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Abstract—Control-channel interactions in a linear diffusive
network model are studied, with the aim of highlighting the role
of the network’s topology in such interactions. Specifically, the
influence of a built controller on the infinite and finite zero struc-
ture of a second control channel is characterized. The analysis
shows how the network’s graph topology, the relative positions
of the control channels, and the specifics of the built controller
influence the zero structure of the second control channel. In
particular, it is shown that the some control architectures can
introduce undesirable non-minimum-phase dynamics at remote
locations, while others are guaranteed to maintain or promote
minimum-phase dynamics.

I. INTRODUCTION

Many modern engineered networks, ranging from

terrestrial-scale infrastructures to the Internet-of-things,

use multiple feedback control systems in tandem [1]. These

control systems may act on different parts of the network,

operate at various temporal and spatial scales, and/or regulate

different aspects of the networks’ dynamics. Some of

these control systems may be coordinated, while others

are decentralized or even antagonistic. In such pervasively-

controlled networks, interactions among the control systems

can modulate wide-area dynamics, and thus have profound

consequences on the network’s global function. For example,

in the bulk power transmission network, the tuning of some

wide-area controls may dictate whether fault resolution by

other control systems is successful or causes poorly-damped

oscillations [2]–[4].

As control systems in engineered networks become more

sophisticated, interactions among them are becoming increas-

ingly impactful and also difficult to predict from experience

[5]. At their essence, however, one would expect the in-

teractions to depend on the topology of the network being

controlled, and the positions of the control channels relative

to this topology. Here, we undertake a study of the interactions

among control channels in a representative dynamical-network

model, with the aim of gaining topological insights into the

problem. Specifically, for a linear diffusive network model, we

study how the deployment and tuning of one control system

influences the transfer function seen across a second control

channel, with the main aim of developing topological insights

into the influence.
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The research described here contributes to an extensive

research effort on the dynamics and control of complex

networks, which spans across the physics, natural sciences,

and controls/circuits literature. This research direction was

initially focused on the emergence of global behaviors from

local interactions in networks (e.g., synchronization of coupled

oscillators) [6]. Subsequently, the controls community has

extensively studied control design for autonomous but com-

municating agents, to achieve global coordination. A common

theme in both directions has been to tie global stability and

performance to the graph topology of the network. Relevant to

the the study here, recently this research has been extended to-

ward understanding sparse control of already-built dynamical

networks, including observability and controllability [7]–[9],

input-output behaviors (finite- and infinite- zeros) [10]–[13],

predatory control [14], and resource optimization subject to

a budget constraint [15]. These efforts on sparse control give

insight into the ability of control channels to modulate the

network’s intrinsic dynamics. However, the studies have not

addressed how one control system in a network affects the

performance of other control channels, and hence their design.

The results presented here begin to address this question.

Ab initio design of decentralized controllers for large-scale

system has also been extensively studied [16]. Relative to

this literature, the work presented here instead considers the

implications of one control on other channels, reflecting that

diverse control capabilities are often built piecemeal as needs

arise in network operations rather than as a global solution.

Here, control-channel interactions are characterized for a

standard linear diffusive model defined on a digraph [10], [11],

[17]. To do this, the model is enhanced to explicitly represent

a linear feedback control system that is built into the network.

The dependence of another SISO channel’s transfer function

on this control system is examined. Specifically, we focus

on characterizing the infinite and finite zero structure of the

second channel, which dictate its input-output behavior, limit

control performance, and guide controller design [18]. The

analysis shows that the positions of the two control channels

relative to the network graph determine the zero structure.

Specifically, it is shown that particular controller positions

and architectures maintain or promote minimum-phase dy-

namics, but other control schemes may inadvertently cause

nonminimum phase dynamics at remote locations; whether or

not nonmimum-phase dynamics may result has much to do

with the lengths and strengths of paths between the input and

output, and the location of the built controller relative to these

paths.
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The remainder of the article is organized as follows. The

model and problem formulation are given in Section II. The

main results on control-channel interactions are presented in

Section III. Finally, some examples are presented in Section

IV. Due to space constraints, proofs and some details are

excluded, see [19].

II. MODELING AND PROBLEM FORMULATION

A linear diffusive network model defined on a digraph is

considered. Since our interest is in analysis of input-output

properties, the model is augmented to represent a single-

input single-output (SISO) channel of interest (see also [10],

[11], [17]). Here, the model is further enhanced to explicitly

represent an in-built linear feedback controller, which may use

measurement data from parts of the network to set one or more

inputs. This enhanced model is used to study the effect of an

existing or in-built control on another SISO channel’s transfer

function and, specifically, finite-zero structure.

A network with n components or nodes, labeled as

1, 2, ..., n, is considered. Each node j is associated with a

scalar state xj . The nodes’ states are nominally governed by

a linear dynamical model with diffusive state matrix A, and

are further modulated by an in-built feedback control. The in-

built feedback control is assumed to be a linear state-space

dynamical system which processes a scalar combination of

state-variable measurements (e.g., a single state variable or

a difference of them) to set an additive input, typically at a

single node. Formally, the feedback is modeled as an additive

vector input signal to the state dynamics, which we denote as

P. For most of the analyses pursued here, P is assumed to

have only one nonzero entry. Specifically, the control vector

P is assumed to be determined from the state vector x

according to a Laplace-domain relationship of the following

form: P = eqHc(s)z
T
x, where the vector z indicates what

combination of state variables are being used in feedback, eq
is 0–1 indicator vector which shows the single node q that

is being actuated by the in-built controller, and Hc(s) is the

transfer function of the in-built controller. The nominal model

for the dynamical network as a whole, including the in-built

controller, is thus:

ẋ = Ax+P (1)

P = eqHc(s)z
T
x

where x =
[
x1 . . . xn

]T
is the full state of the network. The

state matrix A is assumed to be a M-matrix: its off-diagonal

entries are assumed to be nonnegative, while the diagonal

entries are negative and satisfy Al,l ≤ −
∑n

j=1,j �=l Al,j .

This model encompasses many of the canonical models for

synchronization/consensus, diffusion, and spread in dynamical

networks (e.g., [20], [21]). It is worth stressing that the matrix

A need not be symmetric. Since the state matrix encodes

the topology of the network, it is referred to as the graph

matrix. While the primary focus is on built controllers that

actuate a single node, we alternatively also consider the

common circumstance that the built controller incorporates

local proportional controllers at multiple nodes. In this case,

the control vector takes the form P = −
∑

j∈Vb
ejkjxj , where

Vb is a subset of the nodes in the network.

The goal of this paper is to study how the deployment and

tuning of the in-built controller affects the characteristics of

another channel of interest. As in [11], a single-input single-

output channel is considered, which is defined by an additive

input at a single network node i, and an output which measures

the state at a single node (labeled n without loss of generality).

The full model of the system, with the SISO channel of interest

included, is thus given by:

ẋ = Ax+P+ eiu (2)

P = eqHc(s)z
T
x

y = e
T
nx

where u is the scalar input signal acting on the node i, and

the output y is equal to the state of node n. The focus of our

study is to characterize the transfer function of the channel of

interest (i.e., the transfer function from u to y). The channel

of interest may be another control channel in the network, or

may capture other input-output behaviors of interest (e.g., a

disturbance response that is a concern to network operators).

Since topological results are sought, it is convenient to

associate a graph with the network dynamics. Specifically, a

weighted digraph G with n vertices is defined, where each

vertex l = 1, 2, . . . , n in the graph corresponds to the network

node l. Formally, an arc (directed edge) is drawn from vertex

l to vertex j in the graph (l,j distinct) if and only if Aj,l �= 0,

and is assigned a weight of Aj,l. The vertices corresponding

to the input and output network nodes are referred to as the

input and output vertices. The state matrix A can be viewed

as (the transpose of) a grounded Laplacian matrix associated

with the directed graph. In this paper, the notation dab is used

the directed distance from vertex a to vertex b in the digraph

G.

We aim to characterize the influence of local network

controls on the input-output properties of a channel of interest.

Specifically, the transfer function from u to y is characterized

in terms of: 1) the network graph G, 2) the structure of the

in-built controller P , and 3) the position of the channel of

interest. The poles of this transfer function depend solely on

the native network dynamics and the in-built control (not the

particular channel considered), and their analysis and design

are traditional controls concepts. Here, the finite zeros of

the channel, including particularly the presence or absence

of nonminimum-phase zeros, are analyzed. It is well known

that the zeros are invariants which place essential limits on

feedback control and specify channel response characteristics

[18]. Particularly, the presence of nonminimum-phase zeros

place essential limits on control performance (e.g., reference

tracking or disturbance rejection error). Thus, the analyses

pursued here explore how one controller in a network limits

and modulates other control channels.
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III. RESULTS

First, results connecting the network’s native structure (i.e.,

the uncontrolled network) with its zeros are reviewed and

extended (III.A). Then, the main results on control channel

interactions are presented, focusing first on controls that can

make the channel of interest minimum phase (III.B), and then

on controls that either make the channel nonminimum phase

(III.C) or do not influence the phase properties (III.D). The

results developed in this section assume that the network graph

is strongly connected; we focus on this case to avoid trivial

cases where the built controller does not have any influence

on the channel of interest.

A. Native Graph Structure and Zeros: Review and New Result

Two relationships between a network’s native graph topol-

ogy and the zeros of an input-output channel are briefly

reviewed [10]–[13], because they are a basis for the analysis of

controlled networks. A further result, concerned with networks

that comprise multiple sparsely-interfaced subnetworks, is also

developed. The results in this section assume that no control

has been implemented, i.e. P = 0.

A main outcome of previous research is that the pres-

ence/absence of nonminimum-phase zeros is closely depen-

dent on the lengths and strengths of paths between the input

and the output [10]–[13], [17]. In particular, if there is a

single path between the input and output, or the shortest path

is dominant, the network is necessarily minimum phase. In

contrast, if an alternate path between the input and output

is sufficiently long and strong, the network is guaranteed to

be nonminimum phase. These results are an important starting

point because they: 1) motivate studying whether implementa-

tion/tuning of controls can alter the zero structure arising from

the network topology, and 2) give insight into what control

schemes may remove or cause nonminimum-phase behaviors.

Two main results of this sort are the following:

1) Consider the input-output system (2) without controller,

i.e. for P = 0. The system is minimum phase if there is a

single directed path from the input vertex to the output vertex.

Also, the system is minimum phase if there are multiple input-

output paths provided that at least one path of minimum length

is made sufficiently strong, in these sense the edge weights on

this path are sufficiently scaled up.

2) Consider the input-output system (2) without controller,

i.e. for P = 0. The system has closed right half plane

(CRHP) zeros if short paths between the input and output

are sufficiently weak. Precisely, consider the case where the

distance between the input and output on the network graph

is din. If there is at least one input-output path of length

d̄in ≥ din + 3, and all paths of length less than din + 3 are

made sufficiently weak (i.e., at least one edge on each of these

paths is scaled down), the system is nonminimum phase.

Formal statements and proofs of the above results, and

bounds on edge weights that guarantee minimum-phase or

nonminimum-phase dynamics, can be found in [11], [17].

Many large-scale dynamical networks are interconnections

of multiple subnetworks, which may have distinct operational

paradigms or control authorities. For these networks, there is

interest in characterizing zeros of network channels in terms

of properties of the assimilated subnetworks. Such analyses

are also a starting point toward understanding control-channel

interactions among multiple network authorities. With this mo-

tivation in mind, a result on interconnections of subnetworks

is given in the following theorem. In particular, we show that

subnetworks that are interconnected by a single link preserve

minimum-phase behaviors in a certain sense.

The theorem requires some notation for singly-

interconnected subnetworks. Formally, the network input-

output model (2) without controller (P = 0) is considered.

Without loss of generality, two subnetworks in the network

model, comprising nodes 1, . . . , n1 and n1 + 1, . . . , n,

are considered. The state matrix A is partitioned in a

commensurate way, as A =

[
AaaAab

AbaAbb

]
where Aaa is an

n1 × n1 matrix. Similarly, the state vector is partitioned as

x =

[
xa

xb

]
, where xa has n1 entries. The network is said to

be singly interconnected, if the network graph has a single

(possibly bi-directional) edge between the vertices 1, . . . , n1

and the vertices n1 + 1, . . . , n. For a singly-interconnected

network, there is only one pair (j, k), where j = 1, . . . , n1

and k = n1 + 1, . . . , n such that Aj,k and Ak,j are nonzero.

For a singly-interconnected network, the network input-output

model (2) can be expressed in terms of the following two

interconnected subsystem models:

Subsystem S1, which has two inputs (i.e. u and z2) and

one output (i.e. z1) as S1 : ẋa = Aaaxa+eiu+ejAj,kz2 and

z1 = e
T
j xa.

Subsystem S2, which has one input (i.e. z1) and two outputs

(i.e. z2 and y) as S2 : ẋb = Abbxb + ek−n1
Ak,jz1; z2 =

e
T
k−n1

xb and y = e
T
n−n1

xb

We find it convenient define the transfer function in subsys-

tem S1 from the input u to the output z1 as H1(s) =
Z1(s)
U(s) .

Similarly, we define the transfer function in subsystem S2 from

input z1 to the output i.e. y as H2(s) =
Y (s)
Z1(s)

. We also find it

convenient to define the induced subgraphs of G on vertices

1, . . . , n1 and n1+1, . . . , n as G1 and G2, respectively. For a

singly interconnected network, the graph G contains a single

edge between subgraphs G1 and G2, see Fig. 1.

u Y=Xn
i

j k

n

G1 G2

Fig. 1: A network comprising two subnetworks that are

connected by a single line.

Theorem 1: Consider a network input-output model which

is made up of singly-interconnected subnetworks. The zeros of
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the full input-output dynamic model (2) are contained within:

1) the zeros of the transfer function H1(s), 2) the zeros

of the transfer function H2(s), and 3) the (stable) poles of

subsystems S1 and S2. Further, all right half plane zeros of

the transfer functions H1 and H2 are necessarily zeros of the

full input-output dynamic model (2).

Theorem 1 shows that connecting two minimum phase dy-

namic networks by an bi-directional edge results in minimum

phase behavior in the interconnected network. In other words,

a network with two connected areas will maintain minimum-

phase characteristics of the individual ones, provided that only

a single edge connects the two areas. On the other hand, if

two areas are connected by more than one edge, non-minimum

phase behaviors may result even if the transfer functions for

each area are minimum phase.

B. Control Schemes that Promote Minimum-Phase Dynamics

Control strategies are developed that yield minimum-phase

dynamics on channels of interest. First, the following two

simple theorems demonstrate that a high gain controller acting

between the input and output nodes of a channel can be used to

make the channel minimum phase. The first theorem considers

a simple proportional controller, and the second addresses

proportional-derivative control.

Theorem 2: Consider the network input-output model (2).

Assume that a proportional controller is applied across the

input-output channel of interest, i.e. P = enk(xi−xn). Then,

1) the relative degree of the system (2) is two, and 2) the model

is asymptotically stable and minimum phase for all sufficiently

large feedback gains k (i.e., for all k ≥ k̂, for some k̂).

Theorem 3: Consider the network input-output model

(2). Assume that a proportional-derivative controller is ap-

plied across the input-output channel of interest, i.e. P =
en

[
k(xi − xn) + q d

dt
(xi − xn)

]
. Then, 1) the relative degree

of the system with model (2) is equal to two, and 2) the model

is asymptotically stable and minimum phase for all sufficiently

large feedback gains k (i.e., for all k ≥ k̂ for some k̂) and any

q < 1.

The above theorems show that, by applying a strong feedback

of the state difference across a channel of interest, that channel

can be made minimum phase.

The following results show that local controllers with

sufficiently large gain applied remotely to an input-output

channel of interest can also be used to achieve minimum-phase

dynamics on that channel. These results require some further

terminology regarding the network input-output model. The

term special input-output path is used to refer to a path of

minimum length (least number of edges) between the input

and output in graph G. As defined before, the notation din is

used for the length of the special input-output path, i.e. for

the distance between the input vertex i and output vertex n.

Additionally, we define a modified system based on a subgraph

of G. Specifically, we consider the uncontrolled input-output

model, with a subset of vertices deleted. Formally, let us

consider a subset of vertices Vb ⊂ {1, . . . , n}, which does not

include the input and output vertices (i and n). Let us also

define the vectors e
(Vb)
r as a modified version of the vector

er, where the entries i ∈ Vb are omitted. Similarly, A(Vb) is

defined as a submatrix of A obtained by deleting the rows

and columns specified in Vb. Then, the deletion subsystem is

defined as:

ẋ
(Vb) = A(Vb)x

(Vb) + e
(Vb)
i û (3)

ŷ = e
(Vb)

T

nx
(Vb),

where x
(Vb), û, and ŷ are the state, input, and output, respec-

tively. The deletion system (3) is associated with a weighted

directed deletion graph G(Vb) = G − Vb . Also, we define

d
(Vb)
in as the distance between the input and output vertices

(i.e. from vertex i to n) in graph G(Vb).

First, a key theorem is presented that characterizes the

finite zeros of the network input-output model, when local

proportional controllers are applied at a subset of network

nodes.

Theorem 4: Consider the network input-output model (2).

Assume that local proportional controllers are applied at

network nodes in the set Vb, i.e. P = −
∑

j∈Vb
ejkj(xj).

Also, suppose that the input-output channel is remote from

the local controllers (i, n /∈ Vb), and that d
(Vb)
in = din. When

the gains kj (j ∈ Vb) are scaled up, a subset of the zeros of

(2) approach the zeros of the deletion system (3), while all

other zeros are in open left half plane (OLHP).

The theorem immediately permits us to define local pro-

portional control schemes that make the input-output model

minimum phase, as formalized in the following corollaries.

Corollary 1: Consider the network input-output model (2).

Assume that local proportional controllers are applied at

network nodes in the set Vb, i.e. P = −
∑

j∈Vb
ejkj(xj),

and consider an input-output channel that is remote from the

local controllers (i, n /∈ Vb). When the gains kj (j ∈ Vb) are

sufficiently scaled up, the system (2) is minimum phase if

d
(Vb)
in = din and the deletion system (3) is minimum phase.

Corollary 2: Consider the network input-output model

(2). Say that local proportional controllers are applied at

the network nodes specified in the set Vb, i.e. P =
−
∑

j∈Vb
ejkj(xj). Consider an input-output channel that is

remote from the controllers (i, n /∈ Vb). When the gains kj
(j ∈ Vb) are sufficiently scaled up, the system (2) is minimum

phase if d
(Vb)
in = din and the network graph after removing all

vertices specified in Vb (i.e. G(Vb)) has a single path between

the input and output vertices.

Remark: Per Corollary 2, one way to make a system

minimum phase is to put high gain local controllers at all

vertices adjacent to special input-output path.

C. Controls that Cause Nonminimum-Phase Dynamics

In many large-scale networks, there is a significant con-

cern that the actions of a control authority may make other

regulation and control tasks difficult, or alter properties of

remote input-output channels in undesirable ways. For in-

stance, operators of the electric power grid have recognized

that newly-integrated fast controls may alter performance of
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other controls, or cause unexpected disturbance responses [13].

These concerns suggest that, while controllers are typically

designed to achieve desirable internal properties, they may

incidentally alter the input-output characteristics of remote

channels in undesirable ways (e.g., cause the channel to

become nonminimum phase, or increase susceptibility to dis-

turbances). Here, we identify conditions under which the built

control causes the network’s input-output channel to become

non-minimum-phase.

First, a simple result is given which shows that a high-

gain nonminimum-phase controller or a low-gain unstable

controller necessarily makes all remote channels nonminimum

phase. While it is not typical to use nonminimum-phase or

unstable controllers, there is some motivation for studying

this case. First, the presence of delays and other unmodeled

dynamics in the controller implementation may introduce non-

minimum-phase characteristics in the feedback block, whose

impacts across the network are of interest. Also, in some

special cases, unstable or nonminimum-phase controllers are

indeed needed (see e.g. [22]).

Lemma 5: Consider the input-output model (2). Assume that

the controller P = eqHc(s)xj is applied. Consider any input-

output channel that is either remote from the built controller

(i.e. j �= i, n and q �= i, n), or alternately the channel across

the built controller (i.e. j = i and q = n). Also assume that

dij + dqn �= din + dqj . Then:

• If the controller transfer function Hc(s) = kHu(s) is

non-minimum phase, then the input-output model (2) is

non-minimum phase for all sufficiently large feedback

gains k (i.e., for all k ≥ k̂ for some k̂ > 0).

• If the controller transfer function Hc(s) = kHu(s) is

unstable, then the input-output model (2) is non-minimum

phase for all sufficiently small feedback gains k (i.e., for

all 0 < k ≤ k̂ for some k̂ > 0).

The main concept underlying the result is that the zeros

of remote channels approach the controller’s zeros when a

high-gain feedback is used. Also, the zeros of remote channels

approach the controller’s poles when a low-gain feedback is

used. Note that in cases discussed in previous lemma, the

system becomes unstable, but we have seen cases that by

increasing or decreasing the gain, first nonminimum-phase

behavior appears and then instability occurs.

D. Control Schemes that Do Not Alter Channel Phase Char-

acteristics

Often, it is important to ascertain whether a control scheme

can alter a channel’s phase characteristics, and specifically

whether the control will preserve minimum phase dynamics on

the channel. The following theorems identify control schemes

that are guaranteed to maintain minimum-phase dynamics, i.e.

not to change a minimum-phase channel to a nonminimum-

phase channel. For this development, we say that the phase

property of the network input-output model is maintained,

to indicate that the model remains strictly minimum phase

(respectively strictly nonminimum phase) upon inclusion of

the controller P when the uncontrolled model is strictly

minimum phase (respectively strictly nonminimum phase).

First, it is shown that low-gain proportional control schemes

maintain the phase property of channels, provided that they do

not alter the network structure in a certain sense.

Theorem 6: Consider the network input-output model (2),

and assume that a controller P = keqxj or P = keq (xj − xq)
is applied. Also, consider the network graph G as well as a

modified graph G̃ where the directed edge j → q is added to

G. Consider any input-output channel. If the distance between

the input and output vertices in the original and modified

graphs is identical, then the phase property of the network

input-output model is maintained for any sufficiently small

gain k ( i.e. for all k < f for some threshold f < ∞).

Remark: The conditions for maintaining the phase property

in Theorem 6 is necessarily satisfied, if the proportional

controller is local (q = j), or acts across a link that is already

present in the network. Likewise, it is necessarily satisfied if

the channel of interest is local (i = n), or is placed across a

network link.

Remark: Low-gain controllers necessarily only move system

eigenvalues, and hence poles of any defined channel, by a

small amount. In contrast, they can introduce/remove zeros or

cause zeros to jump in general; the graph-theoretic condition in

Theorem 6 is sufficient to guarantee that this does not happen,

and hence that the phase property is maintained.

The following lemma shows that, if there is a directed edge

from input vertex to output vertex, any proportional controller

acting between the input vertex and another vertex maintains

minimum-phase characteristic of the system.

Lemma 7: Consider the network input-output model (2),

and assume that a proportional controller P = eqk(xj − xq)
is applied. Consider any input-output channel across a network

link (i.e. there is a directed edge from the input to the output

vertex in the network graph G), which is adjacent to the built

controller (i.e. q = i). Then the phase property of the network

input-output model is maintained.

The following theorem identifies further conditions under

which a proportional controller cannot influence the phase

property of the network input-output model, no matter what

the gain. In particular, in the case where there is only a single

path between the input and output, we show in the following

theorem that a proportional controller does not influence the

phase property of the network provided that it does not

introduce any further input-output paths: indeed, both the

uncontrolled and controlled models are both minimum phase.

We notice that this result builds on Lemma 3 in [17], which

addressed the single-path case in the uncontrolled model.

Theorem 8: Consider the input-output model (2). Assume

that either a local proportional controller P = −keqxq , or a

controller of the form P = keq(xj−xq), is applied, where k is

positive. Consider any input-output channel such that there is

only a single path between the input and output in the network

graph. Then the input-output model (2) is minimum phase if

adding the directed edge j → q in G does not create another

directed path from the input to the output.
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IV. EXAMPLE

The graph-theoretic results on control channel interactions

are illustrated in an example. The example is concerned specif-

ically with using remote controllers to improve zero locations,

in addition to improving system stability. We consider an

input-output model (2) with 8 nodes, with input and output

at nodes 1 and 3, respectively.

1

2

56

3

4

u y

7 8

Fig. 2: Graph G associated with a network with 8 nodes.

The following state matrix A is considered (see Fig. 2 for

an illustration of the network graph):

A =























−1.15 0.05 0 0 0 0 1 0

0.05 −0.2 0.05 0 0 0 0 0

0 0.05 −1.15 1 0 0 0 0

0 0 1 −3.1 1 0 0 1

0 0 0 1 −2.1 1 0 0

0 0 0 0 1 −2.1 1 0

1 0 0 0 0 1 −2.1 0

0 0 0 1 0 0 0 −1.1























The network input-output model has two zeros in the ORHP,

so it is non-minimum phase. Based on Corollary 2, consider

a local proportional controller at node 7 (P = −e7k7(x7)).
We note that the corresponding vertex 7 is not on the special

input-output path. From Corollary 2, we would expect a high-

gain controller to promote minimum-phase dynamics. Indeed,

by increasing the gain of the controller, we see in Fig. 3 that

the real part of the dominant zero (i.e. the zero with maximum

real part) changes from positive to negative, and so the input-

output model becomes minimum phase with a high gain.

Fig. 3: The dependences of the dominant zero location (the

largest real part among the zeros) on local controller gain.
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