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Tighter Lower Bounds on the Error Variance of Pole and Residue
Estimates from Impulse Response Data: an Expository Example
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Abstract—The estimation of nonrandom pole and residue
parameters from impulse-response data is revisited. Specifically,
for an expository example (a one-pole discrete-time system), the
Hammersley-Chapman-Robbins lower bound (HCRB) on the
estimation error variance is derived, and compared with the
widely-used Cramer-Rao bound (CRB). The HCRB is found to
be significantly tighter than the CRB over a range of parameter
values. Simplifications of the HCRB which admit analytical
expressions but are guaranteed to outperform the CRB are
also derived. The results indicate that CRB-based confidence
intervals for pole-residue estimates, which are being used in
several mode monitoring applications, need to be examined with
caution.

[. INTRODUCTION AND PROBLEM
FORMULATION

Parameter estimation for dynamical systems has been
extensively studied. Within this broad literature, one focus
has been on the estimation of the poles and residues of linear
time-invariant models, which are represented as unknown
(nonrandom) parameters, from noisy impulse-response data
[11, 2], [3], [4], [5], [6], [7]. Along with the development of
algorithms for estimation, bounds on the estimation perfor-
mance also have been obtained. Particularly, there has been
a considerable effort to compute Cramer-Rao lower bound
(CRB) on the error variance of pole and residue estimates,
for the case where the the observations are subject to
additive white Gaussian noise [1], [2], [3]. These bounds are
important because they give an indication of the practicality
of estimation, regardless of the estimator used. Recently, the
CRBs have found specific application in mode (pole/residue)
monitoring in complex infrastructures, such as monitoring
the time constants of fast power-system dynamics from
synchrophasor data, and estimating resonance phenomena in
flexible structures [8], [9], [10]. In these applications, the
CRBs are being used to give confidence intervals around pole
estimates, which can aid infrastructure operators in gauging
estimate fidelity in taking corrective actions. The bounds are
also being exploited to support sensor placement.

The CRBs on pole and residue estimates from impulse
response data are not guaranteed to be tight. In particular,
the problem of mode estimation from impulse response data
does not generally satisfy the regularity conditions which are
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needed to guarantee optimality of the maximum-likelihood
estimate and tightness of the CRB. The possible gap between
the CRB and best possible estimation performance is a signif-
icant concern in the mode-monitoring applications of current
interest, in that the confidence intervals on the estimates
may be misrepresented. Motivated by this concern, in this
work we develop the tighter Hammersley-Chapman-Robbins
bound (HCRB) on pole and residue estimates from impulse
response data [11], [12], for the simplest expository example
(a stable discrete-time one-pole system). Using this analysis,
the gap between the CRBs and HCRBs is characterized in
terms of the parameters of the model (the pole and residue,
the noise level, and the number of observations used). It is
found that the HCRB significantly improves on the CRB over
a wide range of parameter values, indicating the importance
of developing tighter lower bounds on mode estimates. Even
for the single-pole system, the HCRB computation is rather
intricate, and developing tractable generalizations for more
sophisticated models is challenging; we thus also pursue a
simplification which is still guaranteed to outperform the
CRB, but is computationally much more appealing.

A. Relevant Literature

Estimation of nonrandom signal or system parameters
from noisy observation data has been a focus of the controls,
signal processing, and statistics literatures. The research
presented here contributes to the performance analysis of
such estimators. Though a number of different analyses
and bounds have been developed, a particular focus has
been on the Cramer-Rao lower bound (CRB), because it
is relatively simple to compute yet has desirable theoretical
properties (e.g., tightness guarantees) in some settings. As
a starting point, CRBs on parameter estimates for mixtures
of exponentials (whether damped or undamped, complex
or real) in white noise have been developed in the classi-
cal signal processing and communications literature. These
analyses have been extended to encompass quasi-polynomial
signals, colored noise, and multiplicative noise, among other
features [13], [14], [15]. In parallel, the estimation of auto-
regressive moving-average (ARMA) model parameters from
noisy impulse-response data and ambient-noise-driven re-
sponses has been studied, and CRBs have been developed
[16], [17]. As a part of this effort, CRBs have been developed
on particularly on estimates of poles and residues, or alter-
nately poles and zeros [1]. The study [1] also explores the
dependence of the CRB on pole and zero locations, while [2]
develops graph-structural results for estimation performance
for linear dynamics defined on a network. CRBs have also
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been developed for two-dimensional modal analysis problem
[3] and for the multi-observation setting [18]. Relative to
these efforts, the main contribution of this study is to
evaluate the tightness of the CRB relative to the HCRB in an
expository example, and to pursue the development of lower
bounds that are tighter yet tractable.

The research presented here is also closely related to
the effort on the Hammersley-Chapman-Robbins bound
(HCRB), which provides a tighter lower bound on nonran-
dom parameter estimates than the CRB [11], [12] but has
been applied in a more limited way due to computational
challenges. Of note, the HCRB has been applied to thresh-
old prediction in direction-of-arrival (DOA) estimation and
source localization, since the CRB does not provide tight
bounds in the case of low SNR and limited data points
in these contexts [19], [20]. The HCRB has also recently
been used for estimating sparse non-random vectors in the
presence of Gaussian white noise [21], [22]. Likewise, the
HCRB is used for estimation of multiple change points in
time series, since the change-point location parameters are
discrete and the CRB is not applicable [23]. The HCRBs
for pole and residue estimates developed here are similarly
motivated. Specifically, the regularity condition required for
the CRB to be tight are not generally satisfied for the mode
estimation problem, hence the gap between the CRB and the
optimal estimator performance needs to be characterized, and
better bounds are desirable. This is the focus of the paper.

B. Problem Formulation

A single-pole discrete-time system, with transfer function
H(z) C/(1 — az™'), is considered. The nonrandom
parameters a and C' are the pole and residue of the system,
respectively. Noisy measurements are made of the system’s
response at the times £ = 0,...,n, upon impulsive stim-
ulation at time k = 0. Specifically, the measured impulse
response is given by

y(k) = Cad* + w(k)

(D

for k =0, ...,n, where Ca” is the true impulse response of
the system, and w(k) is a zero-mean Gaussian white noise
with variance o2.

The focus of this study is on estimation of the nonrandom
parameters ¢ and C' from the measured impulse response.
Specifically, lower bounds on the parameter estimation er-
ror (error variance) are established and characterized. The
following are the main analyses pursued in the article:

o Expressions for the HCRBs on the pole and residue es-
timates are determined. The bounds are first developed
for the cases that the pole or the residue are individually
estimated (the other parameter is known), and then the
joint estimation of both parameters is considered.

The HCRB is compared with the CRB, as a function
of the pole location, residue value, noise variance, and
number of observations.

The HCRB is computationally intensive to find and does
not admit fully analytical characterizations, because it
requires searching over the parameter space for extremal
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values of a function. To overcome these limitations, a
simpler lower bound is also extracted from the HCRB
computation, which is tighter than the CRB but has an
explicit form.

II. REVIEW OF THE HCRB

The single and multiparameter versions of the HCRB are
briefly reviewed. The HCRB is a lower bound on the error
variance that can be achieved by any unbiased estimator
of a nonrandom (deterministic, unknown) parameter. This
bound is quite important since it can provide a measure of
the efficiency for estimators, and also provide confidence
intervals on the reliability of any obtained estimates.

Formally, consider estimation of a single nonrandom
parameter 6 based on a set of observations x
[xhxz, s 7xn], which are random variables generated
according to the joint probability density function f(x; =
Z1,X2 = Ta, -+ ,Xnp = Tp;0) or succinctly f(x;6). An
unbiased estimator 7'(x) of the parameter 6 from the obser-
vations is considered. The HCRB provides a lower bound on
the estimation error variance Var{T(x)} = E{(T(z)—0)?},
that holds for any unbiased estimator.

The HCRB on the estimation error variance denoted
HCRBy is given by [11]

1
Var{T(x)} > s% <E9{J9}) = HCRBqy, (2)
where
1 f(x;0+h)

Here, the notation Fy{-} means the expectation is taken with
respect to x, with the result parameterized by 6.

Next, consider an unbiased estimator T(x) for a non-
random parameter vector @ = [0 0y ---0;]T € RF based
on a set of observations x = [X1,X2, - ,Xn|. The ob-
servations are modeled as random variables generated ac-
cording to the joint probability density function f(x; =
X1,Xg = Tg, -+ ,Xn = Zn;0) or succinctly f(x;0). The
HCRB provides a lower bound on the covariance matrix
COV{T(x)} E{[T(x) — 6][T(x) — 0]T}, where the
diagonal entries of the covariance matrix are the estimation
error variances for each parameter 0;, i = 1,2,--- , k.

The multiparameter version of unconstrained HCRB on
the covariance matrix denoted HC RBy is given by [24]

COVAT(x)} = sup (Tncns') = HCRBy  (4)
where
Tyens = [V] Fo {[‘Sf"]T [‘Sf"]} VT )
0 fo

Here [V] is the concatenation of the direction vectors
Vi,Va, vy € RF and 6fg is the concatenation of the
finite differences of density functions due to changes in the
parameter 6 € RF in the directions of v1,va, - v, € R*.
Specifically,

V] =[vi v (6)

Vk]



dfo =[01fe O2fe Orfol (7)

5:fo = f9+hi;;i —feo ’
i
Here hy, ha, - - - , hy, are scalars. Note that, in (4) {-}T denotes
Moore-Penrose pseudo inverse, and the supremum is taken
over all possible direction vectors and respective magnitude
scalars.

A brief comparison of the HCRB with the widely-used
CRB is worthwhile. The HCRB does not require any of the
regularity assumptions of the CRB, but does require the weak
condition that the support of f(x;60 + h;v;) is subset of
the support of f(x;80) for i = 1,2,--- , k. Furthermore, the
HCRB is as tight as the CRB, with the two bounds coinciding
when the supremum is achieved at h; — 0 for all ¢ with the
direction vectors taken as the unit vectors on R* [11].

i:172a"'7k (8)

III. HCRB ANALYSIS FOR THE SINGLE-POLE SYSTEM

HCRBs are obtained on pole and residue estimates from
impulse response data given by (1) and compared with the
CRBs to get insight into the gap between the bounds. Sim-
plified bounds are also developed. The analysis is undertaken
first for the cases where only the pole or only the residue
needs to be estimated (Sections III-A and III-B), and then
the joint estimation of both parameters is considered. Due to
space constraints, proofs of the theorems have been removed,
see [25].

A. HCRB Analysis for Pole Estimation

First the HCRB is characterized in the case that only
the pole needs to be estimated (i.e., the residue is known),
which we refer to as the pole-only estimation problem. The
following theorem gives an expression for the HCRB:

Theorem 1 For the pole-only estimation problem, the HCRB
on the pole estimate is given by HCRB, = supy, (Z) where

1

Z = ; ©))
Elexp(Z81) — 1]
Sl _ (p2k _ qu + a2k>
k=0
1— 2n+2 2(1 — n+1 1— a2n+2
— p 5 _ ( q ) + 5 7(10)
1—p 1—g¢q 1—a
and p = (a+ h1), ¢ = ala + hy). O

Several remarks about the result are worthwhile. First, it is
worth noting that Z serves as a lower bound on the estimator
error variance for any value of hi, and the HCRB is the
greatest of all such lower bounds over h;. Unfortunately, the
optimization to find the HCRB does not admit an analytical
treatment. However, the minimum value of h% [exp (%S 1)—
1], which corresponds to the supremum of Z, can readily be
found numerically. One easy way to do so is to take the
logarithm of this term and differentiate it with respect to hj,
which gives

2
-2 e%sl 2

¢1(h1) = hil + WF(SQ — CLSg)(ll)

967

2n+41 +np2n+3 7np2n+1

where So = Y _ kp*hTl = Ty

—qg" = n n+41 .
Sy = Y p_okd" ! = %. Solving the equa-

tion ¢1(h1) = 0 yields the value of h; which minimizes
L [G%SS — 1], and hence supremizes Z in the HCRB

h?
eépression. Alternately, one can also sweep over h; to find
the supremum value.

Because the HCRB does not admit an explicit analytical
expression, it is appealing to develop simpler bounds that
are less tight than the HCRB, but outperform the CRB. Such
bounds make computation easier, give insight into the depen-
dence of estimator performance on the location of the pole,
and perhaps provide a route toward developing improved
lower bounds for more general systems. One way to develop
simpler lower bounds is to evaluate Z for particular values of
hy. It turns out that choosing h; = —a yields a lower bound
! that: 1) is guaranteed to be tighter than the CRB over a
range of parameter values, and 2) performs well in practice
in that it is close to the HCRB (see simulations section).
The following theorem formalizes that this bound improves
on the CRB:

p—p

and

Theorem 2 Consider the lower bound () on the estimation
error variance obtained by evaluating Z as hy approaches
—a, Q@ =limy, o Z. If either a or C is sufficiently small
in magnitude, it follows that Q) is larger than the CRB on
the pole estimate, i.e. Q > CRB,. O

Since the CRB and the lower bound @ in Theorem 2
are both easy to compute, a simplified bound that is always
tighter than the CRB can be readily defined. Specifically, we
define the simplified HCRB (SHCRB) as

SHCRB, = maz(Q,CRB,) (12)

From the definition, the SHCRB is clearly a lower bound on
the estimation error variance, and is at least as tight as the
CRB (and is strictly tighter if either the pole or the residue
is sufficiently small, per Theorem 2). The simulation results
presented later show that the bound performs well over a
wide range of parameter values.

B. HCRB analysis for residue-only estimation

The HCRB on the residue estimate in the case that the
pole is known, which we call residue-only estimation, is
considered. In this case, the CRB and HCRB are identical.
Further, the bounds are tight in the sense that the maximum-
likelihood estimator of the pole achieves the bound. Verifying
this simply requires noting that the measurements y[k] are a
linear function of the parameter to be estimated (the residue
(), subject to additive Gaussian noise with fixed variance.
Drawing on standard results for the CRB in the linear
Gaussian case, it follows that the CRB is achieved by the
maximum liklihood estimate. Since the HCRB is guaranteed
to be tighter than the CRB, it follows also that the two bounds
are identical. For the sake of completeness, it is helpful to

ISince S becomes undefined when h; = —a according to (10), so we
take h1 — —a instead.



present the expression for the CRB/HCRB in this case, as is
done in the following lemma:

Lemma: For the residue-only estimation problem, the HCRB

and CRB on the estimation error variange are identically

given by: CRBe = HCRB¢c = g—s where Sg =
n 7a2n+2
> k=0 a®t =1 T—a? 0

C. HCRB Analysis for Joint Pole and Residue Estimation

Joint estimation of the pole and residue assuming that
both parameters are unknown is considered. The following
theorem gives an expression for the HCRB, for the joint
estimation problem.

Theorem 3 For the joint estimation problem, the HCRB is
HCRB,,c = supy, p,

( IHCRBT) where IHCRB isa2x2
matrix with the following entries:

02
I = — —51)—1 13
11 h% [eXP(U2 1) ] (13)
1 h3
Iy = %[GXP (?SG) —1] (14)
1 Cho
lio=1 = —— —=57)—1 1
12 21 hyhy [exp ( o2 S7) ] 15)
where Sy is given by (10) and
n . 1— a2n+2
SG = Za% = ﬁ’ (16)
k=0
n 1— qn+1 1 — g2n+2
_ k_ 2ky _ _
Sz =Y (¢" —a**) T (D
k=0
and, p=(a+ hy), ¢ = ala+ hy). O

Individual HCRBs for pole and residue estimation
errors can be found by taking the inverse of
and considering the diagonal entries. This

. I
HCRBG,;(L,C buphl’hQ ﬁ and
HCRBcja,c = Supy, p, (Mﬁ) We notice that
I

71 = (m) and Z5 = (Iuélﬁ) serve as lower
bounds for pole and residue estimation errors, respectively,
for any values of h; and h,. The HCRBs are the greatest
of these lower bounds over h; and hs.

As before, the HCRBs do not admit analytical solutions,
and finding the supremum over the two variables Ay and ho
may also be computationally expensive. Hence, it is again
appealing to develop simpler bounds that are less tight than
the HCRB, but outperform the CRB. One way to develop
simpler lower bounds is to evaluate Z; and Z, for particular
values of hy and hs. In this case, choosing h; = —a and
hy = 0 yields lower bounds ? that are guaranteed to be
tighter than the CRBs over a range of parameter values, and
perform well in practice in that they are close to the HCRBs
(see simulations section). The following theorem formalizes
that these bounds improve on the CRBs:

Lncrs
yields

2Actually we take the limits A1 — —a and ho — 0O instead of choosing
—a and ho = 0, to avoid obtaining undefined expressions.

hi
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Theorem 4 For the joint estimation problem, consider the
lower bounds on the estimation error variances of pole
and residue obtained by evaluating Zy and Zs, respec-
tively, as hy approaches —a and ho approaches 0, i.e.
Qo = limp, 4, hy—0Z1 and Qc = limy, 4, hy—0 Zo.
If either a or C' is sufficiently small in magnitude, it follows
that Q, and Q¢ are larger than their respective CRBs, i.e.
Qo > CRBa;a,c and Q¢ > CRBC;a,C |

Since the CRBs and the lower bounds ), and Q¢ in The-
orem 4 are easy to compute, a simplified bound that is always
tighter than the CRBs can be readily defined. Specifically, we
define the simplified HCRBs (SHCRBs) for joint estimation
problem as SHCRBg,c = maz(Qq, CRBy4c) and
SHCRBCW’C = max(Qc, CRBc;(Lc).

From the definition, the SHCRBs are clearly lower bounds
on the estimation error variances, and are at least as tight as
the CRBs (and are strictly tighter if either the pole or the
residue is sufficiently small, per Theorem 4). The simulation
results presented later show that the bounds perform well
over a wide range of parameter values. It is worthwhile to
note that the improvement provided by SHCRB,.,,c will
be larger than that of SHCRBc.q,c, if either the residue or
pole is small.

IV. NUMERICAL COMPUTATIONS AND DISCUSSION

Numerical computations of the CRB, HCRB, and SHCRB
are undertaken, to gain further insight into the gaps between
the bounds and their dependencies on the pole and residue
locations. The bound computations are undertaken for poles
in the range 0 < a < 1 and residues in the range 0 < C' <
o0; we observe that the bounds are symmetric for negative
values of a and C'. For the simulations, a long time horizon
(n = 10000) was used, and the noise level was assumed to
be o = 0.5 if not stated otherwise.

Bounds for the pole-only estimation problem are shown
as a function of the pole for three different residue values,
in Figures 1-3. The figures show that the bounds decrease
monotonically with the increase of the pole and also the
residue. Also, they become almost equal when the pole is
close to 0 or 1. For other values of the pole, there is a
significant gap between HCRB and CRB for small residue
values, but the gap decreases as the residue increases. The
proposed simplified bound (SHCRB) improves significantly
the CRB (equivalently, is close to the HCRB) when either the
pole or the residue is small. From the formal expressions, we
note that the CRB exhibits an inverse-square dependence on
the residue; the HCRB has a more complicated dependence,
which approaches the inverse-square dependence for larger
residues. Meanwhile, the expressions show that the bounds
increase with the noise variance, with the CRB having a
proportional dependence while the HCRB shows a more
complex relationship.

For the residue-only estimation problem, the HCRB and
CRB are identical (and achieved by the ML estimator).
The bound decreases with the pole location, as shown in
Figure 4. The bound does not depend on the residue, but is
proportional to the noise variance.
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Pole-only estimation: lower bounds as a function of the pole, for

residue C' = 0.25.

Pole-only

Lower Bounds of Error Variance for C= 1

Fig. 4. Residue-only estimation: lower bounds
for residue C' = 1.
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Fig. 2. Pole-only estimation: lower bounds as a function of the pole, for
residue C' = 1. 3 0
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Pole — Pole —

For the joint estimation case, the characteristics of the
bounds for pole and residue estimates are coherent with the
pole-only and residue-only cases, see Figures 5 and 6. The
figures show that the bounds decrease with the increase of
the pole and also with the residue. The bounds are nearly
equal when the pole is nearly 0 or nearly 1. For other pole
locations, there is a significant gap between HCRB and the
CRB if the residue is small, but the gap becomes smaller
for larger residues. The residue estimate shows a smaller
gap between HCRB and CRB than the pole estimate, but
the gap is non-zero. Meanwhile, the SHCRB significantly
improves on the CRB for both pole and residue estimation,
for the small values of poles or residues. Increasing noise
power increases the lower bound of variances, as expected.
The bounds are higher for the pole-only or residue-only
estimation for the same system, as expected.

Figures 7 and 8 show the dependency of the bounds for
very small set of observations (n = 5, ¢ = 0.5 ) and at high
noise (n = 10000, 0 = 5) respectively for C' = 0.25. As
we see from comparing Figures 5 and 8 for high noise, the

Pole-only

Lower Bounds of Error Variance for C= 5

001

0009 |

0.008 |

0007

0.006 |

Lower bound —

Fig. 3. Pole-only estimation: lower bounds as a function of the pole, for
residue C = 5.
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Fig. 5. Joint estimation: lower bounds on the pole and residue estimates
as a function of the pole, for C' = 0.25.

gap between CRBs and HCRBs gets significantly larger and
SHCRBs improve on CRBs for a wider range of pole values.
And from comparing Figures 5 and 7 we see for very small
set of observations, the gap and improvement are significant
for the pole values around 1 and in fact unlike the asymptotic
case or very large set of observations, CRBs and HCRBs are
significantly different when the pole is nearly 1.

V. CONCLUSIONS

Parameter estimation for a one-pole discrete-time linear
system from noisy impule-response data has been con-
sidered. The Hammersley-Chapman-Robbins lower bound
(HCRB) has been derived, and compared with the Cramer-

Lower Bounds for Pole Lower Bounds for Residue

—HCRB
—CRB
—SHCRB

°
@

0.15

—HCRB
—CRB
04 — SHCRB

Lower bound —

°

Lower bound —

0.05 0.05

0 02 04 06 08 1 0 02 04 06 08 1
Pole — Pole —

Fig. 6. Joint estimation: lower bounds on the pole and residue estimates
as a function of the pole, for C' = 1.
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0.16

0 0.2 0.4 0.6

Pole —

0.2 0.4 0.6

Pole —

Fig. 7. Joint estimation: lower bounds on the pole and residue estimates
for very low set of observations (n = 5)
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I —CRB I3 —SHCRB
H s
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200
5
100
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Pole — Pole —

Fig. 8. Joint estimation: lower bounds on the pole and residue estimates
for high noise (o = 5)

Rao lower bound (CRB) which is often used to present con-
fidence intervals on pole/residue estimates. A simplification
of the HCRB which works well over a range of parameter
values has also been developed. As a whole, the analyses
and associated numerical simulations demonstrate that there
is a significant gap between the HCRB and CRB, for a wide
range of parameter values. These results suggest that caution
is required in using the CRB to present confidence intervals
on pole/residue estimates, or design sensing schemes to
achieve small bounds. In particular, estimates of dominant
(slow) poles may be significantly worse than indicated by
the CRBs. Given the gap between the bounds, there is a
strong motivation to develop improved bounds for general
linear systems, and also to ascertain whether the HCRB is
in fact tight; these are possible directions of future work.
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