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ABSTRACT

The estimation of nonrandom pole and residue parameters

from impulse-response data is studied. Specifically, the

Hammersley-Chapman-Robbins lower bound (HCRB) on the

estimation error variance is analyzed for single-input single-

output systems with multiple but distinct poles. The HCRB

is compared with the widely used Cramer-Rao lower bound

(CRB) in examples. The HCRB is found to be significantly

tighter than the CRB when noise levels are high compared to

the impulse response signal, while the bounds become close

for small noise levels (equivalently, large residues).

Index Terms— Estimation, Identification, Stochastic sys-

tems, Hammersley-Chapman-Robbins bound.

1. INTRODUCTION

There is a very wide literature on estimation of linear-system

model parameters (e.g., poles, residues, zeros) from noisy

impulse response data [1], [2], [3], [4], [5], [6], [7]. One

focus has been on developing Cramer-Rao lower bounds

on the error variances of parameter estimates, for the case

that the model parameters are assumed to be nonrandom

[1], [2], [3]. These bounds recently have found applica-

tion in infrastructure-monitoring contexts (e.g., monitoring

of power-grid swings and flexible-structure dynamics), as

new sensing technologies have made possible the inference

of modal dynamics from test responses or ambient data [8],

[9], [10]. The bounds are useful for developing confidence

intervals on modal estimates, and also for sensor placement

under cost constraints.

The problem of estimating linear-system parameters from

impulse response data typically does not satisfy the regular-

ity conditions which guarantee that the Cramer-Rao bound is

tight, even in the limit of a long data horizon. In a prelim-

inary study, the Cramer-Rao bound has been compared with

the Hammersley-Chapman-Robbins lower bound for a single

pole system [11]. The gap between the bounds shows that the

Cramer-Rao bound may be far from tight even in this sim-

ple case. This is concerning for infrastructure-monitoring ap-
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plications, since it may lead to overly-optimistic confidence

intervals and suboptimal sensor placement.

The purpose of this work is to pursue computation of the

Hammersley-Chapman-Robbins bound (HCRB) on the error

variances of pole and residue estimates [12], [13], for multi-

dimensional linear-system models. Specifically, computation

of the HCRB for single-input single-output linear systems

with multiple non-repeated poles is studied. The main contri-

bution of the work is to phrase the HCRB as the minimization

of a cost function that has an explicit form. This explicit for-

mulation permits application of numerical optimization tech-

niques and also serves as a starting point for developing for-

mal characterizations and bounds, as briefly discussed here.

2. PRIOR WORK AND BRIEF REVIEW

This study contributes to a literature on the Hammersley-

Chapman-Robbins bound (HCRB), which is relatively sparse

due to the analytical and computational difficulty inherent to

applying the bound. The theory of the HCRB, among other

Barankin-type bounds, has been developed over a number of

years [12], [13]. Regarding applications, the HCRB has re-

cently been used for estimating sparse non-random vectors in

the presence of Gaussian white noise [15], [16]. The HCRB

has also been used in estimating multiple change points in

time series, since the widely-used CRB is not applicable

when the change-point location parameters are discrete [17].

Similarly, the HCRB has been applied to threshold prediction

in direction-of-arrival (DOA) estimation and source local-

ization, since CRB is not satisfactorily tight in the case of

low SNR and limited observation points [18], [19]. In our

previous work [11], the HCRB was derived for the pole and

residue estimation problem, for a single-pole system; this

study extends the analysis to multi-dimensional systems.

The multi-parameter HCRB is a Barankin-type lower

bound on the error covariance for a nonrandom parameter

vector’s estimate. A formulaic description of the HCRB,

which is used to develop the results for pole and residue es-

timation here, is briefly reviewed [20]. Formally, consider

an unbiased estimator T(x) for an unconstrained nonran-

dom parameter vector θ = [θ1 θ2 · · · θk]T ∈ R
k based on

a set of observations x =
[

x1,x2, · · · ,xn

]

. The observa-

tions are modeled as random variables generated according
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to the joint probability density function f(x1 = x1,x2 =
x2, · · · ,xn = xn; θ) or succinctly f(x; θ). The HCRB

HCRBθ provides a lower bound on the covariance matrix

COV {T(x)} = E{[T(x)−θ][T(x)−θ]T }, in the sense that

HCRBθ − COV {T(x)} is negative definite. The HCRB is

given by

HCRBθ = sup
(

GHCRB
†
)

(1)

where

GHCRB = [V ] Eθ

{

[
δfθ

fθ

]T [
δfθ

fθ

]

}

[V ]T . (2)

Here [V ] = [v1 v2 · · · vk] where v1, v2, · · · , vk ∈
R

k are mutually independent direction vectors, δfθ =
[δ1fθ δ2fθ · · · δkfθ] where each δifθ is a finite difference

of the density function due to a change in the parameter vector

θ in the direction vi: δifθ =
fθ+hivi

−fθ

hi
, i = 1, 2, · · · , k,

and h1, h2, · · · , hk are scalars. Note that, in (1), {·}† de-

notes the Moore-Penrose pseudo inverse, and the supremum

is taken over all possible direction vectors and respective

magnitude scalars. Also, the matrix
(

GHCRB
†
)

is suprem-

ized in the sense that any particular scalar quadratic form

z
T

(

GHCRB
†
)

z is supremized. We notice that each chosen

scalar quadratic form will give a different bound; it is natural

to choose the quadratic form to develop an optimally-tight

bound on a particular scalar statistic of interest.

The HCRB does not require any of the regularity assump-

tions of the CRB, but does require the weak condition that the

support of f(x; θ + hivi) is subset of the support of f(x; θ)
for i = 1, 2, · · · , k. Furthermore, the HCRB is at least as

tight as the CRB, with the two bounds coinciding when the

supremum is achieved at hi → 0 for all i with the direction

vectors taken as the unit vectors in R
k.

3. PROBLEM FORMULATION

Parameter estimation for a discrete-time system with distinct

poles is studied. Specifically, a system with the transfer func-

tion H(z) =
∑r

l=1
Al

(1−alz−1) is considered, where the non-

random parameters al and Al are the poles and residues of

the system, respectively. Noisy measurements are made of

the system’s response at the times k = 0, . . . , n, upon im-

pulsive stimulation at time k = 0. Specifically, the measured

impulse response is given by

y(k) =

r
∑

l=1

Ala
k
l + w(k) (3)

for k = 0, . . . , n. Here h(k) =
∑r

l=0 Ala
k
l is the true impulse

response of the system, and w(k) is a zero-mean Gaussian

white noise with variance σ2.

Our aim here is to derive the HCRB on the estimation

error covariance for the nonrandom parameter vector θ =
[a1 a2 · · · ar A1 A2 · · · Ar]

T .

4. ANALYSIS OF THE HCRB

The HCRB for the pole and residue estimation problem is

developed using the formulaic expression reviewed in Section

2. Here is the main result:

Theorem 1 The HCRB for the pole and residue estimation

problem is

HCRBθ = sup
(

GHCRB
†
)

= sup

(

[

G
aa

G
aA

G
Aa

G
AA

]†
)

Here, G
aa,GaA,GAa and G

AA are r × r matrices whose
(i, j) th entries are given by

G
aa
ij =

1

haihaj

[ exp (
AiAj

σ2
Saiaj ) − 1]

G
AA
ij =

1

hAihAj

[ exp (
hAihAj

σ2
SAiAj ) − 1]

G
aA
ij = G

Aa
ji =

1

hAihAj

[ exp (
AihAj

σ2
SaiAj ) − 1]

where

Saiaj
=

n
∑

k=0

[

(ai + hai
)k(aj + haj

)k + (aiaj)
k

− ak
i (aj + haj

)k − (ai + hai
)kak

j ]

SAiAj
=

n
∑

k=0

(aiaj)
k

SaiAj
=

n
∑

k=0

[

(ai + hai
)kak

j − (aiaj)
k
]

.

Here, the supremum is found with respect to ha1
, . . . , har

and

hA1
, . . . , hAr

, and any scalar quadratic form z
T

(

GHCRB
†
)

z

may be supremized to obtain a bound.

Proof: The HCRB is developed by substitution into Equa-

tions 1 and 2, from [20]. To simplify, first notice that the

bound does not depend on the choice of the direction vec-

tors, since the parameter vector is unconstrained. Hence

without loss of generality, we choose [V ] = I2r. Substi-

tuting, we thus obtain that HCRBθ = sup(GHCRB
†),

where the Barankin information matrix GHCRB has the

form: GHCRB =

[

Gaa GaA

GAa GAA

]

, and G
aa,GaA,GAa

and G
AA are r × r matrices whose (i, j)th entries are:

Gaa
ij = 1

hai
haj

[Eθ{
f(y; θ+hai

vi)

f(y;θ)

f(y; θ+haj
vj)

f(y;θ)
} − 1], GaA

ij =

GAa
ji = 1

hai
hAj

[Eθ{
f(y; θ+hai

vi)

f(y;θ)

f(y; θ+hAj
vr+j)

f(y;θ)
} − 1] , and

GAA
ij = 1

hAi
hAj

[Eθ{
f(y; θ+hAi

vr+i)

f(y;θ)

f(y; θ+hAj
vr+j)

f(y;θ)
} − 1].
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Since the noise is zero mean, white, and Gaussian with

variance σ2, the joint probability density function (pdf)

for y(k), k = 0, 1, 2, · · · , n, can be written as f(y; θ) =

(2πσ2)−
n+1

2 exp
(

−1
2σ2

∑n

k=0[y(k) −
∑r

l=0 Ala
k
l ]2

)

. Substitu-

tion of the joint pdf yields
f(y; θ+hai

vi)

f(y;θ)
= exp

(

1
2σ2

∑n

k=0
[

2Aiy(k)[(ai +hai)
k −ak

i ]+A2
i [a

2k
i − (ai +hai)

2k]+2Ai[a
k
i −

(ai + hai)
k](

∑r
l=0
l6=i

Ala
k
l )]

]

)

. Hence, Gaa
ij can be written as:

Gaa
ij = 1

hai
haj

[Eθ{exp (
∑n

k=0 (aiaj Ck y(k) +aiaj Dk))} − 1]

where aiaj Ck = 1
σ2

(

Ai[(ai+hai)
k−ak

i ]+Aj [(aj +haj )
k−ak

j ]
)

and aiaj Dk = 1
2σ2

(

A2
i [a

2k
i − (ai + hai)

2k] + 2Ai[a
k
i − (ai +

hai)
k](

∑r
l=0
l6=i

Ala
k
l )] + A2

j [a
2k
j − (aj + haj )

2k] + 2Aj [a
k
j − (aj +

haj )
k](

∑r
l=0
l6=j

Ala
k
l )]

)

.

Since each observation is Gaussian, the exponent uaiaj
=

∑n

k=0(aiaj
Ck y(k) + aiaj

Dk) in the expression for Gaa
ij is

also Gaussian. The mean of uaiaj
, denoted as µuaiaj

can be

evaluated as µuaiaj
=

∑n

k=0(aiaj
Ck

∑r

l=0 Ala
k
l + aiaj

Dk).

Similarly, the variance of uaiaj
, denoted as σ2

uaiaj
can be

evaluated as σ2
uaiaj

= 1
σ2

∑n

k=0 aiaj
C2

k . Thus, using the

moment generating function for the Gaussian distribution,

we can simplify Eθ{exp (uaiaj
)} as Eθ{exp (uaiaj

)} =

exp ( µuaiaj
+

σ2
uaiaj

2 ) = exp (
AiAj

σ2 Saiaj
), where Saiaj =

∑n

k=0

[

(ai + hai)
k(aj + haj )

k + (aiaj)
k − ak

i (aj + haj )
k −

ak
j (ai + hai)

k
]

. Substituting, we recover the expression for

Gaa
ij in the theorem statement.

Similarly, to find GAA
ij , we can substitute the joint pdf

of the observations to simplify
f(y; θ+hAi

vr+i)

f(y;θ) . Doing so,

we get
f(y; θ+hAi

vr+i)

f(y;θ)
= exp

(

1
2σ2

∑n

k=0

[

2hAiy(k)ak
i −

2hAia
k
i (

∑r
l=0
l6=i

Ala
k
l )− a2k

i (2AihAi + h2
Ai

)
]

)

. Thus, GAA
ij can

be written as GAA
ij = 1

hAi
hAj

[Eθ{exp (
∑n

k=0 (AiAj Ck y(k)

+AiAj Dk))} − 1] where AiAj Ck = 1
σ2

(

hAia
k
i + hAj ak

j

)

and

AiAj Dk = −1
2σ2

(

2hAia
k
i (

∑r
l=0
l6=i

Ala
k
l ) + a2k

i (2AihAi + h2
Ai

) +

2hAj ak
j (

∑r
l=0
l6=j

Ala
k
l ) + a2k

j (2AjhAj + h2
Aj

)
)

.

Since each observation is Gaussian, the exponent uAiAj
=

∑n

k=0(AiAj
Ck y(k) + AiAj

Dk) in the expression for GAA
ij

is also Gaussian. The mean of uAiAj
, denoted as µuAiAj

can be evaluated as µuAiAj
=

∑n

k=0(AiAj
Ck

∑r

l=0 Ala
k
l

+AiAj
Dk). Similarly, the variance of uAiAj

, denoted as

σ2
uAiAj

can be evaluated as σ2
uAiAj

= 1
σ2

∑n

k=0 AiAj
C2

k . Us-

ing the moment-generating function for the Gaussian distribu-

tion, Eθ{exp (uAiAj
)} can be simplified as Eθ{exp (uAiAj )}

= exp ( µuAiAj
+

σ2
uAiAj

2
) = exp (

hAi
hAj

σ2 SAiAj ), where

SAiAj
=

∑n

k=0(aiaj)
k. Substituting, we immediately re-

cover the expression for GAA
ij in the theorem statement.

Similarly to find GaA
ij we use previously obtained sim-

plified expressions of
f(y; θ+hAi

vr+i)

f(y;θ) and
f(y; θ+hai

vi)

f(y;θ) .

Doing so, we get GaA
ij = 1

hai
hAj

[Eθ{exp (
∑n

k=0 (aiAj Ck y(k)

+aiAj Dk))} − 1] where aiAj Ck = 1
σ2

(

Ai[(ai + hai)
k − ak

i ]

+hAj ak
j

)

and, aiAj Dk = 1
2σ2

(

A2
i [a

2k
i − (ai + hai)

2k] +

2Ai[a
k
i − (ai + hai)

k](
∑r

l=0
l6=i

Ala
k
l )] − 2hAj ak

j (
∑r

l=0
l6=j

Ala
k
l ) +

a2k
j (2AjhAj + h2

Aj
)
)

Since each observation is Gaussian, the exponent uaiAj
=

∑n

k=0(aiAj
Ck y(k) + aiAj

Dk) in the expression for GaA
ij is

also Gaussian. The mean of uaiAj
, denoted as µuaiAj

can be

evaluated as µuaiAj
=

∑n

k=0(aiAj
Ck

∑r

l=0 Ala
k
l + aiAj

Dk).

Similarly, the variance of uaiAj
, denoted as σ2

uaiAj
can be

evaluated as σ2
uaiAj

= 1
σ2

∑n

k=0 aiAj
C2

k . Thus, using the

moment generating function of the Gaussian distribution,

we can simplify Eθ{exp (uaiAj
)} as Eθ{exp (uaiAj )} =

exp ( µuaiAj
+

σ2
uaiAj

2
) = exp (

AihAj

σ2 SaiAj ) where SaiAj =
∑n

k=0

[

(ai + hai)
kak

j − (aiaj)
k
]

. Substituting, we immedi-

ately recover the expressions for GaA
ij and GaA

ji in the theorem

statement. ¤

We remark that the terms Saiaj
, SAiAj

and SaiAj
can

readily be written in closed form using geometric-sum for-

mulas. For instance, Saiaj =
1−p

n+1

ij

1−pij
+

1−q
n+1

ij

1−qij
−

1−m
n+1

ij

1−mij
−

1−m
n+1

ji

1−mji
, and where pij = (ai + hai

)(aj + haj
), qij = aiaj ,

and mij = ai(aj + haj
). Further details are omitted. We

also stress that different bounds can be obtained through se-

lection of the vector z, which specifies the scalar metric to

be optimized. Typically, there is interest in tightly bounding

estimator error variances for individual mode and residue es-

timates. To develop tight such bounds, the optimization prob-

lem given in Theorem 1 can be solved upon selecting z to be

each possible unit basis vector (indicator vector).

The expression for the HCRB in Theorem 1 is useful

as a starting point for numerical computation. Specifically,

the expression gives an explicit closed-form expression for

the Barankin information matrix, and hence the HCRB can

be computed by optimizing a quadratic form of the inverse

of a matrix which has closed-form expressions for the en-

tries. Noting that derivatives of matrix inverses have been

extensively studied, standard unconstrained optimization al-

gorithms can potentially be applied with low computational

cost. While the cost function is not convex, it is smooth

and optima lie within a closed set; in practice, standard al-

gorithms have been effective in finding the optimum (see

following Example Section).

The HCRB expression in Theorem 1 is also appealing be-

cause it provides a starting point for formal analysis of the

bound. For instance, the expression allows comparison of

the CRB with the HCRB (see [1] , [2] for expressions for

the CRBs on pole and residue estimates). It is found the
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CRB is close to the HCRB if the noise level is sufficiently

small (equivalently, the residues are sufficiently large), i.e.

the signal-to-noise ratio is high. Meanwhile, the ratio be-

tween the HCRB and CRB increases but reaches an asymp-

tote as the signal-to-noise ratio is decreased. The expression

also gives insight into how the bound scales with parameters

of the model, and allows development of simpler analytical

bounds. These formal results will be developed in detail in

future work.

5. NUMERICAL COMPUTATIONS

Numerical computations of the CRB and HCRB are under-

taken for the two-pole case (r = 2) to gain further insight

into the gaps between the bounds and their dependencies on

the pole and residue locations. For the Figures 1 and 2, we

fix the second pole a2 at 0.9 and vary the first pole a1 from

0.1 to 0.8 for two sets of residue values. For the Figure 3

we fix the poles a1 and a2 at 0.2 and 0.9 respectively and

vary the residues A1 and A2 as 0.1k and 0.3k respectively for

k = 1, 1.5, 2, · · · , 5. A long time horizon (N = 10000) is

assumed, and the noise level is assumed to be σ = 0.5 for all

examples.
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Fig. 1. Lower bounds on the pole and residue estimation error

covariance as a function of the location of pole 1 (a1), with

a2 = 0.9, A1 = 0.1 and A2 = 0.3.

Figures 1 and 2 indicate that the HCRB is larger than the

CRB, as expected. Comparing Figures 1 and 2 and also from

Figure 3, we see that the gap between the HCRB and CRBs

is significant for smaller values of the residues (small signal

components compared to noise levels). This matches with re-

lated works on the HCRB and CRB in other application areas,

which have shown that the HCRB significantly improves on

the CRB in low signal-to-noise ratio (SNR) settings. As the
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Fig. 2. Lower bounds on the pole and residue estimation error

covariance as a function of the location of pole 1 (a1), with

a2 = 0.9, A1 = 0.8 and A2 = 0.9.

first pole gets closer to the second pole, both the HCRBs and

CRBs increase in Figures 1 and 2, as expected.

Figure 3 further illustrates how the gap between the

HCRB and CRB depends on the signal-to-noise ratio. As

the residues are up-scaled (i.e., the signal-to-noise increases),

the ratio of the HCRB to the CRB rapidly transitions from

being large to being close to 1.
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Fig. 3. Ratio between the HCRB and CRB as the residues are

scaled, for the pole locations a1 = 0.2 and a2 = 0.9
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