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Abstract— The estimation of nonrandom pole and residue
parameters from impulse-response data is revisited. Specifically,
for an expository example (a one-pole discrete-time system), the
Hammersley-Chapman-Robbins lower bound (HCRB) on the
estimation error variance is derived, and compared with the
widely-used Cramer-Rao bound (CRB). The HCRB is found to
be significantly tighter than the CRB over a range of parameter
values. Simplifications of the HCRB which admit analytical
expressions but are guaranteed to outperform the CRB are
also derived. The results indicate that CRB-based confidence
intervals for pole-residue estimates, which are being used in
several mode monitoring applications, need to be examined with
caution.

I. INTRODUCTION AND PROBLEM

FORMULATION

Parameter estimation for dynamical systems has been

extensively studied. Within this broad literature, one focus

has been on the estimation of the poles and residues of linear

time-invariant models, which are represented as unknown

(nonrandom) parameters, from noisy impulse-response data

[1], [2], [3], [4], [5], [6], [7]. Along with the development of

algorithms for estimation, bounds on the estimation perfor-

mance also have been obtained. Particularly, there has been

a considerable effort to compute Cramer-Rao lower bound

(CRB) on the error variance of pole and residue estimates,

for the case where the the observations are subject to

additive white Gaussian noise [1], [2], [3]. These bounds are

important because they give an indication of the practicality

of estimation, regardless of the estimator used. Recently, the

CRBs have found specific application in mode (pole/residue)

monitoring in complex infrastructures, such as monitoring

the time constants of fast power-system dynamics from

synchrophasor data, and estimating resonance phenomena in

flexible structures [8], [9], [10]. In these applications, the

CRBs are being used to give confidence intervals around pole

estimates, which can aid infrastructure operators in gauging

estimate fidelity in taking corrective actions. The bounds are

also being exploited to support sensor placement.

The CRBs on pole and residue estimates from impulse

response data are not guaranteed to be tight. In particular,

the problem of mode estimation from impulse response data

does not generally satisfy the regularity conditions which are
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needed to guarantee optimality of the maximum-likelihood

estimate and tightness of the CRB. The possible gap between

the CRB and best possible estimation performance is a signif-

icant concern in the mode-monitoring applications of current

interest, in that the confidence intervals on the estimates

may be misrepresented. Motivated by this concern, in this

work we develop the tighter Hammersley-Chapman-Robbins

bound (HCRB) on pole and residue estimates from impulse

response data [11], [12], for the simplest expository example

(a stable discrete-time one-pole system). Using this analysis,

the gap between the CRBs and HCRBs is characterized in

terms of the parameters of the model (the pole and residue,

the noise level, and the number of observations used). It is

found that the HCRB significantly improves on the CRB over

a wide range of parameter values, indicating the importance

of developing tighter lower bounds on mode estimates. Even

for the single-pole system, the HCRB computation is rather

intricate, and developing tractable generalizations for more

sophisticated models is challenging; we thus also pursue a

simplification which is still guaranteed to outperform the

CRB, but is computationally much more appealing.

A. Relevant Literature

Estimation of nonrandom signal or system parameters

from noisy observation data has been a focus of the controls,

signal processing, and statistics literatures. The research

presented here contributes to the performance analysis of

such estimators. Though a number of different analyses

and bounds have been developed, a particular focus has

been on the Cramer-Rao lower bound (CRB), because it

is relatively simple to compute yet has desirable theoretical

properties (e.g., tightness guarantees) in some settings. As

a starting point, CRBs on parameter estimates for mixtures

of exponentials (whether damped or undamped, complex

or real) in white noise have been developed in the classi-

cal signal processing and communications literature. These

analyses have been extended to encompass quasi-polynomial

signals, colored noise, and multiplicative noise, among other

features [13], [14], [15]. In parallel, the estimation of auto-

regressive moving-average (ARMA) model parameters from

noisy impulse-response data and ambient-noise-driven re-

sponses has been studied, and CRBs have been developed

[16], [17]. As a part of this effort, CRBs have been developed

on particularly on estimates of poles and residues, or alter-

nately poles and zeros [1]. The study [1] also explores the

dependence of the CRB on pole and zero locations, while [2]

develops graph-structural results for estimation performance

for linear dynamics defined on a network. CRBs have also
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been developed for two-dimensional modal analysis problem

[3] and for the multi-observation setting [18]. Relative to

these efforts, the main contribution of this study is to

evaluate the tightness of the CRB relative to the HCRB in an

expository example, and to pursue the development of lower

bounds that are tighter yet tractable.

The research presented here is also closely related to

the effort on the Hammersley-Chapman-Robbins bound

(HCRB), which provides a tighter lower bound on nonran-

dom parameter estimates than the CRB [11], [12] but has

been applied in a more limited way due to computational

challenges. Of note, the HCRB has been applied to thresh-

old prediction in direction-of-arrival (DOA) estimation and

source localization, since the CRB does not provide tight

bounds in the case of low SNR and limited data points

in these contexts [19], [20]. The HCRB has also recently

been used for estimating sparse non-random vectors in the

presence of Gaussian white noise [21], [22]. Likewise, the

HCRB is used for estimation of multiple change points in

time series, since the change-point location parameters are

discrete and the CRB is not applicable [23]. The HCRBs

for pole and residue estimates developed here are similarly

motivated. Specifically, the regularity condition required for

the CRB to be tight are not generally satisfied for the mode

estimation problem, hence the gap between the CRB and the

optimal estimator performance needs to be characterized, and

better bounds are desirable. This is the focus of the paper.

B. Problem Formulation

A single-pole discrete-time system, with transfer function

H(z) = C/(1 − az−1), is considered. The nonrandom

parameters a and C are the pole and residue of the system,

respectively. Noisy measurements are made of the system’s

response at the times k = 0, . . . , n, upon impulsive stim-

ulation at time k = 0. Specifically, the measured impulse

response is given by

y(k) = Cak + w(k) (1)

for k = 0, . . . , n, where Cak is the true impulse response of

the system, and w(k) is a zero-mean Gaussian white noise

with variance σ2.

The focus of this study is on estimation of the nonrandom

parameters a and C from the measured impulse response.

Specifically, lower bounds on the parameter estimation er-

ror (error variance) are established and characterized. The

following are the main analyses pursued in the article:

• Expressions for the HCRBs on the pole and residue es-

timates are determined. The bounds are first developed

for the cases that the pole or the residue are individually

estimated (the other parameter is known), and then the

joint estimation of both parameters is considered.

• The HCRB is compared with the CRB, as a function

of the pole location, residue value, noise variance, and

number of observations.

• The HCRB is computationally intensive to find and does

not admit fully analytical characterizations, because it

requires searching over the parameter space for extremal

values of a function. To overcome these limitations, a

simpler lower bound is also extracted from the HCRB

computation, which is tighter than the CRB but has an

explicit form.

II. REVIEW OF THE HCRB

The single and multiparameter versions of the HCRB are

briefly reviewed. The HCRB is a lower bound on the error

variance that can be achieved by any unbiased estimator

of a nonrandom (deterministic, unknown) parameter. This

bound is quite important since it can provide a measure of

the efficiency for estimators, and also provide confidence

intervals on the reliability of any obtained estimates.

Formally, consider estimation of a single nonrandom

parameter θ based on a set of observations x =
[

x1,x2, · · · ,xn

]

, which are random variables generated

according to the joint probability density function f(x1 =
x1,x2 = x2, · · · ,xn = xn; θ) or succinctly f(x; θ). An

unbiased estimator T (x) of the parameter θ from the obser-

vations is considered. The HCRB provides a lower bound on

the estimation error variance V ar{T (x)} = E{(T (x)−θ)2},

that holds for any unbiased estimator.

The HCRB on the estimation error variance denoted

HCRBθ is given by [11]

V ar{T (x)} ≥ sup
h

(

1

Eθ{Jθ}

)

= HCRBθ, (2)

where

Jθ =
1

h2
{[
f(x; θ + h)

f(x; θ)
]2 − 1} (3)

Here, the notation Eθ{·} means the expectation is taken with

respect to x, with the result parameterized by θ.

Next, consider an unbiased estimator T(x) for a non-

random parameter vector θ = [θ1 θ2 · · · θk]
T ∈ R

k based

on a set of observations x =
[

x1,x2, · · · ,xn

]

. The ob-

servations are modeled as random variables generated ac-

cording to the joint probability density function f(x1 =
x1,x2 = x2, · · · ,xn = xn;θ) or succinctly f(x;θ). The

HCRB provides a lower bound on the covariance matrix

COV {T(x)} = E{[T(x) − θ][T(x) − θ]T }, where the

diagonal entries of the covariance matrix are the estimation

error variances for each parameter θi, i = 1, 2, · · · , k.

The multiparameter version of unconstrained HCRB on

the covariance matrix denoted HCRBθ is given by [24]

COV {T(x)} ≥ sup
(

IHCRB
†
)

= HCRBθ (4)

where

IHCRB = [V ] Eθ

{

[
δfθ
fθ

]T [
δfθ
fθ

]

}

[V ]T (5)

Here [V ] is the concatenation of the direction vectors

v1,v2, · · ·vk ∈ R
k, and δfθ is the concatenation of the

finite differences of density functions due to changes in the

parameter θ ∈ R
k in the directions of v1,v2, · · ·vk ∈ R

k.

Specifically,

[V ] = [v1 v2 · · · vk] (6)

966



δfθ = [δ1fθ δ2fθ · · · δkfθ] (7)

δifθ =
fθ+hivi

− fθ
hi

, i = 1, 2, · · · , k (8)

Here h1, h2, · · · , hk are scalars. Note that, in (4) {·}† denotes

Moore-Penrose pseudo inverse, and the supremum is taken

over all possible direction vectors and respective magnitude

scalars.

A brief comparison of the HCRB with the widely-used

CRB is worthwhile. The HCRB does not require any of the

regularity assumptions of the CRB, but does require the weak

condition that the support of f(x;θ + hivi) is subset of

the support of f(x;θ) for i = 1, 2, · · · , k. Furthermore, the

HCRB is as tight as the CRB, with the two bounds coinciding

when the supremum is achieved at hi → 0 for all i with the

direction vectors taken as the unit vectors on R
k [11].

III. HCRB ANALYSIS FOR THE SINGLE-POLE SYSTEM

HCRBs are obtained on pole and residue estimates from

impulse response data given by (1) and compared with the

CRBs to get insight into the gap between the bounds. Sim-

plified bounds are also developed. The analysis is undertaken

first for the cases where only the pole or only the residue

needs to be estimated (Sections III-A and III-B), and then

the joint estimation of both parameters is considered. Due to

space constraints, proofs of the theorems have been removed,

see [25].

A. HCRB Analysis for Pole Estimation

First the HCRB is characterized in the case that only

the pole needs to be estimated (i.e., the residue is known),

which we refer to as the pole-only estimation problem. The

following theorem gives an expression for the HCRB:

Theorem 1 For the pole-only estimation problem, the HCRB

on the pole estimate is given by HCRBa = suph1
(Z) where

Z =
1

1
h2
1

[exp (C
2

σ2 S1)− 1]
, (9)

S1 =
n
∑

k=0

(p2k − 2qk + a2k)

=
1− p2n+2

1− p2
−

2(1− qn+1)

1− q
+

1− a2n+2

1− a2
,(10)

and p = (a+ h1), q = a(a+ h1). �

Several remarks about the result are worthwhile. First, it is

worth noting that Z serves as a lower bound on the estimator

error variance for any value of h1, and the HCRB is the

greatest of all such lower bounds over h1. Unfortunately, the

optimization to find the HCRB does not admit an analytical

treatment. However, the minimum value of 1
h2
1

[exp (C
2

σ2 S1)−

1], which corresponds to the supremum of Z, can readily be

found numerically. One easy way to do so is to take the

logarithm of this term and differentiate it with respect to h1,

which gives

φ1(h1) =
−2

h1
+

e
C

2

σ2 S1

exp (C
2

σ2 S1)− 1

C2

σ2
(S2 − aS3)(11)

where S2 =
∑n

k=0 kp
2k−1 = p−p2n+1+np2n+3−np2n+1

(1−p2)2 and

S3 =
∑n

k=0 kq
k−1 = 1−qn−nqn+nqn+1

(1−q)2 . Solving the equa-

tion φ1(h1) = 0 yields the value of h1 which minimizes
1
h2
1

[e
C

2

σ2 S3 − 1], and hence supremizes Z in the HCRB

expression. Alternately, one can also sweep over h1 to find

the supremum value.

Because the HCRB does not admit an explicit analytical

expression, it is appealing to develop simpler bounds that

are less tight than the HCRB, but outperform the CRB. Such

bounds make computation easier, give insight into the depen-

dence of estimator performance on the location of the pole,

and perhaps provide a route toward developing improved

lower bounds for more general systems. One way to develop

simpler lower bounds is to evaluate Z for particular values of

h1. It turns out that choosing h1 = −a yields a lower bound
1 that: 1) is guaranteed to be tighter than the CRB over a

range of parameter values, and 2) performs well in practice

in that it is close to the HCRB (see simulations section).

The following theorem formalizes that this bound improves

on the CRB:

Theorem 2 Consider the lower bound Q on the estimation

error variance obtained by evaluating Z as h1 approaches

−a, Q = limh1→−a Z. If either a or C is sufficiently small

in magnitude, it follows that Q is larger than the CRB on

the pole estimate, i.e. Q > CRBa. �

Since the CRB and the lower bound Q in Theorem 2

are both easy to compute, a simplified bound that is always

tighter than the CRB can be readily defined. Specifically, we

define the simplified HCRB (SHCRB) as

SHCRBa = max(Q,CRBa) (12)

From the definition, the SHCRB is clearly a lower bound on

the estimation error variance, and is at least as tight as the

CRB (and is strictly tighter if either the pole or the residue

is sufficiently small, per Theorem 2). The simulation results

presented later show that the bound performs well over a

wide range of parameter values.

B. HCRB analysis for residue-only estimation

The HCRB on the residue estimate in the case that the

pole is known, which we call residue-only estimation, is

considered. In this case, the CRB and HCRB are identical.

Further, the bounds are tight in the sense that the maximum-

likelihood estimator of the pole achieves the bound. Verifying

this simply requires noting that the measurements y[k] are a

linear function of the parameter to be estimated (the residue

C), subject to additive Gaussian noise with fixed variance.

Drawing on standard results for the CRB in the linear

Gaussian case, it follows that the CRB is achieved by the

maximum liklihood estimate. Since the HCRB is guaranteed

to be tighter than the CRB, it follows also that the two bounds

are identical. For the sake of completeness, it is helpful to

1Since S1 becomes undefined when h1 = −a according to (10), so we
take h1 → −a instead.

967



present the expression for the CRB/HCRB in this case, as is

done in the following lemma:

Lemma: For the residue-only estimation problem, the HCRB

and CRB on the estimation error variance are identically

given by: CRBC = HCRBC = σ2

S6
, where S6 =

∑n

k=0 a
2k = 1−a2n+2

1−a2 . �

C. HCRB Analysis for Joint Pole and Residue Estimation

Joint estimation of the pole and residue assuming that

both parameters are unknown is considered. The following

theorem gives an expression for the HCRB, for the joint

estimation problem.

Theorem 3 For the joint estimation problem, the HCRB is

HCRBa,C = suph1,h2

(

IHCRB
†
)

where IHCRB is a 2×2

matrix with the following entries:

I11 =
1

h2
1

[exp (
C2

σ2
S1)− 1] (13)

I22 =
1

h2
2

[exp (
h2
2

σ2
S6)− 1] (14)

I12 = I21 =
1

h1h2
[exp (

Ch2

σ2
S7)− 1] (15)

where S1 is given by (10) and

S6 =

n
∑

k=0

a2k =
1− a2n+2

1− a2
, (16)

S7 =

n
∑

k=0

(qk − a2k) =
1− qn+1

1− q
−

1− a2n+2

1− a2
, (17)

and, p = (a+ h1), q = a(a+ h1). �

Individual HCRBs for pole and residue estimation

errors can be found by taking the inverse of

IHCRB and considering the diagonal entries. This

yields HCRBa;a,C = suph1,h2

(

I22
I11I22−I2

12

)

and

HCRBC;a,C = suph1,h2

(

I11
I11I22−I2

12

)

. We notice that

Z1 =
(

I22
I11I22−I2

12

)

and Z2 =
(

I11
I11I22−I2

12

)

serve as lower

bounds for pole and residue estimation errors, respectively,

for any values of h1 and h2. The HCRBs are the greatest

of these lower bounds over h1 and h2.

As before, the HCRBs do not admit analytical solutions,

and finding the supremum over the two variables h1 and h2

may also be computationally expensive. Hence, it is again

appealing to develop simpler bounds that are less tight than

the HCRB, but outperform the CRB. One way to develop

simpler lower bounds is to evaluate Z1 and Z2 for particular

values of h1 and h2. In this case, choosing h1 = −a and

h2 = 0 yields lower bounds 2 that are guaranteed to be

tighter than the CRBs over a range of parameter values, and

perform well in practice in that they are close to the HCRBs

(see simulations section). The following theorem formalizes

that these bounds improve on the CRBs:

2Actually we take the limits h1 → −a and h2 → 0 instead of choosing
h1 = −a and h2 = 0, to avoid obtaining undefined expressions.

Theorem 4 For the joint estimation problem, consider the

lower bounds on the estimation error variances of pole

and residue obtained by evaluating Z1 and Z2, respec-

tively, as h1 approaches −a and h2 approaches 0, i.e.

Qa = limh1→−a, h2→0 Z1 and QC = limh1→−a, h2→0 Z2.

If either a or C is sufficiently small in magnitude, it follows

that Qa and QC are larger than their respective CRBs, i.e.

Qa > CRBa;a,C and QC > CRBC;a,C �

Since the CRBs and the lower bounds Qa and QC in The-

orem 4 are easy to compute, a simplified bound that is always

tighter than the CRBs can be readily defined. Specifically, we

define the simplified HCRBs (SHCRBs) for joint estimation

problem as SHCRBa;a,C = max(Qa, CRBa;a,C) and

SHCRBC;a,C = max(QC , CRBC;a,C).
From the definition, the SHCRBs are clearly lower bounds

on the estimation error variances, and are at least as tight as

the CRBs (and are strictly tighter if either the pole or the

residue is sufficiently small, per Theorem 4). The simulation

results presented later show that the bounds perform well

over a wide range of parameter values. It is worthwhile to

note that the improvement provided by SHCRBa;a,C will

be larger than that of SHCRBC;a,C , if either the residue or

pole is small.

IV. NUMERICAL COMPUTATIONS AND DISCUSSION

Numerical computations of the CRB, HCRB, and SHCRB

are undertaken, to gain further insight into the gaps between

the bounds and their dependencies on the pole and residue

locations. The bound computations are undertaken for poles

in the range 0 < a < 1 and residues in the range 0 < C <
∞; we observe that the bounds are symmetric for negative

values of a and C. For the simulations, a long time horizon

(n = 10000) was used, and the noise level was assumed to

be σ = 0.5 if not stated otherwise.

Bounds for the pole-only estimation problem are shown

as a function of the pole for three different residue values,

in Figures 1-3. The figures show that the bounds decrease

monotonically with the increase of the pole and also the

residue. Also, they become almost equal when the pole is

close to 0 or 1. For other values of the pole, there is a

significant gap between HCRB and CRB for small residue

values, but the gap decreases as the residue increases. The

proposed simplified bound (SHCRB) improves significantly

the CRB (equivalently, is close to the HCRB) when either the

pole or the residue is small. From the formal expressions, we

note that the CRB exhibits an inverse-square dependence on

the residue; the HCRB has a more complicated dependence,

which approaches the inverse-square dependence for larger

residues. Meanwhile, the expressions show that the bounds

increase with the noise variance, with the CRB having a

proportional dependence while the HCRB shows a more

complex relationship.

For the residue-only estimation problem, the HCRB and

CRB are identical (and achieved by the ML estimator).

The bound decreases with the pole location, as shown in

Figure 4. The bound does not depend on the residue, but is

proportional to the noise variance.
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Fig. 1. Pole-only estimation: lower bounds as a function of the pole, for
residue C = 0.25.
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Fig. 2. Pole-only estimation: lower bounds as a function of the pole, for
residue C = 1.

For the joint estimation case, the characteristics of the

bounds for pole and residue estimates are coherent with the

pole-only and residue-only cases, see Figures 5 and 6. The

figures show that the bounds decrease with the increase of

the pole and also with the residue. The bounds are nearly

equal when the pole is nearly 0 or nearly 1. For other pole

locations, there is a significant gap between HCRB and the

CRB if the residue is small, but the gap becomes smaller

for larger residues. The residue estimate shows a smaller

gap between HCRB and CRB than the pole estimate, but

the gap is non-zero. Meanwhile, the SHCRB significantly

improves on the CRB for both pole and residue estimation,

for the small values of poles or residues. Increasing noise

power increases the lower bound of variances, as expected.

The bounds are higher for the pole-only or residue-only

estimation for the same system, as expected.

Figures 7 and 8 show the dependency of the bounds for

very small set of observations (n = 5, σ = 0.5 ) and at high

noise (n = 10000, σ = 5) respectively for C = 0.25. As

we see from comparing Figures 5 and 8 for high noise, the
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Fig. 3. Pole-only estimation: lower bounds as a function of the pole, for
residue C = 5.
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Fig. 4. Residue-only estimation: lower bounds as a function of the pole,
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Fig. 5. Joint estimation: lower bounds on the pole and residue estimates
as a function of the pole, for C = 0.25.

gap between CRBs and HCRBs gets significantly larger and

SHCRBs improve on CRBs for a wider range of pole values.

And from comparing Figures 5 and 7 we see for very small

set of observations, the gap and improvement are significant

for the pole values around 1 and in fact unlike the asymptotic

case or very large set of observations, CRBs and HCRBs are

significantly different when the pole is nearly 1.

V. CONCLUSIONS

Parameter estimation for a one-pole discrete-time linear

system from noisy impule-response data has been con-

sidered. The Hammersley-Chapman-Robbins lower bound

(HCRB) has been derived, and compared with the Cramer-
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Fig. 6. Joint estimation: lower bounds on the pole and residue estimates
as a function of the pole, for C = 1.
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Fig. 7. Joint estimation: lower bounds on the pole and residue estimates
for very low set of observations (n = 5)

0 0.2 0.4 0.6 0.8 1

Pole →

0

100

200

300

400

500

600

L
o

w
e

r 
b

o
u

n
d

 →

Lower Bounds for Pole

HCRB

CRB

SHCRB

0 0.2 0.4 0.6 0.8 1

Pole →

0

5

10

15

20

25

L
o

w
e

r 
b

o
u

n
d

 →

Lower Bounds for Residue

HCRB

CRB

SHCRB

Fig. 8. Joint estimation: lower bounds on the pole and residue estimates
for high noise (σ = 5)

Rao lower bound (CRB) which is often used to present con-

fidence intervals on pole/residue estimates. A simplification

of the HCRB which works well over a range of parameter

values has also been developed. As a whole, the analyses

and associated numerical simulations demonstrate that there

is a significant gap between the HCRB and CRB, for a wide

range of parameter values. These results suggest that caution

is required in using the CRB to present confidence intervals

on pole/residue estimates, or design sensing schemes to

achieve small bounds. In particular, estimates of dominant

(slow) poles may be significantly worse than indicated by

the CRBs. Given the gap between the bounds, there is a

strong motivation to develop improved bounds for general

linear systems, and also to ascertain whether the HCRB is

in fact tight; these are possible directions of future work.
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