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Abstract—Control-channel interactions in a linear diffusive
network model are studied, with the aim of highlighting the role
of the network’s topology in such interactions. Specifically, the
influence of a built controller on the infinite and finite zero struc-
ture of a second control channel is characterized. The analysis
shows how the network’s graph topology, the relative positions
of the control channels, and the specifics of the built controller
influence the zero structure of the second control channel. In
particular, it is shown that the some control architectures can
introduce undesirable non-minimum-phase dynamics at remote
locations, while others are guaranteed to maintain or promote
minimum-phase dynamics.

I. INTRODUCTION

Many modern engineered networks, ranging from
terrestrial-scale infrastructures to the Internet-of-things,
use multiple feedback control systems in tandem [1]. These
control systems may act on different parts of the network,
operate at various temporal and spatial scales, and/or regulate
different aspects of the networks’ dynamics. Some of
these control systems may be coordinated, while others
are decentralized or even antagonistic. In such pervasively-
controlled networks, interactions among the control systems
can modulate wide-area dynamics, and thus have profound
consequences on the network’s global function. For example,
in the bulk power transmission network, the tuning of some
wide-area controls may dictate whether fault resolution by
other control systems is successful or causes poorly-damped
oscillations [2]-[4].

As control systems in engineered networks become more
sophisticated, interactions among them are becoming increas-
ingly impactful and also difficult to predict from experience
[5]. At their essence, however, one would expect the in-
teractions to depend on the topology of the network being
controlled, and the positions of the control channels relative
to this topology. Here, we undertake a study of the interactions
among control channels in a representative dynamical-network
model, with the aim of gaining topological insights into the
problem. Specifically, for a linear diffusive network model, we
study how the deployment and tuning of one control system
influences the transfer function seen across a second control
channel, with the main aim of developing topological insights
into the influence.
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The research described here contributes to an extensive
research effort on the dynamics and control of complex
networks, which spans across the physics, natural sciences,
and controls/circuits literature. This research direction was
initially focused on the emergence of global behaviors from
local interactions in networks (e.g., synchronization of coupled
oscillators) [6]. Subsequently, the controls community has
extensively studied control design for autonomous but com-
municating agents, to achieve global coordination. A common
theme in both directions has been to tie global stability and
performance to the graph topology of the network. Relevant to
the the study here, recently this research has been extended to-
ward understanding sparse control of already-built dynamical
networks, including observability and controllability [7]-[9],
input-output behaviors (finite- and infinite- zeros) [10]-[13],
predatory control [14], and resource optimization subject to
a budget constraint [15]. These efforts on sparse control give
insight into the ability of control channels to modulate the
network’s intrinsic dynamics. However, the studies have not
addressed how one control system in a network affects the
performance of other control channels, and hence their design.
The results presented here begin to address this question.
Ab initio design of decentralized controllers for large-scale
system has also been extensively studied [16]. Relative to
this literature, the work presented here instead considers the
implications of one control on other channels, reflecting that
diverse control capabilities are often built piecemeal as needs
arise in network operations rather than as a global solution.

Here, control-channel interactions are characterized for a
standard linear diffusive model defined on a digraph [10], [11],
[17]. To do this, the model is enhanced to explicitly represent
a linear feedback control system that is built into the network.
The dependence of another SISO channel’s transfer function
on this control system is examined. Specifically, we focus
on characterizing the infinite and finite zero structure of the
second channel, which dictate its input-output behavior, limit
control performance, and guide controller design [18]. The
analysis shows that the positions of the two control channels
relative to the network graph determine the zero structure.
Specifically, it is shown that particular controller positions
and architectures maintain or promote minimum-phase dy-
namics, but other control schemes may inadvertently cause
nonminimum phase dynamics at remote locations; whether or
not nonmimum-phase dynamics may result has much to do
with the lengths and strengths of paths between the input and
output, and the location of the built controller relative to these
paths.

1058



The remainder of the article is organized as follows. The
model and problem formulation are given in Section II. The
main results on control-channel interactions are presented in
Section III. Finally, some examples are presented in Section
IV. Due to space constraints, proofs and some details are
excluded, see [19].

II. MODELING AND PROBLEM FORMULATION

A linear diffusive network model defined on a digraph is
considered. Since our interest is in analysis of input-output
properties, the model is augmented to represent a single-
input single-output (SISO) channel of interest (see also [10],
[11], [17]). Here, the model is further enhanced to explicitly
represent an in-built linear feedback controller, which may use
measurement data from parts of the network to set one or more
inputs. This enhanced model is used to study the effect of an
existing or in-built control on another SISO channel’s transfer
function and, specifically, finite-zero structure.

A network with n components or nodes, labeled as
1,2,...,n, is considered. Each node j is associated with a
scalar state x;. The nodes’ states are nominally governed by
a linear dynamical model with diffusive state matrix A, and
are further modulated by an in-built feedback control. The in-
built feedback control is assumed to be a linear state-space
dynamical system which processes a scalar combination of
state-variable measurements (e.g., a single state variable or
a difference of them) to set an additive input, typically at a
single node. Formally, the feedback is modeled as an additive
vector input signal to the state dynamics, which we denote as
P. For most of the analyses pursued here, P is assumed to
have only one nonzero entry. Specifically, the control vector
P is assumed to be determined from the state vector x
according to a Laplace-domain relationship of the following
form: P = e H,.(s)z” x, where the vector z indicates what
combination of state variables are being used in feedback, e,
is 0-1 indicator vector which shows the single node ¢ that
is being actuated by the in-built controller, and H.(s) is the
transfer function of the in-built controller. The nominal model
for the dynamical network as a whole, including the in-built
controller, is thus:

x=Ax+P (1)
P=e,H.(s5)z"x

where x = [z ... xn]T is the full state of the network. The
state matrix A is assumed to be a M-matrix: its off-diagonal
entries are assumed to be nonnegative, while the diagonal
entries are negative and satisfy A;; < _Z;‘L:l,j;él A
This model encompasses many of the canonical models for
synchronization/consensus, diffusion, and spread in dynamical
networks (e.g., [20], [21]). It is worth stressing that the matrix
A need not be symmetric. Since the state matrix encodes
the topology of the network, it is referred to as the graph
matrix. While the primary focus is on built controllers that
actuate a single node, we alternatively also consider the
common circumstance that the built controller incorporates

local proportional controllers at multiple nodes. In this case,
the control vector takes the form P = — 3", (. e;k;x;, where
V4 is a subset of the nodes in the network.

The goal of this paper is to study how the deployment and
tuning of the in-built controller affects the characteristics of
another channel of interest. As in [11], a single-input single-
output channel is considered, which is defined by an additive
input at a single network node 7, and an output which measures
the state at a single node (labeled n without loss of generality).
The full model of the system, with the SISO channel of interest
included, is thus given by:

Xx=Ax+P +eu 2)
P =e,H.(s)z" x

y:er

where w is the scalar input signal acting on the node ¢, and
the output y is equal to the state of node n. The focus of our
study is to characterize the transfer function of the channel of
interest (i.e., the transfer function from w to y). The channel
of interest may be another control channel in the network, or
may capture other input-output behaviors of interest (e.g., a
disturbance response that is a concern to network operators).

Since topological results are sought, it is convenient to
associate a graph with the network dynamics. Specifically, a
weighted digraph G with n vertices is defined, where each
vertex [ = 1,2,...,n in the graph corresponds to the network
node [. Formally, an arc (directed edge) is drawn from vertex
[ to vertex j in the graph ({,j distinct) if and only if A;; # 0,
and is assigned a weight of A;;. The vertices corresponding
to the input and output network nodes are referred to as the
input and output vertices. The state matrix A can be viewed
as (the transpose of) a grounded Laplacian matrix associated
with the directed graph. In this paper, the notation d,; is used
the directed distance from vertex a to vertex b in the digraph

G.

We aim to characterize the influence of local network
controls on the input-output properties of a channel of interest.
Specifically, the transfer function from w to y is characterized
in terms of: 1) the network graph G, 2) the structure of the
in-built controller P, and 3) the position of the channel of
interest. The poles of this transfer function depend solely on
the native network dynamics and the in-built control (not the
particular channel considered), and their analysis and design
are traditional controls concepts. Here, the finite zeros of
the channel, including particularly the presence or absence
of nonminimum-phase zeros, are analyzed. It is well known
that the zeros are invariants which place essential limits on
feedback control and specify channel response characteristics
[18]. Particularly, the presence of nonminimum-phase zeros
place essential limits on control performance (e.g., reference
tracking or disturbance rejection error). Thus, the analyses
pursued here explore how one controller in a network limits
and modulates other control channels.
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III. RESULTS

First, results connecting the network’s native structure (i.e.,
the uncontrolled network) with its zeros are reviewed and
extended (IIT.A). Then, the main results on control channel
interactions are presented, focusing first on controls that can
make the channel of interest minimum phase (III.B), and then
on controls that either make the channel nonminimum phase
(ITII.C) or do not influence the phase properties (IIL.D). The
results developed in this section assume that the network graph
is strongly connected; we focus on this case to avoid trivial
cases where the built controller does not have any influence
on the channel of interest.

A. Native Graph Structure and Zeros: Review and New Result

Two relationships between a network’s native graph topol-
ogy and the zeros of an input-output channel are briefly
reviewed [10]-[13], because they are a basis for the analysis of
controlled networks. A further result, concerned with networks
that comprise multiple sparsely-interfaced subnetworks, is also
developed. The results in this section assume that no control
has been implemented, i.e. P = 0.

A main outcome of previous research is that the pres-
ence/absence of nonminimum-phase zeros is closely depen-
dent on the lengths and strengths of paths between the input
and the output [10]-[13], [17]. In particular, if there is a
single path between the input and output, or the shortest path
is dominant, the network is necessarily minimum phase. In
contrast, if an alternate path between the input and output
is sufficiently long and strong, the network is guaranteed to
be nonminimum phase. These results are an important starting
point because they: 1) motivate studying whether implementa-
tion/tuning of controls can alter the zero structure arising from
the network topology, and 2) give insight into what control
schemes may remove or cause nonminimum-phase behaviors.
Two main results of this sort are the following:

1) Consider the input-output system (2) without controller,
i.e. for P = 0. The system is minimum phase if there is a
single directed path from the input vertex to the output vertex.
Also, the system is minimum phase if there are multiple input-
output paths provided that at least one path of minimum length
is made sufficiently strong, in these sense the edge weights on
this path are sufficiently scaled up.

2) Consider the input-output system (2) without controller,
ie. for P = 0. The system has closed right half plane
(CRHP) zeros if short paths between the input and output
are sufficiently weak. Precisely, consider the case where the
distance between the input and output on the network graph
is d;,. If there is at least one input-output path of length
din > din + 3, and all paths of length less than d;,, + 3 are
made sufficiently weak (i.e., at least one edge on each of these
paths is scaled down), the system is nonminimum phase.

Formal statements and proofs of the above results, and
bounds on edge weights that guarantee minimum-phase or
nonminimum-phase dynamics, can be found in [11], [17].

Many large-scale dynamical networks are interconnections
of multiple subnetworks, which may have distinct operational

paradigms or control authorities. For these networks, there is
interest in characterizing zeros of network channels in terms
of properties of the assimilated subnetworks. Such analyses
are also a starting point toward understanding control-channel
interactions among multiple network authorities. With this mo-
tivation in mind, a result on interconnections of subnetworks
is given in the following theorem. In particular, we show that
subnetworks that are interconnected by a single link preserve
minimum-phase behaviors in a certain sense.

The theorem requires some notation for singly-
interconnected subnetworks. Formally, the network input-
output model (2) without controller (P = 0) is considered.
Without loss of generality, two subnetworks in the network
model, comprising nodes 1,...,n; and n; + 1,...,n,
are considered. The state matrix A is partitioned in a
AaaAab
ApaAvp
n1 X ni matrix. Similarly, the state vector is partitioned as

commensurate way, as A = where A,, is an

Xa

Xb

be singly interconnected, if the network graph has a single
(possibly bi-directional) edge between the vertices 1,...,n,
and the vertices n; + 1,...,n. For a singly-interconnected
network, there is only one pair (j, k), where j = 1,...,mn
and kK = ny +1,...,n such that A;; and A ; are nonzero.
For a singly-interconnected network, the network input-output
model (2) can be expressed in terms of the following two
interconnected subsystem models:

Subsystem S, which has two inputs (i.e. u and z) and
one output (i.e. z1) as 51 : Xa = AgaXa +e€;u+€;A; 22 and
2 = el'x,.

Subsystem S5, which has one input (i.e. z1) and two outputs
(i.e. 22 and y) as Sy : Xp = ApXp + €p—pn, Ap 215 22 =
e/, Xpandy=el , xp

X = , where x, has n; entries. The network is said to

n—m

We find it convenient 1deﬁne the transfer function in subsys-
tem 57 from the input u to the output z; as Hi(s) = %1(;)).
Similarly, we define the transfer function in subsystem S5 from
input z; to the output i.e. y as Ha(s) = Z((ss)). We also find it
convenient to define the induced subgraphs of G on vertices
1,...,n1and ny +1,...,n as G and G, respectively. For a
singly interconnected network, the graph G contains a single

edge between subgraphs GG; and G, see Fig. 1.

Fig. 1: A network comprising two subnetworks that are
connected by a single line.

Theorem 1: Consider a network input-output model which
is made up of singly-interconnected subnetworks. The zeros of
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the full input-output dynamic model (2) are contained within:
1) the zeros of the transfer function Hy(s), 2) the zeros
of the transfer function Hs(s), and 3) the (stable) poles of
subsystems S; and So. Further, all right half plane zeros of
the transfer functions H; and Ho are necessarily zeros of the
full input-output dynamic model (2).

Theorem 1 shows that connecting two minimum phase dy-
namic networks by an bi-directional edge results in minimum
phase behavior in the interconnected network. In other words,
a network with two connected areas will maintain minimum-
phase characteristics of the individual ones, provided that only
a single edge connects the two areas. On the other hand, if
two areas are connected by more than one edge, non-minimum
phase behaviors may result even if the transfer functions for
each area are minimum phase.

B. Control Schemes that Promote Minimum-Phase Dynamics

Control strategies are developed that yield minimum-phase
dynamics on channels of interest. First, the following two
simple theorems demonstrate that a high gain controller acting
between the input and output nodes of a channel can be used to
make the channel minimum phase. The first theorem considers
a simple proportional controller, and the second addresses
proportional-derivative control.

Theorem 2: Consider the network input-output model (2).
Assume that a proportional controller is applied across the
input-output channel of interest, i.e. P = e, k(xz; — x,,). Then,
1) the relative degree of the system (2) is two, and 2) the model
is asymptotically stable and minimum phase for all sufficiently
large feedback gains k (i.e., for all £ > k, for some k).

Theorem 3: Consider the network input-output model
(2). Assume that a proportional-derivative controller is ap-
plied across the input-output channel of interest, i.e. P =
e, [k(xl —x,) + q%(ri — a:n)] Then, 1) the relative degree
of the system with model (2) is equal to two, and 2) the model
is asymptotically stable and minimum phase for all sufficiently
large feedback gains k (i.e., for all £ > k for some k) and any
qg <1
The above theorems show that, by applying a strong feedback
of the state difference across a channel of interest, that channel
can be made minimum phase.

The following results show that local controllers with
sufficiently large gain applied remotely to an input-output
channel of interest can also be used to achieve minimum-phase
dynamics on that channel. These results require some further
terminology regarding the network input-output model. The
term special input-output path is used to refer to a path of
minimum length (least number of edges) between the input
and output in graph G. As defined before, the notation d;,, is
used for the length of the special input-output path, i.e. for
the distance between the input vertex ¢ and output vertex n.
Additionally, we define a modified system based on a subgraph
of G. Specifically, we consider the uncontrolled input-output
model, with a subset of vertices deleted. Formally, let us
consider a subset of vertices V;, C {1,...,n}, which does not
include the input and output vertices (z and n). Let us also

define the vectors egvh) as a modified version of the vector

e,, where the entries i € Vj, are omitted. Similarly, A(») is
defined as a submatrix of A obtained by deleting the rows
and columns specified in V;. Then, the deletion subsystem is

defined as:
x(Vo) — A(Vo) (Vb)

(Vb)

(Vb)a (3)

j=e (Vb)7

where x(V+), @, and 7 are the state, input, and output, respec-
tively. The deletion system (3) is associated with a weighted
directed deletion graph G("*) = G — V}, . Also, we define
dl(:b) as the distance between the input and output vertices
(i.e. from vertex i to n) in graph G(V»)

First, a key theorem is presented that characterizes the
finite zeros of the network input-output model, when local
proportional controllers are applied at a subset of network
nodes.

Theorem 4: Consider the network input-output model (2).
Assume that local proportional controllers are applied at
network nodes in the set V;, ie. P = *dev ekj(x;).
Also, suppose that the input-output channel is remote from
the local controllers (i,n ¢ V}), and that dl(.:jb) = d;,,. When
the gains k; (j € V) are scaled up, a subset of the zeros of
(2) approach the zeros of the deletion system (3), while all
other zeros are in open left half plane (OLHP).

The theorem immediately permits us to define local pro-
portional control schemes that make the input-output model
minimum phase, as formalized in the following corollaries.

Corollary 1: Consider the network input-output model (2).
Assume that local proportional controllers are applied at
network nodes in the set Vj, ie. P = —3 . . e;k;(z;),
and consider an input-output channel that is remote from the
local controllers (i,n ¢ V4). When the gains k; (j € V) are
sufficiently scaled up, the system (2) is minimum phase if
dEan) = d;;, and the deletion system (3) is minimum phase.

Corollary 2: Consider the network input-output model
(2). Say that local proportional controllers are applied at
the network nodes specified in the set V3, ie. P =
—_jev, €jk;j(z;). Consider an input-output channel that is
remote from the controllers (i,n ¢ V;). When the gains k;
(3 € V) are sufficiently scaled up, the system (2) is minimum
phase if d,g,:jb = d;,, and the network graph after removing all
vertices specified in V4 (i.e. G(Y»)) has a single path between
the input and output vertices.

Remark: Per Corollary 2, one way to make a system
minimum phase is to put high gain local controllers at all
vertices adjacent to special input-output path.

C. Controls that Cause Nonminimum-Phase Dynamics

In many large-scale networks, there is a significant con-
cern that the actions of a control authority may make other
regulation and control tasks difficult, or alter properties of
remote input-output channels in undesirable ways. For in-
stance, operators of the electric power grid have recognized
that newly-integrated fast controls may alter performance of
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other controls, or cause unexpected disturbance responses [13].
These concerns suggest that, while controllers are typically
designed to achieve desirable internal properties, they may
incidentally alter the input-output characteristics of remote
channels in undesirable ways (e.g., cause the channel to
become nonminimum phase, or increase susceptibility to dis-
turbances). Here, we identify conditions under which the built
control causes the network’s input-output channel to become
non-minimum-phase.

First, a simple result is given which shows that a high-
gain nonminimum-phase controller or a low-gain unstable
controller necessarily makes all remote channels nonminimum
phase. While it is not typical to use nonminimum-phase or
unstable controllers, there is some motivation for studying
this case. First, the presence of delays and other unmodeled
dynamics in the controller implementation may introduce non-
minimum-phase characteristics in the feedback block, whose
impacts across the network are of interest. Also, in some
special cases, unstable or nonminimum-phase controllers are
indeed needed (see e.g. [22]).

Lemma 5: Consider the input-output model (2). Assume that
the controller P = e, H.(s)z; is applied. Consider any input-
output channel that is either remote from the built controller
(i.e. j # i,n and q # i,n), or alternately the channel across
the built controller (i.e. j = ¢ and ¢ = n). Also assume that
dij + dqn #* din + dqj. Then:

o If the controller transfer function H.(s) = kH,(s) is
non-minimum phase, then the input-output model (2) is
non-minimum phase for all sufficiently large feedback
gains k (i.e., for all £ > k for some k > 0).

o If the controller transfer function H.(s) = kH,(s) is
unstable, then the input-output model (2) is non-minimum
phase for all sufficiently small feedback gains k (i.e., for
all 0 < k < k for some k > 0).

The main concept underlying the result is that the zeros
of remote channels approach the controller’s zeros when a
high-gain feedback is used. Also, the zeros of remote channels
approach the controller’s poles when a low-gain feedback is
used. Note that in cases discussed in previous lemma, the
system becomes unstable, but we have seen cases that by
increasing or decreasing the gain, first nonminimum-phase
behavior appears and then instability occurs.

D. Control Schemes that Do Not Alter Channel Phase Char-
acteristics

Often, it is important to ascertain whether a control scheme
can alter a channel’s phase characteristics, and specifically
whether the control will preserve minimum phase dynamics on
the channel. The following theorems identify control schemes
that are guaranteed to maintain minimum-phase dynamics, i.e.
not to change a minimum-phase channel to a nonminimum-
phase channel. For this development, we say that the phase
property of the network input-output model is maintained,
to indicate that the model remains strictly minimum phase
(respectively strictly nonminimum phase) upon inclusion of

the controller P when the uncontrolled model is strictly
minimum phase (respectively strictly nonminimum phase).

First, it is shown that low-gain proportional control schemes
maintain the phase property of channels, provided that they do
not alter the network structure in a certain sense.

Theorem 6: Consider the network input-output model (2),
and assume that a controller P = ke,z; or P = ke, (z; — z,)
is applied. Also, consider the network graph G as well as a
modified graph G where the directed edge j — ¢ is added to
G. Consider any input-output channel. If the distance between
the input and output vertices in the original and modified
graphs is identical, then the phase property of the network
input-output model is maintained for any sufficiently small
gain k ( i.e. for all k¥ < f for some threshold f < c0).

Remark: The conditions for maintaining the phase property
in Theorem 6 is necessarily satisfied, if the proportional
controller is local (¢ = j), or acts across a link that is already
present in the network. Likewise, it is necessarily satisfied if
the channel of interest is local (i = n), or is placed across a
network link.

Remark: Low-gain controllers necessarily only move system
eigenvalues, and hence poles of any defined channel, by a
small amount. In contrast, they can introduce/remove zeros or
cause zeros to jump in general; the graph-theoretic condition in
Theorem 6 is sufficient to guarantee that this does not happen,
and hence that the phase property is maintained.

The following lemma shows that, if there is a directed edge
from input vertex to output vertex, any proportional controller
acting between the input vertex and another vertex maintains
minimum-phase characteristic of the system.

Lemma 7: Consider the network input-output model (2),
and assume that a proportional controller P = e k(z; — z4)
is applied. Consider any input-output channel across a network
link (i.e. there is a directed edge from the input to the output
vertex in the network graph G), which is adjacent to the built
controller (i.e. ¢ = 7). Then the phase property of the network
input-output model is maintained.

The following theorem identifies further conditions under
which a proportional controller cannot influence the phase
property of the network input-output model, no matter what
the gain. In particular, in the case where there is only a single
path between the input and output, we show in the following
theorem that a proportional controller does not influence the
phase property of the network provided that it does not
introduce any further input-output paths: indeed, both the
uncontrolled and controlled models are both minimum phase.
We notice that this result builds on Lemma 3 in [17], which
addressed the single-path case in the uncontrolled model.

Theorem 8: Consider the input-output model (2). Assume
that either a local proportional controller P = —ke,x,, or a
controller of the form P = ke, (x; —x,), is applied, where k is
positive. Consider any input-output channel such that there is
only a single path between the input and output in the network
graph. Then the input-output model (2) is minimum phase if
adding the directed edge j — ¢ in G does not create another
directed path from the input to the output.
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IV. EXAMPLE

The graph-theoretic results on control channel interactions
are illustrated in an example. The example is concerned specif-
ically with using remote controllers to improve zero locations,
in addition to improving system stability. We consider an
input-output model (2) with 8 nodes, with input and output
at nodes 1 and 3, respectively.

Fig. 2: Graph G associated with a network with 8 nodes.

The following state matrix A is considered (see Fig. 2 for
an illustration of the network graph):

—1.
0.
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The network input-output model has two zeros in the ORHP,
0 it is non-minimum phase. Based on Corollary 2, consider
a local proportional controller at node 7 (P = —erk(x7)).
We note that the corresponding vertex 7 is not on the special
input-output path. From Corollary 2, we would expect a high-
gain controller to promote minimum-phase dynamics. Indeed,
by increasing the gain of the controller, we see in Fig. 3 that
the real part of the dominant zero (i.e. the zero with maximum
real part) changes from positive to negative, and so the input-
output model becomes minimum phase with a high gain.

Dominant Zero

08

Maximum Real Part Among Zeros

Local Controller Gain K7

Fig. 3: The dependences of the dominant zero location (the
largest real part among the zeros) on local controller gain.
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