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(Communicated by David Futer)

ApsTrACT. We generalise work of Young-Eun Choi to the setting of ideal
triangulations with vertex links of arbitrary genus, showing that the set of
all (possibly incomplete) hyperbolic cone-manifold structures realised by pos-
itively oriented hyperbolic ideal tetrahedra on a given topological ideal tri-
angulation and with prescribed cone angles at all edges is (if non-empty) a
smooth complex manifold of dimension the sum of the genera of the vertex
links. Moreover, we show that the complex lengths of a collection of peripheral
elements give a local holomorphic parameterisation of this manifold.

1. INTRODUCTION

The complement N of the vertices in a triangulated orientable 3—dimensional
pseudo-manifold P carries a complete hyperbolic cone-manifold structure, where
the singular locus is contained in the 1-skeleton and each ideal tetrahedron develops
into an ideal hyperbolic tetrahedron. For instance, such a structure is obtained by
realising each ideal tetrahedron in N as a regular ideal hyperbolic 3-simplex (see
[9] and §2.4). Let T denote the (topological) ideal triangulation of N and F the
set of ideal edges. For any prescribed cone angles k: E — R, let D7(T,x) be
the set of all (possibly incomplete) hyperbolic cone-manifold structures with the
ideal tetrahedra in T realised by positively oriented hyperbolic tetrahedra and with
the prescribed cone angles k. We show that if this set is non-empty, then it is a
smooth complex manifold of dimension the sum of the genera of the vertex links
(Corollary 3). This generalises the first main theorem of Choi [2]. This result is
deduced as a consequence of a more general result (Theorem 2), which is essentially
due to Neumann [6]. Moreover, we show that the complex lengths of a collection
of non-trivial peripheral elements, g for each vertex link of genus g, give a local
holomorphic parametrisation of (T, k) (Corollary 10). This is achieved through
a generalisation (Theorem 9) of the second main theorem of Choi [2].
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3544 ALEX CASELLA, FENG LUO, AND STEPHAN TILLMANN

Our approach is different from Choi’s and includes new results on the interplay
between tangential angle structures, the boundary map and the study of the volume
function. It builds on previous work of Neumann [6] as well as Futer and Guéritaud
[3].

The results of this paper show that the examples of pseudo-manifolds M with
spherical vertex links in [9] exhibit generic behaviour—for any prescribed cone
angles at the edges, the manifold @7 (M, k) is either 0-dimensional or empty. We
conclude this paper by giving two examples, which both have two components
where one might have expected one. The first example is a once-cusped hyperbolic
3-manifold of finite volume with the property that the two discrete and faithful
characters lie on different components of the PSLs(C)—character variety. It was
found via an application of the volume function explained to the authors by Nathan
Dunfield. The second example is a manifold with two boundary components—a
torus and a genus two surface. In this example, one can find distinct prescribed
cone angles k1 and k9 for the edges of an ideal triangulation with the property
that k1 and ko differ by 27 at two edges. In contrast, for manifolds with only
torus boundary components, a standard Euler characteristic argument shows that
at each edge the total cone angle has to be exactly 2.

2. PRELIMINARIES

2.1. Conventions for vector spaces. If X is a finite set, RY denotes the real
vector space of all functions X — R and we assume that RX has the standard inner
product, so that

*={r*eR¥ |z € X and for all y € X : 2*(y) = 6y}

is an orthonormal basis of R, where Kronecker’s notation
1 ify=u,
5xy = .
0 ify#u,

2.2. Pseudo-manifolds and triangulations. Let A be a finite union of pairwise
disjoint, oriented Euclidean 3—simplices, and ® be a family of orientation-reversing
afline 1‘-;011101‘]:)1’11‘-:1’[11-» pairing the facets in A with the properties that ¢ € ¢ if and
only if o1 € ®, and every codimension-one facet is the domain of a unique element
of ®. The elements of ¢ are termed face pairings. The quotient space P = A/ P
with the quotient topology is a closed, orientable 3-dimensional pseudo-manifold,
and the quotient map is denoted p: A — P. The triple T = {A $, p) is a (singular)
triangulation of P. The adjective singular is usually omitted, and we will not need
to distinguish between the cases of a simplicial or a singular triangulation. We will
always assume that P is connected. In the case where P is not connected, the
results of this paper apply to its connected components.
We will use the following notation:

T:{O',E}ZK(S).’ E:{C"J}:P(l}, V:{vk}zp(u)'

is used.

Note that E and V are equivalence classes of 1-simplices and 0-simplices of A
respectively.

The set of non-manifold points of P is contained in the O-skeleton. Denote this
set V. C V = PO The cases of interest are usually when V, = @ or V, = V.

Licensed to Rutgers Univ-New Brunswick. Prepared on Mon Aug 6§ 13:58:05 EDT 2018 for download from IP 128.6.62.93.
License or copyright restrictions may apply to redistribution; see http/Awww.ams.org/joumal-tierms-of-use



POSITIVELY ORIENTED IDEAL TRIANGULATIONS 3545

In the first case P is a closed 3-manifold. In the second case T restricts to an ideal
triangulation of the topologically finite, non-compact 3-manifold N = P\ P(®) and
P is the end-compactification of N.

For each vertex v € V, Lk(v) is a closed orientable surface of genus g, > 0, with
a triangulation 7T, induced from 7. We will repeatedly make use of the following
fact, which follows from a direct Euler characteristic calculation:

Lemma 1. |T|— |E| +|V| = Z Gu-
vev

2.3. Quadrilateral index. Let o be a 3-simplex. A quadrilateral type ¢ in o is
a partition of its set of vertices into two sets of cardinality two. The name alludes
to its geometric realisation as a properly embedded quadrilateral disc separating a
pair of opposite 1-simplices ey and e;. See [10] for an exposition of this well-known
geometric viewpoint, which goes back to Haken [4]. It will be convenient to regard a
quadrilateral type as a set containing these two opposite 1-simplices, and we write

{eo,e1} =g <o

and say that eg and ey face q.

There are precisely three quadrilateral types in 0. There is a natural action of
the symmetric group Sym(4) on the set of vertices of ¢. Choose an orientation
of o. The alternating group Alt(4) fixes the orientation and permutes the three
quadrilateral types. The stabiliser of a quadrilateral type is the Klein four group
K. So there is a natural faithful action of the cyclic group C5 = Alt(4)/K on the set
of all quadrilateral types, and hence a natural cyclic order on that set. Throughout,
q,q',q" denote the three quadrilateral types in the 3—simplex ¢ and the action of
Cj is indicated by the prime mark, so (¢')) = ¢” and (¢")’ = ¢ and the natural
cyclic order is therefore given by ¢ — ¢' — ¢" — q. N

Denote by O the set of all normal quadrilateral types in A. The quotient map
p: A — P induces a natural map p: AWM — p) = E. For any e € E and ¢ € O,
the number of edges in the preimage p~!(e) C AWM facing q is:

i(q,e) = lgnp~L(e)| € {0,1,2}.

If i(g,e) = 0, we say that e faces q.

2.4. Cone-deformation variety. The cone-deformation variety D(T;*) is the
set of all (2,£) € C™ x (S1)F satisfying:

i) for each edge e € E,
(1) I] =@ = &(e),
geno

ii) for each ¢ € O,
) () =
z(q') = ———.
)

Equation (2) is the parameter relation for q. Applying the cyclic ordering gives:

1 z(g)—1

2(q)  z(q) and  2(q)z(q)z(¢") = —1.

2(q") =1-
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Equation (1) is the cone-hyperbolic gluing equation for e. Multiplying all of these
equations gives the identity
[Tce) =1

ecll
If £(e) = 1, then equation (1) is the usual hyperbolic gluing equation of e.
We have the projections onto the factors

s: D(T;%) = C%  and e D(T;#) — (SHF,

where s gives the shapes of the tetrahedra and ¢ gives the curvature at the edges.
Denote the upper half plane in C by H and for each ¢ € (S*)¥ define

DH(T:€) =2D(T;%) n (H” x {£}).

It was observed in [9] that the cone-deformation variety is non-empty for any tri-
angulation since one may choose each z(q) = %{1 + v/=3) to be the shape of the
regular hyperbolic ideal 3-simplex, and this turns N into a complete hyperbolic
cone-manifold. Hence there always exists £ € (S1)¥ such that ©7(T;¢) # 0.

One can study the (topological) connected components of D% (7;¢) via the set
of all kK € R” with the property that z € H” satisfies the parameter relations and
for each edge e, we have:

(3) > i(g,e) log(z(q)) = rle),

gen

and

() £(e) = explin(e)).

Throughout this paper, log is the standard branch on C\ (—co, 0] unless stated
otherwise. It follows from analytic continuation that on each connected component
of D7(T;¢), the left-hand side of (3) is constant.

Below Corollaries 3 and 10 imply that if ©7(7;¢) is non-empty, then it is a
smooth complex manifold of dimension the sum of the genera of the vertex links,
and each of its components has a holomorphic parametrisation by the holonomies
of peripheral elements, one for each genus. This will be proved using the more gen-

eral compler-curvature and log-curvature maps defined in §2.5, which respectively
generalise the left-hand sides of (1) and (3).

2.5. The log-curvature map. Let H be the upper half plane and Z = {z €

Hz(¢') = ﬁ(q)} The log-curvature map G: Z — C¥ is defined by:
G(2)(e) = ) i(g, ) log(=(q)).
gen

The log-curvature map is, of course, closely related to the complex-curvature
map ¢: Z — CF,

e(2)(e) = [T 2(a)" @

gen
For instance, a well-known Euler characteristic argument shows that if the link of
each vertex is a torus, then G=1(27i,...,2mi) = ¢~ 1(1,...,1). In general, ¢~ (u) is

a countable union of sets of the form G~ (uy), and these sets are pairwise disjoint by
analytic contimiation. But since ¢~!(u) is an affine algebraic set, at most finitely
many of these sets will be non-empty. Hence each level set G~ (uy) of the log-
curvature function is also an affine algebraic set.
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POSITIVELY ORIENTED IDEAL TRIANGULATIONS 3547

3. STATEMENTS AND PROOFS OF THE MAIN RESULTS

Our central result is Theorem 9, generalising Choi’s main technical result [2, The-
orem 4.13] to pseudo-manifolds with positively oriented triangulations and pre-
scribed log-curvature.

3.1. Rank of the log-curvature map. Fixing a preferred quadrilateral type ¢ <
o for every 3-simplex, there is a natural identification between Z and H” via the
projection map 7: Z — H', where

n(z)(0) = z(q).
Hence the log-curvature map can and will be viewed as a map G : HT — C#. The
following result is a corollary of [6, Theorem 4.1]:

Theorem 2 (Neumann). d G has constant rank |T| — Z Gu-
veV

Proof. For each tetrahedron o; € T, fix a quadrilateral type ¢; < ;. Using the
quadrilateral index, we let B = (b;;) be the 2|T'| x | E| matrix, where for all even i:

b‘ij' = i{q?:: ej) - i’(q'::(:j’)}

bit1; = ilg; €5) —i(d7, €5)-
It is well known that d G has the same rank as B (see [8]), hence it is enough to show
that rank B = |T'| — Y .y gv. This is the content of [6, Theorem, 4.1]. Neumann
defines a linear map [ : C7 — J, where ] is the free Z—module generated by E
and .J is the free ZZ-module generated by T2, and shows that

dim(Ker 8*/Im ) = dim €9 Hy (Lk(v)) = ) _ 2g,,,
veV veV
where 3* is the dual map. Moreover, Neumann shows Ker 5* = 2|T| — |E| + |V,
and therefore
dim(Im ) = dim(Ker %) — dim @ H (Lk(v)) = 2|T| — |E| + [V| = > 2g,.

veV veV

Using particular bases of Cyy and .J, B is the matrix associated to 3, giving
rank B = dim(Im 8) = 2|T| — |E|+ |V| = > 29, =T = g0,
veV vev

where the last equality follows from Lemma 1. O

Theorem 2 and the implicit function theorem imply the following result.

Corollary 3. For all w € CF, the complex variety G=(u) is either empty or a
smooth complexr manifold of dimension Z [

veV
3.2. Boundary map. Let o be an oriented closed normal curve on Lk(v), repre-
senting a non—trivial element in H;(Lk(v)) and let t T.? be a normal triangle
contained in tetrahedron o € T. A segment of a with respect to ¢ is an oriented
connected component of aNt. Let S, be the set of all segments of o with respect

to t, and S, = U U St be the set of all segments of a.
veEV 167;_;(2}
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v

DA%

W(Q'J 052) = _i(Q: 6)
n(s) = +1 n(g,on) = i(q.e)

FiGUurRE 1. On the left: Each s € S, determines a quadrilateral
type g and isolates a vertex x,. For an observer sitting in the cusp,
x, here lies on the right side of s. On the right: «;, as encircle the
endpoint of an edge e € E.

Each s € S, uniquely determines a quadrilateral type g € O such that s C ¢,
which will be denoted by g.. If s € S’,, s divides ¢ in two regions and isolates one of
the three vertices, say =, (Figure 1). With respect to the orientation of s and the
induced orientation on Lk(v), it makes sense to say that x, lies on the right side or
on the left side of s when viewed from the cusp. We therefore define

+1  if x, lies on the right side of s,
n(s) =

—1 if x; lies on the left side of s,

(g, ) = {n(-‘?) if ¢ = qe,

0 otherwise,
and finally
(g, 0) = n(g.s).
.‘?ESQ

In particular, when « encircles one endpoint of an edge e € E, then n(q, o) =
+i(q, e) for all ¢ € O, where the sign depends on whether « is oriented anticlockwise
or clockwise with respect to the cusp (Figure 1).

Hence we can write the log holonomy of e as h, : Z — C,

ha(2) =Y n(g, a)log 2(q).
gen
Notice that if aq is normally isotopic to s, then hg,, (2) = ha,(z), and if aq is
the union of n normal curves all normally isotopic to asz, then hy, (2) = nhy,(2).
We therefore have a natural extension of the log holonomy to ANg, the RB—vector
space with basis the normal isotopy classes of curves on Lk(v). For all a,b € R and
a, f € Ng define
haoa+sp(z) == aha(z) +bhg(z).

Note that if a=! is the closed normal curve o with opposite orientation, then
hyiq-1(z)=0.

If G(z) # (2mi, ..., 2mi), then the value of hy(z) may not be an invariant of the
homology class of «, but depends on the choice of normal representative since an
isotopy pushing a over a vertex in Lk(v) may change its value.
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For each link Lk(v;), let g; denote its genus and choose a canonical homotopy
group generating set £; U M;, where £; = {A],..., A} } is the set of longitudes
and M; = {u],...,puy,} the set of meridians, indexed and oriented such that the
algebraic intersection number satisfies L()\;., ,u;) =1 for all j and ¢(e, ) = 0 for all
other pairs of elements «, § € £; U M;. Moreover, we assume that each element of
L; U M; is an oriented normal curve on Lk(v;).

Let £ = |, £; and define the boundary map Hp : Z — C£ by
Hpe(z)(A) =ha(z) forall A e L.
Similarly, we let M = U M; and Lk(V) = |_| Lk(v;). Hence LU M is a generating
set for Hy(Lk(V)).

3.3. Tangential angle structures. Our study of derivatives naturally leads us
(at least implicitly) to the tangent space of the space of all angle structures on 7.
Following [5], the space of all tangential angle structures TAS = TAS(T) is the set
of all & € R” such that
e > a(q)=0,Yo €T, and
q=a
. Z i(g,e)a(q) =0, Ve € E.
gen
The endgame of the proof of Theorem 9 uses a specific spanning set of

TAS; = TASL(T) = {w € TAS | Y n(a. \w(q) =0 VA € £} < TAS,

gemn

which we will now determine. For every edge ¢ € E and every normal curve « on
a vertex link, let Q., Q, € R” be defined by

Qe=>ilg,e) ((¢) —(¢")*),

gemn

Qy =Y nla,7) (4" = ("))

gqen

In their study of angle structure on cusped manifolds, Futer and Guéritaud [3,
Section 4] introduced Q. and Q, under the names of leading—trailing deformation
around e and leading—trailing deformation along ~ respectively. In fact, for every
edge e, one may choose a normal closed curve p about one endpoint of e and an
orientation of p such that Q. = @Q,. Hence Q. can be thought of as a leading—
trailing deformation along p. Some of the results of [3] extend directly to the more
general setting of an oriented pseudo-manifold. As in [3, Lemma 4.5], we have

Q.. Q, € TAS.

Lemma 4 ([3, Lemma 4.4]). Let o, 3 be oriented closed normal curves on Lk(V)
that intersect transversely, if at all. Then

a .
5o m(ha) = (e, @)Qs(q) =2 1(a, B).
Qs =
Proof. The proof in [3, Lemma 4.4] does not use the fact that M is a union of tori
(and in particular that in this case h, is independent of the choice of normal curve
in a homology class) and applies verbatim. O

Licensed to Rutgers Univ-New Brunswick. Prepared on Mon Aug 6§ 13:58:05 EDT 2018 for download from IP 128.6.62.93.
License or copyright restrictions may apply to redistribution; see http/Awww.ams.org/joumal-tierms-of-use



3550 ALEX CASELLA, FENG LUO, AND STEPHAN TILLMANN

Lemma 5. The set {Q.}c.cp spans a subspace of dimension [T'| =", g;.

Proof. For each tetrahedron o; € T' fix a normal quadrilateral type ¢; < ;. Let B
be the (|E| x 3|T|) matrix whose i—th row is the vector Q.,, namely

(Qe(a1), Qelah), Qs (@) -, Qe ayr), Qe lafy), Qe ali) )

where ¢; € E. For every vertex v € V, we define a row vector r, € RI”l, whose
i—th entry is the number of endpoints that the i—th edge e; has at the vertex v.
In [3, Lemma 3.3], a matrix A and vectors r. were constructed in a similar
fashion, and they are related to B and r, as follows:
e Let o0 € S3 be the permutation (123) and A;, B; be the i-th columns of
A, B respectively. Then for all 0 < k < |T| and 1 < i < 3, Bggy; is the
columm vector made up of the last |E| entries of Asgyg—10) — Askioi)s
® 7, is the row vector made of the last |E| entries of r.
Following the proof of [3, Lemma 3.3], one checks that the vectors 1, form a basis
for the row null space of B and therefore rank(B) = |E| — |V|. The conclusion
follows from Lemma 1. O

The following result generalises [3, Proposition 4.6]. To simplify notation, we

write {Qx} = {Qx}rec, ete.

Lemma 6. The set {Q,}U{Q,} is linearly independent, and Span ({Q,} U {Q,})N
Span{Q.} = {0}. In particular,
i) dimSpan{Q.} = >, a:,
i) dimSpan ({Q.} U {Qx}) = [T,
i) Span ({Qe} U{Qx} U{Qu}) = TAS(T).

Proof. For every edge e, choose a normal closed curve p about one endpoint of e.
Then we can choose an orientation on p such that Q. = Q, and think of Q. as a
leading—trailing deformation along p.
Let I : Span ({Qx} U{Q,} U{Q,}) — RIEHMI he the map defined as follows.
flff)i( = 2 aiQx, +22b;Qu; + X ckQpy, set £ = D aidi + 3 bju; + > crpr and
efine

7]
I(X)= (3@ N im(he), ..., 8@ o im(he), =—— (?Q - im(he), . “,8Q,u|M| 1n1(h£))

The linearity of he implies that I is linear, and by Lemma 4, we have
o 1(Q,)=(0,...,0), i.e. Span{Q.} C KerI:
e [(Q,,) has 2 in the (|£| + i)-th entry and 0 everywhere else,
i.e. maps to twice the (|£| + ¢)-th standard basis vector.
e I(Qy;) has —2 in the j-th entry and 0 everywhere else,
i.e. maps to twice the negative j—th standard basis vector.
This implies Span ({Qx\} U {Q,}) =2 Im I = RIFHIMI 5o {Q\}ace U {Qutuem is
linearly independent, and Span ({Qx} U {Q,}) NSpan{Q.} = {0}. This implies (i),
and together with Lemma 5, it implies (ii). By [5, Corollary 2.3], we have

dim TAS = V| — |E| + 2|T| = [T| + ) gi.
It now follows from Lemma 5 that dimSpan ({Q.} U{Qx}U{Q,}) = dimTAS,
which implies (iii). We also note that this shows Span{Q.} = Ker I. O
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POSITIVELY ORIENTED IDEAL TRIANGULATIONS 3551

Theorem 7. The set {Q.} U{Q\} is a subset of TAS;, whereas Span({Q,}) N
TAS; = {0}. Therefore Span ({Q.} U{Q.}) = TAS..

Proof. Since {Q.} U {Q,} is a subset of TAS, the first part follows from checking
that for all A, A’ € £ and e € E,|

(5) > 1@ N)Qe(7) =0,

gen
(6) > (@ X)Qx(@) = 0.
qen
Observe that for all ¢,g € O,
(@)@ — ()@ =—(@)(a) - @")(),
hence

D n@N)Qe@ =Y _n@N)d ila.e) (d) (@ —(¢")@)

geo qe0 gem
= i(a.9) Y n@X\) ()@~ (d")*(@)
qed qen
== i(a,©) Y n@N) (@) (a) - @) (a)
geb qem
==Y ila,)Qn(a) =0,
gen

as @y € TAS. This shows Q. € TAS,.

Now suppose A, X € L; then (N, A) = 0 as they are disjoint by assumption.
By Lemma 4, this shows that {@Q,}, and in particular {Q.} U {Q.}, is a subset of
TASg, and by Lemma 6(i),

dim TAS, > [T
For the next part, let Zf, j a}Q#; be an element in Span({Q,}) and suppose by

contradiction Ef,}' aif,- Q”} € TASz. Then for all [ and for all )\i. € L, by Lemma 4,

0=" " n(g,\}) (Z a5Qu; (Q)) =D aj N 5)-
1,7

geno i3
But ¢(AL, ,u}) # 0 if and only if i = | and k = j, therefore al, =0 for all [, k and
Span({Q,}) N TAS; = {0}.

It follows from Lemma 6(i) that dim TAS; < |T'|. Hence dim TASg = |T'| and so

Span ({Q.} U {Q.}) = TAS,. O
3.4. A parametrisation of G~!(u). Using the identification Z = H”, we write
Hp :H" — C*, giving the map

(G, He):H' —» CFxc*t
z = (G(2),He(2)) -

We already remarked that when G(z) # (274, ..., 2mi), the value of the boundary
map Hp depends on the choice of normal curves representing homology classes of
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peripheral curves. The following lemma shows that the injectivity of the differential
of (G, Hg) is independent of this choice.

Lemma 8. For cach verter v; € V, let g; be the genus of Lk(v;). Let A; =
{al,...,ap,} and B; = {Bi,..., B} be two sets of longitudes on Lk(v;), such that
af; and ,3; are representatives of the same element in Hy(Lk(v;)), and set A = |J; A;
and B =, B;. Then
rank d(G, Hy) = rank d(G, Hg).
In particular d(G, H4) is injective if and only if (G, Hg) is injective.
Proof. As (r; and ,8; are in the same homotopy class,
h,:i(z) = hgi(z) + Z a.G(z)(e) for some a, € R.
eckl

Hence

Vhae(2) = Vhgi(2) + Y acVG(2)(e),
eck

i.e. each row of d(H4) is a linear combination of the corresponding row of d(Hp)
and rows of d(G). It follows that d(G, H,) is related to d(G, Hp) by elementary

row operations, hence they have the same rank. O

Theorem 9. The derivative d(G, Hz) : T,(H") — C¥ x C* is injective for any
zeHT.

Proof. Let z € Z. For every q € O, z(q) € H uniquely determines three angles «, 3

and 7 of the triangle with vertices (0,1, z(q)) such that z(q) = :lﬁgﬁ;"m and
no_ Sin(’?) i "y o Sin(a) iy
Adq) = sin((.r)e ’ Ad7) = sin(,ﬁ)e '

Hence we can identify Z with the set X = {x € R3y|>_,_, (q) = 7 Yo € T} via
the map ¢7 : X — Z, where

T T _ sin(;{:(q')) Cim(q)
d) ( )(Q) Siﬂ('.ﬂ(q‘”)) . -

Under this identification, we can write (G, Hz) as amap (G, Hg) : X — C¥ xCE =
(R x R)"#YL where, for each edge ¢ € E and curve A € L,

G(x)(e) = Z i(q,e) log (M(ﬁ(q))

= sin(x(q"))

= (Z i(g,¢) (lﬂg(sin(ii(c;f’))) - logisin(w(c;f”)))) Y ila, e)w(c;f)) :

gen =
o op (@) izq)
Hpe(x)(A) q;n(q, A)log (sin(:ﬂ(q")) ' )

= (Z n(a, A)(log(sin(sﬁ(f))) - lﬂg(sin('i-'(Q”J))),Zn(q, A):v(';')) :

gen gen
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Now our goal is to show that d(G, Hg) : T,X — (R x R)"Y£ is injective for all
reX. Let we T, X = {weR[Y __w(q) =0VYe € T} be a tangent vector
such that d(G, He)(z)(w) = 0.

We recall the elementary fact that % log(sint) = cott. For every edge e,

(7) > g, e) (cot(x(q))w(d') — cot(z(g"))w(q")) =0,

qe0d

(8) > ilg.e)w(q) =0,

gen

q=a

and for every curve A,

(9) > " n(a, A) (cot(z(q'))w(q') — cot(x(q”))w(g")) =0,

gen

(10) > nlg, Nw(q) = 0.

gqen

Observe that (8) and (10) imply w € TAS, < TAS c T, X.
Let F : R" — R be the volume function

F(z) = Alz(q)),
gen

where A(z) = — foz log |2 sin(u)|du is the Lobachevsky function. The Hessian of F
is the diagonal matrix with diagonal entries — cot(x(g)), and it is negative definite
at each point © € X (see, for instance, [3, pg. 175]). Recall that for e € E and
A € L, we have |

Qc=Y ilg,e) ((d) —(d")),

gen
Qx=>_n(g,N) ((¢)* = (¢")")-
geno
Then by (7) and (9)
Qe - Hess, (F)w = 0, Vee E,
Q) - Hessz (Flw =0, YAe L.
Theorem 7 shows that TAS, is spanned by {Q.}ecr U {Qx}rcc- Hence w can be
written as a linear combination of the Q. and @,, and so
w - Hessy (F)w = 0.
But since Hess,(F') is negative definite, we have w = 0 and hence d(G, He) is
injective. O

Theorem 2 shows that the rank of d G' is constant |7 -3 hence Theorem

9 implies the following result.

vev Jvs

Corollary 10. For all u € C¥ such that G='(u) # 0, the restriction map

Helgoi(yy: G w) — CF

is a local diffeomorphism onto its image.
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4. Two DEHN-SURGERY COMPONENTS

Our first example of a one-cusped hyperbolic 3-manifold of finite volume illus-
trates Choi’s original result. It also has the property that the two discrete and
faithful characters lic on different components of the P.SLy(C)-character variety.
It was found via the following construction due to Nathan Dunfield. Let N be a
2-cusped manifold with strong geometric isolation (see [7] for a definition). Let
A be the collection of all hyperbolic Dehn fillings on the first cusp in N; let My,
My, Ms,... be distinct manifolds in A. Fix an orientation of N, and let yg be the
character of an associated holonomy representation. Let y, be the character of the
holonomy representation of M, that is in a small open neighbourhood of yp, and
let X,, be the component of the character variety of M, which contains x,. By
strong geometric isolation, the image of X,, in the character variety of the second
cusp is independent of n, call it C. Now the differential of the volume function on
X, pulls back from a 1-form on C. Hence, the quantity

(11) max{vol(x) | x € X,,} —min{vol(x) | x € X,.}

is a constant V' independent of n. By volume rigidity, V' < 2min(vol(M,)). So if
M, has non-minimal volume (and of course vol(M,,) — vol(N) so there are many
such), it follows that x,, and its complex conjugate must lic on different components
of the character variety of M,,.

The following explicit example was found by looking in the census due to Calla-
han, Hildebrand and Weeks (as shipped with Regina [1]) for an example given by
Neumann and Reid [7]. Let M be the manifold 112046 in this census, and let N be
the manifold obtained from M by (2,1)-Dehn filling on the first cusp. We fix the
following ideal triangulation 7 on N:

TABLE 1. The ideal triangulation 7 on N.

Tetrahedron | Face 012 | Face 013 | Face 023 | Face 123
4 (203) | 2(321) 6 (032) 5 (120)
3(312) | 2(012) 4 (013) | 6 (031)
1(013) |4 (213) 5(123) | 0(310)
6 (312) | 4(012) 5 (203) 1 (120)
3 (013) 1 (023) 0 (102) | 2(103)
0 (312) |6 (012) 3(203) | 2(023)
5 (013) 1 (132) 0 (032) | 3(120)

S| U = W B =D

Let z; be a shape parameter of the tetrahedron 7}, with respect to the edge (01),
with orientation such that z] is the parameter at (02) and 2/’ is at (03). A standard
computation provides the two solutions

D l4d 249 3+4i . —1+4+14
o _ . } ) 7
z (3'.‘ 2 737 2 ? 5 737 2 )GC

and its complex conjugate z(9) corresponding to discrete and faithful characters.
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Notice that z(°) is positively oriented. The 1-dimensional components Cy and C

containing them have the following rational parametrisations:

—1—itu —1+itu
Tr(i-1)u Tr(itiu
4 i
@12i)—2u 3—21)2u

- i - i

(1+4)—7 (1—4)+5

(1—i)—2u42u?
2(—1+4u)u

(—14u)(—it(14i)u)
T—(1+i)ut(lti)ul

u

(1—i)+2iu
(242i)u—2u

and

In particular, notice that yg(u) = ¢f(%).
Henceforth, we will refer to the j-th components of oo (u) and ¢f(u) by (vo);(u)
and (¢();(u) respectively. The natural domain of ¢ is C\ X, where X is the
finite set of poles of (¢g);. A direct computation shows that X contains precisely
6 clements, whose image via g are all ideal points of Cp, therefore

Im(gpp) = Im(pg).

o (u)

(14i) —2u42u?
2(—1+u)u

(—14u) (i+(1—1)u)
I—(1I—d)ut(1—i)u’

u

(14i)—2iu
(2—2i)u—2u

\

[
o
o
tn

0

Together with the image of u = oo, they sum up to a total of 7 ideal points, hence

the image of g is a 7-punctured sphere.

that the images of ¢y and f, are disjoint.

%(( ;g):" ~

~
= é" *-.~P4 V4
-

P,

-
#
r,

im((0)s) =0

Py,

! im((go)r) =0

. - ..ﬁ%
m((po)s) =0 e,
1 -\// e -
PNl
W

Moreover, a direct calculation reveals

FicURE 2. Q is an ideal square.
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Denoting by im(w) the imaginary part of a complex number w € C, we recall
that the complete solution g (i) = z(?) is geometric in the sense that

im ((0); (i) = im(z}u)) >0, Vie{l,...,T}.

The set of all positively oriented solutions is

7
Q= (V{ueC| im((0);(u)) > 0}.

j=1
For u = x + iy, {im ((40);(u)) = 0} is a 1-dimensional subvariety of R?, which can
be explicitly computed from g,
. 1 1
im ((po)1) = (= = 1*+ (- 3)* — 7,
im ((¢o)2) = y —,
(v0)3

((po)2) =
im ((o)s) =
1111((900)4) (y+5 )—(1?\/5——)
((po)s) =
((po)s) =
((po)7) =

u -,

2W/3' 6
(¢o)s) = =143z — 322 + 2 — 2%y + > + 2y® — o°,
(v0)6

— 23 —|—2.m,4—|—y —2.{:?;

As shown in Figure 2, () is a simply connected open set of the plane and

o cVv (im ((:pg)4(u)) ,im ((:po)g,{u)) ,im ((goo)?(u))) .
We deduce that ¢p(Q) is an ideal square contained in 7'(Cj).

5. A REDUCIBLE COMPLEX-CURVATURE LEVEL SET

Let M be the oriented pseudo-manifold given by the ideal triangulation T shown
in Figure 3. M has two vertices v; and v9, whose links are closed orientable surfaces
of genus g1 = 1 and go = 2 respectively. The induced triangulations of the links
lk(v1) and lk(v2) are shown in the bottom right corner of Figure 3 and in Figure 4,
respectively.

TABLE 2. The ideal triangulation 7 on N.

Tetrahedron | Face 012 | Face 013 | Face 023 | Face 123
2 (032) |4 (012) 2 (123) | 2(120)
2 (013) 1(213) 3 (013) 1 (103)
0 (312) 1 (012) 0 (021) | 0(023)
4 (013) 1 (023) 4 (312) | 4 (230)
0 (013) | 3(012) 3 (312) | 3(230)

= b = D

We use the same notation as in the previous example, so z; is the shape parameter
of tetrahedron 7T; with respect to edge (12), and z = (zp, 21, 22, 23, 24). From the
face pairings of T we deduce the following complex-curvature and log-curvature
maps.
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POSITIVELY ORIENTED IDEAL TRIANGULATIONS 3557

FicURE 3. Shown are the five tetrahedra in the triangulation of
M and, in the bottom right corner, the induced triangulation of
the vertex link of v1 (viewed from the cusp).

FIGURE 4. Triangulation induced on vy by T.
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(12)
2 2]
Zy 2 z928 2 202 za2 2
= (207 78) (227 7%) - I ;
202h(212) )22 2 (2325)2 24 (242)% 2 20zh(212Y )22 2l 232 24 2}
(13)
log(21)

Glz) = log(z) + log(z1) + log(22) + log(25) + log(z}

log(zozhzy ) + log(zaz52%)
r_n

log(202) + 2log(212]) + log(2525) + log((2324)?2%) + log((2474)* 2§

Notice that log(z — 1) = log(1 — z) £ m where the sign ambiguity depends on the
argument of z. However, applying the combinatorial Gauss-Bonnet theorem to the
vertex, we deduce that

G(2)(e2) = 2ri,

G(z)(eo) + G(z)(e1) + G(=z)(e3) = 8.
Hence

—log(1 — z1)
log(zo — 1) — log(zo) — log(1 — z1) + log(22) + log(zz — 1) — log(za) + log(z4 — 1) — log(z4)

G(z)=
27i

log(zo) —log(zo—1)+2log(1 — z1) —log(zz)+log(zz) —log(zz —1) +log(za) —log(z4 —1)+-8mi
We observe that d G has constant rank [T| — g1 — g2 =5—-1—-2=2,

0 z_—ll 0 0 0
1 1—1 1 1 1
dG(z) = zo(zou—l) 210—1 7[')2 23(7:6—1) 24(7;6_1)
-1 2 _1

-1 -1
Zo(zo—1) z—1 73 Zalzz—1) z4(z4—1)
Moreover, for all u = (ug, w1, ug,u3) € InG, G~(u) is the 3-dimensional variety
generated by the ideal
I = (2:1 +e " —1,(z0—1)za(z3 — 1)(zg — 1) — " 2o(1 — zl)z3z4).
For instance, let
20— (e%i,e%i,e%i, e%i, (,%1) .

then u” = G(2%) = (%14, 3i, 2mi, 67i) and

a
z0z3z4€37" }

G H(u®) = § (20, 21, 22, 23, 24) EH® | 21 = 3% 29 =
(u”) {(0 1,722,738, 24) | 1 2 (z0 —1)(2z3 — 1)(24 — 1)

For

1 1 = 1 1 1
z = —.e3’, —, — — |,
1— e‘ém 1— e‘—é?rz 1— e%‘ﬂ".‘. 1— e%‘ﬂ".‘.
ul = G(2Y) = (%z, %?TZ.,Q?F%., 4773'), S0
G(2%) # G(z') but ¢(2°) = ¢(2).

By analytic continuation G~(u") and G~1(u!) are disjoint, hence the above ar-
gument shows that G~ (u”) and G~1(u') are disjoint complex varieties contained
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POSITIVELY ORIENTED IDEAL TRIANGULATIONS 3559

in the complex variety ¢=1(¢(2?)). Moreover, because all shape parameters are as-
sumed to have a positive imaginary part, it follows from (13) that 0 < G(z)(e1) < 57
and hence
cHe(2%) = G ) G (uh).
Let £ = {A1, A2, A3} be the set of three simple closed curves shown in Figures 3
and 4. The boundary map with respect to £ and its differential are

g —log(1—zp)+log(z2) —log(z2—1)
= 2| Hez)= log(z3) —log(z1) :
z0z5252) log(zo0)+log(1—z1)—log(l—z2)—log(1—z3)—log(1l—z4)
1
and . .
1—zg za(l—z2) ? _01
1 —1 1 1 1
Zn 1—Z| 1—2'2 1—23 1—24
Together with the differential of the log-curvature map we obtain:
—1
/ 0 z.—ll [lJ 0 0 \
zo(zo—1) z1—1 2 z3(za—1)  za(za—1)
0 0
-1 2 -1 -1 -1
d(G: H){Z) = | z0(z0—-1) =z1—1 Z2 z3(za—1) za(za—1)
— 0 — 0 0
—Zn z2(1—23)
0 0 0 L =
1 -1 1 T i )
\ Zg 1—z 1—2zq 1—2za 1—2z4

The determinant of the minor obtained by removing the second and third row
from d(G, H)(z) is
_2(—1 + 20 + 23 + 24 + 2022 — 202223 — Z0ZaZ4 — Z3%4 — 2023724 + 20%27%37%4)
202122232’4(1 —Z(])(]_ —21)(1 —22){1 —zg)(l —2’4) ’
For all u € Im(G), the restriction map
Hel|gony : G (w) — C°

L(u)
is a local diffeomorphism onto its image. In particular we can parameterise G~ (u)
through He. For u” as above, we get the following local parameterisation around

2:0,
n = 1— 24-16,
o
n = 3 "
_ —Z,p’i"
22T Tk
Zg = z4et2,

4 -
. . . r 1—z.k ta+ i
z4 18 the solution of the equation 1_"‘2 7= (( o ef;' _)f)( i)

5 ., tattg—t 5., tattgtt
where k = es™+ 35— k' = es™+ 3" and for all (t1,t9,t3) € C? close to

H,c(e%i, €3l 3l 3l P%‘) = (0,0, 7).
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