors, and
withdrawn with high probability before any market move-
ment could trigger a trade.

Despite regulatory enforcement and detection efforts,
spoofing is hard to catch in each individual case. To identify
spoofing, one has to establish the manipulation intent behind
cancellations of the placed orders. However, this is not easy,
as order cancellation is a legitimate action for many non-
manipulative participants, and according to statistics, 95% of
NASDAQ limit orders are canceled, with a median order life-
time less than one second [Hautsch and Huang, 2012].

Given the difficulty of detection, we propose a cloaking
mechanism to deter spoofing. The mechanism extends the
traditional continuous double auction (CDA) with a cloaking
parameter K, which specifies the number of price levels to
hide symmetrically from inside of the limit order book. The
idea is to make it more difficult for the spoofer to post mis-
leading bids, while not unduly degrading the general useful-
ness of market information. We focus on deterministic cloak-
ing in this study, as a stochastic mechanism may raise issues
regarding verification of faithful market operations.

We employ agent-based simulation to evaluate the pro-
posed mechanism under equilibrium settings across a va-
riety of parametrically distinct market environments. The
market is populated with multiple background agents and
one exploiter, trading a single security. Background traders
with private values are further divided into non-spoofable
fundamental agents using instances of the zero intelligence
(ZI) strategy, and heuristic belief learning (HBL) agents ex-
ploiting the disclosed order book to make bidding decisions.
Extended from prior literature [Gode and Sunder, 1993;
Gjerstad and Dickhaut, 1998], these two broad families of
trading strategies have proved robust and competitive, and
importantly, are not tailored to either spoofing or cloaking
environments. The exploiter profits by first buying the under-
lying security at low prices and later selling at higher ones.
To increase profit, it can try to manipulate the market through
spoofing after its original purchase.

Our results show that the proposed cloaking mechanism
can effectively mitigate spoofing, but at the expense of a
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lower proportion of HBL traders at equilibrium due to loss of
order book information. To characterize this tradeoff, we con-
duct empirical game-theoretic analysis [Wellman, 2016] to
understand agents’ strategic responses to the proposed mech-
anism, and perform empirical mechanism design [Vorobey-
chik et al., 2006] to set cloaking parameters that maximize
efficiency. Our analyses show for a range of different mar-
ket environments with moderate shocks, the benefit of cloak-
ing in mitigating spoofing outweighs its costs in information
transmission. We also explore more sophisticated spoofing
strategies that use probing to reveal cloaked information, but
find the cost and risk of such tactics exceed the gains.

2 Prior Work
We build on our existing computational model of spoofing
[Wang and Wellman, 2017]. In this model, learning traders
can benefit price discovery and social welfare, but their ex-
istence renders a market vulnerable to manipulation: sim-
ple spoofing strategies can effectively mislead traders, distort
prices, and reduce total surplus. Interestingly, learning traders
persist even with manipulators, which suggests that the elim-
ination of spoofing requires active measures. Along a sepa-
rate line, Martı́nez-Miranda et al. [2016] implement spoofing
within a reinforcement learning framework to model condi-
tions where such behavior is incentivized and effective.

Several works seek to identify spoofing strategy character-
istics [Lee et al., 2013], understand its profitability and real-
time impact [Wang, 2015] through studying historical market
data. Lin [2018] from a legal perspective surveys both tra-
ditional and new forms of manipulation and summarizes the
challenges of detecting new disruptive practices.

Research on mitigating manipulation is fairly limited. Pre-
wit [2012] and Biais et al. [2012] advocate the imposition
of cancellation fees to deter manipulative strategies that fre-
quently cancel orders. Others argue that cancellation fees
could discourage the beneficial activity of liquidity providers
[Copeland and Galai, 1983; Foucault et al., 2003], and in the
event of a market crash, such a policy may lengthen the re-
covery process [Leal and Napoletano, to appear].

3 Market Model
3.1 Market Mechanism
We extend the CDA spoofing model [Wang and Wellman,
2017] to support order book cloaking. Prices in the market
take discrete values at integer multiples of tick size one. Time
is also discrete but fine-grained over a finite horizon T . The
fundamental value of the underlying security, denoted by rt,
changes throughout the trading period according to a mean-
reverting stochastic process [Chakraborty and Kearns, 2011;
Wah et al., 2017], for t ∈ [0, T ]:

rt = max{0, κr̄ + (1− κ)rt−1 + ut}; r0 = r̄. (1)

κ ∈ [0, 1] specifies the degree to which the time series reverts
back to the fundamental mean r̄. ut captures a systematic
random shock upon the fundamental at time t, and is nor-
mally distributed as ut ∼ N(0, σ2

s), where σ2
s represents an

environment-specific shock variance.

Agents trade a single security by submitting limit orders
that specify the maximum (minimum) price at which they
would be willing to buy (sell) some number of units. The
market maintains a limit order book of outstanding orders.
We use BIDk

t to denote the kth-highest bid price in the book
at time t, and ASKk

t the kth-lowest ask price at t. The cloak-
ing mechanism symmetrically hides a deterministic number
of price levelsK from inside of the book. For example, when
K = 1, the mechanism conceals orders at the best quotes,
whereas when K = 0, the market acts as a standard CDA.
Thus, the disclosed order book in a K-level cloaking mecha-
nism starts with BIDK+1

t and ASKK+1
t , and extends to lower

and higher values respectively. Upon order submissions, can-
cellations, and transactions, the market updates the full order
book and then cloaks the K inside levels. Agents may learn
from the disclosed order book at their own discretion.

3.2 Agents in the Market
The market is populated with many background traders and a
single exploiter. Background traders with private values rep-
resent investors with preferences on longing or shorting in the
underlying security, whereas the exploiter without any private
value can spoof the market and seek to profit through buying
at lower prices and later selling at higher ones.

The position preference of background trader i is cap-
tured by a private value vector Θi of length 2qmax, where
qmax is the maximum number of units one can be long or
short at any time. Element θq+1

i represents the marginal gain
from buying an additional unit given current net position q.
We generate Θi from a set of 2qmax values independently
drawn from N(0, σ2

PV ), sort elements to reflect diminishing
marginal utility, and assign θqi accordingly. The agent’s over-
all valuation for a unit of the security is the sum of funda-
mental and its private value.

Arrivals of a background trader follow a Poisson process
with a rate λa. On each entry, the trader observes an agent-
and-time-specific noisy fundamental ot = rt + nt with the
observation noise following nt ∼ N(0, σ2

n). This noisy ob-
servation aims to capture different perceptions on the intrinsic
value of the underlying security. Given this incomplete infor-
mation about the fundamental, agents can potentially benefit
from considering market information, which is influenced by
the aggregate observations of other agents. To react to the
new observation, the background trader withdraws its previ-
ous order (if untransacted) upon arrival, and submits a new
single-unit order either to buy or sell as instructed with equal
probability. A background trader’s order price is jointly de-
cided by its valuation and trading strategy (see §3.3).

3.3 Background Trading Strategies
Estimation of the Final Fundamental
As holdings of the security are evaluated at the end of a trad-
ing period, background traders estimate the final fundamental
value based on their noisy observations. Given a new noisy
observation ot, an agent estimates the current fundamental by
updating its posterior mean r̃t and variance σ̃2

t in a Bayesian
manner. Let t′ denote the agent’s preceding arrival time. We
first update the previous posteriors (r̃t′ and σ̃2

t′ ) by taking ac-
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count of mean reversion for the interval since preceding ar-
rival (δ = t− t′):

r̃t′ ← (1− (1− κ)δ)r̄ + (1− κ)δ r̃t′ ;

σ̃2
t′ ← (1− κ)2δσ̃2

t′ +
1− (1− κ)2δ

1− (1− κ)2
σ2
s .

The estimates for t are then given by:

r̃t =
σ2
n

σ2
n + σ̃2

t′
r̃t′ +

σ̃2
t′

σ2
n + σ̃2

t′
ot ; σ̃2

t =
σ2
nσ̃

2
t′

σ2
n + σ̃2

t′
.

Based on the posterior estimate of r̃t, the trader computes
r̂t, its estimate at time t of the terminal fundamental rT , by
adjusting for mean reversion:

r̂t =
(
1− (1− κ)T−t)r̄ + (1− κ)T−tr̃t. (2)

ZI Background Trading Strategy
We employ an extended and parameterized version of zero
intelligence (ZI) as a representative strategy that is non-
spoofable, as bids are generated without regard to order book
information. The strategy has been widely adopted in agent-
based finance due to its simplicity and effectiveness for mar-
ket modeling [Gode and Sunder, 1993; Farmer et al., 2005].

The ZI agent computes a limit-order price by shading its
valuation with a random offset, which is uniformly drawn
from [Rmin, Rmax]. Specifically, a ZI trader i arriving at
time t with position q generates a limit price:

pi(t) ∼
{
U [r̂t + θq+1

i −Rmax, r̂t + θq+1
i −Rmin] buying,

U [r̂t − θqi +Rmin, r̂t − θqi +Rmax] selling.

The ZI further takes into account the current visible quoted
price, controlled by a strategic surplus threshold parameter
η ∈ [0, 1]. Before submitting a new limit order, if the agent
could achieve a fraction η of its requested surplus by ac-
cepting the most competitive visible order, it would take that
quote by submitting an order at the same price. However, this
may result in a transaction at a better price that is cloaked.

HBL Background Trading Strategy
We adopt heuristic belief learning (HBL) as our representa-
tive class of strategies that exploit order book information. In-
troduced by Gjerstad [1998; 2007], HBL was further adapted
to complex market environments that support persistent or-
ders, buy-sell flexibility, and multi-unit trading [Wang and
Wellman, 2017]. Both prior works showed the existence of
HBL traders can boost price convergence, and notably ben-
efit price discovery and social welfare, compared to markets
populated exclusively with non-learning ZI traders. Disclos-
ing aggregate market information to encourage learning can
thus be a tool for market designers to promote efficiency.

The strategy is centered on belief functions that traders
form on the basis of observed market data, and is thus sus-
ceptible to order-based manipulation. Specifically, the HBL
agent estimates the probability that orders at various prices
would be accepted, based on frequencies of transacted and
rejected bids and asks during the its memory length L. Based
on this estimation, it chooses a limit price that maximizes the
expected surplus given current valuation estimates.

Here, we further tailor the HBL strategy to the cloaking
mechanism by considering only the revealed order book in-
formation. Orders at competitive price levels may be ignored
in the belief function if they are kept hidden during lifetime;
or they can be considered with delays if later exposed in vis-
ible levels. This neglect, delay and offsets in estimation can
all affect HBL’s trading performance.

3.4 Exploitation and Spoofing Strategy
The exploitation strategy includes three stages. At the begin-
ning of a trading period [0, Tspoof], the exploiter accepts any
sell order at price lower than the fundamental mean r̄.

During the second stage [Tspoof, Tsell], the exploiter, if also
manipulating, submits spoof buy orders at a tick behind the
first visible bid BIDK+1

Tspoof
−1 with volumeQsp � 1. Whenever

there is an update on the first visible bid, the spoofer replaces
its original spoof with new orders at price BIDK+1

t − 1. By
maintaining a large volume of buy orders a tick behind, the
exploiter is spoofing at the most competitive price level that
is not subject to any transaction risk. This simple spoofing
strategy specifically aims to boost price, in the hope that the
units purchased earlier can be later sold at higher prices.

During the last stage [Tsell, T ], the exploiter starts to sell
the units it previously purchased by accepting any buy orders
at a price higher than r̄. The exploiter who also manipulates
continues to spoof until T or all the bought units are sold.

3.5 Surplus
A background trader’s surplus is its net cash from trading plus
the final valuation of holdings at T , whereas an exploiter’s
payoff is its gain or loss from trading. The market’s final
valuation of background trader i with final holdings H is
rTH +

∑k=H
k=1 θki for long position H > 0, or alternatively,

rTH −
∑k=0

k=H+1 θ
k
i for short position H < 0.

4 Empirical Game-theoretic Analysis
To evaluate the proposed cloaking mechanism and under-
stand potential strategic responses from market participants,
we conduct agent-based simulations and game-theoretic anal-
ysis of the model described in §3.1

4.1 Market Environment Settings
We consider three environments varying in market shock σ2

s
and observation noise σ2

n. LSHN represents a market with
low shock and high observation noise {105, 109}, MSMN
a market with medium shock and medium observation noise
{5 × 105, 106}, and HSLN a market with high shock and
low observation noise {106, 103}. Shock variance governs
fluctuations in the fundamental time series, and observation
variance the quality of information agents get about the true
fundamental. Intuitively, low shocks increase the predictabil-
ity of future price outcomes and high observation noise lim-
its what an agent can glean from its own information, and
thus may encourage exploiting market information. For each
environment, we consider cloaking mechanisms with K ∈

1Detailed equilibrium outcomes and simulation results are
posted at http://hdl.handle.net/2027.42/143507.
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Strategy ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 ZI8 ZI9 HBL1 HBL2 HBL3 HBL4

L - - - - - - - - - 2 3 5 8
Rmin 0 0 0 0 0 0 250 250 250 250 250 250 250
Rmax 1000 1000 1000 2000 2000 2000 500 500 500 500 500 500 500
η 0.4 0.8 1 0.4 0.8 1 0.4 0.8 1 1 1 1 1

Table 1: Background trading strategies included in empirical game-theoretic analysis.

{1, 2, 4}, and compare market performance with cloaking to
that of a standard CDA (K = 0). This gives us a total of 12
market settings, or 24 games with and without spoofing.

The market is populated with 64 background traders and
one exploiter. The global fundamental time series is gener-
ated according to (1) with fundamental mean r̄ = 105, mean
reversion κ = 0.05. Each trading period lasts T = 10, 000
time steps. Background traders arrive in the market accord-
ing to a Poisson distribution with a rate λa = 0.005 and the
maximum number of units background traders can hold at any
time is qmax = 10. Private value variance is σ2

PV = 5× 106.
Table 1 specifies our background trading strategy set, com-

prising nine versions of ZI and four of HBL.2 Background
agents choose from this restricted set to maximize payoff.
Following the spoof strategy described in §3.4, the exploiter
stops buying and starts to manipulate at Tspoof = 1000 by sub-
mitting orders with volume Qsp = 200. If following a pure
exploitation strategy, it waits until Tsell = 2000 and starts to
sell units purchased earlier at prices above r̄.

4.2 EGTA Process
To identify equilibria under different market settings, we em-
ploy empirical game-theoretic analysis (EGTA), a method-
ology for finding equilibria in games defined by heuristic
strategy space and simulated payoff data [Wellman, 2016].
It takes an iterative process to find candidate equilibria in
subgames, incrementally add strategies and confirm or re-
fute candidate solutions by examining deviations, until qui-
escence. This methodology has been adopted by a variety of
multi-agent system studies, especially under complex market-
based scenarios where applying standard analytic means is
hard [Wah et al., 2016; Brinkman and Wellman, 2017].

We model the market as a role-symmetric game, which is
defined by an environment and a set of players representing
two roles: background traders and one exploiter. As game
size grows exponentially in players and strategies, we ap-
ply deviation-preserving reduction (DPR) [Wiedenbeck and
Wellman, 2012] to approximate many-player games as fewer-
player games through aggregation. DPR preserves payoffs
from single-player deviations and has been shown to produce
good approximations in several settings.

To facilitate DPR, we choose 64 background traders in
this study to ensure that the required aggregations come out
as integers. Specifically, we reduce markets with 64 back-
ground traders and one exploiter to games with four back-
ground traders and a single exploiter; with one background
player deviating to a new strategy, the remaining 63 players

2We also explored ZI strategies with different shading ranges and
HBL strategies with longer memory lengths, but they fail to appear
in equilibrium.

can be further reduced to three. To account for stochastic fea-
tures, such as market fundamental series, agent arrival pat-
terns and private valuations, we sample at least 20,000 sim-
ulation runs for a specified strategy profile of each game to
reduce sampling error.

4.3 Tradeoff Faced by Cloaking Mechanisms
We start by separately investigating the impact of cloaking on
background traders, and on exploitation with spoofing. Our
first set of games cover the range of cloaking environments
without manipulation (i.e., the exploiter is non-spoofing).

Fig. 1a displays the HBL adoption rate (i.e., total prob-
ability over HBL strategies) at equilibrium across cloaking
mechanisms in the three environments. We find the com-
petitiveness of HBL generally persists when the mechanism
hides one or two price levels, but at higher cloaking levels
the HBL fraction can drastically decrease. The information
loss caused by cloaking weakens HBL’s ability to make pre-
dictions. The effect is strongest in environments with high
fundamental shocks, as previous hidden orders can become
uninformative or even misleading by the time they are re-
vealed. Given the decreasing HBL prevalence and effective-
ness, background surplus achieved at equilibrium also de-
creases, as we see in Fig. 2b (blue diamonds).

Next, we examine whether the cloaking mechanism can ef-
fectively mitigate manipulation. We perform controlled ex-
periments by letting the exploiter also execute the spoofing
strategy against each found equilibrium, and compare the im-
pact of spoofing under the cloaking mechanisms to that un-
der a standard CDA. For every equilibrium, we simulate at
least 10,000 paired instances and evaluate their differences on
transaction price and agents’ payoffs. Transaction price dif-
ference measures the extent of price distortion, and is defined
as the most recent transaction price of a game with spoofing
minus that of the paired game without spoofing. Similarly,
surplus difference is calculated by comparing profits obtained
in a game with spoofing and that of its pair without spoof-
ing. In each paired instance, background agents play the same
strategies, and experience identical arrival times, private val-
ues, and noisy observations of the fundamental. Therefore,
all changes in bidding behavior and outcome are caused by
the spoof orders.

Empirical results from controlled experiments show that
cloaking can considerably diminish price distortion caused by
spoofing across environments. Fig. 1b demonstrates a specific
but representative environment MSMN: in the standard CDA
(K = 0), transaction prices significantly rise subsequent to
the execution of spoofing at Tsp = 1000, as HBL traders are
tricked by the spoof buy orders; in cloaked markets, this price
rise is effectively mitigated. Fig. 1c further illustrates the sur-
plus redistribution between background traders and the ex-
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Figure 2: Equilibrium outcomes in games with and without cloaking. Each marker represents one equilibrium of the environment.

ploiter when it also spoofs. We find the exploiter can robustly
profit from learning agents’ manipulated beliefs in standard
CDAs. In contrast, partially hiding the order book can sig-
nificantly reduce spoofing profits, and prevent background
traders from losing much. These findings indicate the cloak-
ing mechanism may deter or even eliminate the exploiter’s
incentive to spoof.

4.4 Finding the Optimal Cloaking
Given the tradeoff between preserving order book infor-
mativeness and mitigating manipulation, the question be-
comes: Under what circumstances do the deterrence bene-
fits of cloaking exceed its efficiency costs? To answer this,
we re-equilibrate games where the exploiter can strategically
choose to spoof, and background traders can execute any
strategy in Table 1. This allows traders to adapt to spoofing
and spoofers to traders, at given levels of order book cloaking.

Our findings are presented in Fig. 2.3 We compare equi-
librium outcomes of the cloaking mechanisms to those of
standard CDAs primarily on two metrics: the probability of
spoofing and background-trader surplus in equilibrium. As
shown in Fig. 2a, the cloaking mechanism effectively de-
creases the probability of spoofing under most environment
settings—completely eliminating spoofing in some cases.
Moreover, we find moderate cloaking can preserve the preva-
lence of HBL at equilibrium, which otherwise would be de-
creased by spoofing.

3Equilibria with only ZIs usually achieve much lower surplus
than those with HBLs. For presentation simplicity, we omit all-ZI
equilibria from the chart. Environments with such cases are marked
with asterisks.

This weakened spoofing effect is further confirmed in
Fig. 2b, which compares the total background-trader sur-
plus achieved in equilibrium under mechanisms with and
without cloaking. Results show that under standard CDAs,
background surplus achieved in equilibrium where the ex-
ploiter strategically chooses to spoof (orange triangles) is
much lower than the surplus attained when the exploiter is
prohibited from spoofing (blue diamonds). Favorably, we find
the decrease in surplus due to spoofing can be considerably
mitigated by order book cloaking. As shown in Fig. 2b, the
vertical distances between the blue diamonds and orange tri-
angles get smaller with K > 0. More importantly, we find
the benefit of this improved robustness to spoofing can out-
weigh its associated efficiency costs in markets with moderate
shocks (LSHN and MSMN). In those environments, back-
ground traders in mechanisms that cloak one or two price
levels achieve higher surplus than those in standard CDAs.
However, in a market with high shocks (HSLN), hiding or
delaying even a little market information degrades learning
to such a degree as to render cloaking counter-productive.

4.5 Smarter Spoofing Strategies
To this point we have considered only spoofers unwilling to
take risk of execution on their spoof orders. A more sophis-
ticated manipulator can probe the market, submitting a se-
ries of orders at slightly higher prices, in an attempt to re-
veal the cloaked bids and spoof at a visible price higher than
BIDK+1

t −1. In this section, we study the value of such prob-
ing to the spoofing agent.

We design and evaluate parameterized versions of the
spoofing strategy combined with probing. The strategy is
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Env (δ, l)

LSHN

K1 (1, 16) (2, 9) – –
K2 (1, 8) (2, 5) (4, 3) (8, 3)
K4 (1, 19) (2, 3) – –
K4 (1, 10) (2, 5) (4, 3) –

MSMN

K1 (1, 7) (2, 5) (4, 4) (8, 3)
K1 (1, 7) (2, 4) (4, 2) (8, 1)
K1 (1, 5) (2, 3) (4, 2) –
K1 (1, 9) (2, 4) (4, 2) –
K2 (1, 11) (2, 3) (4, 4) (8, 3)
K4 (1, 5) (2, 3) (4, 3) (8, 3)

Table 2: Least number of probes required by the smart spoofing
strategy to beat equilibrium performance.

governed by two parameters: the step size δ, which controls
the probing aggressiveness, and the maximum attempts al-
lowed per time step l, which limits probing effort.

The spoofer probes by submitting a unit buy order at
BIDK+1

t + δ, a price inside the visible quotes, in the hopes
of exposing BIDK

t . If the probe succeeds, it immediately
cancels the probe order, and places a new spoof order at
BIDK

t − 1, right behind the lowest hidden bid level. If prob-
ing fails because the price is too conservative, the spoofer re-
probes by raising the price, iteratively at a decreasing rate (as
a function of δ and the attempt number), until a higher price
is displayed or the number of probing attempts reaches l. If
probing causes a transaction, the spoofer halves the price in-
crement and re-probes.

Table 2 reports, for cloaking-beneficial environments, the
minimum l required for the corresponding step size δ ∈
{1, 2, 4, 8} to achieve statistically significantly higher payoffs
than the equilibrium performance of an exploiter in §4.4.4
We find in order to achieve higher payoffs, the spoofer has
to probe with multiple attempts each time, and conservative
probing strategy with smaller δ usually requires more effort.
However, in practice, such frequent cancellations and place-
ments of orders can largely increase the risk of the associated
spoofing intent being identified.

Fig. 3 further quantifies the change in exploitation payoff
and transaction risk (measured as the number of transactions
caused by probing), as we vary the probing step δ and the at-
tempt limit l. As we see from Fig. 3a, extra probing attempts
steadily increase the transaction risk, but do not necessarily
improve payoff. Moreover, the spikiness of the exploiter’s
payoff indicates optimizing (δ, l) to maximize profit is a chal-
lenging task. Fig. 3b further demonstrates that an exploiter
can probe aggressively with larger step sizes to reduce effort,
but usually at the cost of a higher transaction risk, and conse-
quently a lower payoff. In highly dynamic markets with fre-
quently updated quotes, it seems that finding an appropriate δ
to successfully probe a cloaking mechanism in a reasonable
number of attempts would be challenging.

We have also explored more aggressive probing strategies,
where the spoofer probes to expose multiple hidden levels and
spoof at even higher prices. To accomplish that, the spoofer

4Dashes in the table indicate that an exploiter cannot beat the
equilibrium performance with the corresponding δ.
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Figure 3: Exploitation payoff and transaction risk with varying price
increment δ and probing limit l.

is forced to keep at least one order in the cloaked levels to
guarantee that its spoof orders are visible. However, accord-
ing to our experiments, such aggressive probing strategies fail
to beat the equilibrium performance, as orders kept in hidden
levels are usually accepted by background traders due to ad-
verse selection. Those transactions will typically cause an
accumulation in position, and consequently a negative payoff
at the end of the trading period.

5 Conclusion
We proposed a cloaking mechanism to deter spoofing, a ma-
nipulative tactic that targets the order book. The mechanism
discloses a partially cloaked order book by symmetrically
concealing a deterministic number of price levels from the
inside. We adopted an agent-based simulation approach to
model such cloaking markets populated with multiple back-
ground traders and a single exploiter. Background traders
can strategically choose from a set of ZI and HBL strate-
gies, and the exploiter can spoof to maximize payoff. We
conducted empirical game theoretic analysis to understand
agents’ strategic responses to the proposed mechanism, and
evaluate the effectiveness and robustness of cloaking.

Our results demonstrate the proposed cloaking mechanism
can significantly diminish the efficacy of spoofing, but at the
cost of a reduced HBL proportion and surplus in equilibrium.
With the goal of maximizing background-trader surplus, we
performed empirical game-theoretic analysis across paramet-
rically different mechanisms and environments, and found
in markets with moderate shocks, the benefit of cloaking in
mitigating spoofing outweighs its efficiency cost. By further
exploring sophisticated spoofing strategies that probe to re-
veal cloaked information, we demonstrated the associated ef-
fort and risk exceed the gains, and verified that the proposed
cloaking mechanism cannot be easily circumvented.

We acknowledge several aspects that may affect of our
equilibrium analysis, including sampling error, reduced-game
approximation and restricted bidding strategy coverage. De-
spite these limitations that are inherent in any complex mod-
eling effort, we believe our proposal and analysis of the cloak-
ing mechanism can serve as a constructive basis to study other
methods deterring spoofing (or similar forms of manipula-
tion), and identify practical considerations that should be re-
garded when making regulatory decisions.
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Patrik Sandås. Market making with costly monitoring: An
analysis of the SOES controversy. Review of Financial
Studies, 16(2):345–384, 2003.

[Gjerstad and Dickhaut, 1998] Steven Gjerstad and John
Dickhaut. Price formation in double auctions. Games and
Economic Behavior, 22:1–29, 1998.

[Gjerstad, 2007] Steven Gjerstad. The competitive market
paradox. Journal of Economic Dynamics and Control,
31:1753–1780, 2007.

[Gode and Sunder, 1993] Dhananjay K. Gode and Shyam
Sunder. Allocative efficiency of markets with zero-
intelligence traders: Market as a partial substitute for in-
dividual rationality. Journal of Political Economy, pages
119–137, 1993.

[Hautsch and Huang, 2012] Nikolaus Hautsch and Ruihong
Huang. Limit order flow, market impact, and optimal order
sizes: Evidence from NASDAQ TotalView-ITCH data. In
Frederic Abergel, Jean-Philippe Bouchaud, Thierry Fou-
cault, Charles-Albert Lehalle, and Mathieu Rosenbaum,
editors, Market Microstructure: Confronting Many View-
points. Wiley, 2012.

[Hope, 2015a] Bradley Hope. How ‘spoofing’ traders dupe
markets. Wall Street Journal, 2015.

[Hope, 2015b] Bradley Hope. Was ‘John Doe’ manipulat-
ing Treasury futures? New lawsuit says yes. Wall Street
Journal MoneyBeat, 2015.

[Leal and Napoletano, to appear] Sandrine Jacob Leal and
Mauro Napoletano. Market stability vs. market resilience:
Regulatory policies experiments in an agent-based model
with low- and high-frequency trading. Journal of Eco-
nomic Behavior and Organization, to appear.

[Lee et al., 2013] Eun Jung Lee, Kyong Shik Eom, and
Kyung Suh Park. Microstructure-based manipulation:
Strategic behavior and performance of spoofing traders.
Journal of Financial Markets, 16(2):227–252, 2013.

[Martı́nez-Miranda et al., 2016] Enrique Martı́nez-Miranda,
Peter McBurney, and Matthew Howard. Learning un-
fair trading: A market manipulation analysis from the re-
inforcement learning perspective. In IEEE International
Conference on Evolving and Adaptive Intelligent Systems,
pages 103–109, 2016.

[Montgomery, 2016] John Montgomery. Spoofing, market
manipulation, and the limit-order book. Technical report,
Navigant Economics, 2016.

[Prewit, 2012] Matt Prewit. High-frequency trading: Should
regulators do more. Michigan Telecommunications and
Technology Law Review, 19:131–161, 2012.

[Price, 2018] Michelle Price. U.S. authorities charge three
banks, eight individuals in futures ‘spoofing’ probe.
Reuters Business News, 2018.

[Vorobeychik et al., 2006] Yevgeniy Vorobeychik, Christo-
pher Kiekintveld, and Michael P. Wellman. Empirical
mechanism design: Methods, with application to a supply-
chain scenario. In 7th ACM Conference on Electronic
Commerce, pages 306–315, 2006.

[Wah et al., 2016] Elaine Wah, Sébastien Lahaie, and
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