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ABSTRACT

Catered control strategies for building HVAC systems, which

react to the changing location of an occupant of the build-

ing, are studied. A structured Markov Jump-Linear System

(MJLS) model is developed which captures the diffusive heat-

exchange process in the building, stochastic occupant move-

ment, and feedback control enacted by the HVAC system.

A statistical analysis of the closed-loop dynamics is under-

taken, and used to evaluate stability and control performance.

The tuning of simple proportional-integral-derivative control

schemes to optimize comfort is also discussed, and demon-

strated in an example.

1. INTRODUCTION AND MOTIVATION

The pervasive deployment of cyber and sensing technologies,

and the networking of these devices to form an “Internet-

of-Things, are enabling new paradigms for thermal regula-

tion of buildings [1–3]. In particular, these changes enable

customized controls that improve Heating-Ventilation-Air-

Conditioning (HVAC) system performance while also reduc-

ing energy use and cost. One direction of particular interest

is to design occupant-location-catered control schemes for

temperature regulation. The main idea is to design HVAC

controls to react to the occupants’ current locations, so that

desired comfort levels are maintained while excess energy

costs are avoided. Such controls can readily be deployed in

new cyber-enabled buildings, using a combination of fixed

sensor networks, handheld mobile devices, and software-

defined networking/radio technologies [4–7]. However, to

be effective, models and control designs are required that

account for the building’s thermal dynamics, and weigh the

benefits and drawbacks of changing HVAC outputs in reac-

tion to the occupant’s location profile.

In this study, the analysis and design of occupant-location-

catered building temperature controllers is pursued, focusing

on the base case that one occupant’s location is considered
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and a centralized HVAC system is controlled (i.e., there is

one control zone). The problem is approached as a feedback-

control task for a Markov jump-linear system (MJLS), which

captures heat flow within the building along with the oc-

cupant’s stochastic movement among the buildings rooms.

A simple proportional-integral-derivative (PID) controller is

considered, which uses temperature measurements at the oc-

cupant’s location to set the HVAC control input. Statistics

of the closed-loop dynamics, and hence stochastic stability,

are evaluated via a two-moment analysis of the MJLS. Also,

tuning of the control gains is pursued, to optimize a perfor-

mance metric which reflects occupant comfort and energy

consumption.

The research described here connects to a wide literature

on modeling, monitoring, and control of building thermal pro-

cesses, (e.g. [8–13]). Our work also relates to a research thrust

on statistical analysis of occupant locations in buildings, to

support efficient operation [14–16]. Relative to these studies,

the main contribution of this work is to use real-time sens-

ing of occupant locations to enable refined building thermal

control. Methodologically, the research described here also

draws on and contributes to the literature on Markov jump

linear systems (MJLS) [18–22], which have been a focus of

controls and signal-processing communities. Specifically, the

closed-loop stability analysis and control optimization pur-

sued here directly uses the two-moment analysis of MJLS.

Beyond this standard analysis, the special diffusion-network

structure of the heat-flow dynamics and the specialized form

of the Markov variations are exploited to obtain refined char-

acterizations of the moments and their asymptotes [21, 22].

2. MODELING AND PROBLEM FORMULATION

A standard linear diffusive model for heat transfer in a build-

ing, which is often referred to as an resistive-capacitive (RC)

network model in the literature, is considered [8, 9, 17]. The

model tracks the the temperatures in a network of rooms,

which evolve due to heat transfer processes. Formally, a net-

work with n−1 rooms, labeled 1, 2, · · · , n−1, is considered.

Each room i has associated with it a temperature xi(t), which

evolves with the continuous time variable t. Each temperature

813978-1-5090-5990-4/17/$31.00 ©2017 IEEE GlobalSIP 2017



xi(t) is governed by the following differential equation:

ẋi(t) =
1

mi

(

n−1
∑

j=1

wij(xj−xi)+win(xn−xi)+γiu(t)), (1)

where mi is the thermal capacitance of room i, wij is the

thermal conductance between room i and j (where wij =
wji), xn is the fixed outside temperature, win is the ther-

mal conductance between room i and the outside, u(t) is the

scalar heat output of the HVAC system, and γi is the frac-

tion of that heat output that enters room i (where
∑

i γi =
1). It is assumed in this work that u(t) may be either pos-

itive or negative, reflecting that heating or air conditioning

may be used. The thermal model is a significant abstrac-

tion from reality, but sufficient for a basic evaluation of an

occupant-location-based control scheme. The dynamics can

be expressed in matrix form as ẋ = Ax(t) + Bu(t), where

x =
[

x1 · · · xn−1 xn
]T

. The matrix A is an n× n ma-

trix where Aij =
wij

mi
for i = 1, . . . , n − 1, j = 1, . . . , n,

j 6= i, the diagonal elements Aii, = 1, . . . , n − 1 are chosen

such that the row-sums of A are zero, and Aij = 0 for i = n,

j = 1, . . . , n. B is an n × 1 vector with ith entry equal to γi
for i = 1, . . . , n− 1, and final entry equal to zero.

The movement of a single occupant among the buildings

rooms is considered. The occupant’s room location is mod-

eled as a Markov process. The HVAC controller is assumed

to be alerted to the occupant’s location (room) at clocked in-

tervals, specifically at the times t = kT for k = 0, 1, 2, · · ·.
Further, temperature measurements at the occupant’s current

location are assumed to be available to the HVAC controller at

these clocked intervals (with minimal delay), for the purpose

of feedback control. Since a Markov model is assumed for the

occupant’s room location, a finite-state Markov chain can be

used to model the room location s[k] at the data-transmission

times t = kT . We notice that s[k] may take on values among

1, · · · , n − 1 at each time step, corresponding to the n − 1
room locations. The (n−1)×(n−1) transition matrix for the

room-location Markov chain is denoted by P =
[

pij
]

and is

assumed throughout this work to be ergodic. Also, we define

the temperature observation y[k] as the temperature of the oc-

cupied room sampled at time t = kT , i.e. y[k] = xs[k](kT ).
For the statistical analysis developed in this article, it is more

convenient to express the observed temperature as a time-

varying projection of the state x(t). Specifically, we have that

y[k] = −→v
T
[k]x(kT ), where

−→
V

T

[k] = [−→e
T
0], and e[k] 0 –1

indicator vector for the occupant’s room location s[k].
The HVAC controller aims to regulate the temperature of

the room occupied by the occupant at a desired reference tem-

perature yref , by adjusting the thermal input u(t). Here, a

simple PID control scheme is considered. A simple scheme of

this sort is appealing, given the need for portable, robust, and

easy-to-implement solutions. Data transmission and compu-

tation for networked control schemes are typically clocked,

and data rates for building controls are sufficiently fast com-

pared to the thermal dynamics of the building. With this

in mind, it is natural to apply a zero-order-hold control, for

which the control input is updated after each data transmis-

sion and held constant in between. The following PID control

scheme of this form is proposed:

u(t) = u[k] for kT ≤ t < (k + 1)T , where:

u[k] = Kp(yref − y[k]) + Kd(y[k − 1] − y[k])/T +

Ki

∑k

0(yref − y[k])× T
and where Kp, Kd and Ki are proportional, derivative, and

integral gains.

The main focus of this work is to develop a statistical anal-

ysis of the closed-loop performance of the HVAC system, and

to develop techniques for tuning the control gains to optimize

a combined comfort- and cost- based performance metric.

3. CONTROLLER ANALYSIS AND DESIGN

The closed-loop dynamics are first reformulated as an au-

tonomous state equation whose state matrix switches ac-

cording to the occupant-location Markov chain, i.e. as an

autonomous MJLS. This reformulation requires defining an

extended state vector
−→
ξ , as:

−→
ξ [k] =







−→
θ [k]

−→
θ [k − 1]
Acc[k]






where

−→
θ [k] = −→x [k] − yref

−→
1 is a shift of the temperature vector

relative to the reference (goal) temperature,
−→
1 is a vector

with all unity entries, Acc[k] =
∑k

m=1 z[k] is an accumula-

tor for the integral controller, and z[k] = −→v
T−→
θ indicates the

temperature of the occupied room in the shifted coordinates.

The extended state vector
−→
ξ [k] is governed by a discrete-

time Markovian jump linear process, which can be obtained

by solving the continuous-time dynamics over intervals of du-

ration T for each possible underlying occupant-location state:

−→
ξ [k + 1] = G(i)

−→
ξ [k] (2)

In this equation, i is the state of the occupant-location Markov

chain, and the (2n + 1)(2n + 1) matrix G(i) is given by

G(i) = GA(i) + Gp(i) + Gd(i) + Gi(i), where GA(i) =




Ā 0n×n 0n×1

In×n 0n×n 0n×1

v
T (i) 01×n 1



, Gp(i) = −KpΦβ̄





S2(i) 0n×n 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0



,

Gd(i) =
−Kd

T
Φβ̄





S2(i) −S2(i) 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0



, and Gi(i) = −KiT

Φβ̄





S2(i) 0n×n 1n×1

0n×n 0n×n 0n×1

01×n 01×n 0



. In these expressions, we have

that Ā = eAT , and Φβ̄ is a (2n + 1) × (2n + 1) diagonal

matrix whose jth diagonal element is equal to jth entry of

the vector Φβ = ΦB for j = 1, ..., n− 1 and zero otherwise.

Here, Φ is given by Φ =
∫ T

0
eA(T−τ)dτ . Also, S2 is an
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n × n matrix whose ith column is a unity vector while all

other entries are 0. The matrix GA(i) in the above expression

describes the internal heat-exchange dynamics and the evolu-

tion of the accumulator state Acc[k], while Gp(i), Gd(i) and

Gi(i) capture the effects of the proportional, derivative, and

integral controls, respectively. If the sampling time T is short

enough, a simpler approximation which encodes the graph

structure of the room network can also be developed, see [23]

for details.

A two-moment analysis of the closed-loop model can

be developed by considering the Kronecker product vectors

ψ1[k] =
−→v

T
[k] ⊗ ξ[k] and ψ2[k] =

−→v
T
[k] ⊗ ξ[k]

⊗2
, which

contain products of the extended state vector entries with an

indicator of the underlying Markov chain’s status. Per the

standard analysis of MJLS, the first-moment vector E(ψ1[k])
and the second-moment vector E(ψ2[k]) are governed by the

following linear dynamics or recursions: E(ψ1[k + 1]) =

H1E(ψ1[k]), where H1 =







p11G(1) · · · p1bG(b)
...

. . .
...

pb1G(1) · · · pbbG(b)







and b = n − 1 is the number of states in the underly-

ing Markov chain (the number of indoor rooms). Like-

wise, we have that E(ψ2[k + 1]) = H2E(ψ2[k]), where

H2 =







p11G(1)
⊗2 · · · p1bG(b)

⊗2

...
. . .

...

pb1G(1)
⊗2 · · · pbbG(b)

⊗2






, and the notation

(Q)⊗2 refers to the self-Kronecker product of the matrix

Q. The entries in the first and second moment vectors

identify conditional moments of the extended state vec-

tor. For example, the first moment vector can be written

as E(ψ1[k]) =







E(ξ[k]|s[k] = 1)P (s[k] = 1)
...

E(ξ[k]|s[k] = b)P (s[k] = b)






, where

E(ξ[k]|s[k] = j) is the conditional expectation of the ex-

tended state given the observer’s location, and P (s[k] = j)
is the observer’s location probability. From these conditional

moment vectors, the first two moments of the temperature

in the occupant’s current room as well as of the input can

be directly computed. Thus, the occupant’s comfort and the

energy use in the closed loop can be characterized.

Toward characterizing the closed-loop performance, first

conditions are found such that the expected squared deviation

of the temperature at the occupant’s current location from the

goal temperature E((y(t) − yref )
2) remains bounded over

time. Persistent boundedness of the deviation corresponds

exactly with the stability of the first- and second- moment

recursions (dynamics). Conditions for stability can be devel-

oped via an eigenanalysis of the recursion matrices H1 and

H2, which draws on the diffusive structure of the heat-flow

dynamics. The analysis centrally depends on a lemma which

indicates that H1 and H2 necessarily have unity eigenvalues:

Lemma 1:

The first moment recursion matrix H1 and second mo-

ment recursion matrix H2 each have at least one eigenvalue

equal to 1.

Lemma 1 provides a starting point toward a moment-

stability analysis. Qualitatively, two outcomes can result:

either the eigenvalues of H1 and H2 are strictly inside

the unit circle except for a single eigenvalue at 1, thus

guaranteeing boundedness of the squared deviation, or the

moment-recursions are unstable. The main outcome of our

analysis is that, for any building heat-flow model where all

rooms are thermally connected, boundedness of the expected

squared deviation is guaranteed when sufficiently small neg-

ative proportional-derivative feedback is used. This result is

formalized in the following theorem.

Theorem 1:

Consider the closed-loop heat-flow dynamics in the case

that the rooms are thermally connected, and a proportional-

derivative control is used (i.e. Ki = 0). For all sufficiently

small negative feedback (0 ≤ Kp ≤ K̄p and 0 ≤ Kd ≤ K̄d

for some K̄p > 0 and K̄d > 0), the first and second moment

dynamics are stable. Further, the expected squared deviation

E((y(t)− yref )
2) is bounded for all t ≥ 0.

The proofs of Lemma 1 and Theorem 1 can be found in

the extended document [23].

Beyond assuring moment boundedness, it is natural

to select the gains to optimize the a performance met-

ric which captures: 1) the effectiveness of the control in

meeting the reference temperature at the occupant’s cur-

rent location and 2) the energy (effort) expended for con-

trol. The following quadratic cost metric captures these

factors: J = 1
T2−T1

∑T2−1
k=T1

α1z[k]
2
+ α2u[k]

2
Where

z[k] = yref − y[k] is the temperature deviation of the occu-

pied room from the desired, [T1, T2] is the time interval of

interest, and α1 and α2 are weighting factors. Our primary

interest is to characterize time-average cost metric J over

a long horizon [T1, T2]. In the case that the closed-loop is

two-moment stable and the underlying Markov chain is er-

godic, it is easy to argue that the time average cost metrix J
approaches the steady-state ensemble average of the squared

deviation cost, in a probability-1 sense. Thus, the perfor-

mance of the closed-loop control system can equivalently be

evaluated as J̃ = limk→∞ α1E[z[k]
2
+ α2u[k]

2
], which can

be expressed as: J̃ = limk→∞E[α1z[k]
2
+ α2u[k]

2
| s[k] =

i]Pr(s[k] = i). The summands in the expression for J̃ can

be computed from entries in the first and second moment vec-

tors, evaluated in steady-state. These steady-state entry values

are contained in the right eigenvectors of H1 and H2 associ-

ated with their unity eigenvalues (appropriately normalized),

which we label V̄1 and V̄2. The eigenvectors are normalized

so that the entries corresponding to the outside environment
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are scaled to equal the outside temperature. Precisely, the

entries (2n+ 1)(i− 1) + n, i = 1, . . . , b of V̄1 are identical;

the vector V̄1 is scaled so that those entries equal the out-

side temperature in shifted coordinates (i.e., the temperature

deviation relative to the desired). Similarly, V̄2 is scaled so

that the entries corresponding to the outside environment are

equal to the square of the outside temperature in the shifted

coordinates. In terms of the normalized eigenvectors, the cost

metric can be computed for the two-moment-stable ergodic

case as

J̃ =
∑b

i=1 α1F1 + α2F2, Where F1 = V̄2 ī+(i−1)n̄+i and

F2 = (Kp
2 + (Kd

T
)2 + 2

KpKd

T
)V̄2 ī+(i−1)n̄+i +

(Kd

T
)2V̄2 ī+(n+i−1)n̄+n+i + (KiT )

2V̄2 ī−1 +

(−2Kd

T
)(Kp +

Kd

T
)V̄2 ī+(i−1)n̄+n+i +(−2KdKi)V̄2 ī+(n+i)n̄

+ (2(Kp +
Kd

T
)TKi)V̄2 ī+(i)n̄, and where n̄ = (2n+ 1) and

ī = (i− 1)n̄2.

3.1. Example

A building with 6 rooms, which are connected as shown in

Figure 1, is considered. The following parameters are as-

sumed: mi = 1 for i = 1, . . . , 6, wij = 1 for each con-

nected pair of rooms, win = 0.1 for all i, Pii = 0.998 for

i = 1, . . . , 6, Pij = 0.0004 for i 6= j, xo = 50,yref = 70,

xi[0] = 50 for i = 1, . . . , 6, γ3 = 1, and γi = 0 otherwise.

The occupant begins the simulation in room 2.

Fig. 1. Building diagram for the heat-flow model.

Tuning of the control parameters is considered. Specif-

ically, the control parameters Kp and Ki are varied within

the intervals Kp ∈ [−0.1, 2] and Ki ∈ [−0.05, 0.2], for

kd = 0.02. The boundedness of the mean-square devia-

tion of the closed-loop dynamics (equivalently, stability of the

first two moments) is determined, and the steady-state per-

formance metric E[J̃ ] is also evaluated. For the performance

analysis, the cost function constants are chosen as α1 = 1 and

α2 = 1. Figure 2 shows the performance metric and bounded

deviation region as a function of Kp and Ki for Kd = 0.02.

We emphasize that the performance metric is meaningful only

when the first two moments are stable (the expected squared

deviation is bounded), therefore unstable control gains are in-

dicated with a dark color. For the stabilizing designs, the cost

is shown on a logarithmic scale, as indicated by the color bar.

Fig. 2. Performance metric and expected square deviation

boundedness vs. Kp and Ki for Kd = 0.02. The dark shaded

areas correspond to unstable moment recursions (unbounded

expected squared deviation from the reference)

We note that the optimal performance metric value is typ-

ically achieved close to but not exactly at the boundary of

the moment-recursion-stability region. Also, using a larger

derivative term widens the range of Kp and Ki parameters

for which the closed-loop system is stable, and placing the

heater in a central room (3 or 4) permits a larger stability re-

gion as compared to a heater placed in a side room (details

not shown – see extended document [23]).

Fig. 3. Sample temperature dynamics for the optimal design

(Kp = 0.62, Ki = 0.005 and and Kd = 0.02). Occupied

room is determined by black dashed line

Figure 3 show simulations of the optimal occupant-

location-based control. The controller is able to regulate

the temperature of occupied room near the desired reference,

even though the temperatures in the other rooms deviate from

the reference. This suggests that an occupant-location-catered

control is effective in maintaining comfort. Simulations also

suggest that the control does not significantly increase energy

cost compared to a fixed scheme, provided that the occupant

changes locations relatively slowly.

816



4. REFERENCES

[1] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami,

M. (2013). Internet of Things (IoT): A vision, architec-

tural elements, and future directions. Future Generation

Computer Systems, 29(7), 1645-1660.

[2] Wei, C., and Li, Y. (2011, September). Design of en-

ergy consumption monitoring and energy-saving man-

agement system of intelligent building based on the in-

ternet of things. In Electronics, Communications and

Control (ICECC), 2011 International Conference on

(pp. 3650-3652). IEEE.

[3] Mainetti, L., Patrono, L., and Vilei, A. (2011, Septem-

ber). Evolution of wireless sensor networks towards the

internet of things: A survey. In Software, Telecommuni-

cations and Computer Networks (SoftCOM), 2011 19th

International Conference on (pp. 1-6). IEEE.

[4] Suryadevara, N. K., and Mukhopadhyay, S. C. (2012).

Wireless sensor network based home monitoring sys-

tem for wellness determination of elderly. IEEE Sensors

Journal, 12(6), 1965-1972.

[5] Doty, K., Roy, S., and Fischer, T. R. Explicit State-

Estimation Error Calculations for Flag Hidden Markov

Models. IEEE Transactions on Signal Processing.

[6] Qin, Z., Denker, G., Giannelli, C., Bellavista, P., and

Venkatasubramanian, N. (2014, May). A software de-

fined networking architecture for the internet-of-things.

In 2014 IEEE network operations and management

symposium (NOMS) (pp. 1-9). IEEE.

[7] Roy, S. et al (2016, May). Client-Catered Control of

Engineered Spaces with Software-Defined Sensors and

Actuators. In Smart Computing (SMARTCOMP), 2016

IEEE International Conference on (pp. 1-8). IEEE.

[8] A. F. Robertson and D. Gross, An electrical-analog

method for transient heat-flow analysis, Journal of re-

search of the national bureau of standards, vol. 61, No.

2 Aug. 1958, pp. 105-115.

[9] K. Deng et Building thermal model reduction via ag-

gregation of states, 2010 American control conference,

Baltimore, MD, USA, 2010.

[10] A. Parisio et al, A scenario-based predictive control ap-

proach to building HVAC management systems, in IEEE

International conference on automation science and en-

gineering (CASE), Madison, WI, USA, 1720 August

2013; pp. 428-435.

[11] A. Parisio, D. Varagnolo, D. Risberg, G. Pattarello, M.

Molinari, K. H. Johansson, Randomized model pre-

dictive control for HVAC systems, Proceedings of the

5th ACM workshop on embedded systems or energy-

efficient buildings, Roma, Italy, November 2013.

[12] B. Lim, M. v. d. Briel, S. T. Ebaux, HVAC-aware oc-

cupancy scheduling, Proceedings of the twenty-ninth

AAAI conference on artificial intelligence, Association

for the advancement of artificial intelligence, 2015.

[13] N. Skeledzija, J. C esic, E. Koco, V. Bachler, H. N.

Vucemilo, H. Dzapo, Smart home automation system

for energy efficient housing, MIPRO 2014, Opatija,

Croatia, 2014.

[14] B. Dong, K. P. Lam, C. P. Neuman, Integrated building

control based on 1 occupant behavior pattern detection

and local weather forecasting, 12th Conference of Inter-

national Building Performance Simulation Association,

Sydney, November 2011.

[15] S. Goyal, H. A. Ingley, P. Barooah, Occupancy-

based zone-climate control for energy-efficient build-

ings: complexity vs. performance, Appl Energy, Vol.

106, 2013, pp. 209221.

[16] J. Shi, N. Yu and Weixin Yao, Energy efficient building

HVAC control algorithm with real-time occupancy pre-

diction, 8th International conference on sustainability in

energy and buildings, Turin, Italy, September 2016.

[17] S. Roy and R. Dhal, Situational Awareness for dynam-

ical network processes using incidental measurements,

IEEE Journal of selected topics in signal processing,

Vol. 9, No. 2, March 2015.

[18] Feng, X., Loparo, K. A., Ji, Y., and Chizeck, H.

J. (1992). Stochastic stability properties of jump lin-

ear systems. IEEE Transactions on Automatic Control,

37(1), 38-53.

[19] Costa, O. L. V., Fragoso, M. D., and Marques, R.

P. (2006). Discrete-time Markov jump linear systems.

Springer Science and Business Media.

[20] de Farias, D. P., Geromel, J. C., do Val, J. B., and Costa,

O. L. V. (2000). Output feedback control of Markov

jump linear systems in continuous-time. IEEE Transac-

tions on Automatic Control, 45(5), 944-949.

[21] Roy, S. and Saberi, A. (2005). Static decentralized con-

trol of a single-integrator network with Markovian sens-

ing topology. Automatica, 41(11), 1867-1877.

[22] Roy, S., Verghese, G. C., and Lesieutre, B. C. (2006).

Moment-linear stochastic systems. In Informatics in

Control, Automation and Robotics I (pp. 263-271).

Springer Netherlands.

[23] Extended version of this paper. See

www.eecs.wsu.edu/∼avosughi

817


