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Abstract— This work examines metrics for target reachability
and source observability in dynamical networks, which are
especially relevant in a network security context. Specifically,
the energy required to control a target node in a network from a
remote input is characterized, and dually the fidelity with which
a source state can be estimated from a remote measurement is
studied. The work highlights an essential asymmetry between
the problems: We show that target reachability is often easy,
while source observability is almost always impossible. Several
spectral and graph-theoretic results are also presented, which
give structural insight into how easy or hard target control and
source estimation are.

I. INTRODUCTION

The integration of cyber-technologies into terrestrial-scale

infrastructure networks is providing diverse stakeholders

with unprecedented access to the networks’ sensors and

actuators [4], [13], [18], [28]. The growing access to in-

frastructure sensors and actuators has stimulated an inter-

disciplinary research effort on security and resilience of

complex cyber-physical infrastructures [7], [8], [12], [20],

[24], [26], [30]. As part of this effort, controls engineers have

sought to characterize the systemic impacts of local actuation

and measurement of network dynamics [17], [21], [23], [25],

[29], [33]. Specific research thrusts include characterizing

observability and controllability of canonical linear network

dynamics, and exploring structural representations of mani-

fest variables in dynamical networks [1], [5], [6], [11], [32],

[34], [35]. More recently, graph-theoretic characterizations

have also been obtained for the effort required to manipulate

the networks dynamics, and dually the fidelity of state

estimation or detection from noisy measurements, [9], [21],

[29], [33]. These results also connect to an earlier literature

on the spectral analysis of Gramian matrices in the controls-

engineering and physics literatures [2], [19], [22].

The research described here is also concerned with analyz-

ing the ease with which network dynamics can be monitored

and manipulated from local measurements and actuations,

from a graph-theoretic perspective. Rather than considering

*This material is based on research sponsored by the Department of
Homeland Security (DHS) Science and Technology Directorate, Homeland
Security Advanced Research Projects Agency (HSARPA), Cyber Security
Division (DHS S&T/HSARPA/CSD), LRBAA 12-07 via contract number
HSHQDC-15-C-B0056. All material in this paper represents the position of
the authors and not necessarily that of DHS. This work was also partially
supported by National Science Foundation Grants 1545104 and 1635184.

1A.Vosughi, S. Roy, and M. Xue are with the Department of Electrical
Engineering and Computer Science, Washington State University, Pullman,
WA 99164. Email: sroy@eecs.wsu.edu

2 C. Johnson and S. Warnick are with the Information and Decision
Algorithms Laboratories, Brigham Young University, Provo, UT 84602
Email: sean.warnick@gmail.com

observability and controllability in a global sense, however,

we focus here on targeted or local monitoring and manage-

ment tasks. Such ;ocal estimation and manipulation tasks

are often paradigmatic in large-scale infrastructures, given

the specialized goals and practical resource and information

limits of stakeholders. In this study, the ease or difficulty

of local estimation and manipulation of network processes

is characterized, in the context of a canonical discrete-time

linear dynamics defined on a graph which is actuated at a

single node and measured at a single node. The main goal

of this work is to develop such structural and graph-theoretic

insights into the ease of local estimation and manipulation,

which can . The research described here is aligned with a

few very recent works on targeted control in networks [10],

[15], [31]. Relative to these works, our study contributes

by: 1) considering local estimation in addition to control

and 2) developing structural results on the estimation/control

performance metrics. This study connects to a wide literature

on output controllability and partial-state observability [14],

[16], but pursues network-theoretic analyses.

A main contribution of this article is to highlight that

estimation of local states is fundamentally a more difficult

task than localized control. This comparison is further refined

to show that, for networks of large size, low-effort targeted

control of all individual states may be possible but efficient

estimation of all individual states is never possible for

symmetric topologies. The article also develops a number

of spectral and graph-theoretic results on local estimation

and control.

II. PROBLEM FORMULATION

This study is concerned with the energy required for

control and the effectiveness of estimation from noisy mea-

surements in dynamical networks. Specifically, we focus

on local notions of reachability and observability, which

we call target reachability and source observability. Target

reachability considers the ability of an input to drive a

particular network node’s state, i.e. an element in the state

vector, to a value1. Source observability considers the ability

to estimate the value of one particular network node from

a measurement. Interestingly, our analysis will show that

target reachability is often easy (requiring little energy),

while source observability is often hard (entailing significant

estimation error. At its essence, the asymmetry between the

1We note that target reachability is a specialization of the output reach-
ability/controllability concept, to the case where a single state variable is
being driven [3], [16]. However, out interest here is in relating this to the
graph.

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2873-3/17/$31.00 ©2017 IEEE 4032



concepts arises because ease of is promoted by reachable

subspaces, while estimation fidelity is governed by unob-

servable subspaces.

Formally, a network with n nodes labeled i = 1, . . . , n
is considered, in which each node i has a scalar state xi[k]
that evolves in discrete time. The network’s full state x[k] =[
x1[k] · · · xn[k]

]T
is governed by a stable discrete-time

linear dynamical model with state matrix A. Further, the

dynamics are amenable to actuation at one node s, which

we call the source node; and measurement at a second node

t, which we call the target node.

The first problem of interest is to characterize the effort

required to manipulate the state at the target node to a desired

value by designing the input at the source node. We call

this the target control (TC) problem. The dynamical model

considered for the TC problem is:

x[k + 1] = Ax[k] + esu[k], (1)

where es is a 0–1 indicator vector with entry s nonzero,

and the scalar u[k] is the designable input. The network is

assumed to be initially relaxed, i.e. x[0] = 0. The input u[k]
is to be designed to move the state at the target node to

a unit value (without loss of generality) at time k̂, so that

xt[k̂] = 1 or equivalently eTt x[k̂] = 1 where et is a 0–

1 indicator vector with entry t nonzero. Our main interest

is to characterize the minimum-energy input, measured in

a two-norm sense, required to achieve this goal. That is,

the targeted-control effort over a horizon k̂ is computed

as E(k̂) = minu[0],...,u[k̂−1]

∑k̂−1
k=0 u

2[k], subject to the the

goal state being achieved (xt[k̂] = 1). We primarily focus

on characterizing this minimum energy when ample time

is available for control, i.e. we seek to characterize E =
limk̂→∞

E(k̂). This infinite-horizon target-control energy

lower bounds the energy required over a finite horizon. It is

important to stress that our formulation of the TC problem

places no requirements on any network states except the

target state.

The second problem of interest is to characterize the

fidelity with which the initial state at the source node can

be estimated from noisy measurements taken from the target

node; we call this the source estimation (SE) problem. The

dynamical model considered for the SE problem is:

x[k + 1] = Ax[k]

y[k] = eTt x[k] +N [k], (2)

where N [k] is a zero-mean unit-variance white Gaussian

noise signal. The initial state x[0] is assumed to be a un-

known, nonrandom vector. Our interest is in determining the

highest fidelity with which the initial state of the source node,

i.e. xs[0] or eTs x[0], can be estimated from the sequence of

observations y[0], . . . , y[k̂ − 1]. Specifically, the estimation

fidelity F (k̂) is computed as the minimum achievable mean-

square error in the estimate among unbiased estimators of

the source node’s state. In analogy with the target control

problem, we primarily focus on the setting where ample data

is available, i.e. we seek to characterize F = limk̂→∞
F (k̂).

The effort required for target control, and the fidelity of

source estimation, are dependent on the topology of the

network. To develop topological results, it is convenient to

associate a graph Γ with the state matrix of the dynamical

model. Specifically, we define Γ to be a weighted digraph

with n vertices labeled 1, . . . , n, which correspond to the n

nodes in the network. An edge is drawn from vertex i to

vertex j in the graph (where i and j are not necessarily

distinct) if Aji is non-zero. The presence of the edge

indicates that the next state of vertex j depends on the current

state of vertex i. We note that self-loops (edges from a vertex

back to itself) are acknowledged, and also that edge weights

may be of either sign.

Three types of analyses are undertaken for the TC and

SE problems. First, algebraic expressions for the control

effort and estimation fidelity are reviewed, which are basic

consequences of the standard linear system theory. These

algebraic expressions also immediately yield a simple com-

parison between the control effort and estimation fidelity

– specifically, that SE is more difficult than TC. Second,

spectral and graph-theoretic results on the control effort are

obtained, which primarily demonstrate that TC is practical

for many networks. Third, spectral and graph-theoretic re-

sults on the estimation fidelity are obtained, which show that

SE is very often impractical in large networks.

III. PRELIMINARY ALGEBRAIC EXPRESSIONS AND

COMPARISON

Algebraic expressions for the target-control effort and

source-estimation fidelity follow readily from the standard

analysis of linear systems [27]. The following two lemmas

give algebraic expressions for the target-control effort and

source-estimation fidelity, respectively (we omit the proofs

since both results can be easily derived from classic linear

system theory):

Lemma 1: The minimum energy required for target con-

trol over the horizon k̂ is E(k̂) = 1
∑k̂−1

k=0
(eT

t Ak
es)2

.

Lemma 2: The minimum unbiased-estimator error vari-

ance (optimal fidelity) of source estimation over the hori-

zon k̂ is F (k̂) = eTs

(
Go(0, k̂)

)−1

es, where the ob-

servability Gramian Go(0, k̂) is given by Go(0, k̂) =∑k̂−1
k=0(A

T )kete
T
t A

k.

We notice that the estimation fidelity is the sth diag-

onal entry of the inverse of the observability Gramian,

while the target-control energy is the inverse of sth di-

agonal entry of the controllability Gramian Gc(0, k̂) =∑k̂−1
k=0 A

kese
T
s (A

T )k.

Although E(k̂) and F (k̂) are two different metrics (one

is an input energy and the other is the estimation error

variance), they both reflect the difficulty levels of the TC

and SE problems, respectively. Therefore, it is instructive

to compare the two metrics. This is done in the following

theorem:

Theorem 1: For any network, source and target location,

and horizon k̂, the target-control energy metric is majorized

by the source-estimation fidelity metric, i.e. E(k̂) ≤ F (k̂).
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The comparison given in Theorem 1 indicates that the

canonical target control problem is never harder than the

canonical source estimation problem, for a given network and

source/target locations. This formal comparison aligns with

the conceptual argument that local state estimation is hard

compared to local state control, because local control only

requires that one easily controllable direction has a projection

at the target location while local estimation requires that

no hard-to-estimate direction has a projection at the source

location. While Theorem 1 establishes a basic comparison,

however, it gives no insight into how hard local estimation

and control are in an absolute sense, nor into the performance

gap between them. The following results provide more

detailed answers to these questions, and tie the performance

to the network’s graph.

IV. STRUCTURAL AND GRAPH-THEORETIC RESULTS ON

TARGET CONTROL EFFORT

The purpose of this section is to develop some structural

and graph-theoretic insights into the target control effort, so

as to gain an understanding of what network characteristics

make target control easy or hard. First, the minimum energy

required for target control is expressed in terms of the

spectrum (eigenvalues and eigenvectors) of the matrix A. For

convenience of presentation, we focus on the case that the

eigenvalues of A are not defective, i.e. each eigenvalue is in

a Jordan block of size 1; similar results can be obtained for

the defective case but are more cumbersome. The following

notation is used for the spectrum of A. The eigenvalues are

denoted as λi for i = 1, . . . , n, and the right eigenvector

of A associated with λi is denoted as vi. Meanwhile, the

left eigenvector of A associated with λi is denoted as wT
i .

We use the notation vij to indicate the jth entry in the right

eigenvector vi, and similarly use wij for the jth entry in the

left eigenvector wi.

Using eigenvalue decomposition, the matrix A can be writ-

ten as V ΛWT where Λ is a diagonal matrix with Λii = λi

for i = 1, ..., n, V =
[
v1 . . .vn

]
, W =

[
w1 · · · wn

]
,

and WT = V −1. Therefore, we can rewrite E from Lemma

1 as: E =
(∑∞

k=0(e
T
t V ΛkWT es)

2
)−1

Provided that the

eigenvalues of A are inside the unit circle (because A is

stable), the summation in the denominator converges, and

hence the energy E can be rewritten as:

E =

⎛
⎜⎜⎝(eTt V

⎡
⎢⎢⎣

. . .
1

1−λi

. . .

⎤
⎥⎥⎦WT es)

2

⎞
⎟⎟⎠

−1

With a little algebra effort, we can show that the minimum

energy required for target control over the infinite horizon is

E � lim
k̂→∞

E(k̂) =
1∑n

i=1(vitwis
1

1−λi
)2

(3)

The above expression shows the finite-energy target control

is possible if and only if at least one eigenvalue of the state

matrix A is both controllable from the source location (wis �=
0) and observable from the target location (vit �= 0).

The spectral expression indicates that target control is easy

(requires little energy) if the state matrix has an eigenvalue

close to 1 whose left eigenvector has a large entry corre-

sponding to the source location, and whose right eigenvector

has a large entry corresponding to the target location. In

fact, the required control energy is limited if there is any

eigenvalue λi such that vitwis is large, regardless of whether

this eigenvalue is close to 1; this is because the magnitude of

1−λi is bounded by 2 no matter where in the unit circle λi

is, which implies that the energy will be relatively small if

vitwis is large. This result confirms the intuition, developed

in the pedagogical example, that target control only requires

the ability to manipulate the target state via one controllable

eigenvector.

In the following lemmas, the infinite-horizon target-control

energy metric is characterized in terms of the network’s

graph, and the locations of the source and target relative

to the graph. As a starting point, conditions for finite-

energy control are given. In particular, the following lemma

demonstrates that a directed path from the source to the

target is necessary for finite-energy target control. Further,

the condition is also sufficient if the state matrix A is

nonnegative or essentially nonnegative. Here is the result:

Lemma 3: Finite-energy target control is possible only if

the network graph Γ has a directed path from the source

vertex to the target vertex. In the case that the state matrix

A is nonnegative or Metzler, the condition is necessary and

sufficient.

A similar result to the above theorem, which also addresses

the case of multiple targets, was shown in [10].

Remark: If the network’s graph has a unique directed path

of minimum length from the source vertex to the target

vertex, then finite-energy target control can be guaranteed

even if the matrix A is not Metzler, since the product of

edge weights along the unique directed path is necessarily

nonzero.

In the next lemma, the effect on the target-control energy

of changing an edge weight in the network graph is exam-

ined, for the case where the state matrix is nonnegative.

Lemma 4: Consider a network with nonnegative state ma-

trix A. If the weight of any edge in the graph Γ is increased,

or a new edge is added to graph, the minimum energy for

target control E(k) decreases or does not increase, for any

horizon k.

Remark: If there is no path from the source node to the

target node which includes the edge with the changed weight,

the value of E remains unaltered after increasing the weight

of that edge.

Finally, for the case of nonnegative A, an upper bound for

the minimum required energy E can be derived in terms of

the edge weights of paths between the source and target in

the network graph Γ. This upper bound is introduced in the

following lemma:

Lemma 5: Consider a network with nonnegative state

matrix A, and suppose that there is at least one directed

path from the source vertex to the target vertex in the network

graph. Let us use the notation (s, q1, q2, ..., qr, t) for the path
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whose product of edge weights Aq1sAq2q1 ...Atqr is largest

among all paths between s and t. Then the energy required

for target control over the infinite horizon is upper bounded

as E ≤ 1
(Aq1sAq2q1

...Atqr )
2

The bound could alternatively be stated in terms of edge-

weight products on any path between the source and target,

however the largest-product path gives the strongest bound.

We notice that the bound is simplistic: much tighter bounds

could be obtained by considering edge-weight products on

multiple independent paths. Also, lower bounds on the en-

ergy can be obtained be considering the edge weights on cuts

separating the source and target. Due to space constraints,

these results will not be presented here.

From Lemmas 4 and 5, it can be concluded that for

networks with dense graph structure, the minimum energy

required for target control is small for any source and target

pair. Although these theorems provide simple comparisons

and bounds, which are far from tight, they verify the intuition

that network-wide target control is possible even in very large

networks provided that there are strong paths between the

network’s nodes. Lemma 5 also indicates that source-target

pairs that are close in the graph Γ are particularly amenable

to target control.

The next graphical result compares the target control

energy for different possible target locations, for the special

case where A is a nonnegative matrix with row sums less

than or equal to 1 (i.e. diffusive matrix). Specifically, let E(k̂)
be the target control energy for a pair of source and target

nodes. Now consider a node cutset separating the source node

from this target node on the graph Γ, and without loss of

generality let i = 1, · · · ,m be the corresponding labels of

these cutset nodes (assume that these i’s are not equal to

s or t). For at least one node i on the cutset, the target

control energy between the original source and this cutset

node, denoted as Ei(k̂), is smaller than E(k̂) (see Figure

1). A couple of other useful notations are also introduced

Fig. 1: Illustration of partitions by a node cutset.

here: let xc[k] be a vector containing the states of the nodes

from the cutset (i.e. xc[k] =
[
x1[k] · · · xm[k]

]T
) and

xt[k] be a vector containing the states of all the nodes that

are separated from the source node by the cutset. Note that

xt[k] also contains the target state xt[k].

Let us first present a lemma which is the key to prove the

above comparison result.

Lemma 6: Consider a target control problem where A is

a nonnegative and diffusive matrix. Now consider a node

cutset that separates the target from the source. If an optimal

input sequence at the source node is able to to drive the

target state from zero to one at time k̂, then there exists at

least one node on the cutset whose state will reach a value

greater than or equal to one before time k̂.

The result in Lemma 6 is not surprising since the control

information flows from the source node through the cutset

first. It also provides a key step to our next result on

comparing target control energies at different target locations.

Theorem 2: Consider the target control problem where

the state matrix A is a nonnegative diffusive matrix. Also

consider a node cutset the separates the target from the

source. Then there exists at least one node on the cutset,

such that the minimum input energy required to drive the

state of this cutset node from zero to one is no larger than

the minimum energy required to drive the target state from

zero to one.

V. STRUCTURAL AND GRAPH-THEORETIC INSIGHTS

INTO SOURCE ESTIMATION FIDELITY

An algebraic expression for the source estimation fidelity,

i.e. the error variance for the minimum variance unbiased

estimate of the source, has been presented in Lemma 2.

Our purpose in this section is to develop spectral and graph-

theoretic results on source estimation fidelity.

The source estimation fidelity metric requires character-

izing both the observability Gramian and its inverse. The

Gramian and its inverse are expressed in terms of the

spectrum of A, in the case that its eigenvalues are not

defective. The infinite-horizon observability Grammian Go �

Go(0,∞) =
∑∞

k=0(A
T )kete

T
t A

k can be written as

Go = (V −1)T

⎡
⎢⎢⎢⎢⎢⎣

V 2
1t

1−λ2
1

V1tV2t

1−λ1λ2
. . . V1tVnt

1−λ1λn

V2tV1t

1−λ2λ1

V 2
2t

1−λ2
2

. . . V2tVnt

1−λ2λn

...
...

. . .
...

VntV1t

1−λnλ1

VntV2t

1−λnλ2
. . .

V 2
nt

1−λ2
n

⎤
⎥⎥⎥⎥⎥⎦
V −1,

where λi is the ith eigenvalue of A, V is the right eigenvector

matrix of A, and Vit is the tth entry in the right eigenvector

vi. The inverse of the above Grammian can be found by

using the inversion formula for the Cauchy matrix (see [33]

for details). It is:

G−1
o = V

⎡
⎢⎢⎢⎢⎣

b11λ1

V 2
1t

b12λ2

V2tV1t
. . . b1nλn

VntV1t

b21λ1

V1tV2t

b22λ2

V 2
2t

. . . b2nλn

VntV2t

...
...

. . .
...

bn1λ1

V1tVnt

bn2λ2

V2tVnt
. . . bnnλn

V 2
nt

⎤
⎥⎥⎥⎥⎦
V T ,

where bij = −

∏n
k=1

( 1
λj

−λk)(
1

λk
−λi)

( 1
λj

−λi)(
∏

1≤k≤n
k �=j

( 1
λj

− 1
λk

))(
∏

1≤k≤n
k �=i

(λi+
1

λk
))
.

The source estimation fidelity metric can directly be

computed from the inverse of the observability Gramian, as

F = eTs G
−1
0 es. Thus, the above spectral expression for G−1

0

directly gives some insights into source estimation. First, the
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expression shows that source estimation is difficult if any

two eigenvalues whose corresponding right eigenvectors have

non-zero entries at the source location are near each other.

Likewise, source estimation is difficult if any eigenvector

has a large entry at the source location but not the target

location. These insights match with the basic intuition that

source estimation is impossible whenever a poorly-observed

subspace has a projection at the source, ortwo different

modal responses are indistinguishable from the measurement

location.

The determinant of the observability Gramian is useful as

a global measure of the ease of observability. The following

theorem specifies the determinant in terms of the spectrum:

Theorem 3: The determinant of Go is:

det(Go) =
2

det(V )
(

n∏

j=1

Vjc

λj
)(det(B)),

where det(B) =

∏n
i=2

∏i−1

j=1

(
λ2
j
+λ2

i

λiλj
−2

)
∏

n
i=1

∏
n
j=1

(
1−λiλj

λi

) .

Details are omitted since the analysis is similar to that given

in [33].

Exponential Fall Off of Eigenvalues:

The eigenvalue-based term in the determinant expression

(det(B)) has been studied in several previous works focused

on the determinants of Cauchy matrices [19]. These stud-

ies show that the determinant necessarily falls off super-

exponentially with respect to n whenever the eigenvalues

are real and bounded away from the unit circle. It can be

readily shown, in consequence, that pTGop must be small

(falling of exponentially with n) for some vector p. Any

source location that has a projection in this direction p thus

is difficult to estimate. Of course, at least one source location

must have a projection in this direction, and typically many

source locations will have a non-negligible projection.

The result showing that source estimation is intrinsically

difficult for symmetric networks can be refined to show

that, in fact, a subspace of significant dimension necessarily

becomes hard to estimate. This can be demonstrated by

showing that the eigenvalues of the observability Gramian

fall off exponentially, and hence that a significant number

of Gramian eigenvalues are below a threshold. This in turn

implies that the hard-to-observe subspace has significant

dimension, and hence that any source location with a pro-

jection in these numerous directions is hard to estimate.

The exponential fall-off in the eigenvalues of the Gramians

has been demonstrated in the important work [22]. This

characterization can be exploited to show that the fraction

of eigenvalues below any threshold necessarily increases

toward 1 with the dimension of the system, which means

that the dimension of the effectively-unobservable subspace

gets proportionally larger as the system dimension increases.

This implies that source observability becomes impossible

for any large system with a symmetric state matrix.

This result can be derived from the work presented in

[22]. Specifically, for a matrix that satisfies a discrete-time

Lyapunov function, [22] provides an eigenvalue decay bound

which only depends on the condition number of the coeffi-

cient matrix. Note that both observability and controllability

Grammians over the infinite horizon (i.e. Go and Gc) of

system (2) also satisfy discrete-time Lyapunov equations

with coefficient matrix A. A similar eigenvalue decay bound

for these Grammians (denoted G in general) can also be

obtained. For simplicity, we limit ourselves to the case where

A is symmetric and stable since the condition number of a

symmetric matrix has a nicer form. We begin with a lemma

that follows from the work in [22] without proof.

Lemma 7: Consider system (2) where A is symmetric

and stable. Let G be an infinite-horizon Grammian matrix

associated with this system. Then,

λi+1(G) ≤

⎛
⎝

i−1∏

j=0

a(2j+1)/(2i) − 1

a(2j+1)/(2i) + 1

⎞
⎠

2

λ1(G),

where λi(G), i = 1, · · · , n, are the nonincreasingly ordered

eigenvalues of G, a is the condition number of A specified

as a = (λmin(A)−1)(λmax(A)+1)
(λmin(A)+1)(λmax(A)−1) .

Note that since A is symmetric and stable, its condition

number a > 1. Now let S be a set of Grammians matrices

of stable and symmetric systems. We note that the number

of the states in each system may differ (A, as well as G,

may have different dimensions). Further, all such A matrices

have a fixed maximum eigenvalue as λmax(A) = λmax and

a fixed condition number a.

Theorem 4: For any ε > 0, there exists a positive integer

n such that every matrix G ∈ S of dimension larger than n

has at least one eigenvalue below ε.

This result compares a class of systems who differ in

the number of states and we find that the drop off of their

eigenvalues can be guaranteed by looking at larger systems.

Theorem 4 also indicates that the number of eigenvalues

below a threshold is increasing if the system’s dimension is

sufficiently large. In fact, the fraction of eigenvalues below

the threshold can be arbitrarily close to 1. Here is the result:

Corollary 1: In S, given any ε > 0, there exists a positive

integer n such that every matrix G ∈ S of dimension n has

a fraction of eigenvalues below ε arbitrarily close to 1.

This analysis confirms that source estimation is neces-

sarily hard for some source locations, for large symmetric

networks. In the case where the eigenvalues are complex-

valued, the determinant does not always fall of rapidly

with the network size, however several works have shown

that the determinant falls off rapidly unless the eigenvalues

are roughly equally spaced around the unit circle. Thus,

source estimation may be expected to be difficult for most

asymmetric networks also.

VI. CONCLUSIONS

This work has considered notions of target reachability

and source observability, which explore the ability to drive

or estimate a single network node. We show that target reach-

ability is often easy while source observability is usually

hard. The reason for this asymmetry between these concepts
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is the fact that one subspace is for states we can reach, while

the other is for states we can not observe. The asymmetry

potentially may have several implications in the design and

management of complex dynamical network. For instance,

in considering security of network dynamics, most research

focuses on the idea of privacy, a notion very related to source

observability. Paradoxically however, this work suggest that

vulnerabilities in most complex interconnected systems arise

from the potential for driving particular components of

the state vector to desired values, not in the potential of

revealing particular components of the state vector to a

remote estimator. This opposite interpretation in otherwise

dual mathematical constructs yields a significant difference

in security implications.
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