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ABSTRACT

The estimation of nonrandom pole and residue parameters
from impulse-response data is studied. Specifically, the
Hammersley-Chapman-Robbins lower bound (HCRB) on the
estimation error variance is analyzed for single-input single-
output systems with multiple but distinct poles. The HCRB
is compared with the widely used Cramer-Rao lower bound
(CRB) in examples. The HCRB is found to be significantly
tighter than the CRB when noise levels are high compared to
the impulse response signal, while the bounds become close
for small noise levels (equivalently, large residues).

Index Terms— Estimation, Identification, Stochastic sys-
tems, Hammersley-Chapman-Robbins bound.

1. INTRODUCTION

There is a very wide literature on estimation of linear-system
model parameters (e.g., poles, residues, zeros) from noisy
impulse response data [1], [2], [3], [4], [5], [6], [7]. One
focus has been on developing Cramer-Rao lower bounds
on the error variances of parameter estimates, for the case
that the model parameters are assumed to be nonrandom
[1], [2], [3]. These bounds recently have found applica-
tion in infrastructure-monitoring contexts (e.g., monitoring
of power-grid swings and flexible-structure dynamics), as
new sensing technologies have made possible the inference
of modal dynamics from test responses or ambient data [8],
[9], [10]. The bounds are useful for developing confidence
intervals on modal estimates, and also for sensor placement
under cost constraints.

The problem of estimating linear-system parameters from
impulse response data typically does not satisfy the regular-
ity conditions which guarantee that the Cramer-Rao bound is
tight, even in the limit of a long data horizon. In a prelim-
inary study, the Cramer-Rao bound has been compared with
the Hammersley-Chapman-Robbins lower bound for a single
pole system [11]. The gap between the bounds shows that the
Cramer-Rao bound may be far from tight even in this sim-
ple case. This is concerning for infrastructure-monitoring ap-
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plications, since it may lead to overly-optimistic confidence
intervals and suboptimal sensor placement.

The purpose of this work is to pursue computation of the
Hammersley-Chapman-Robbins bound (HCRB) on the error
variances of pole and residue estimates [12], [13], for multi-
dimensional linear-system models. Specifically, computation
of the HCRB for single-input single-output linear systems
with multiple non-repeated poles is studied. The main contri-
bution of the work is to phrase the HCRB as the minimization
of a cost function that has an explicit form. This explicit for-
mulation permits application of numerical optimization tech-
niques and also serves as a starting point for developing for-
mal characterizations and bounds, as briefly discussed here.

2. PRIOR WORK AND BRIEF REVIEW

This study contributes to a literature on the Hammersley-
Chapman-Robbins bound (HCRB), which is relatively sparse
due to the analytical and computational difficulty inherent to
applying the bound. The theory of the HCRB, among other
Barankin-type bounds, has been developed over a number of
years [12], [13]. Regarding applications, the HCRB has re-
cently been used for estimating sparse non-random vectors in
the presence of Gaussian white noise [15], [16]. The HCRB
has also been used in estimating multiple change points in
time series, since the widely-used CRB is not applicable
when the change-point location parameters are discrete [17].
Similarly, the HCRB has been applied to threshold prediction
in direction-of-arrival (DOA) estimation and source local-
ization, since CRB is not satisfactorily tight in the case of
low SNR and limited observation points [18], [19]. In our
previous work [11], the HCRB was derived for the pole and
residue estimation problem, for a single-pole system; this
study extends the analysis to multi-dimensional systems.

The multi-parameter HCRB is a Barankin-type lower
bound on the error covariance for a nonrandom parameter
vector’s estimate. A formulaic description of the HCRB,
which is used to develop the results for pole and residue es-
timation here, is briefly reviewed [20]. Formally, consider
an unbiased estimator T'(x) for an unconstrained nonran-
dom parameter vector @ = [0 0 ---0;]" € R* based on
a set of observations x = [xl,xz, cee ,xn]. The observa-
tions are modeled as random variables generated according
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to the joint probability density function f(x; = z1,X2 =
Zo, + ,Xn = Tp;80) or succinctly f(x;0). The HCRB
HCRBg provides a lower bound on the covariance matrix
COV{T(x)} = E{[T(x)—0][T(x)—6]T}, in the sense that
HCRBg — COV{T(x)} is negative definite. The HCRB is
given by

HCRBg = sup (GHCRBT) (1)
where
5 5
Guers = V1B {221 (P} v, )
fo fo
Here [V] = [v1 va vi] where vy, va, -+, vy €

R* are mutually independent direction vectors, dfg =
[01fe dafe -+ Okfe] where each §; fo is a finite difference
of the density function due to a change in the parameter vector
0 in the direction v;: 0; fg = w o i=1,2,-- kK,
and hy, ha, -+, hy are scalars. Note that, in (1), {-}T de-
notes the Moore-Penrose pseudo inverse, and the supremum
is taken over all possible direction vectors and respective

magnitude scalars. Also, the matrix <G HC RBT) is suprem-

ized in the sense that any particular scalar quadratic form
T (G HCR BT) z is supremized. We notice that each chosen

scalar quadratic form will give a different bound; it is natural
to choose the quadratic form to develop an optimally-tight
bound on a particular scalar statistic of interest.

The HCRB does not require any of the regularity assump-
tions of the CRB, but does require the weak condition that the
support of f(x; 0 + h;v;) is subset of the support of f(x; )
for i = 1,2, -+, k. Furthermore, the HCRB is at least as
tight as the CRB, with the two bounds coinciding when the
supremum is achieved at h; — 0 for all ¢ with the direction
vectors taken as the unit vectors in R¥.

3. PROBLEM FORMULATION

Parameter estimation for a discrete-time system with distinct
poles is studied. Specifically, a system with the transfer func-
tion H(z) = >_; ﬁ is considered, where the non-
random parameters a; and A; are the poles and residues of
the system, respectively. Noisy measurements are made of
the system’s response at the times k¥ = 0,...,n, upon im-
pulsive stimulation at time k = 0. Specifically, the measured
impulse response is given by

= Z Ajal +w(k) 3)
I=1
fork =0,...,n. Here h(k) = >_,_, Ajal is the true impulse

response of the system, and w(k) is a zero-mean Gaussian

white noise with variance o2.
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Our aim here is to derive the HCRB on the estimation
error covariance for the nonrandom parameter vector 8 =
[CLl ag - Qp Al A2 L A7-]T.

4. ANALYSIS OF THE HCRB

The HCRB for the pole and residue estimation problem is
developed using the formulaic expression reviewed in Section
2. Here is the main result:

Theorem 1 The HCRB for the pole and residue estimation

problem is
/)

Here, G G4 GA% and GA4A are r X r matrices whose
(i,7) th entries are given by

1 AA

GaA
GAA

Ga(l

HCRBg = sup (GHCRBT) = sup ([ GAa

aa - Lilli gy
G’LJ hai haJ [ eXp( 0_2 Sa'Laj) 1]

aa _ 1 A,
Gz] - hA,/h [ Xp( SAA ) }

Aiha

- Aa _ g _

Gz] G]'L h/Ai hAj [ eXp ( 0_2 SazAJ ) 1]
where
n

S(Jui(lj = [(al + hari)k(aj + h%)k + (aia’j)k

=
Il
o

= af(a; + ha,)* = (ai + ha,)"aj]

n

Saa, = Y (aia;)*

k=0
Z a; + hq,

Here, the supremum is found with respect to A, , . . .,

(aza])k] :

ha,. and

hay,...,ha,,and any scalar quadratic form zT (GHCRBT) Z

may be supremized to obtain a bound.

Proof: The HCRB is developed by substitution into Equa-
tions 1 and 2, from [20]. To simplify, first notice that the
bound does not depend on the choice of the direction vec-
tors, since the parameter vector is unconstrained. Hence
without loss of generality, we choose [V] = I.. Substi-
tuting, we thus obtain that HCRBg = sup(GHCRBT),
where the Barankin information matrix Ggycogrp has the

G qged
form: Gpucrp = [ Ghe  gAA } , and G GoA GAa
and G44 are r x 7 matrices whose (4,7)th entries are:
G5 = s B0 Ui ety — 1, 6 =
Gt = o B PR ) — 1) and
Gt = e (B )



Since the noise is zero mean, white, and Gaussian with
variance o2, the joint probability density function (pdf)
for y(k), k = 0,1,2,--- ,n, can be written as f(y;0) =
(270?) "3 exp (5% 0o ly(k) — i Aaf]?).  Substitu-
f(y; 0+ha;vi) _ 1 n
Tt TP k=0

[2Ay(R)l (s + ha,)* = af]+ AZ[a2* = (@i + )]+ 24 [af —

202

tion of the joint pdf yields

(ai + ha)F1X1=0 Ala{“)}D. Hence, G§;' can be written as:
1£i

G?; = W[EG{GXP( Z:o (aiajck y(k) +a1a1 Dk))} - 1]

where aja; Cr = % (Al[(al +ha,v )k —af] -‘y—Aj [(aj +ha_, )]C —aﬂ)

and o0, Dy = #(A?[af’“ — (ai + ha))?] + 24i[af — (@i +

o VIS 0 Araf)] + A5 — (a4 ho, )] 245 — (0, +

hay)*(Sizo Awaf)]).
15
Since each observation is Gaussian, the exponent ug,q, =
> h=0(a;a;Cr Y(k) + a,a, D) in the expression for G{{* is
also Gaussian. The mean of ug,q,, denoted as i, , can be
; saj

evaluated as juu, ., = >y _o(asa; Ok 21— 4107 + asa; D)-

Similarly, the variance of wug,q;, denoted as aﬁa.u. can be
195
2 _ 1N 2 ;
evaluated as Tlagay; = o7 > reo a;a;Cf- Thus, using the

moment generating function for the Gaussian distribution,
we can simplify Eg{exp (uq;q;)} as Fo{exp (Ug;q;)} =
) :

Uaga A4y
exp(,uuaiaj + —52L) = exp ( —%2Sa,a;), Where Sq.a; =

S [(@i + ha))f(a; + ha))* + (aia))* — a¥(a; + hay)* —
a%(ai + ha;)*].  Substituting, we recover the expression for
G} in the theorem statement.

Similarly, to find GAA

ij
of the observations to simplify

we can substitute the joint pdf
fy; O+ha, vryi)
f(y;0)

= axp (% S [2h,4iy(k)af _

Doing so,

F(y; 0+ha, viyi)

we get f(y:0)

2ha,af (Y=o Araf) — a?*(2A:ha, + hii)]) . Thus, G,L-A}A can
I#i '

i B e (S (4,4, (k)

+AiAjDk3))} — 1] where AiAjCk =1 (hAlaf + hAjaff) and

o2

a4, D = %(%Azaf(z;;q Aal) + a2F(2Aiha, + BA) +

2ha, ajk.(zgiq Araf) + a2F(2A;ha, + h3 )).
J

be written as G{* =

Since each observation is Gaussian, the exponentu 4, 4; =

> n—o(a,4,Ck y(k) + a,4,Dy) in the expression for G;‘}A

is also Gaussian. The mean of UA;A; denoted as iy, ,.

i

_ \yn T k

can be evaluated as fiy,,,, = Y okeo(a,4;,Cr D Ara

+a,4; Dy). Similarly, the variance of wuy, A;» denoted as

ol . canbeevaluatedasoZ =~ =53 4,4,CF Us-
] v :

ing the moment-generating function for the Gaussian distribu-

tion, Fg{exp (ua,a,)} can be simplified as Eg{exp (ua,4;)}

2
o
YA A haha;

= eXP(UuAiAj + f) = exp( s
Saa, = Yp_o(aia;)*. Substituting, we immediately re-
cover the expression for G{}A in the theorem statement.

Sa;a;), where
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Similarly to find G%A we use previously obtained sim-
plified expressions of 1 éfﬁ(_;:;i)v”i) and 1 f‘g(;;};‘givi) )
Doing so, we get G;* = 7= [Bo{exp (S} (w4, C y(k)
+a;a, D))} — 1] where o,4,Ck = % (Al(as + ha,)* — af]
+ha,ab) and, .4, Dp = #(A?[afk — (ai + ha,)?™] +
2ifaf— (a + ho) (Sl Aiab)] — 2ha,af (Sfoo Aaf) +
a3*(2A;ha; + hij))

Since each observation is Gaussian, the exponent g, 4, =
> n—ola;a;Cr y(k) 4+ 4,4, Dy) in the expression for G‘Zf is
also Gaussian. The mean of u,, ,, denoted as Mg, 4, CAN be

evaluated as flu,,,, = > rcolaia, Cr Yoo Aiaf+ a,4,Dy).

Similarly, the variance of w44, denoted as aiav . can be
i
2 _ 15w 2 ;
evaluated as Tuoa, = o7 > ko a;4,Cj. Thus, using the

moment generating function of the Gaussian distribution,
we can simplify Eg{exp (uq,4,)} as Eo{exp (uq;a;)} =
02

Ya; A

eXp(uu%A] + ——L) =exp( %Saﬁj) where Sq,a; =
Yo [(ai + ha;)Fa¥ — (aia;)*] . Substituting, we immedi-
ately recover the expressions for GZ?‘JA and G?ZA in the theorem
statement. O

We remark that the terms S,,q;, Sa, 4, and Sq, 4; can
readily be written in closed form using geometric-sum for-

. lfp;?'l 1711?7_*'1 17711,7]7*'1
mulas. For instance, Sa;a; = = + e T Tl
n+1
1—m
Jr L. = . . P . .
el and where p;; = (a; + ha,)(a; + ha;), i = aia;,

and m;; = a;(aj + hg,). Further details are omitted. We
also stress that different bounds can be obtained through se-
lection of the vector z, which specifies the scalar metric to
be optimized. Typically, there is interest in tightly bounding
estimator error variances for individual mode and residue es-
timates. To develop tight such bounds, the optimization prob-
lem given in Theorem 1 can be solved upon selecting z to be
each possible unit basis vector (indicator vector).

The expression for the HCRB in Theorem 1 is useful
as a starting point for numerical computation. Specifically,
the expression gives an explicit closed-form expression for
the Barankin information matrix, and hence the HCRB can
be computed by optimizing a quadratic form of the inverse
of a matrix which has closed-form expressions for the en-
tries. Noting that derivatives of matrix inverses have been
extensively studied, standard unconstrained optimization al-
gorithms can potentially be applied with low computational
cost. While the cost function is not convex, it is smooth
and optima lie within a closed set; in practice, standard al-
gorithms have been effective in finding the optimum (see
following Example Section).

The HCRB expression in Theorem 1 is also appealing be-
cause it provides a starting point for formal analysis of the
bound. For instance, the expression allows comparison of
the CRB with the HCRB (see [1] , [2] for expressions for
the CRBs on pole and residue estimates). It is found the



CRB is close to the HCRB if the noise level is sufficiently
small (equivalently, the residues are sufficiently large), i.e.
the signal-to-noise ratio is high. Meanwhile, the ratio be-
tween the HCRB and CRB increases but reaches an asymp-
tote as the signal-to-noise ratio is decreased. The expression
also gives insight into how the bound scales with parameters
of the model, and allows development of simpler analytical
bounds. These formal results will be developed in detail in
future work.

5. NUMERICAL COMPUTATIONS

Numerical computations of the CRB and HCRB are under-
taken for the two-pole case (r = 2) to gain further insight
into the gaps between the bounds and their dependencies on
the pole and residue locations. For the Figures 1 and 2, we
fix the second pole ay at 0.9 and vary the first pole a; from
0.1 to 0.8 for two sets of residue values. For the Figure 3
we fix the poles a; and ao at 0.2 and 0.9 respectively and
vary the residues A; and As as 0.1k and 0.3k respectively for
k =1,15,2,--- /5. A long time horizon (N = 10000) is
assumed, and the noise level is assumed to be o = 0.5 for all
examples.
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Fig. 1. Lower bounds on the pole and residue estimation error
covariance as a function of the location of pole 1 (a;), with
a9 = 09, A1 =0.1and A2 =0.3.

Figures 1 and 2 indicate that the HCRB is larger than the
CRB, as expected. Comparing Figures 1 and 2 and also from
Figure 3, we see that the gap between the HCRB and CRBs
is significant for smaller values of the residues (small signal
components compared to noise levels). This matches with re-
lated works on the HCRB and CRB in other application areas,
which have shown that the HCRB significantly improves on
the CRB in low signal-to-noise ratio (SNR) settings. As the
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Fig. 2. Lower bounds on the pole and residue estimation error
covariance as a function of the location of pole 1 (a;), with
as = 0.9, A1 = 0.8 and A2 =0.9.

first pole gets closer to the second pole, both the HCRBs and
CRBs increase in Figures 1 and 2, as expected.

Figure 3 further illustrates how the gap between the
HCRB and CRB depends on the signal-to-noise ratio. As
the residues are up-scaled (i.e., the signal-to-noise increases),
the ratio of the HCRB to the CRB rapidly transitions from
being large to being close to 1.
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Fig. 3. Ratio between the HCRB and CRB as the residues are
scaled, for the pole locations a; = 0.2 and a; = 0.9
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