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Abstract

Given an instance of the preferential attachment graph G, = ([n], E,), we would like
to find vertex 1, using only ‘local’ information about the graph; that is, by exploring the
neighborhoods of small sets of vertices. Borgs et. al gave an an algorithm which runs in
time O(log4 n), which is local in the sense that at each step, it needs only to search the
neighborhood of a set of vertices of size O(log4 n). We give an algorithm to find vertex 1,
which w.h.p. runs in time O(wlogn) and which is local in the strongest sense of operating
only on neighborhoods of single vertices. Here w = w(n) is any function that goes to infinity
with n.

1 Introduction

The Preferential Attachment Graph G,, was first discussed by Barabdsi and Albert [2] and then
rigorously analysed by Bollobas, Riordan, Spencer and Tusnddy [3]. It is perhaps the simplest
model of a natural process that produces a graph with a power law degree sequence.

The Preferential Attachment Graph can be viewed as a sequence of random graphs G4, Gs, ..., G,
where Gy, is obtained from G; as follows: Given G;, we add vertex t + 1 and m random edges
{e; = (t+1,u;) : 1 <i<m} incident with vertex ¢t + 1. Here the constant m is a parameter
of the model. The vertices u; are not chosen uniformly from V, instead they are chosen with
probabilities proportional to their degrees. This tends to generate some very high degree vertices,
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compared with what one would expect in Erdoés-Rényi models with the same edge-density. We
refer to uy, us, . .., U, as the left choices of vertex t + 1. We also say that t 41 is a right neighbor
of u; fori =1,2,...,m.

We consider the problem of searching through the preferential attachment graph looking for
vertex number 1, using only local information. This was addressed by Borgs, Brautbar, Chayes,
Khanna and Lucier [5] in the context of the Preferential Attachment Graph G,, = (V,,, E,,). Here
V. = [n] = {1,2,...,n}. They present the following local algorithm that searches for vertex 1,
in a graph which may be too large to hold in memory in its entirety.

1: Initialize a list £ to contain an arbitrary node u in the graph.
2: while £ does not contain node 1 do
3:  Add a node of maximum degree in N(£) to L od;

4: return £

Here for vertex set £, we let N(£) ={w ¢ L: Jv € L st. {v,w} € E,}.

They show that w.h.p. the algorithm succeeds in reaching vertex 1 in O(log®n) steps. (We
assume that an algorithm can recognize vertex 1 when it is reached.) In [5], they also show how
a local algorithm to find vertex 1 can be used to give local algorithms for some other problems.
We also note that Brautbar and Kearns [6] considered local algorithms in a more general context.
There the algorithm is allowed to jump to random vertices as well as crawl around the graph in
the search for vertices of high degree and high clustering coefficient.

We should note that, as the maximum degree in G,, is n'/2~°(1) w.h.p., one cannot hope to have a

polylog(n) time algorithm if we have to check the degrees of the neighbors as we progress. Thus
the algorithm above operates on the assumption that we can find the highest-degree neighbor of
a vertex in O(1) time. This would be the case, for example, if the neighborhood of a vertex is
stored as a linked-list which is sorted by degrees. In the same situation, we can also determine the
K highest degree neighbors of a vertex in constant time for any constant K, and in the present
manuscript we assume such a constant-time step is possible. In particular, in this setting, each
of steps 2-7 of the following Degree Climbing Algorithm takes constant time.

We let d,(v) denote the degree of vertex v € V.
Algorithm DCA:
The algorithm generates a sequence of vertices vy, v, ..., until vertex 1 is reached.
Step 1 Carry out a random walk on G until it is mixed; i.e., until the variation distance between

the current vertex and the steady state is o(1). We let v; be the terminal vertex of the
walk. (See Remark 1.1 for comments on this step.)

Step 2 t + 1.



Step 3 repeat

Step 4 Let C;, = {wl, Wa, . .. ,wm/g} be the m/2 neighbors of v; of largest degree.
(In the case of ties for the m/2th largest degree, vertices will be placed randomly in C; in
order to make |C;| = m/2. Also m is large here and we could replace m/2 by [m/2] if m
is odd without affecting the analysis by very much.)

Step 5 Choose vy randomly from Cj.
Step 6 t<«t+1.

Step 7 until d,(v;) > W;;—ﬁ% (SUCCESS) or t > 2wlogn (FAILURE), where w — o0 is
arbitrary.

Step 8 Assuming Success, starting from vy, where T is the value of ¢ at this point, do a random
walk on the vertices of degree at least log"ll%on until vertex 1 is reached.

Remark 1.1. [t is known that w.h.p. the mizing time of a random walk on G, is O(logn), see
Mihail, Papadimitriou and Saberi [11]. So we can assume that the distribution of vy is close to
_ dn(v)

the steady state m, = 5--~.

Note that Algorithm DCA is a local algorithm in a strong sense: the algorithm only requires
access to the current vertex and its neighborhood. (Unlike the algorithm from [5], it does not
need access to the neighborhood of the entire set P, = {vy,... v} of vertices visited so far.) Our
main result is the following:

Theorem 1.2. If m is sufficiently large then then w.h.p. Algorithm DCA finds vertex 1 in G,
in O(wlogn) time.
DCA is thus currently the fastest as well as the “most local” algorithm to find vertex 1. We

conjecture that the factor w in the running time is unnecessary.

Conjecture 1.3. Algorithm finds vertez 1 in G,, in O(logn) time, w.h.p.

We note that w.h.p. the diameter of G,, is ~ log’ign and so we cannot expect to improve the

execution time much below O(logn).

The bulk of our proof consists of showing that the execution of Steps 2-7 requires only time
O(wlogn) w.h.p. for any w = w(n) — oco. This analysis requires a careful accounting of condi-
tional probabilities. This is facilitated by the conditional model of the preferential attachment
graph due to Bollobds and Riordan [4]. One contribution of our paper is to recast their model in
terms of sums of independent copies of the rate one exponential random variables; this will be
essential to our analysis.



Outline of the paper

In Section 2 we reformulate the construction of Bollobds and Riordan [4] in terms of sums of
independent copies of the exponential random variable of rate one.

Section 3 is the heart of the paper. The aim is to show that if v; is not too small, then the ratio
vi+1/vy is bounded above by 3/4 in expectation. We deduce from this that w.h.p. the main loop,
Steps 2-7, only takes O(wlogn) rounds. The idea is to determine a degree bound A such that
many of v;’s left neighbors have degree at least A, while only few of v,’s right neighbors have
degree at least A. In this way, v, is likely to be significantly smaller than v;.

Once we find a vertex vy of high enough degree, then we know that w.h.p. vr is not very large
and lies in a small connected subgraph of vertices of high degree that contains vertex one. Then a
simple argument based on the worst-case covertime of a graph suffices to show that only o(logn)
more steps are required.

Our proofs will use various parameters. For convenience, we collect here in table form a dictionary
of some notations, giving a brief (and imprecise) description of the role each plays in our proof,
for later reference.

Definition Role in proof

w:= O(loglogn) An arbitrarily chosen slowly growing fucntion.
1
Ao = o0 A (usually valid) lower bound on random variables 7; (cf. Section 2.1).
og™’"Mn
ny = logl/mo n W.h.p. the main loop never visits v < n;.

Pi:= {vy,...v}  The set of vertices visited up to time t.

0

U:= (loglogn)!® Vertices v > Wv; will not be important in the search for v, ;.

L= m!'/5 A large constant, significantly smaller than m.

Notation: We write A, ~ B, if A, = (1 +0(1))B, as n — oo. We write o < /8 in place of
a<o(l)+ (14 0(1))p.



2 Preliminaries

2.1 A different model of the preferential attachement graph

Bollobés and Riordan [4] gave an ingenious construction equivalent to the preferential attachment
graph model. We choose x1,Zs, ..., ZTom, independently and uniformly from [0, 1]. We then let
{li,r;} = {x9i_1, 29} where {; < r; for i =1,2,...,mn. We then sort the r; in increasing order
R < Ry <---< R,,, and let Ry = 0. We then let

Wj = ij and w; = Wj — VV]’,1 and [j = (Vijl, VVJ]

for j = 1,2,...,n. Given this we can define G, as follows: It has vertex set V,, = [n] and an
edge {z,y}, <y for each pair ¢;,r;, where {; € I, and r; € I,,.

We recast the construction of Bollobas and Riordan as follows: we can generate the sequence

Ry, Ry, ..., Ry, by letting
T, 1/2
RZ’ — 5 1
(Tmn+1> ( )

Ty=+&E+ -+ v for N> 1

where To = 0 and

and where &1,&, ..., &nne1 are independent exponential rate one random variables i.e. Pr(§; >
x) = e * for all 7. This is because r},r3,...,r2  are independent and uniform in [0, 1] (as they

are each chosen as the maximum of two uniform points) and the order statistics of NV independent
uniform [0, 1] random variables can be expressed as the ratios T; /Ty for 1 <i < N.

We refer to the distribution of Ty as ERL(N), as it is known in the literature as the Erlang
distribution.

2.2 Important properties

The advantage of our modification of the variant of the Bollobas and Riordan construction is
that if we define

i = §(¢—1)m+1 + f(z'—l)m+2 + ot im,

then n; is closely related to the size of I;. It can then be used to estimate the degree of vertex 1.
This will simplify the analysis since 7; is simply a sum of exponentials.

In this section, we make this claim (along with other more obscure asymptotic properties of this
model) precise. In particular, we let £ denote the event that the following properties hold for
G- In the appendix, we prove that G, has all these properties w.h.p.



(P1) For Y, =T, — Yy, we have

Yo € (k—10) |1+ Lo
ke € (k= 10) 30— ()12
for (k,¢) = (mn +1,0) or
e g 1 [=0
76{w,w+1,...,n} and k — 1 > ¢ log®n k>1og*n,l >0
10g1/300n 0<l<k<log®n.
A2n 1
Here, where ng = {07, /\OZW’
(log k w<l<k<log¥n
f1/2 w<k<n?1=0

Ore =3 (k—0OY2  log*n <k <n?5

_0)3/2],
(kal# n2/5<k§n0.

o n0<k.

\ w3/21og?n

1o\2 N\ 1/2
lie—’]~<i) for w < i < n.

71/2

(P2) W; € (%)1/2

n
1/2
n; 2L0¢ i .
(P3) w; € 2m(in) 12 1+ ml/%l/?] ~ Sm(in)1? for w <17 < n.

(P4) X\ <1; < 40mloglogn for i € [log™ n].

(P5) n; <logn for i € [n].

Some properties give asymptotics for intermediate quantities in the Bollobas/Riordan model
(e.g., (P2), (P3)), while the rest give worst-case bounds on parameters in various ranges for

i. The very technical (P1) is just giving constraints on the gaps between the points T in the
Bollobas/Riordan model.

2.3 Inequalities

We will use the following inequalities from Hoeffding [9] at several points in the paper. Let
Z =71+ Zy+ ...+ Zy be the sum of independent [0, 1] random variables and suppose that
w=E(Z). Then if a > 1 we have

Pr(Zz(l—l—a);L)SeXp{— o’ }S{expi—ﬂ}, a§1: @

2+ a/3



Przz <ot (5) oo 3)
Pr(ZS(l—a)y)geXp{—%}, 0<a<l. (4)

Our main use for these inequalities is to get a bound on vertex degrees, see Section 2.4.

In addition to these concentration inequalities, we use various inequalities bounding the tails of
the random variable 7. We note that the probability density ¢(x) of the sum 1 of m independent
exponential rate one random variables is given by

That is,
b
Pr(a <y <b)= / o(y)dy. (5)

The equation (5) is a standard result, which can be verified by induction on m (for example, see
exercise 4.14.10 of Grimmett and Stirzaker [8]). Although we will frequently need to bound the
probability (5), this integral cannot be evaluated exactly in general, and thus we will often use
simple bounds on ¢(n). We summarise what we need in the following lemma:

Lemma 2.1.
(a)

1
Pr(n < azm) < m(xe'™)™ forz <1— —. (6)
m

(b)
Prin<z)<(1—e ™)™ <a™. (7)

(¢)

Pr(n > fm) < (e—ﬁ)m < e 0 for g > 2.

(d)

Pr(n> (1+a)m) <e ™ for0 < a < 1.

(¢)

Pr(n < (1—a)m) <e ™2 for0 < a < 1.

Proof. (a) ¢(n) is maximized at n = m — 1. Taking ¢(mz) (x < 1—1/m) as an upper bound on
¢(y) for y € [0, mz] and m! > (m/e)™ in (5) gives us (6).

(b) Writing n = & + & + -+ - + &, we have Pr(n < z) <[[%, Pr(§ < z).



(c)Un=&+&+ -+ &, then with A = (5 —1)/8,

Pr(n > fm) = Pr(e™ > ¥™) < e MM E(eM) = e [ E(e) =
=1
e MM (1 — A)T™ = (Be~B-DYym (8)
(d) Putting 8 = 1+ « into (8) we see that

Pr(n > (1+ a)m) < (14 a)e @)™ < e "om/3,
(e) With A = a/(1 — a) we now have

PI‘(7] < (1 o a>m) _ Pr(e—)\n > e—A(l—a)m) < 6A(l—a)m E(e_A") _ GA(I—a)mHE<€—>\£1;) _
=1
eA(lfa)m(l + A)fm — ((1 . Oc)ea)m < efa2m/2'

O
2.4 Properties of the degree sequence
We will use the following properties of the degree sequence throughout: let
. n\ /2 i\ ? 5L 1loglogn
<) = <;> (1 B (ﬁ) — Wilogn (9)
S\ 1/2
T E>1/2 (i 5L1loglogn
<) <2 L n + w4logn |- (10)
Note that
2logl
C(i) ~ ¢t ifi<n (1 - %) . (11)
1/2
C(i) ~ (2) if i = o(n). (12)
1

Also, let d,(i) denote the expected value of d,(i) in G,,.

Lemma 2.2.
(a) If € occurs then d,, —m € [n;C(i),n:¢H(3)].
(b) Pr(d,(i) —m < (1 — a)niC(i)) < e @102 for 0 < a < 1.

8



(¢) Pr(d,(i) —m > (1+a)nCT (i) < e @ OB for 0 < o < 1.
(@) Pr(dy(i) —m > B¢ (i) < (e/B)"<" for 5 = 2.

(e) W.h.p. m; > X\ and w < i < n'/? implies that d,(i) ~ n; (%)1/2.
(f) W.h.p. w <i <log®n implies that d,(i) ~ n; (%)1/2.

(9) W.h.p. w <i<n'? implies d, (i) < max {1,n;} (’?)1/2.

(h) W.h.p. n'/? <i < n implies d, (i) < n'/3.

(i) W.h.p. 1 <i<log"* n implies that d,,(i) > nl/?

log /29y, *

(j) W.h.p. d,(i) > log1+on implies i < log** n.

Proof. We defer the proof, which is straightforward but tedious, to the appendix. O

Remark 2.3. We will for the rest of the paper condition on the occurrence of £. All proba-
bilities include this conditioning. We will omit the conditioning in the text in order to simplify
expressions.

3 Analysis of the main loop

Since the variation distance after Step 1 is o(1), it suffices to prove Theorem 1.2 under the
assumption that we begin Step 2, with v; chosen randomly, exactly according to the stationary
distribution.

The main loop consists of Steps 2-7. Let vg = 1 and vy, vs,...,vs for s > 1 be the sequence of
vertices followed by the algorithm up to time s. Let p, = vyy1/v;, and define T3, T by

T} = min {t tup < loggon} and T3 = T + 30w log, 3 log n and Ty = min {2w log, /s n,TQ} . (13)
We will prove, see Lemma 3.2, that
3

Recalling that T is the time when Step 8 begins, we note that if T' < t < Tj then this statement
is meaningless. So, we will keep to the following notational convention: if X, is some quantity
that depends on ¢t < T and ¢t > T then X; = X7.

Now, roughly speaking, if r = 2log,/3 n and p is the number of steps in the main loop, then we
would hope to have

1 1
Pr(p>r) <Pr (poplmm > ﬁ> <nE(popr---pr) <



and so w.h.p. the algorithm will complete the main loop within 2log,; n steps. Unfortunately,
we cannot justify the last inequality, seeing as the p; are not independent. I.e. we cannot replace
E(pop1---pr) by [1:—o E(pi). We proceed instead as in the next lemma.

Lemma 3.1. Assuming (14) we have the w.h.p. DCA completes the main loop in at most T
steps.
Proof. We let sy denote the number of vertices visited by the main loop, and then define Z, =

pPop1 - ps for s < sg, and Z, = popy - pSO( )50 for s > 5.

Suppose first that Ty > wlogy/3n. Now (14) and Jensen’s inequality implies that for s > 1,

min(s,sp) s
E(log(Z E(log(p;)) Z log%
i=0 min(s s0)+1
in(s,s s
Z logE ) Z log 3 < slog(3/4). (15)
=0 min(s,sg)+1
Now
log(Zs) > (s — so) log(3/4) — logn > slog(3/4) — logn (16)

since p1p2 ... ps, > 1/n.

Now let
o = Pr(log(Z,) < (1 - )slog(3/4))
where «, § are to be determined. Then, (15), (16) imply that

(1 —a)(1—p)slog(3/4) + a(slog(3/4) — logn) < E(log(Zy)) < slog(3/4). (17)

Equation (17) then implies that

~ Bslog(4/3) +logn
Now putting s = wlog, /3 n and = 1/2 we see that (18) becomes
2
a>1l———=1-o0(1).
w+ 2
So w.h.p. after at most wlog, ;n steps, we will have exited the main loop.
Suppose now that 7y < wlog, 3 n. Using the argument that gave us (18) we obtain
T'—T <wlogys log®* n w.h.p.
O
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To prove Lemma 3.2, we will use a method of deferred decisions, exposing various parame-
ters of GG, as we proceed. At time ¢, we will consider all random variables in the model from
Section 2.1 as being exposed if they have affected the algorithm’s trajectory thus far, and con-
dition on their particular evaluation. To reduce the conditioning necessary, we will actually
analyze a modified algorithm, NARROW-DCA(7), and then later show that the trajectory of

NARROW-DCA(7) is the same as that of the DCA algorithm, w.h.p., when identical sources
of randomness are used.

NARROW-DCA(7) is the same as the DCA algorithm, except that for the first 7 rounds of
the algorithm, a modified version of Step 4 is used:
Modified Step 4 Let

Ct = {wl, Wa, . .. ,’wm/g}
be the m/2 neighbors of v; of largest degree from {1,..., ¥v;} where ¥ := (loglogn)!®.
For rounds 7 + 1,7 + 2,. .., the behavior of NARROW-DCA(7) is the same as for DCA.

Notice that NARROW-DCA “cheats” by using the indices of the vertices, which we do not
actually expect to be able to use. Nevertheless, we will see later that w.h.p., for 7 = 2wlog, 3 n,
the path of this algorithm is the same as for the DCA algorithm, justifying its role in our analysis.

3.1 Analyzing one step

Our analysis of one step of the main loop consists of the following lemma:

Lemma 3.2. Let p; be the ratio of vy 1 /v, which appears in a run of the algorithm NARROW-
DCA(t). Then for allt < Ty (see (13)), we have that

(19)

The first statement ensures that NARROW-DCA (¢) makes progress in expectation in the tth
jump. The second part of this statement implies by induction that for any ¢ < wlogn, the
behavior of NARROW-DCA(?) is identical to the behavior of the DCA algorithm for the first
t steps. Thus together these statements give (14).

To prove Lemma 3.2, we will prove a stronger statement which is conditioned on the history of
the algorithm at time ¢. The history H; of the process at the end of step t consists of

(H1) The sequence vy, vy, ..., v;.

(H2) The left-choices A(vs, 1), A(vs,2), ..., A(vs,m),1 < s <t and the corresponding left neigh-
bors N (vs) = {u1s, Uz, -+, Um.s}-

(H3) The lists u} g, uy g, - .., u,. ; of all vertices uj, , which have the property that (i) v, € Ny (uy )

» Prys

and (i) u, , < o, for 1 < s <. (It is important to notice that s < ¢ here.)

11



(H4) The values n,, and the intervals I,, for i = 1,2,... ¢

(H5) The values 7,, and the intervals I,, and the degrees deg(w), for w € Ji_, N(v;).

Here,
N(v) = Np(v) U Ng(v) where Ng(v) = {w < Vv :v € Np(w)}.

We note that at any step ¢, and for a fixed random sequence used in the NARROW-DCA(t)
algorithm, H; contains all random variables which have determined the behavior of the algorithm
so far, in the sense that if we modify any random variables from the random graph model
described in Section 2.1 while preserving all values in the history, then the trajectory of the
algorithm will not change. We write H; to refer to a particular evaluation of the history (so that
we will be conditioning on events of the form H; = H,;).

Structure of the proof

The essential structure of our proof of Lemma 3.2 is as follows:

Part 1 We will define the notion of a typical history H;.

Part 2 We will prove that for ¢ < Ty and any typical history H;, random variables 7, which are
not explicitly exposed in H; are essentially unconditioned by the event H, = H; (Lemma
3.3).

Part 3 We will prove by induction that H; is typical w.h.p., for t < Tj.

Part 4 We will use Part 2 and Part 3 to prove that for ¢ < Tj that where | H; is short for
| 7-lif = Htv

21n,  LP 1
nt+_ and Pr(ptZ\I”Ht)<

mL — m? ~ log’n

E(p | Hy) < g + (20)

by using using nearly unconditioned distributions of random variables which are not re-
vealed in H; to estimate the probabilities of various events. (Note that 7,, in (20) is simply
a real number determined by H;.)

Part 5 We will also prove for ¢t < T that

E(mm ‘ Ht) < 4m. (21)

Now the expected value statement in (19) follows from (21) and the first part of (20), by removing
the conditioning on H;.

12



Part 1

Let P, denote the sequence of vertices vy, vs,...,v; determined by the history H;. We now
deﬁne the notlon of a t%/gﬂzcal history H;. For this purpose, we consider the reordered values

0< )\1 < )\2 N where

A@Z{ﬁng. &W}—{M%,)1<s<t1<z<m}
Given this we define v = U ) to be the index such that )\ € I, and then let

v = {vj(.t) 1<) < N(t)}.

We also define
V}gt) ={v:v € Ngr(P)}

Now let us reorder

t t t t
VO = Lo < <o <} = VUV,
We define the extreme points x(()t) =0 and xg\i[)(t) 41 =n+ 1 and define
M(t)+1
X =1 41,20 1) and X© U XW=m\V® and NV =[xV,

J

t t ¢ t
U =W, 0 W ] and U0 = U U and LY =U").
A typical history H;,t < Tj is now one with the following properties:

(S1) There do not exist s1,s9 < t such that either (i) s; <t — 2 and v, and v, are neighbors
or (ii) s; <t — 3 and there exists a vertex w such that w € N(vs,) N N(vs,). (We say that
the path is self-avoiding.)

(S2) The points of A®) are well-separated, in the following sense:

x§t_)1 > log30 n.

| | log”n

xy — @

/ = log/*® n Otherwise.
We observe that

(T1) If H, is typical then vj,; is chosen from X for all j < ¢.

(T2) Each UJ@ is the union of intervals [,,,v € X](-t).

13



Part 2

We prove the following:

Lemma 3.3. For any vertex v € X® | any interval R C R, and any typical history H,, we have
that v ¢ P, U N(FP;) implies

Pr(n, € R | H,) ~ Pr(ERL(m) € R). (23)

The following lemma is the starting point for the proof of Lemma 3.3.

Lemma 3.4. Let j € [M(t)+1], let H; be any typical history, and let X' be the value ofX;t) in Hy.
Then the distribution of the random wvariables n,,v € X' conditioned on H; = H, is equivalent
to the distribution of the random wvariables n,, v € X' conditioned only on the relationship

Y ovext T = A2 — A2 where Ay, Ay are the values of Wxgt)_ and ij(_tzﬁ respectively, in H;.

1 1’

Proof. Suppose we fix everything except for n,,v € X’'. By everything we mean every other 7,
and all of the A(v,7) and the random bits we use to make our choices in Step 5 of DCA; we
let H; be the corresponding history. Suppose now that we replace n,,v € X' with /,v € X’
without changing the sum »_ ., 7,. Then me)l 4, Femains the same, as it depends only on 7,

for v ¢ X', and thus W (| remains the same as well, since the difference A? — A2 is unchanged.
i

In particular, this implies that H; remains a valid history. We confirm this by induction. Suppose
that Hy, s < t remains valid. We first note that because the A\(vs, ) are unchanged, none of v.s

left neighbors are in X ;t). Also, Ng(vs) and the vertex degrees for w € Ng(vs) will not be affected
by the change, even if v, < min X J(t). So H,q will be unchanged, completing the induction. [

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. Suppose that v € X' = X;t), then M = N]@ > (, — oo. We now use
Lemma 3.4 to write

Pr(n, <z | H) =Pr (nv <z

an:A%_A?h)

weX'’

where A; and Ag are the values of W, and W @ , respectively, in Hy, so that Ay — A is
J

J—1+1

the value of L;t) in H;.

Now from (P1) we have that A := A? — A2 € [(1 —&)mM, (1 + &)mM] for M = | X'| w.h.p., for
any € > 0. Thus we fix any u € [(1 —e)mM, (1 4+ e)mM| and show that

Z N = u) = (14 O(e)) Pr (ERL(m) < x).

weX'’

Pr (nv <z

14



The lemma follows since ¢ is arbitrary.

We write
Pr s S x Z Ny = M)
weX’
_ / Tognle (u—p)Mmlem e (Mim — 1))
- n=o (m —1)! (M —1)m —1)! Mm=Te=p
n (Mil)mil m .
_ /x nmflefﬁ . (1 — ;) e’ Hz’:l(Mm — Z)dn
n=0 (m - 1)‘ Mm
T m—1,—n )
A n Ul m
i oo @m0 (Leo (E)) (10 (2
/7]:0 (m - 1)' { 7! ”2 M
z m—1_,—n
n e
=(1+0(e dn.
(1+0@) | Ty
Here we used that H, typical implies that M > 1Og1/4oo N — o0 -

Part 3

In the next section we will need a lower bound on v;,1. Let

— {log13n v 2 10g30 n
¢'U - 30
v < log™ n.

1
(loglogm)3 *

Lemma 3.5. W.h.p. p > ¢y, for 1 <t <'Ty.

Proof. The values of A(vy,1),7 = 1,2,...,m are unconditioned by H;, see (H2). It then follows
from (P2) that if v; > log® n then

m

|14
Pr(vi1 < gyvr | H) S me S mo)” =

vt

v, - log?’/Qn' (24)

There are O(wlogn) choices for t and so this deals with v, > log® n.

Now there are O(loglogn) choices of ¢ € [T}, Ty] for which v, < log30 n. In this case we can
replace the RHS of (24) by 1/(loglogn)3/2. O

We will also need to bound the size of Ng(v;) for all ¢.
Lemma 3.6. W.h.p., for all t < Ty,

log® n v > log® n.
)20

[Nr(v)] < {

(loglogn v < log* n.

15



Proof. The size of Ng(v),v = v; is stochastically bounded by Bin(¥wv,n,/v). This is because if
w € Ng(v) then w < Wo. Also, for any such w, the probability that it has v as a left neighbor
is at most mw,/W, < n,/(vw)'/? < n,/v. This uses property (S1) to see that the values of
Mw,i),i =1,2,...,m are unconditioned by H,. Thus, if 6, = log®n if v > log®® n and equal to
(log logn)?° 0therw1se,

Pr(n(o) 2 0,1 11 < (") ()" < (‘gn) (25)

If v > log® n then the RHS of (25) is at most (e/ logn)°8’™ which is clearly small enough to han-
dle T possible values for t. If v < log® n then the RHS of (25) is at most (40e/ (log log n)?)(leglos )
which is small enough to handle O(wloglogn) possible values for ¢ such that v < log® n. O]

Continuing Part 3, we now show that the DCA walk doesn’t contain cycles.

Lemma 3.7. W.h.p. the path P;,t < Ty is self avoiding.

Proof. We proceed by induction and assume that the claim of the lemma is valid up to time
t — 1. Now consider the choice of v;.

Case 1: There is an edge v,v; where s <t — 2:
(a): v € Np(vs) N Np(ve—q).
We bound the probability of this (conditional on £, H;) asymptotically by

Z Z muwy, Z Z th 1 1/2 (26)

s€[t—2) veNL (vs) s€[t—2) veNL (vs)

Here, and throughout the proof of Case 1, v denotes a possibility for v; and mw,/W,,_, bounds
the probability that v;_; chooses v. Remember that these choices are still uniform, given the
history.

We split the sum in (26) as

SOY ikt Y il

sEt— 2} vENL (vs) sEt— 2] vENY (vs)
vs>log?0n vs<log®n

Consider the first sum. There are less than ¢ choices for s; m choices for v and 7, < logn. Now
v € N (v,) and Lemma 3.5 implies that v > log?” n. So we can bound the first sum by

1 1 1
(#Ofs)-(#ofv)-(maxnv)~ 1/2<T0 m - logn m:0<long)

Summing this estimate over ¢ < Ty gives o(1).

For the second sum, we bound the number of choices of s by O(w loglogn) and n, by O(loglogn),
since v < vs. We use the fact (see Section 3.2) that v;_; > logl/100 n. So we can therefore bound

16



the second sum by

1 1 1
(# of s) - (# of v) - (maxn,) - —7 <, wloglogn -m -loglogn - —logl/ZOOn — <—log1/300 ) )

Vg

(We use A <;, B in place of A = O(B).)
There are O(w loglogn) choices for Ty > ¢t > s > 17 and so we can sum this estimate over choices
of t.

(b): vy € Np(vs) N Ng(v—q).
Using v; € Ng(v;—1), we bound the probability of this asymptotically by

77vt 1 + 77vt 1
Z Z 2(vvy_q) 1/2 Z Z 2(vvy_1) 1/2
seft— 2 vENL (vs) seft— 2] vENL (vs)

vs>log30 n vs<log®n

For the first sum we use the argument of Case (a) without any change, except for bounding 7,, ,
by logn as opposed to bounding 7, by the same. This gives a bound

1 1 1
(# of s)- (# of v)-(maxnvt_l)-m SbTo-m-logn-longzn:o(long).

This is small enough to inflate by the number of choices for ¢.

For the second sum we split into two cases: (i) v;_1 > log®* n and (ii) v;_; < log®®n. This enables
us to control n,, ,. For the first case we obtain

(# of s) - (# of v) - (maxn,,_,) - % < wloglogn-mdogn-L =0 (;> :

v, log® n log®n
The RHS is small enough to handle the O(wlogn) choices for ¢.

For the second case we obtain

! < wlogl log1 ! = 1
(# of s)-(# of v) - (maxmn,, ,)- vf/ﬁ wloglogn -m -loglogn - lgl/—200n =0 W .
The RHS is small enough to handle the O(wloglogn) choices for t.

(¢): vy € Nr(vs) N Np(v—1).
Using vy € Np(v4—1), we bound the probability of this asymptotically by

RIS PESEUESES S e

sEt— 2 vENR(vs) sEt— 2] vENR(vs)
vs>log? n vs<log?n

For the first sum we use v > v, and the argument of Case (a) without change, but notice we
split over v, > log® n or not here. This gives a bound of

1 1 1
(#ofs)-(#ofv)-(maxnv)-mSTO-m-logn-mzo(lOng).

17



For the second sum we use v < Wu, to bound v by log®* n. We also use Lemma 3.6 to bound the
number of choices of v by (loglogn)?°. This gives a bound of

1 " 1 1
(# of s)-(# of v)-(maxn,)- Ut1/21 <y wloglogn-(loglogn)®-loglog n- g P 0 (10g1/300n) .

(d) Vs € NR(US) N NR('Utfl).
Using v; € Ng(v;—1), we bound the probability of this asymptotically by
77?)1 1 77vt 1
DD DI SRR D T
sEft— 2 vENR(vs) s€ft— 2] VENR(vs)
vs>log?0n vs<log®n

For the first sum we use v > v, and Lemma 3.6 to bound the number of choices for v and then
we have a bound of

(#OfS)'(#Ofv)'(math_l%#§T0~10g3n-10gn' s :o( : )

log™” n log” n

For the second sum we split into two cases: (i) v,y > log*™ n and (i) v,—; < log®®n. This enables
us to control 7,, ,. We also use Lemma 3.6 to bound the number of choices for v in each case.
Thus in the first case we have the bound

1 1 1
(# of s)-(# of v) - (maxn,,_,) - —77 Spwloglogn - log’n -logn - —=—=o (T) :
v,/ log™” n log™ n

In the second case we have
1 ” 1 1
(# of s)-(# of v)-(maxmn,,_,)- Utl/21 < wloglogn-(loglogn)*"-log log n- lgl/—mon =0 (W) :

Case 2: There is a path v,,v,v; where s < t.
The calculations that we have done for Case 1 carry through unchanged. We just replace v;_; by
v; throughout the calculation and treat v as an arbitrary vertex as opposed to a choice of v;. [

The :zcg-t) are separated

We now prove that w.h.p. points \; are well-separated. Let
J1 = {j Tvj > loggon}.

Lemma 3.8. Equation (22) holds w.h.p. for all t < Tj.

Proof. We c0n31der cases.
Case 1: xg)l, T € VR .
For this we write

Cou = log*n min {v, w} > log® n.
o log'/?® n  Otherwise. '

18



Pr(31 <s<t,v € Ng(vs),w € Nr(vy) : |v —w| < (o | €, He) <

< Tlvant
~ Z Z (vsvvw)t/?
1<s<t<Th vENR(vs),WENR (v¢)
Iv_w‘SCv w

Z Z _Cngwnvsgv;t)lﬂ (27)

1<s<t<Tp ’UGNR(’U

s Mg N s

(vs0y) 1/2

1<s<t<Th

Here ¢}, will be a bound on the possible value of (,,, in (27).

Case la: max {v,, v} > log* n:
In this case (;, < log”n and we can bound the summand of (28) by

11

29/2 152,

¢, -log*n -log’n - =

’ log™“n  log
Multiplying by a bound T on the number of summands gives a bound of o(1). Here, and in the
next case, we use Lemma 3.6 to bound | Ng(vy)|.

Case 1b: max {v,,v;} < log® n:
Here we have max {v, w} < Wlog® n < log® n. In this case we can bound the summand of (28)

by
1 (loglogn)®
1/300 n- (40m log lOg n)2 : (lOg log n)20 : 1Og1/—100n =0 (W .

We only have to inflate this by (T — 71)* = O((wloglogn)?). This completes the case where

t t
.ngl, 335 ) € R(t)

log

Case 2: x()l, T EV

We first show that the gaps A\; — A;_; are large. Define

10g15/2n 10g1/300n
51 = W and 52 = W
and
e — ﬁl )‘j = /\(Ut,i),?]t € Jl.
! By otherwise.
and
B 1 Qo — 1
o1 = log™ 1 and oz = log!/? 1,

We drop the superscript ¢ for the rest of the lemma.

Claim 3.9.
Pr(EI)\j € Ay )\j,1 > )‘j —&j ’ Ht) = 0(1)
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Proof of Claim 3.9. This follows from the fact that
PI'(E'] . >\ij > )\j — 8]) S 0(1) -+ (1 —+ 0(1))(m2T1201 + mZ(Tg — T1)<T10'1 -+ (To — Tl)O'Q)).

We have fewer than m?T? choices for s = 7(j — 1),t = 7(j) € J;. Assume first that s < t.
Given such a choice, we have that w.h.p. W,, 2> log'° n/n'/? by (P2). Now ); will have been
chosen uniformly from 0 to ~ W,, and so the probability it lies in [A\;_1,A\;_1 + ¢;] is at most
~ 1 /W,., which explains the term m?T?c;. If s > ¢ then we repeat the above argument with
[(Aj—1,A\j_1 + 1] replaced by [A; —e1, Aj]

The term m?(Ty — Ty)Ty 0, arises in the same way with j — 1 € Jy,j € J; or vice-versa.

The term m?(Ty — T})?09 arises from the case where j — 1,5 ¢ J;. Here we can only assume that
W, > log"/?® n/n'/2. This follows from (P2), (P4) and Lemma 2.2 and the fact that we exit the
main loop when we see a vertex of degree at least n'/2/ logl/ 100, Assuming that s < t we see that
the probability that \; lies in [A;_1, \;_1 +&] is at most By/W,, ~ Ba/(log"** n/n'/?) = o(1). O

Given the Claim and (P4), (P5) we have that w.h.p.

Wv;t) 1 W (t)

v; 1+1—

1 .
B — ;;g/g =z 251 Jj €.
40m log1 :
By — TICEBR > 18, j ¢y

Now,

1/2 1/2
W W Toir= \> [ Tomir—n+n \ T = Tmeg-n
o1 J(t)1+1 T T st T2 (T1/2 ) )+ 1/2

mn-+1 mn+1\ - m(r(5)—1 Tm(T(j_1)+1))

Or,

51711 /2 ] € Jl.

g— W Y2 12 T1/2 > ‘
Z n ( v§t)_1 ”J('t—)1+1) mn+1( m(r(j)— + m(T(j—1)+1) ) = an /2 ]@é Jp

()
uer

It follows that w.h.p.

B1n1/2 .
®) O _ v ® Togn j € Ju
’-ijl - | = ’Xj | > { 0%;11/2 d g
Tomlogiogn J &1

Case 3: 93 GVL ;2 1€V(t
Let 6, = 51, v >log® n and 6, = B, otherwise. We write

Mo, w, + 20,
Vv, )1/2 W,

Pr(3s < t,v,k:v € Np(v,), v, k) € I, 60, | £, H) < > (

s,t,v,k
Mo Mo 2n1/29v77v
< Kl El 30
< 3 (st Vo) o0
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We bound the sum in the RHS of (30) as follows: If max {v,v,} > log® n then we bound the
first sum by

—~1 1 1
k) login ey - <p (w?log?n) -log?n -logn - = o(1).
(#s,t, k) -log®n ;U oz n <p (w”log“n) -log”n -logn oz n o(1)
We bound the second sum by
(#s,t k)-21og15/2n-1ogn-zn:l- ! <(wQIOan)-10g15/2n-10gn-1ogn-;:o(l)
T —~v log®n — log' n '
When max {v, vy, v;} < log® n we bound the first sum by
log®% n 1 1
2
(#s,t,k) - (40loglogn)* - z; o logl/—ZOOn <
1
(wloglogn)? - (loglogn)? - loglogn - — e~ o(1). (31)
log n
We bound the second sum by
log®% n 1 1
1/300
(#s,t,k‘)-log n4010g10gn ; ;bgl/—%)ongb
1
(wloglogn)? - log"** n - loglogn - — e~ o(1). (32)
log n

Finally, if max {v,v,} < log®®n < log®n then we have to replace (#s,t,k) in (31), (32) by
O(w?lognloglogn). But this is compensated by a factor 1/1),;1/2 < 1/log"n.

It follows that (29) holds w.h.p. and the proof continues as for Case 2.

Part 4

We now assume t < T,. We begin by showing that DCA only uncovers a small part of the
distribution of the n’s.

Let Et:PtUN<Pt) and

t
St’j: E Wy

'UGEt

Lemma 3.10. W.h.p., S, ; = o(W;) for log/*n < jand 1<t <Ty.
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Proof. Assume first that j > log®*n. It follows from (P2), (P3), (P5) and Lemma 3.6 that
w.h.p.

max 1y,

X (m + max | Ng(v)|)

W, > (1= o(1) (%)1/2 o (1051#) |

This completes this case. Now assume that j < log® n. (P2), (P3), (P4) and Lemma 3.6 that
w.h.p.

< Ty logn(m + log® n) B wlog®n
~ 2mmnl/2 B nl/2

wlog, /3 logn

2mnl/2

-\ 1/2
Sty < 40mloglogn x x (m + (loglogn)®) < W; ~ (%)

for log"/1®n < j < log® n. O

Dealing with left neighbors
The calculation of the ratio p; takes contributions from two cases: where v;,; is a left-neighbor
of v;, and where vy, is a right-neighbor of v;.

Lemma 3.11.

[GSEN )

E(ptlvt+1<vt ’ Ht) <

Proof. Let D denote the (m/2)th largest degree of a vertex in Ng(v;). We write

E(ptlvt+1<vt ’ Ht) = ZE(ptlvt+1<Ut | Ht ‘ D = d) PI‘(D = d)
d
Cd>
< E(>=|Pr(D=d
3> () Prio=a

5 (%),

where (; is the index of the smallest degree left neighbor of v; that has degree at least d. We
let (; = 0 if there are no such left neighbors. We now couple { with a random variable that is
independent of the algorithm and can be used in its place.

Going back to Section 2.1 let us associate ¢ for k£ > w with an index p; chosen uniformly from
[|k/m]]. In this way, vertex i > w is associated with m uniformly chosen vertices a; 1, a; 2, ..., Gim
in [¢ — 1]. Furthermore, we can couple these choices so that if Np(i) = {b;i1,bi2,...,bim} then
given we have (i) Pr(b;; < a;;) > 1 —o(1) and (ii) b;; < 2a;; for all ¢,5. This because
Pr(b,; < k) ~ Wi/W; ~ (k/i)Y/? (giving (i)) and (k/i)Y/2 > k/i and (1 — o(1))(k/i)¥? > k/2i
(giving (ii)).
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So now let p be the index of the uniform choice associated with the largest degree left neighbor
of vy that has degree at least D. Thus

E(%) §E<Uﬁt> :%+0(1)§

Wl N

Dealing with right neighbors

It will be more difficult to consider the contribution of right-neighbors. In preparation, for
Ao < v <1—1/m we define .

Al = m 4 ym( (i)
where ((i),(* (i) are defined in (9), (10) respectively. We note that 7;((7) is a lower bound for

the expected degree of vertex i,i > w, see Lemma 2.2(a). Note also that n;{* (i) is an upper
bound for the expected degree of vertex i,7 > w.

The parameter Afy is a degree threshold. For a suitable parameter v, we wish it to be known
to Analyzer that there should be many left-neighbors but few right-neighbors which have degree
greater than A!. We define

vi = max {7: H] € Np(i) : dy(j) > A;}‘ > m/2}.

A%ﬁ is a lower bound on the degree needed for vertex j > v; to be considered by DCA as the

next vertex; thus we proceed by analyzing the distribution of 7, . We first derive upper bounds
for Pr(vy;, <~ | H,).

Lemma 3.12. There exists ¢ > 0 such that

1 1 1
Pr(y), <7 | H) S (72! fmemen i 0 <y < (33)
Pr(y, <~ | H) < (v/2e7")0m Lme=a/7? 0 <y < é. (34)
Pr(y, <% | H) Se o™ (35
Pr(y;, >y [ H) Sy ", 7 =107, (36)

Proof. For j < v;, we define events A; = {n; <+"/?m} and D; = {d,,(j) < A¥}. We need to
estimate Pr <ﬂje$’ Dj> for subsets S C Np(v;) of size m/2. We write

(D S (A UAND) C (A4 U JAND;). (37)

jes jes jes jes
Now, using inequality (6) and equation (23), we see that if 0 <~ < 1/8 then for j < v,

Pr(n; < 4"2m | H) < m(y/2et 7)™, (38)
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The RHS of (38) includes a factor of 1+ o(1) due to conditioning on &, H;.

So,

Pr (ﬂ A;

jes

m) < (m(y et ymy s, (39)

Furthermore, because j € N (v;) implies that ¢ > j and hence ((v;) < ((j),
Pr((dn(j) < &) A A | Hy) < Pr(dn(j) = m < ymC(j) | He) Pr(n; > 5"*m|Hy)

1/2)2
Sew {122} (40

Explanation of (40): We remark first that the conditioning on £, H; only adds a (1+0(1)) factor
to the upper bound on our probability estimate. We now apply Lemma 2.2(b) with 1 — o =~
and n; > A2,

From (37) (summing over all m/2 subsets of Ny (v;)) and (40) (summing over Ny (v;)) we obtain

Pr(y;, <y | H)=Pr(|{j € Np(v,) : du(j) < AL} [ =m/2| | H;) S

m/2 1— 1/2\2
2" ((m(y2e"")m)) +mexp{_( — 71/2m<<vt>}' (41)
We observe that j € Np(v;) implies that d,,(j) > m + 1. So,
_— 1
m+1 <Al implies ((v;) > s (42)

m/2
Using (42) in (41) verifies (34), after bounding 2™ ((m(yl/zelﬂl/z)m)) by (yY/2el=7"*)em?
From (37) and (40),
Pr(n;, <7 H) < (m(y!/2e! = mym/ay

- 1232
+Pr(A, | H) + Pr(A; | H) 'mexp {—&VI/QmC <9_n>} (43)
Here

In

2 10
- {enn ] )

Explanation of (43): The first term is from (39). If A; holds then v; has at least one left
neighbor j < 9n/10. The final term comes from using (40) and ((j) > ¢(9n/10). The factor
Pr(A;)~! handles the conditioning on A;. The factor m is the union bound for choices of j.

Now |Np(v) N [22]| is dominated by the binomial Bin(m,n/10) and so Pr(A;) < e~#™. Now
¢(9n/10) > 1/20 and plugging these facts into (40) yields (33). Here we have absorbed the e~%™
term into me=""*m and we will do so again below.
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We continue with the proof of (35). For j € Np(v;), we observe that if d,(j) < A and v < %
then

d,() = m < 7w,

We now estimate the probability that a uniform random choice of j € Ny (v;) (for fixed Hy, which
determines v;) has certain properties.

We first observe that

3 Wai/s 3\ %\ 2
P >—H ) S (1—-———)~|1-|= —. 44
(023 < (1= ) )75 o
(For this we used (P2).)
Now (6) implies that
Pr(n; <0.99m | H;) < e™®™. (45)
Moreover, for n; > 0.99m and j < 3v;/5, we have
¢(j) _ <ﬂ)1/2 1—(%)1/2—5 g <ﬂ)1/2
o) \Jj 1—(2)?—¢) " \J
where 5L log]
oglogn
T ogn (46)

Thus we have

1/2
B(d,) -~ m | H) 2 1,6(3) 2 099m (3) <o

Now 0.99 x (5/3)1/2 = 1.278.. > 1.01 x 5/4 and so

Pr (dn(j) —m < 5Civt> ’ Ht) < Pr (dn(j) < %

Ht> < e BniCl) < gdam (47)
using Lemma 2.2(b). It follows from (44) and (45) and (47) that

2
Pr (7;2 < Z ‘ Ht> <Pr (Bm (m, el 4 gmdam 5) > %) < e

This completes the proof of (35).

To deal with (36) we observe that if d,,(j) > A% and v > 10° then

\1/2
v
Je Ny andj < S o = (L) 20 o du )= m iz gl
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Pr (j € Np(v) and j < —

W’U 1/2 1
Ht> < /12 . (48)

71/2 W, A4

And, using (P3) and v > 107,

vt oo m,—n
Pr(n >~+"*m | H, | < - / NE g
' <77] =7 L)~ Z v J=y1/4m (m - 1)‘ n

1=2v; /vy
S ppcan
1=2v¢ /vy
Semnim (49)
Lastly, using (44), (45) and Lemma 2.2(d) and ¢*(j) < ¢(j) for j < 3n/5 we have
2
Pr (do(j) =m =2 '0;((5) | H) < S +e ™"+ e "' < 0.41. (50)

It follows from (48), (49) and (50) that

1
Pr (v, 2| H) S Pr (Bm (m7 (1+0(1)) (1—/4 +e ' o, 41)) > %) e bm,
v

This completes the proof of the lemma. O

Corollary 3.13. W.h.p. v; > 1/(loglogn)? for s =1,2,...,T = O(logn).

Proof. The value of v, is determined when v, is first visited and in this case we can apply Lemma
3.12. In which case the result follows directly from (34). O

We now have a handle on the distribution of v; . We now put bounds on the expected number
of j > v; that can be considered to be a candidate for v, conditioned on the value of ~;,. In
particular, we let

DY ={j>uv:dn(j) > A}

We will bound the size of D!, by dividing D! into many parts bounding each part; in particular,
k € N we let

5, = N DZ k= 0.
by

. 51
S+ = (14 )}HDQ 1<pk< 2l 1)

Note that J20 = 0 if v > 1.

Finally, we let

i ik i ik i . _ 1 KT\ ix
ro" = |J3"]  and T’,Y::ZTV’ and 57:22 .]§—2 <1+ 7 )7’7’. (52)
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Remark 3.14. We have that E <%U—1tsgt | Ht> 1s an upper bound on the expectation of the ratio

= ”i}:l, conditioned on the event that vir1 > vy, since each right neighbor whose index s
included in the sum sit has probability of at most % of being chosen by the algorithm.

Lemma 3.15. Ifv, <n (1 - 3mﬁ> then

E(r | Hy) < ”—L (Lmax {0, (1 — )} + 7+ 10Le~*"") . (53)
f‘y
52t
E (i | Ht) < ";’tL (Lmax {0, (1 — )} + 13 + 100Le”"") . (54)
Ut g
Moreover,
1
If v, <n/5 and k > (loglogn)* and v > 1/(loglogn)? then Pr(ri" > 0) < T (55)
og“n
Note that (55) implies the second inequality in (19).
Proof. Recall from Lemma 3.10 that w.h.p.,
St = o(W;) for j > log"'%n. (56)
We write
E(r*" | Hy)
muw n (& J .
< — 2 Pr(d,(5) > A" | H,,n;) dn; 57
S e | B P = A o), 57)
jEJ’ytv ’ J
< L[ e () 2 A% | Hiuy) d 58
Nnvt';mml'om I‘(n(])— y ‘ M?j) UrE (58)
]e ’ytv J

Explanation of (57) and (58): We sum over the relevant j and fix n;. We multiply by the
density of n; and integrate. Using (56) we see that

MWy, MWy, T,

Wi=Sy; Wy 2(wg)

This is asymptotically equal to the expected number of times j chooses v; as a neighbor.

Thus

VU, K Mot
jeJytr

where

L= [ G P ) 2 A7 B <1
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If m is large then

0 v > 1.
B (| H) 3 v . (60)
’ ZjEJgt('y) W 5 77%77 v < 1.
Continuing, for £ > 1, we write:
Ij rg Al + AQ + Ag, (61)

where

(1-1/L) 77m le_nj )
Ay / = Pr (do(5) > AY | 15) dny;.

;=0 (m—1)!

L .
/ “———Pr (d.(j) > AY | ;) dn;
n

Ay
i=(-1/Lym (M —1)!

ml—n-

> n; . "
Az = / L py (dn(j) = A | ;) dnj.
(1+1/Lym (M —1)!

and then write 72" = rbemt 4 ptom? 4optosd - Here 2% is equal to the RHS of (59) with I;
replaced by A;. The implicit (1 + o(1)) factor in (61) arises from replacing

Pr (d,(j) > A [ nj, H,) by Pr (d,(j) > A | 1;) in the integrals, i.e., ignoring the conditioning
due to H;. Since j > v, the only effect of H; is on W; through w,,. Here we have that w.h.p.

Wj ~ (%)1/2 and wy, ~ e (o172 =0 <2m10gn > - O(th)'

2m(ven) (vgn)1/2

Case 1: ny <v, <n/b:
Note that in this case

In the following we use Lemma 2.1 to estimate the integrals over n;. We observe that

E(ros | Hy)

(1= )m pn=te=m

z ey A T
S — . 2(vej) 2(v, )2 ny=0 (m —1)!

Z e /(1‘) e (1 L<R<I0LY (63
S 2 B Ly o (e mrmiomee s 10z s

vt K

Explanation of (63): We remark first that the conditioning on H; only adds a (1+o(1)) factor
to the upper bound on our probability estimate. We will use Lemma 2.2 to bound the probability
that degrees are large. Now with our bound on v; and within the range of integration, the ratio
of A —m to the mean of d,(j) —m is

U (nt>1/2 (1 B (ﬁ)l/z O(1>> ) i\ 2
G, () NE ~ o <_> -
) (;) (1 (2" 0(1)> !



L k—1\"? _ /Kr\1/2
> | = > .
L_1<1+ - ) _<L> when x> 10L. (64)

We then use (11) and Lemma 2.2(d) with 3 = (x/L)"/2.

Continuing, we observe that

f\ 1/2 k—1\"? 1
1 —) — (1 < —
( +L < + L > - 2L (65)
and so

—m/(2L2) 1/2 _ 1/2
Vg, K, 1 77vt€ K+ 1 KR 1
E(T“/ | H,) < RYE <<(1 + I > Ut) - ((1 + 17 ) Ut) ) X
1 1<k <10L,
(e(L/k)/2)dormi(v) o > 10L,

_ Ny, €™ 2L%) 1 1<k <10L, (66)
- vL (e(L/k)Y/?)doymc(v) > 10L.

Continuing, it follows from (65) that

1 ,Ut1/2
Z i < 7_L (67)

. _ U,k

JEJy

E(ro"? | Hy)
(41/Dm pm=t e

Mo / , v
< —— “———Pr (d,(j) > A% | H,n;) dn,
jejzvt,n 2w Sy —a-1ypym (m—1)! ( o Hems) iy

~

1 k<3,
<y exp{—%g”“} 4< Kk <10L, (68)
. 2(10,§)1/2
jeJy (e(L/li)l/z)dme(vt) k> 10L,
1 1<k <3,
< ﬂ_L w  emdime(o) /12 4< k< 10L, (69)
gl

(e(L/k)Y/2)dormcle) g > 10L.

where we have used (67).

Explanation for (68): We proceed in a similar manner to (64) and use

i) (=" )
<@ ; (?)1/2 (1- ()" +¢)
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Then we use Lemma 2.2(c),(d).

Continuing,

o0 m—1 M4
/’71] 77 e v .
E(rver3 | Hy) < g —t/ SA—— ] d,(7) = A% | Hy,m;) dn; 70
(7 | ) 2(%])1/2 nj=(14+1/L)m (m —1)! ( b) 7| ' ]) ’ (70)

jeJb"

We bound the integral in (70) by something independent of j and then as above, there is a factor
My, /7L arising from the sum over j.

For all 1 < k < 80L + 1, we simply use the bound

o0 m—1 —n;
n; e dom
—dnéexp{——}. 71
/n:m(H;) (m—1)1" L2 (")

For k > 80L + 2, we split the integral from (70) into pieces B}, B (whose definition depends on
k), which we will bound individually.

In particular, we use

o0 m—1 —n;
. e .
B”Z/ e Pr(dn(j) > A | Hy, ;) dn;

' ny=m(14+551)"* (m—1)! ( 3 | Heymg) dn;

o0 m—1 nj

; e i
e,

77':m(1-i-'€T71)1/4 (m - 1)'

< e—dsm(s/L)/* (72)

and

1/4

m(1+521) nm_le_"j
Bl = / F o Pr(da(j) > A% | Hy,n;) d

nj:m(lJr%) (m - 1)'
k—1\"* L1/ A
Ht777j <m (1 —+ T) ) < <W) (73)

to bound the integral in (70) by By + Bj for all k > 80L + 2.

< Pr (dn(j) > A

Therefore, gathering the many terms together (and using that x < % from (51)) and relying
on m large to allow crude upper bounding, we see that

L 2
et E(r | H;) $ Lmax {0, (1 —~)} [from (60)] + 10Le~™/ 2L [from (66)]

Ny
, , 2nl~?/i €L1/2 doym( (ve)
+ 10Le~hrmC)/ L from (69)] + (2 + em/CL >> > (W) [from (66) and (69)]
k=10L

+ 6[from (69)] + 100L exp {—dZ—T} [from (71)]
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2nl~?/i

)1/4 el 1/* dapmi(ve)
N Z —dzm(s/L)/* | ( 7 > [from (72) and (73)]. (74)

k=80L+2

We first observe that if ;> < % then the summations x = 10L,...,2nL~y*/v; etc. above are

empty. For larger n/v, we can therefore assume that ym(n/v;)'/2 > m which implies (see (62))
that ym((v;) > m/2 and then we can assume that

Q”Li/”t L2\ P . Q"Li/”t L1/4 mi) 75)
K172 = 1000 = 1000
k=10L xk=80L+1

Plugging these estimates into (74) and making some simplifications, we obtain (53).

Going back to (52) we have

VL (2
Mo, mi

Ht) < Lmax{0,(1 —~)}

n § v mg(v
+ 200Le ™/ @E) 4 100Le~tme@o/L7 | (2 + e—m/(2L2)> 2 Liz/ Lok (ert/m) e
L K1/2

k=10L

2nL~? /vt daryme (v2)

d 2 L1/4
i () B (e (5))
K
~k=80L+2

Making similar estimates to what we did for (75) gives us (54).

We obtain (55) from (P5), (66), (69), (72) and (73). Indeed, if J7** # () then from its definition

we must have v, < % Together with v; < n/5 we obtain that ((v;) > 221;2 Thus, in this
case,
€L1/2 doym¢(vt) 6L1/2 dom(log logn)Q/QLl/2 1 :
R < | — = : 6
( 1172 ) = ((loglogn)2> 0 (loglon) (76)

This deals with the probabilities in (66) and (69). For (69) we rely m large to to show that
e~ Bms/LYE — 5(1/10g'n). Equation (72) is dealt with in a similar manner to (66). Here we

daym((ve)
have (%) " which is the square root of (76).

Case 2: n/5§vt§n<1—%

The upper bound on v; implies that
m(v) > L.

Using the same definitions of 2!, 1 = 1,2,3 as above:

(1=7)m pm=1p-n
Ut K, 1 nvt 77] €
> E(ryt [ Hy) <Y E 3 1/2/770 T =1y

w>1 K21 je it 2(vj)
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<

"o o~/ (2L?)
2(v )1/ ’

2.2

k>1 jeJ};tm

from Lemma 2.1(e),

1/2
< Mo (ﬁ) o—m/(2L?)
AERANY

1/2
< Me—m/@ﬂ)‘

Y
ZE(T?W | Hy)
k>1
Ut ) )
~ Z Z Ut] 1/2 / - ﬁpr (dn(]) > A’yt ’nj) dnj
k>1 eJ“t K 77]7(1 I/L)m
1 k<3
1+1/L)m m—1 < 3,
ZZ o7 /H/) s eXp{_%g(m} 4<Kk<10L
~ 1/2 Y <K< 7
k21 jegitn Ut] (1-1/L)m (m ) (€<L/l€>1/2)d6’ymC(vt) K> ].OL,
2 K S 3’
< Z Mot ) 4e—ds7L 4< K <10L,
>1 vL op1/2) d67L?
- (7) k> 10L,

ZE vt,n3|Ht <

k>1

<

<

<

The above upper bounds are small enough to give the lemma in this case, without trouble.

We are now in a position to prove (20).

00 m=1 o=

Z Z 77’Ut / T]J—]
k21 je e 2(vej) 1/ nj=(1+1/L)m (m —1)!
Z Z 77’Ut 1 _m/(3L2)’ from Lemma 21(d)7

Ut] 2(v )12
K21 je it

1/2
Moc ,—m/(3L2) (2)
gt vt
5121, —m/(3L2)
— e .
~

]

We confirmed the second part of the statement (20)

above, using (55), so only the first part remains. The first part follows immediately from Lemma
3.11 and the following, by addition:

Lemma 3.16.

LS
T

21n,,

E(ptlvt+1ZUt ’ Ht) < mlL
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Proof. We consider cases.
Case 1: n; <v, <n (1 — %) Then,

E(ptlthrlth | Ht) S ]1 + IQ + ]3 + -[47

where

5/4
Il :/ / E(ptlvt+12vt | 7:;1 = V)dPr(%jt < 7)7
y=1/8

5/ (9% 8 7L
< / i X Ny X | — + 13+ 100Le~ 2" ) | d Pr(yf < ),

by Remark 3.14, Lemma 3.15,

1 3/
< 1000 [ ypre < o),

m v=1/8
S nvte_qma from <35>
10000 9 L
L= / ( X 1y, X (13 4 100Le )) dPr(vy;, <),
y=5/4 \MY°L
< 2077”'
— mL
o0 2
I, — / <_ X Ty, X (13 4 100Le_027L)) dPr(y;, <)
~=10000 \TY3L
2T, [ _
< Ty, from (36),
10" Lm ) —100 &
27Ny, 1

X :
105 Lm =~ 102em=D(em — 1)

1/8
I = / E(pily,, >0 | 75, = 7)dPr(y;, <)
v=0

S e*doml/Z,

To obtain the term e~%% in (80) we use (33) and (34) to obtain
max {7y € [0,1/8] 1972 Pr(y” < 7)} <
max {7 €1[0,1/8] : (71/274/(01m2)61771/2)ClmQ} n

rax {7 € [0,1/8] : my~* min {e_clmvw’ 6—01/71/2}}

< (84/(clm2)—1/2€1—1/81/2)clm2 +m2e—clm1/2'

The first case of the lemma now follows from (77), (78), (79) and (80).

Case 2: v, >n<1—%>:

(77)

(78)

(79)

(80)

We observe first that n < v (1 + %) Then we let Z = d,(v;) — m be the number of right
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neighbors of v;. Furthermore,

vy (144L° )
n m /2 3
w;y N, 413 4L
E(Z|H)S D ms > %@m§m<O+EJ —QS%Eﬂ (81)

J=v¢+1 J=v¢+1

Case 2a: n,, > 1/LY2.
We use (81) and Lemma 2.2(d) to prove

m(zz%-m>§emwsemw? (82)
Then we can write
4L3 _ 1/2 277v 3771)
E(oilo 50 | Hi) < (1 + F) x e T 4 L—WZ < L_n”:

Explanation: p, will be at most <1 + %) if the unlikely event in (82) occurs. Failing this, the

2nv,

chance that p; > 1 is at most % < G

Case 2b: n,, < 1/LY2.
It follows from (81) that E(Z | H,) < 4L>?/m. It then follows from Lemma 2.2(d) that

3
Pr (Z > L—
3m

Ht) < oL,
We then have

413 e 213 L3
) X e_dQL/ + < O

E(pily, >0 | He) < (1 +- 3.2 S50

Part 5

We now prove (21). To do this, we will obtain a recurrence for E(n,,,, | H;), and, at the end,
obtain the bound 4m by averaging over the possible histories H;.

We begin by writing

E(nvm | Ht) = E(%m 1Ut+1<Ut | Ht) + E(nvm 1’Ut+1>'Ut | Ht) (83)

We consider each term in (83) separately. For the first term, since
Moy Logr<co, Smax{m : 1 <1<, 1€ Np(ve)} Loy cr, Smax{n: 1 <1 <v, 1€ Np(vg)},
we have that

E(nvt+1 ]-vt+1<vt ’ Ht) < E(maX {771 1< [ < Ut, l e NL(Ut)} | Ht)
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Pr(max{n,: 1 <l <w,le Ng(v,)} >n| H)dn

Pr(31 <l <wv,l € Np(v): m >n| Hy)dn

[l

00 Utfl
< Z Pr(l € Np(v;) and g, > n | Hy)dn
=0 —1
oo vt—1 0o m—1_—mn
wy n" e
N / dmdn
=0 ; W, Sy (m —1)!
vg—1 fe’e) m—1 e
m m
pdmdn
; n=0 Jm= 2m lvt 1/2( )

<S2m+ (1+0(1)) / / e dmdn
N I
n=2m Jy=y (M = 1)!

S 2m+ / 4¢3/ from Lemma 2.1(c),
n=22m

< 2m, + 20e3m/5
< 3m. (84)

We now bound the second term of (83). We consider two cases, according to properties of the
history H; (which determines v; and 7,,).

Case 1: H,; is such that v < (1 - ﬁ) n.
In this case, we have that

E(nvt+1 1’Ut+1>Ut | Ht)
<E (max {771 cvp <l <n,ve € Np(l),dn(l) > A%t} Lo, 1> | Ht)

<E (max{m sy <1< n, v € Np(l),d,(l) > A%t} | Ht) )
So we have that
E(nvt+1 1Ut+1>Ut ‘ Ht)
<E <max {m Lo <1<, vy € Ni(l), dy (1) > A% } | Ht>
= / Pr(max {nl pop <1<, v € Ni(l),dn(l) > AT } >n | Hy)dn
n=0 !

:/ Pr (Elvt<l§n, vy € Np(l) - n5277,dn(l)2A% |Ht> dn
n=0 i

<> /OO Pr ((w € N (D)) A (m =n) A(da(l) = AT ) | Ht,m) dn
1= vt+1 0

n m 1 -
S Pr (dn 1) > A%
2(1vy) 1/2/77 O/m (1) Vi

=

m) dmdn. (85)
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Recall that in the final two lines, v; and n,, are not random variables, but are the actual val-
ues of these random variables in the history H;, so this is a deterministic upper bound on

E(%m 1Ut+1 >v | Ht)'

We split the sum in the RHS of (85) into F; + E> + F3 + E, according to the ranges of [ and 7,
and bound each separately. The first part consists of

— MocLlicam2o/g)2 (27" [ g lem
FE, = vy LS ] <dn > A
1 Z 2(lvy)'/? /?7 / (m = 1), r(da(l) > A%

l=vy4+1 =0 Jm=n

Htﬂh) dmdn.

Even though v; and 1, are constants (determined by H;), we caution that +; and so also £ are
random variables.

Observe that we have that

c© ,m—=1_—n
i € v
e C py(d, () > A%
/m=?7 (m—1)! ( Yoy

o ,m—1_—n

Ht;ﬁl) dn < / m—el),dm <1

m=n (m

which allows us to write

" 2m Licamzo, /(s )2 5m2nw1

E 1 * < 1 * * . 86
1y <5/4 = Lyp <5/4 l;l 2(lvt)1/2 =y Vo, <5/4 ( )
We will use this expression when we take the expectation over v;, < 5/4.
We also have that
o nlm—le—m
/ (m —1)! Pr ((dn(l) > AN) A (v, >5/4) | Hy, 771) dm < I + I, + I, (87)
m=1 :

where

™™m/8 ,m—1_—n, 7 m
I = / udm <m|=e’®) <e®"  from Lemma 2.1(a),
m=n (m—1)! 8

o0 nmfle—m
I, = / l—'dm <e ™ from Lemma 2.1(d).
m=9m/8 (m—1)!

9m/8 nzn—lefm
= [ e (it~ m 2 i) 2 5, > 50 )
n

y=7mss (M —1)!
9m/8 nznfle_m 5
< a - p . S 2 H ‘
< /m:?m/8 (m = 1)1 r (dn(l) m > 4mC(vt) t,m) dn, (88)

We bound I3 with two subcases:
Subcase la: ((I) > 0.

9m/8 m—1 - 10
. © C(ve) _ 8
I; < Pr(d,()— > )| H,, d > 2pl,
3> /7717m/8 (m —1)! r ( (1) —m> ac(l) m¢( )‘ t 771) m [since m 977[]
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<

%/@nvs gpten [exp { ~ IO 10 (0,) < 18(1)

m=Tmys (M — 1)! exp —W} 10¢(vy) > 18¢(1)
om/3  m—1,- _Imel) U 10¢ () < 18¢(1

/ n e ) eXp 648 C(ve) < 18¢(1)

i

y=7mss (M =1 | exp —7"12%(6“) 10¢ (v) > 18¢(1)

<

< efmg(vt)/l(]o.

Subcase 1b: ((I) <0

In this case, we go back to (88) and use ¢*(I) in place of ((I), see (10).

9m/8 m—1 - 10
77l € C(Ut) n
< a - p _ > I
fo= /m:7m/8 (m —1)! r (d"(l) m= 9¢+(1) mG ()| Hesm | dm,

For ¢ as in (46) we see that ¢(I) < 0 implies that [ > n(1 — €)?. In which case

CH < T <3

On the other hand, v, <1 — W implies that

1
C(Ut) > m—252 W

Comparing (91) and (92), we see that ((v;) > ¢*(I). From this and (3) with g =
we deduce that

Pr (dn(l) s X

"= 9eH ()

[from (2) and ¢ > v; + 1],

(89)

(91)

771<+(l)'Ht777l) < (65w1/2)1omC(vt) < (65011/2)35771«%)/36.

Plugging this estimate into (90) we obtain something stronger than (89), finishing Subcase 1b

and giving that I3 < e=™<()/100 ip a]] cases.

Having bounded the three terms in (87), we then have that

T 1l<4m2v b _ 3
Eq1 Yo, >5/4 = < Z i o/0d,)” (e d2m+e mC(Ut)/lOO)

(lvg)1/2
l=ve+1

bm e*MC(vt)/loo n 1
= <€_d2m_* t——m— X

E w I=ve+1 i

12 _ 1/2
< Moy <4m6_d2m + o6 (ve)/100 (n+1) 1/5% +1) >
Ut

< Mo (4me*d2m + ZC(Ut)efmC(vt)/loo)

200
< Ny, <4me‘d2m + —) .
m
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It follows from (86) and (93) that

5m? 200
FE; < N, (7—*17;t<5/4 + (4me_d2m + —)> .

vt m

We continue with the other parts of the RHS of (85):

- yn 1l<4m2vt/(’yv m 1 -
Ey = d,(l) > A% dnd
2 Z lvt1/2 /n2m/mn m—1)! Pr(d,(l) > v m)dmidn

l:vt—i-l

amun/(v3,)” S

U / /OO m
< EYTRRNYG] —dn dn
Z 2(lvt)1/2 n=2m Jn;=n ( ) :

l=vs+1
amve/(v;,)?

U > en/m m
S g [ () om Lemma 21(0)

l=v¢+1

IN

am?ve/(v5,)?

Tl * —3mz/10
Z —2(lvt)1/2 X m/x e dx

l=v¢+1 =2
4m?3v; ;‘t 2
- Z/(f | 107, e=3m/5
N 6(Z'Ut)1/2

l=v¢+1

IN

e_d3m7]v

< . (94)
Vor

Note that we aborbed an O(m) factor into the expression in (94). This is valid because m is
large. We continue to do this where possible.

n » /2 9] m—1_—

Ty 1l>4m2vt/(’ﬂ§ )2 /%t (t/ve)! / U e M

B - : W€ pr(d, (1) > A% | H,)dpdy
l:vzt+1 2(lvy)'/? n=0 m=n (M —1)! Tou

n 5 )2 poo m—1,—mn
Ty Tou 771
< Z 2(lvt)1/2/ /77 YT dmdn

I=4m2v¢/(v3,)? n=0 lZVI’ft(l/Ut)l/z (m - 1)

n vi, (1/ve) /2 3v* (1 /v,) /2
Z Ui / exp {_M} dn from Lemma 2.1(c),

1/2
I=4m2v¢/(v3,)? 2(lvt) =0 10

s e f S
201w, )12 P 10 ’

I=4m2ve/ (v5,)?

MoVe, [" 3, (/)2
—t exp{ ————— > duz,
Ve Samamo ;)2 10

ﬁvtﬁt % 8:)162 /OO ye_gy/f,dy’
Ut (ﬂy’ut) =m

IN

IN

IN

IN
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—dam

_ N, €
Vo
o i nvt]‘l>4m21}t/(’}’;t)2 /Oo /OO nlmile_m Pr(d,(l) > A% | Hy,n)dnd
) =i 2(lvt)1/2 n=n, (L/ve)1/2 Jy=n (m— 1>! T P

n

o oo m—1_—mn
T G
< 7 —————dnd

l:4m21)t/('y;jt)2 m=n

& N, > —3n/10
—_— e d
Z 2(1vy) /2 /77_ i U

l:4m2vt/(»y;jt)2 vy (Z/Ut)l/2

IA

n

Z 577fut exc . 37;; (l/Ut)l/Q
3(1vy) 172 P 10 ’

I=4m2ve/(v5,)?

2, /°° 2 exp 3y (/) i,
Zl/2 z:4m2vt/(’ﬁt)2 10

Y

IA

IA

P)/:;t =2m
n 6—d5m
< dve
Vo

Thus,

dgm

5m? e’ m? *
—*+—*>77vt§ e, Ve < 5/4
E(nvt+1]‘vt+1>vt ‘ Ht) S El + E2 + E3 + E4 S ::’(ti7m ’721150 on t *t

+ _> Moy 7’1),5 > 5/4

gt m

We now integrate with respect to the value of ~; . (Note that 7} is actually a discrete random
variable, so that Pr(v;, <~ | H,) is discontinuous, but one can view this as a Riemann-Stieltjes

integral. We write Pr'(+7, <) below in place of Pr(v;, < v | H,).) Using Lemma 3.12 we see
that if m is large then integrating over 7,

E(nthrl 1'Ut+1 >v | Ht)

S Tm? e 200
< / T 1 Pri (s, <) + / Py, < )+ 20
y=0 7 y=5/4 m
5/4 7?2 200
< Ny, / ——dPr (v}, <7)+e B+
=0 8 m
1m gm?2 5/4 Tm?2 200
= Mo, / o Pri(y; <9) +/ ﬁdPrT(%ﬁ} <) Fetm g T
=0 Y y=1/ml/2 7Y m
Tm? . Lm L/ml/? g2 .
< My, {— Pri(y; < 7)} + / —-Pri(y;, <7)dy
Y

=0 v
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=1/m m

54 7 200
+/ ﬁdPr(*<7)+e‘dgm+—
.,

1/m 7
< Ny, (6‘d9m1/2 +/ ﬂPr (7, < y)dry+
Y

0 7
T 200
/ ﬂdPr (’Y: < 7) +e —dsm + — ) from (34)7
y=1/m Y m
S Mo, (€—d9m1/2 + €—d1om1/2 + 7m4 PI‘T (l S 7; S 5/4> + e—dsm + @) ’
m m
200
< Mo, (e_d9m1/4 4 emhom!?  pplemem y gmdsm —) ’ from (35)
m
1 200
<y, (e —) . (95)
m
Combining (84) and (95) via (83), we have that
200
E(nth | Ht) < 3m —+ (@—cm1/4 n W) M. (96)

This completes Case 1. Case 2 is much shorter.

Case 2: H; is such that v; > (1 — #) n.

T
E(%tH | Ht) ~ t1/2 / / d’f]ldT]
l n=0 Jm=n !
N o, . 77””
z s m/ Y
l=v¢+1 =1
S
1/2
[t 2([1),5) /
. DY = (0 + D)2
~ T]Ut (Ut+1)1/2
mny,
wl/2

*9

This completes Case 2. In particular, for sufficiently large n we see that for any typical H; (i.e
in both Case 1 and Case 2), the bound from (96) is valid. Putting

& = EN{H, is typical}
we deduce from (96) that

o/t 200
E(n,., | &) <3m+ (e Qe W) E(n, | &) (97)
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200
< 3m+ <e—cm” g F) E(n, | E1). (98)

We obtain (98) from (97) because & C &1 and so
E(, | &-1) = E(ny, | &) Pr(& | £-1) ~ E(my, | &)

Because m is large, (21) will follow using (98) as a recurrence once we have shown that
E(n,,) < 3m. (99)

Here we will use the assumption that v, is chosen exacty according to the stationary distribution
for a simple random walk on G,,. In particular, we have

< d (i
Pr(n, >n) <E (Z 27'273 177v1>77) )

=1

and Lemma 2.2 implies that if n > 2m

1/2 [ m o= 1/2
E((dn(i) = m)Lyy20) S (5) / AL dan s () x Ame 2
) |

t =2m (m - 1) t

Furthermore,
E(ml,,s,) = mPr(n, > 1) < 5me /2
So, if n > 2m, then

n

9e~"1/2 1
JeT N b —n/2
Pr(n, >n) < 512 2—1 57z < 10e77%,

Therefore,

[e.e] [e.e]

Pr(n,, > n)dn < 2m + 10/ e "2dn

n=2m

E(n,,) < 2m+/

n=2m

and (99) follows. O

3.2 Exiting the main loop

In summary, it follows that w.h.p. DCA reaches Step 7 in O(wlogn) time. Also, at this time
vr < log*n. This follows from Lemma 2.2(g), 2.2(h) and (P4). Furthermore, this justifies
using n1 as a lower bound on vertices visited during the main loop. The random walk of Step
8 will w.h.p. take place on [log'/®n]. This follows from Lemma 2.2(j). Vertex 1 will be in the
same component as v; in the subgraph of GG,, induced by vertices of degree at least %‘ This

is because there is a path from vy to vertex 1 through vertices in [vr] only and furthermore it
1/2

The expected time to visit all vertices of a graph with v vertices is O(v?), see for example

Aleliunas, Karp, Lipton, Lovdsz and Rackoff [1]. Consequently, vertex 1 will be reached in a

further O((log"® n)?) = o(logn) steps w.h.p, completing the proof of Theorem 1.2. O

follows from Lemma 2.2(i) that w.h.p. every vertex on this path has degree at least
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4 Concluding remarks

We have described an algorithm that finds a distinguished vertex quickly and which is local in a
strong sense. There are some natural questions that are left unanswered:

e Can the running time be improved from O(wlogn) to O(logn)?

e Can we get polylog expected running time for DCA if m = 27

e Can we extend the analysis to other more general models of web graphs e.g. Cooper and

Frieze [7]. In this case, we would not be able to use the model described in Section 2.

As a final observation, the algorithm DCA could be used to find the vertex of largest degree: if
we replace Step 8 by “Do the random walk for logn steps and output the vertex of largest degree
encountered” then w.h.p. this will produce a vertex of highest degree. This is because logn will
be enough time to visit all vertices v < logl/ 390, where the maximum degree vertex lies.

References

[1] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz and C. Rackoff, Random Walks, Universal
Traversal Sequences, and the Complexity of Maze Problems. Proceedings of the 20th Annual
IEEE Symposium on Foundations of Computer Science (1979) 218-223.

[2] A. Barabési and R. Albert, Emergence of scaling in random networks, Science 286 (1999)
509-512.

[3] B. Bollobds, O. Riordan, J. Spencer and G. Tusnady, The degree sequence of a scale-free
random graph process, Random Structures and Algorithms 18 (2001) 279-290.

[4] B. Bollobéds and O. Riordan, The Diameter of a Scale-Free Random Graph, Combinatorica
24 (2004) 5-34.

[5] C. Borgs, M. Brautbar, J. Chayes, S. Khanna and B. Lucier, The Power of Local Information
in Social Networks, http://arxiv.org/abs/1212.0884.

[6] M. Brautbar and M. Kearns, Local Algorithms for Finding Intersting Individuals in Large
Networks, in Innovations in Computer Science (ITCS) (2010) 188-199.

[7] C. Cooper and A.M. Frieze, On a general model of web graphs, Random Structures and
Algorithms 22 (2003) 311-335.

[8] G. Grimmett and D. Stirzaker, Probability and Random Processes, Third Edition, Oxford
University Press, Oxford UK, 2001.

42



[9] W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the
American Statistical Association 58 (1963) 13-30.

[10] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach to ap-
proximate counting and integration. In Approximation Algorithms for NP-hard Problems.
(D. Hochbaum ed.) PWS (1996) 482-520.

[11] M. Mihail, C. Papadimitriou and A. Sabeeri, On Certain Connectivity Properties of the
Internet Topology, Journal of Computer and System Sciences 72 (2006) 239251.

A Proofs of properties (P1)—(P5)

In this section we give proofs of (P1)—(P5), which we list here for convenience.

(P1) For Yy, =Ty — Y4, we have

L0,/¢
T k—0) |14+ ——">—
k.t € ( ) 3(/{) _ €>1/2
for (k,¢) = (mn+1,0) or
kg 1 [=0
Te{w,w—i—l,...,n} and k — 1 > ¢ log’n k>1og®*n,l>0
log'/*% 0<l<k<log®*n.
Here o — -0\ — 1
0 — wlogzn’ 0 — logQO/mn7
(logk w§l<k§log30n,l>1
k1/2 w<k<n?1=0

Ore =< (k—0)Y2  log®¥n < k < n?°
(k—0)3/21ogn n2/5 <k < ng.

ni/2
ng < k.

—_n _
\ w3/2log?n

.\ 1/2 1012 N 1/2
(Pz)me(3> 1iT;2]~(i) for w < i <n.
n ] n

i .
(P3) wZNWfOI'MSZSTL.

P4) A\ < n; < 40mloglogn for i € [log® n].
n

(P5) n; <logn for i € [n].
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Proof of (P1)

Applying Lemma 2.1(d),(e) to (1) for i > 1 we see that
Pr(=(P1))
ek ,0 & L20 L29mn+1,0
<22exp{ }+2 Z exp{— 57 }+2 p{ a7

k—t=log'/3%0 n,

n2/5 n n+1
L21/? 0 L2k3/21logn + Ln
Y ep{-S b Y e {-EE e Y ew{o )

k=n2/54+1 k=no+1

log3° n 2 n?/5 2 1/2
L?logk LYk —0)Y
+2 E exp{— 5 }—1—2 E exp{—2—7 +

k—t=log'/3% n, k—£=log®° n

= L2(k — 0)*?logn = L*n
2 Z exp {— 2712 } +2 Z exp {_—27w3/2 log n}

k—0=n2/541 k—fl=ng+1

=o(1).

Proof of (P2)

For this we use

) 1/2
Wi - ( Tmz ) .
Tmn—l—l

Then,

implies that either

L2

1£f —————
3(mn + 1)1/2

Yini1 & (mn+1) or Ty & mi

321/2

L91/2
1£—%1.

These events are ruled out w.h.p. by (P1).

Proof of (P3)

We use (1+2)"2 <1+ 2 for 0 < |z < 1. Then,

o ( T >1/2 - (Tm@-n)m
’ Tmn—l—l Tmn—l—l
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] 1/2
() (6
mn+1 Tm(ifl)
1/2
Lo}/? ))
m(i—1) {14+ —mt—1s
( < 3m 1/2(Z 1)1/2 771
1/2 1/2
1/2 . LG

210,
< iy \ 1 e )

A similar calculation gives
Y oGy 2 \ T miiz2 |

IA

Proof of (P4)

The upper bound follows from Lemma 2.1(c). For the lower bound, we observe by (7) that the
expected number of i < log® n with n; < Ay is at most log™ n x A" = o(1).

Proof of (P5)

This follows from Lemma 2.1(c).

B Proof of Lemma 2.2

We restate the lemma for convenience.

Lemma B.1.

(a) If € occurs then d, —m € [iC (i), ¢+ (5)).

(b) Pr(d,(i) —m < (1 — a)m((j)) < e~ <)/ for 0<a<l.
(¢) Pr(d,(i) —m > (1 +a)mCt(j)) < e OB for 0 < o < 1.
(d) Pr(d,(i) —m > Bm¢*(5)) < (e/B)*" D for § > 2.

(e) W.h.p. n; > Ao and w < i < n'/? implies that d,(i) ~ n; (2

(]

)1/2
(f) W.h.p. w <i <log®n implies that d,(i) ~ n; ( .)1/2
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(9) W.h.p. w < i< n'? implies that d,(i) < max {1,7,} (2)1/2.

(h) W.h.p. n'/? <i <n implies d, (i) < n'/3.

1/2

(i) W.h.p. 1 <i<log"* n implies that d,, (i) > longon'

(j) W.h.p. dn(i) > log1+0n implies i < log"n
Proof. (a) Suppose that we fix the values for Wy, Wy, ..., W,,. Then the degree d,, (i) of vertex i

can be expressed
=m+> D G

j=i k=1

where the (; are independent Bernouilli random variables such that

w; W
Pr((r=1) € {—’, : ]
! Wi Wi
So, putting B
dp (i) = E(dn(1))
we have

mwiZWLj < d,(i) —m < muw; Z WL

j=i

Now assuming that (P2), we have for w < i <n,

S ON (]

j=t
But
- 01/2 - = 1og n nl/2
<Z 3/4+ Z ni/Aji4 1/4 Z o logn
= I j=n?/>+1 j=no+1
1/2 1/2
< 4p/10 4 4nt/ 3n12loglogn
3w3/4logn W logn
4n'/?loglogn
w3/4logn
It follows that
J (Z) > m—+ 77”L’LU'7’L1/2 2(n1/2 _ (Z + 1)1/2) B 9Ln1/2 log logn
S 1 w3/ logn

N N 1/2 , i\ 2 1 9Lloglogn
> m—+n; (;) - ﬁ /212 9,.3/4 logn )
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after using (P3).

A similar calculation gives a similar upper bound for d, () and this proves that

z')l/2 n 5Lloglogn] ‘
n

- 1/2
i > w implies that d,(i) € m +n; (E> [1 - (_ 3/4]
i w3/*logn

It follows from (2) and (4) that
L2mn/?

ni) <exp ——r—7s (-
4il/205172

_ L2mn1/2
) =P\ g |

Pr(d() m < (1 - a)niC(i)

Pr <dn(z) —m > (14 a)n(i)

(a) For n; > A\g and w < i < ny we have

L2nnt/? 121
. v —L?%logn/4
exp{ —42.1/%}1/2 <e gn/%

(b) This follows from (a) and (4).

(c) This follows from (a) and (2).

(d) This follows from (a) and (3).

(e) This follows from (a), (b), (c) and (12).
(f) This follows from (e) and (P4).

(g) This follows from (c) and (12).

(
t

)
) The degree of i > n'/? is stochastically dominated by the degree of n'/2. Also, the probability
a

h
hat d,(n'/?) exceeds the stated upper bound is o(1/n). So (h) follows from (g).

(i) For w < i < log"* n, this follows from (f) and (P4). For 1 < i < w we can use (b) with
ni > Ao and a = n~ Y10,

(j) This follows from (e), (f) and (g) and (P4). O
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