
Leader Election in a Smartphone Peer-to-Peer Network

Calvin Newport

Georgetown University

Washington, D.C.

cnewport@cs.georgetown.edu

Abstract—In this paper, we study the fundamental problem
of leader election in the mobile telephone model: a recently
introduced variation of the classical telephone model modified
to better describe the local peer-to-peer communication services
implemented in many popular smartphone operating systems.
In more detail, the mobile telephone model differs from the
classical telephone model in three ways: (1) each device can
participate in at most one connection per round; (2) the
network topology can undergo a parameterized rate of change;
and (3) devices can advertise a parameterized number of bits
to their neighbors in each round before connection attempts
are initiated. We begin by describing and analyzing a new
leader election algorithm in this model that works under the
harshest possible parameter assumptions: maximum rate of
topology changes and no advertising bits. We then apply this
result to resolve an open question from [1] on the efficiency of
PUSH-PULL rumor spreading under these conditions. We then
turn our attention to the slightly easier case where devices can
advertise a single bit in each round. We demonstrate a large
gap in time complexity between these zero bit and one bit cases.
In more detail, we describe and analyze a new algorithm that
solves leader election with a time complexity that includes the
parameter bounding topology changes. For all values of this
parameter, this algorithm is faster than the previous result,
with a gap that grows quickly as the parameter increases
(indicating lower rates of change). We conclude by describing
and analyzing a modified version of this algorithm that does
not require the assumption that all devices start during the
same round. This new version has a similar time complexity
(the rounds required differ only by a polylogarithmic factor),
but now requires slightly larger advertisement tags.

I. INTRODUCTION

This paper describes and analyzes new leader election

algorithms in the mobile telephone model: an abstraction that

captures the local peer-to-peer communication capabilities

of existing commodity smartphone operating systems (e.g.,

as implemented by services such as Bluetooth LE [2], Wi-

Fi Direct [3], and Apple’s Multipeer Connectivity frame-

work [4]). The growing ubiquity of smartphones, combined

with the rapid improvement of operating system support

for direct wireless communication between nearby devices,

creates a compelling opportunity for the emergence of

easy to deploy and widely used smartphone peer-to-peer

applications.

There are several standard use cases for such applications.

For example, in developing countries cellular data minutes

are often bought in small blocks and carefully conserved by

users—generating an interest in networking operations that

can avoid infrastructure. In addition, smartphone peer-to-

peer networks can be used to bypass censorship in countries

where infrastructure networks are monitored (c.f., the use

of peer-to-peer smartphone chat among protestors in Hong

Kong [5]), and bring connectivity to settings such as disaster

zones, festivals, or wilderness where traditional cellular

and WiFi coverage is compromised, overwhelmed, or non-

existent.

Ultimately, however, it is likely unnecessary for computer

scientists to figure out in advance the killer app for this

massive platform. If we can develop network algorithms and

tools that simplify the design of useful distributed systems on

top of local peer-to-peer connections, the most compelling

use cases will emerge naturally from the vast competitive

marketplace of smartphone application developers. With this

in mind, this paper focuses on describing and analyzing

new provably correct and efficient leader election algorithms

that can be implemented and executed on top of existing

smartphone peer-to-peer services. These algorithms provide

a key primitive that supports the development of more

sophisticated distributed systems by simplifying tasks such

as event ordering, agreement, and synchronization.

The Mobile Telephone Model: The mobile telephone

model (introduced in our recent study of rumor spread-

ing [1]) is a variation of the classical telephone model

modified to better describe smartphone peer-to-peer commu-

nication. Its details are inspired, in particular, by the current

capabilities of Apple’s Multipeer Connectivity framework—

a peer-to-peer communication service available in every iOS

version since iOS 7. Like most smartphone peer-to-peer ser-

vices, the Multipeer Connectivity framework allows devices

to advertise a service, and scan for the services advertised

by nearby devices, using local radio broadcast. A device

can then attempt to form a reliable unicast connection with a

nearby device discovered in this scan. A key limitation is that

each device can only support a small number of concurrent

connections.

The mobile telephone model captures these capabilities

by assuming that in each round there is a graph describ-

ing the underlying network topology. At the beginning of

each round, each device learns its current neighborhood

(e.g., implementing a scan) and can attempt to initiate a

connection with a neighbor. If two devices connect they
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can then perform a bounded amount of communication to

conclude the round. Each device can only participate in one

connection per round. We parameterize the model with a

tag length b ≥ 0. At the beginning of each round, each

device can choose a tag consisting of b bits to advertise

to its neighbors. When a device scans its neighborhood it

learns both the ids of its neighbors and their chosen tags.

(This capability is motivated by the ability of devices to

choose and change their service advertisement labels in the

Multipeer Connectivity framework.) A key question in the

mobile telephone model is the power of such advertisements.

In our study of rumor spreading [1], we found a big com-

plexity gap between b = 0 and b = 1, but little additional

improvement for larger tags. As described below, we find a

similar gap in our study of leader election.

We also parameterize our model with a stability factor

τ ≥ 0. The underlying topology graph must be stable for

at least τ rounds between changes. Notice, for τ = 1, the

network topology can change arbitrarily in every round.

By contrast, for τ = ∞, the network topology never

changes. The need to model topology changes is important

when studying smartphone peer-to-peer networks as the

underlying devices are inherently mobile. In this paper, we

study leader election algorithms that require no advance

knowledge of τ , and can gracefully adapt to whatever level

of stability they encounter in an execution.

Our Results: We study the leader election problem in

the mobile telephone model. This problem assumes each de-

vice starts with a unique id (UID), and requires the devices to

stabilize to the same UID as the leader. We study how many

rounds are required to reach this stabilization point with

high probability in the network size. An issue with worst

case analysis in this setting is that some network topologies

are inherently slower than others, so we sometimes include

the network topology’s vertex expansion, denoted α, (a value

which ranges from a constant, indicating lots of connectivity,

to something close to 1/n, indicating very little connectivity)

in our round complexity results (see Section II).

We begin in Section VI by studying the difficult case

where b = 0 and τ = 1; i.e., devices cannot advertise any

extra information and the topology can change arbitrarily

in every round. In this setting, we describe and analyze an

algorithm called blind gossip leader election that implements

a straightforward random connection strategy. We show this

algorithm stabilizes to a single leader in O
(

(1/α)∆2 log2 n
)

rounds, where ∆ is the maximum neighborhood size and n
is the network size. We then show our analysis near tight by

describing a stable network in which Ω
(

∆2/
√
α
)

rounds are

necessary for this algorithm. Finally, we leverage the new

analysis techniques introduced in this section to answer an

open question from [1] about rumor spreading in the mobile

telephone model.

Next, in Section VII, we turn our attention to the slightly

easier case where b = 1. In this setting, we describe and

analyze an algorithm called bit convergence leader election.

This algorithm has devices partition rounds into groups

corresponding to the bits in the id of their current candidate

for the leader. During a group mapped to a given bit position

i, devices leverage their 1-bit tags to advertise the value in

bit i in the id of their current leader candidate. Devices

with a 0 in position i use these advertisements to attempt

to connect with devices with a 1 in this position to send

them a potentially smaller id. This task is complicated by

the fact that each device can only accept a single connection

per round and the graph can change every τ rounds. The

devices must therefore attempt, in a fully distributed manner,

to approximate a maximum matching in each group to

maximize the number of unique connections between 0-

bit and 1-bit devices for the current position i: a goal that

becomes particularly difficult for small τ .

We show this algorithm stabilizes to a single leader in

O
(

(1/α)∆1/τ̂ τ̂ log5 n
)

rounds, where τ̂ = min{τ, log∆}.

Notice, as τ grows from 1 to log∆ , the time complexity

advantage of this algorithm versus the blind gossip algorithm

grows from a factor of ∆ to a factor of ∆2 (ignoring the

log terms). For τ ≥ log∆ and α = O(1) (e.g., a reasonably

stable and well-connected network), the bit convergence

algorithm requires time only polylogarithmic in the network

size to stabilize.

A shortcoming of our bit convergence algorithm is that it

assumes all devices activate during the same round, which is

useful to the algorithm as it allows it to assume synchronized

round counters. We overcome this issue in Section VIII,

where we describe and analyze a variation of this algorithm

that does not require devices to activate during the same

round. This new variation has a similar time complexity

(it is slower by a log3 n factor). It now also requires that

b = log logn+O(1), which is slightly larger than the b = 1
required by the original bit convergence algorithm. This new

algorithm features characteristics of self-stabilization in that

if you connect isolated network components that have been

running the algorithm for arbitrary durations, the combined

network will still stabilize to a single leader in the same

stabilization time cited above.

Our algorithm analyses build on a key graph theoretic

result from [1] in which we proved a strong connection

between a graph’s vertex expansion and the amount of

information that can concurrently travel across an arbitrary

cut. The bit convergence algorithm variations also leverage

a key theorem from [1] that can be interpreted as bounding

the approximation ratio of random maximum matching

strategies. See Section V for a detailed treatment of these

useful results.

Related Work: The mobile telephone model studied in

this work was introduced by Ghaffari and Newport [1]. It is

a variation of the classical telephone model first introduced

by Frieze and Grimmett [6]. A key difference is that the

classical model allows a node to accept an unbounded
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number of connections while the mobile version only allows

one. As elaborated in [1], [7], many existing analyses in

the classical model depend on this assumption, and new

techniques are therefore required when it is eliminated.

A fundamental problem in telephone-style models is ru-

mor spreading: a rumor must spread from a single source

to the whole network. Early studies of this problem in these

models focused on restricted network topologies such as

cliques (e.g., [8]), where epidemic-style spreading enables

fast termination for simple random spreading strategies. In

the past half-decade, attention has turned to studying rumor

spreading with respect to spectral properties of the network

topology graph, such as graph conductance (e.g., [9]) and

vertex expansion (e.g., [10], [11], [12], [13]). Our recent

work [1] proes: (1) efficient rumor spreading with respect

to conductance is impossible in the mobile telephone model,

while efficient rumor spreading with respect to vertex expan-

sion is possible;1 (2) the well-studied PUSH-PULL rumor

spreading strategy from the classical model cannot guarantee

to be efficient with respect to α for b = 0; (3) a variation

of PUSH-PULL called PPUSH is efficient with respect to α
with b = 1 and reasonably stable networks (τ ≥ log∆).

Information dissemination in a key subproblem in solving

leader election. Our algorithms from Section VII and VIII,

which tackle the case where b > 0, deploy a modified

version of the PPUSH rumor spreading strategy from [1]

as a subroutine. Accordingly, we borrow two useful results

from [1] to aid our analysis (see Section V). We emphasize

that our bit convergence leader election algorithm terminates

only a log n factor slower than PPUSH rumor spreading

algorithm from [1] in a network of size n, even though it

tackles a much more complicated task.

Finally, we note that leader election is well studied in

many classical distributed computing models under various

constraints; c.f., [14], [15], [16], [17]. This problem has also

been studied in models with changing network topologies;

c.f., [18], [19], [20]. Perhaps most relevant to our work is the

leader election algorithm from [19], which deterministically

solves leader election in O(n2) rounds in a network topology

that can change in every round, but which allows nodes to

reliably broadcast O(1) UIDs to all of their neighbors in

each round.

II. PRELIMINARIES

In this section we describe some useful notation, defini-

tions, assumptions and probability facts.

Graph Notation: In this paper, we model network topolo-

gies with connected undirected graphs. Here we describe

useful notation regarding such graphs. In particular, fix some

undirected and connected graph G = (V,E), defined over a

non-empty node set of V . For each u ∈ V , we use N(u) to

1By “possible” and “impossible” we are describing the performance of
an offline optimal algorithm.

describe u’s neighbors and N+(u) to describe N(u)∪ {u}.

We define ∆ = maxu∈V {|N(u)|} and for each node u ∈ V ,

fix d(u) = |N(u)|. To simplify notation in our algorithm

analyses, we assume ∆ is a power of 2 (i.e., log∆ is a

whole number).

Vertex Expansion: For a given S ⊆ V , we define the

boundary of S, indicated ∂S, as follows: ∂S = {v ∈ V \
S : N(v) ∩ S 	= ∅}: that is, ∂S is the set of nodes not

in S that are directly connected to S by an edge in E. We

define α(S) = |∂S|/|S|. As in [13], [1], we define the vertex

expansion α of a given graph G = (V,E) as follows:

α = min
S⊂V,0<|S|≤n/2

α(S).

Notice that despite the possibility of α(S) > 1 for some S,

we always have α ≤ 1.

Dynamic Graphs: Our model defined below sometimes

describes the network topology with a dynamic graph which

can change from round to round. Formally, a dynamic graph

G is a sequence of static graphs, G1 = (V,E1), G2 =
(V,E2), ... When using a dynamic graph G to describe a

network topology, we assume the rth graph in the sequence

describes the topology during round r. We define the vertex

expansion α of a dynamic graph G to be the minimum vertex

expansion over all of G’s constituent static graphs. Similarly,

we define the maximum degree ∆ of a dynamic graph to be

the maximum degree over all its static graphs.

Probability Preliminaries: Finally, we state a pair of well-

known inequalities that will prove useful in our analyses:

Fact II.1. For p ∈ [0, 1], we have (1− p) ≤ e−p and (1 +
p) ≥ 2p.

III. THE MOBILE TELEPHONE MODEL

We describe a smartphone peer-to-peer network using a

variation of the classical telephone model called the mobile

telephone model. In more detail, we describe a peer-to-peer

network topology in each round as an undirected connected

graph G = (V,E). We assume a computational process

(called a node in the following) is assigned to each vertex

in V , and use n = |V | to indicate the network size. Time

proceeds in synchronized rounds. At the beginning of each

round, we assume each node u learns its neighbor set N(u).
Node u can then select at most one node from N(u) and

send a connection proposal. A node that sends a proposal

cannot also receive a proposal. However, if a node v does

not send a proposal, and at least one neighbor sends a

proposal to v, then v can accept an incoming proposal. There

are different ways to model how v selects a proposal to

accept. In this paper, for simplicity, we assume v accepts an

incoming proposal selected with uniform randomness from

the incoming proposals. If node v accepts a proposal from

node u, the two nodes are connected and can perform a

bounded amount of interactive communication during the
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round. We leave the specific bound on communication per

connection as a problem parameter.

We parameterize the mobile telephone model with two

integers, a tag length b ≥ 0 and a stability factor τ ≥ 1. If

b > 0, then we allow each node to select a tag containing

b bits to advertise at the beginning of each round. That

is, if node u chooses tag bu at the beginning of a round,

all neighbors of u learn bu before making their connection

decisions in this round. A node can change its tag from

round to round.

We also allow for the possibility of the network topology

changing, which we formalize by describing the network

topology with a dynamic graph G. We bound the allowable

changes in G with a the stability factor τ . For a given τ , G
must satisfy the property that at least τ rounds must pass

between any changes to the graph topology. For τ = 1,

the graph can change arbitrarily in every round. We use the

convention of stating τ = ∞ to indicate no changes.

IV. THE LEADER ELECTION PROBLEM

The leader election problem assumes each node begins the

execution provided with a unique id (UID). We also assume

each node is provided with a polynomial upper bound N
on the network size n. To keep our solutions as general

as possible, we treat the UID as comparable black boxes

that can only be communicated between nodes through

connections. In addition, we assume that a pair of connected

nodes can exchange at most O(1) UIDs and O(polylog(N))
additional bits during one round of connection.

Each node must maintain a leader variable that points

to a UID. These variables are initialized to each node’s

own UID. As a node learns other UIDs through peer-to-

peer connections it can update the variable. The goal of the

leader election problem is for all nodes to stabilize to a

state where every leader variable points to the same UID.

Formally, we say the system is stabilized by round r, if there

is some UID x such that for every round r′ ≥ r, every node

u ∈ V ends the round with leader = x. We say a distributed

algorithm solves the leader election problem, if it guarantees

with probability 1 that the system will eventually stabilize.

We say an algorithm solves the leader election problem in

f(n, α, b, τ) rounds, if with probability at least 1− 1/n, the

system stabilizes by round f(n, α, b, τ) when executed in a

network with size n, vertex expansion α, tag length b, and

stability factor τ .

V. USEFUL EXISTING RESULTS CONCERNING RUMOR

SPREADING

The rumor spreading problem attempts to spread a single

piece of information (the rumor) from a subset of nodes to

all nodes in a network. In [1], we studied the time complexity

of simple rumor spreading strategies in the mobile telephone

model. Here we replicate a pair of results from this existing

study that will prove useful in our analyses of leader election

algorithms in this paper.

A Formal Connection Between Expansion and Maximum

Matchings: We begin by connecting graph expansion to the

size of maximum matchings across network cuts. For a given

graph G = (V,E) and node subset S ⊂ V , we define B(S)
to be the bipartite graph with bipartitions (S, V \S) and the

edge set ES = {(u, v) : (u, v) ∈ E, u ∈ S, and v ∈ V \S}.

Recall that the edge independence number of a graph H ,

denoted ν(H), describes the size of a maximum matching

on H . For a given S, therefore, ν(B(S)) describes the

maximum number of concurrent connections that a network

can support in the mobile telephone model between nodes

in S and nodes outside of S. This property follows from the

restriction in this model that each node can participate in

at most one connection per round. This property is not true

of the classical telephone model in which a given node can

participate in multiple connections per round.

We now replicate an important (and non-obvious) result

from our earlier investigation of the mobile telephone model.

This lemma connects edge independence over cuts (the real

bound of concurrent information flow) to a graph’s vertex

expansion (the property we use to describe our graph’s

connectivity):

Lemma V.1 (from [1]). Fix a graph G = (V,E)
with |V | = n with vertex expansion α. Let γ =
minS⊂V,|S|≤n/2{ν(B(S))/|S|}. It follows that γ ≥ α/4.

The Performance of PPUSH Rumor Spreading: We now

replicate a result regarding the short term performance of

a straightforward rumor spreading strategy in the mobile

telephone model. For the setting where b = 1, an obvious

approach to rumor spreading is to deploy the productive

PUSH (PPUSH) algorithm, which works as follows: At the

beginning of each round, if you know the rumor advertise

tag 0, otherwise advertise tag 1. If you advertise 1, you

will only receive connection proposals in this round. If you

advertise tag 0, you will choose a neighbor advertising 1 (if

any) uniformly at random to send a connection proposal. If

a 0 connects with a 1 then the former sends the rumor to

the latter.

At the beginning of any given round, we can partition

the nodes into those that are informed (know the rumor)

and those that are uninformed (do not know the rumor).

There is a matching of some size m across this cut. This

value m represent the maximum number of nodes that can

become newly informed in a single round. (As noted above

in Lemma V.1, this matching has a size proportional to the

connectivity across the cut indicated by the graph’s vertex

expansion.) The following theorem from [1] bounds how

well PPUSH approximates m successful connections across

the cut for a given number of stable rounds. The proof of this

theorem analyzes PPUSH as a random matching strategy:
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Theorem V.2 (from [1]). Fix a bipartite graph G with

bipartitions L and R, such |R| ≥ |L| = m and G
has a matching of size m. Assume G is a subgraph of

some (potentially) larger network G′, and all uninformed

neighbors in G′ of nodes in L are also in R. Fix an integer

r, 1 ≤ r ≤ log∆, where ∆ is the maximum degree of G.

Consider an r round execution of PPUSH in G′ in which

the nodes in L start with the rumor and the nodes in R do

not. The exists a constant probability p and constant c ≥ 1,

such that with probability p: at least m/f(r) nodes in R
learn the rumor, where f(r) = ∆1/r · c · r · log n.

VI. LEADER ELECTION WITH b = 0 AND τ ≥ 1

We begin by considering the leader election problem in

the difficult case where b = 0. We analyze a straight-

forward gossip-style strategy and prove it converges in

O((1/α)∆2 log2 n) rounds, even with τ = 1 (i.e., the max-

imum possible amount of topology change). We show that

the analysis is not far from optimal in the sense that there

exists stable networks in which this algorithm requires at

least Ω(∆2/
√
α) rounds. We then leverage the new analysis

techniques introduced here to answer an important open

question from our previous study of rumor spreading [1].

We begin by describing our algorithm.

Blind Gossip Leader Election Algorithm: For each

node u, let Iu describe u’s UID. For each round r ≥ 0,

let Îu(r) be the smallest UID u has received by the end of

round r (including its own). By definition, Îu(0) = Iu. For

each round r ≥ 1, and each node u, node u flips a fair coin to

determine whether to send or receive connection proposals.

If u decides to send, it selects a neighbor uniformly from its

neighborhood in round r. If two nodes u and v connect, they

send each other Îu(r− 1) and Îv(r− 1), respectively. Node

u sets both Iu(r) and leader to min{Îu(r − 1), Îv(r − 1)}
to conclude the round.

Analysis: Our goal is to prove the following perfor-

mance bound on this blind gossip strategy:

Theorem VI.1. The blind gossip leader election algorithm

solves the leader election problem in O((1/α)∆2 log2 n)
rounds when executed in the mobile telephone model with

maximum degree ∆, vertex expansion α, stability factor τ ≥
1 and tag length b = 0.

The key to this analysis is bounding the time for the

smallest UID in the network (call this Î) to spread to all

nodes—at which point the network is stabilized. The intu-

ition behind the ∆2 term is the observation that a successful

connection between a node u with Î and a neighboring node

v that needs to earn Î requires two events to occur: (1) u
decides to send a connection proposal and selects v; (2)

v decides to receive connection proposals, and among the

incoming proposals, it accepts the proposal from u. In the

worst-case, this probability can be ≈ ∆−2. The (1/α) log2 n
term, roughly speaking, captures the time required for these

successful connections to spread Î to the entire network.

If α = O(1), for example, then the network is very well

connected and an epidemic style spread can stabilize the

network in only polylogarithmic rounds. If α = O(1/n), on

the other hand, then the network is not well connected and

it will take a long time for the spread of Î to complete.

Two issues complicate the formalization of this intuition.

The first is the changing network topology. In each round,

the set of potentially useful edges can change and the

definition of useful itself can change depending on the be-

havior in previous rounds. The second issue is probabilistic

dependencies. In a given round, it is straightforward to

calculate the probability that a given edge connects, but

there are potential dependencies between nearby edges with

respect to these probabilities.

To tame these dependency issues, we define a more

pessimistic event that is sufficient (but not necessary) for a

connection between a pair of neighboring nodes in a given

round. Before we provide this definition we need to specify,

without loss of generality, a technical detail about how our

algorithm makes its random choices. In more detail, assume

some node u decides to receive connection proposals in a

given round. According to our model (see Section III), u
will choose an incoming proposal (if any come in) with

uniform randomness. Here we specify exactly how it makes

this uniform choice. In particular, we assume that u first

generates a random permutation of its neighbors for the

round. It then receives incoming proposals and selects the

proposal highest ranked in its permutation. Below we call

this u’s selection permutation With this detailed specified,

we give the following definition:

Definition VI.2. Fix some round r ≥ 1. Let {u, v} be an

edge in the network topology graph for round r. Let e =
(u, v) be an ordered version of this pair. We say ordered

edge e is good in round r if and only if the following events

occur in this round:

• u decides to send connection proposals;

• v decides to receive connection proposals;

• u chooses v as the neighbor to send a proposal to; and

• v’s selection permutation has u ranked first

Let Xe(r) be the random indicator variable that evaluates

to 1 if e is good in round r, and otherwise evaluates to 0.

Notice that if an edge e is good then u and v will definitely

connect. There are cases, however, where an edge is not

good and u and v still connect. This condition is therefore

sufficient but not necessary for a given connection. Crucially,

for two edges e and e′ with no nodes in common, Xe(r) and

Xe′(r) are independent as the definition of good is based

on events that depend only on the graph topology for the

round and local independent coin flips made by individual

nodes. Similarly, for any e and e′ (not necessarily disjoint)

and rounds r′ > r, Xe(r) and Xe′(r
′) are also independent.
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Finally, it is straightforward to verify that for any such e
and r, Pr(Xe(r) = 1) ≥ 1/(4∆2).

We now establish a useful graph property that follows

from a direct application of Lemma V.1 from Section V.

The lemma statement, as well as some of the arguments that

follow, leverage the definition B(Q) (the bipartite subgraph

with bipartitions Q and V \Q) also defined in Section V.

Lemma VI.3. Fix some Q ⊂ V such that |Q| ≤ n/2. Fix

some round r ≥ 1. Let M be a maximum matching on B(Q)
defined with respect to the topology graph for round r. It

follows that |M | ≥ |Q| · (α/4).
We now prove the core technical lemmas of this analysis.

In the following, let Î be the smallest UID in the network,

and for each round r ≥ 1, let Sr = {u | Îu(r − 1) = Î} to

be the set of nodes that have adopted Î by the start of round

r. We will prove that with high probability Sr grows by a

factor of ≈ (1 + α) in any interval of length Θ(∆2 log n)
rounds. The below proofs leverage the definition of good

from Definition VI.2 as well as Lemma VI.3 from above.

Lemma VI.4. Fix some round r ≥ 1 such that |Sr| ≤ n/2.

There exists a constant c ≥ 1 such that with high probability:

|Sr′ | ≥ (1 + α
4 )|Sr|, where r′ = r + c ·∆2 · log n.

Proof: Fix some r and Sr as specified by the lemma

statement. Let k = |Sr| · (α/4). Fix t = c · ∆2 · log n,

for a constant c ≥ 1 that we will fix later in this proof.

By Lemma VI.3 we know that in every round r′ ∈ R =
{r, r + 1, ..., r + t− 1}, there is a matching Mr′ of size at

least k in B(Sr) defined with respect to the topology graph

for r′ (that is, there is a matching of size k from nodes in

Sr to nodes not in Sr in this round). We define a set Z of

edge/round pairs based on these matchings as follows:

Z = {((u, v), r′) | r′ ∈ R, {u, v} ∈ Mr′ , u ∈ Sr}.

In the following, for each edge/round pair p = ((u, v), r′) ∈
Z, we define the notation p.first = u, p.second = v,

p.edge = (u, v) and p.round = r′. We say a given

edge/round pair p is good if ordered edge p.edge is good

in round p.round (see Definition VI.2). A good edge/round

pair from Z indicates that a node in Sr connected to a node

not in Sr—allowing Sr to grow.

We must show enough edge/round pairs are good to

ensure Sr grows enough to satisfy the lemma statement in

interval R. We are helped in these efforts by our careful def-

inition of good and Z, which ensure that for p, p′ ∈ Z where

p 	= p′, whether p is good is independent of whether p′ is

good (formally, Xp.edge(p.round) and Xp′.edge(p
′.round)

are independent). We can therefore calculate a lower bound

on the expected number of good edge/round pairs in Z, and

then use their independence to concentrate on this mean.

Unfortunately for the cause of simplicity, bounding the

number of good edge/round pairs in Z is not sufficient

as many such pairs might be redundant. In particular, if

two such pairs p and p′ are defined such that p.second =
p′.second, then combined they only grow Sr by one more

node. To satisfy our lemma, therefore, we must take more

care in organizing Z.

To do so, we start by partitioning Z into equivalence

classes based on the edge endpoints not in Sr. In particular,

let Y = {p.second | p ∈ Z} be the set of endpoints in

V \ Sr that show up in edge/round pairs in Z. For each

v ∈ Y we define Zv = {p ∈ Z | p.second = v}. Notice

that Ẑ = {Zv | v ∈ Y } describes a partitioning of Z.

A key property of these equivalence classes is that if

p ∈ Zv and p′ ∈ Zv′ , for v 	= v′, then p and p′ are not

redundant, as by definition the edge/round pairs have distinct

second endpoints (p.second 	= p′.second). At this point, we

know little about the size or number of these partitions—

complicating our ability to bound the number that contain at

least one good edge/round pair. This brings us to the second

step of our organization of Z in which we greedily pack

these equivalence classes into better structured sets we call

buckets as follows:

1) Initialize k buckets B1, B2, ..., Bk to be empty. Ini-

tialize set W ← Ẑ.

2) Remove the largest class Zv that remains in W . Let

i be the smallest index from {1, 2, ..., k} such that

Bi contain less than t/2 edge/round pairs. If no such

i exists, we terminate successfully. Else, add every

edge/round pair in Zv to Bi and repeat this step.

We must now show that this procedure will always

terminate successfully. To do so, we point out several key

properties about our partition of Z. First, we know that in

each round r′ ∈ R, |Mr′ | ≥ k and therefore |Y | ≥ k. It

follows that there are at least k classes in Ẑ. We also know

that each endpoint in Y can show up at most once per round

in that round’s matching, so each class can have at most t
edge/round pairs in it. Finally, we know each round adds at

least k new edge/round pairs to Z, so we have at least t · k
such pairs total.

A standard greedy packing argument now establishes

successful termination. The key observation is that because

we add equivalence classes to buckets in order of largest to

smallest, if a given bucket Bi has less than t/2 edge/round

pairs in it, then all of the classes remaining in set W are of

size at most t/2. Similarly, no class in Ẑ has more than t
pairs. It follows that a bucket never has more than t pairs in

it. We also know there are at least t ·k edges to distribute, so

all buckets will receive enough edge/round pairs to exceed

the t/2 threshold by this procedure before we run out of

classes to distribute to buckets.

We are finally ready to analyze the probability of sufficient

goodness. Recall, at the beginning of this argument, we fixed

an execution prefix through r−1 rounds and identified a set

177



Sr of nodes that know Î be the start of round r. We then

divided into buckets a collection of edge/round pairs that

describe edges that will occur in the dynamic graph over

the next t rounds. Each pair describes a future opportunity

for a node in Sr to connect to a node not in Sr. We now

analyze the probability that in the t rounds that follow we

have at least one good edge/round pair in each bucket—

ensuring at least k new nodes learn Î , as required by our

lemma. To do so, or a given bucket Bi, let Yi be the number

of good edge/round pairs in Bi. Note that:

E(Yi) =
∑

p∈Bi

Xp.edge(p.round)

≥ (t/2)(1/(4∆2))

= (c log n)/8

As argued, the X indicator variables are independent. It

follows that we can apply a Chernoff bound to E(Yi) to

prove that for a sufficiently large constant c (defined with

respect to the form of the Chernoff bound we use and the

level of high probability needed by the analysis), Yi ≥ 1
with high probability. A union bound over the k buckets

establishes that with high probability every bucket has at

least one good edge/round pair in it. Because we did not

split any equivalence classes between buckets, it follows that

at least k nodes not in Sr connect with nodes in Sr—as

required to satisfy the lemma.

The following lemma follow from a symmetric version of

the proof applied to Lemma VI.4:

Lemma VI.5. Fix some round r ≥ 1 such that |Sr| > n/2.

Let Ur = V \ Sr. There exists a constant c ≥ 1 such that

with high probability: |Ur′ | ≤ (1 − α
4 )|Ur|, where r′ =

r + c ·∆2 · log n.

The proof of Theorem VI.1 now follows as a standard

epidemic expansion argument that leverages Lemmas VI.4

and VI.5. See the full version of this paper [21] for details.

A New Bound for PUSH-PULL Rumor Spreading:

Notice that our blind gossip leader election algorithm can be

directly applied to solve the rumor spreading problem (see

Section V) in the mobile telephone model with b = 0. In

particular, in this setting, it describes the classical PUSH-

PULL strategy. In [1], we identified the performance of

PUSH-PULL in the mobile telephone model with b = 0
as an open question. In this previous work, we proved a

lower bound that established its performance would not be

efficient, but stopped short of providing a upper bound (due,

in part, to the complexity of the dependency issues tamed in

our above analysis with the careful deployment of bucketed

collections of good edges). Our above analysis, therefore,

yields the following corollary which resolves this question:

Corollary VI.6. PUSH-PULL rumor spreading succeeds

with high probability in O((1/α)∆2 log2 n) rounds when

executed in the mobile telephone model with maximum

degree ∆, vertex expansion α, stability factor τ ≥ 1 and

tag length b = 0.

Analysis Optimality: A time complexity in Ω(∆2/α)
might seem pessimistic as ∆ can be as large as n. But in the

full version of this paper [21], we describe a stable network

in which this algorithm requires Ω(∆2/
√
α) rounds.

VII. LEADER ELECTION WITH b = 1 AND τ ≥ 1

We now consider leader election with b = 1. We describe

and analyze a new algorithm that leverages this single bit

advertisement to achieve potentially large efficiency gains

over the blind gossip algorithm of Section VI. The algorithm

works for any τ ≥ 1 and requires no advance knowledge

of τ . It does assume, however, that all nodes start during

the same round—allowing them to rely on a global round

counter to align groups of rounds in useful ways. In Sec-

tion VIII, we describe how to modify the below algorithm so

that it still works even in a setting where nodes can activate

in different rounds and have only local round counters. The

algorithm description below references the PPUSH infor-

mation dissemination strategy. See Section V for a reminder

of how this strategy works. Due to space constraints some

proofs below have been omitted. The missing proofs are in

the full version of this paper [21].

The Bit Convergence Leader Election Algorithm: For

each node u, let Iu be u’s UID. At the beginning of the

execution, each u chooses an ID tag, indicated tu, uniformly

from the space 1 to nβ , for some constant β ≥ 1 (fixed in

the below analysis). Let k = �β log n� be the number of bits

required to describe each ID tag. We call the combination

(Iu, tu) an ID pair.

Nodes partition rounds into groups of length 2 log∆. They

then partition groups into phases consisting of k groups

each. In the following, we label the phases 1, 2, ..., and label

the groups in each phase 1, 2, ..., k. At the beginning of each

phase, each node u sets a local pair (Îu, t̂u) ← (I ′, t′), where

(I ′, t′) is the ID pair with the smallest tag t′ of all ID pairs

it has encountered up to this point. We refer to t̂u as u’s

smallest ID tag and (Îu, t̂u) as u’s smallest ID pair. Notice,

at the beginning of the first phase, (Îu, t̂u) = (Iu, tu), by

default. If a node u has received more than one ID pair with

the same smallest tag, it can break ties with the ordering on

the UID element of the pairs. After setting its smallest ID

pair (Îu, t̂u) at the beginning of a phase, node u then sets

leader ← Îu.

The nodes can now proceed with the k groups that make

up the current phase. For each group i of the phase, each

node u executes PPUSH as follows: it uses bit position i
of the binary encoding of t̂u as the bit it advertises during

PPUSH; if a given u connects with a node v, then they

send each other (Îu, t̂u) and (Îv, t̂v), respectively, during

their connection. We emphasize that nodes only update their
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smallest ID pairs at the beginning of each phase. ID pairs

received during a phase are stored locally until the next such

update.

Analysis Preliminaries: We now introduce several use-

ful pieces of notation. At the start of phase i, let bi be the

most significant bit position such that there exists two nodes

u and v where t̂u and t̂v differ in position bi. (For example,

bi = 2 indicates that at the start of phase i, all nodes have

the same value in the most significant bit of their smallest ID

tags, but there are at least two nodes with different values

in the second most significant bit.) If all nodes have the

same smallest ID tag in phase i, we define bi = ⊥. In

the following, we call bit bi the maximum difference bit for

phase i.
For a given phase i, let Si be the set of nodes with 0 in

bit position bi of their smallest ID tags, and Ui = V \ Si

be the set of nodes with a 1 in this position. Notice, for

bi 	= ⊥, both Si and Ui are well-defined and non-empty.

Let f(r) = ∆1/r · c · r · log n be the approximation factor

function fixed in Theorem V.2 in Section V. And finally, let

τ̂ = min{τ, log∆} be the relevant stability for this analysis

(performance is not improved as we grow τ past log∆).

Before continuing to the main analysis we first prove some

important properties about bi and Si. At a high-level, the

below lemma formalizes the intuition that the maximum

difference bit can only grow between phases (as once all

nodes have the same bits through a given position in their

tags, this cannot change going forward), and that during

phases with the same maximum difference bit the set of

nodes with 0 in that position can only grow (as a node will

never swap its smallest ID tag for a larger tag).

Lemma VII.1. Fix two phases i and j such that i ≤ j.

The following three properties follow: (1) if bi = ⊥ then

bj = ⊥; (2) if bi 	= ⊥ and bj 	= ⊥ then bi ≤ bj; and (3) if

bi = bj 	= ⊥ then |Si| ≤ |Sj |.
Analysis: Our goal is to prove the following theorem

regarding the performance of the bit convergence algorithm

in the mobile telephone model:

Theorem VII.2. The bit convergence leader elec-

tion algorithm solves the leader election problem in

O
(

(1/α)∆1/τ τ log5 n
)

rounds when executed in the mobile

telephone model with maximum degree ∆, vertex expansion

α, stability factor at least τ , 1 ≤ τ ≤ log∆, and tag length

b = 1.

We begin by studying the spread of small ID tags in the

network. To do so, fix some phase i such that bi 	= ⊥.

By definition, the bit convergence leader election algorithm

executes PPUSH during group bi of this phase with the

nodes in Si acting as the informed nodes and those in Ui

acting as the uninformed nodes. Similar to our analysis of

rumor spreading in [1], we call this phase good if we grow

Si (or, equivalently, shrink Ui) by a sufficient magnitude,

where in this context we define “sufficient” with respect to

the graph’s vertex expansion α and the approximation factor

f(τ̂) defined above in the analysis preliminaries.

Definition VII.3. Fix some phase i with bi 	= ⊥. We

consider two cases for considering a phase good:

• If |Si| ≤ n/2, we call this phase good if: (1) bi+1 	= bi;
or (2) |Si+1| ≥

(

1 + α
4·f(τ̂)

)

|Si|.
• Else if |St| > n/2, we call this phase good if (1) bi+1 	=

bi; or (2) |Ui+1| ≤
(

1− α
4·f(τ̂)

)

|Ui|.

In our analysis of the bit convergence algorithm, the

core unit of progress is advancing maximum bit difference

values. This advancement matters because these values can

only increase a bounded number of times before it must

be the case that all nodes have converged to the same

smallest ID tag (which, under the assumption that these

tags are unique, implies convergence to a single leader).

The following lemma bounds the number of good phases

required to guarantee the maximum bit difference increases.

Notice, the below proof leverages Lemma VII.1 to ensure

we do not backtrack between good phases. It also uses the

definition of τ̂ from the analysis preliminaries.

Lemma VII.4. Fix some phase i such that bi 	= ⊥. Let

tmax = �(1/α)8f(τ̂) log n�. Assume there are at least tmax

good phases between phase i and some phase j ≥ i+ tmax.

It follows that either bj = ⊥ or bj > bi.

The properties studied so far have been deterministic. We

now turn to the probabilistic nature of the algorithm by

lower bounding the probability that a given phase is good.

This argument leverages Theorem V.2 from Section V which

describes the effectiveness of PPUSH for a bounded number

of stable rounds.

Lemma VII.5. There exists a constant probability pg > 0
such that for any phase i with bi 	= ⊥, the probability that

phase i is good is at least pg .

Proof: Fix some phase i as specified by the lemma

statement. Consider group bi in phase i. Recall that τ̂ =
min{τ, log∆}. Because each group consists of 2 log∆
rounds, it follows that there must be a stretch of τ̂ con-

secutive stable rounds in this group (i.e., rounds in which

the graph does not change). Let Gi be stable graph during

these τ̂ consecutive rounds in group bi of phase i.

Now we study the properties for Gi. In particular, let Mi

be a maximum matching between Si and Ui in Gi. Formally,

Mi is a maximum matching in B(Si) defined with respect

to Gi (see Section V for the formal definition of B). Let

m = |Mi| be the size of this matching.

We consider two cases with respect to the size of Si. The

first case is that |Si| ≤ n/2. In this case, by Lemma V.1 in

Section V applied to Gi, it follows that m/|Si| ≥ α/4 ⇒
m ≥ |Si| · (α/4).
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We now consider how many pairs in this matching of

size m we expect to successfully connect in the τ̂ rounds

during which the graph remains stable as Gi. To then end,

we deploy Theorem V.2 from Section V. In more detail,

we apply this theorem where L ⊆ Si contains all nodes in

Si that are endpoints of an edge in the matching Mi, R
contains the neighbors of L in Gi that are also in Ui, G is

the bipartite graph with bipartitions L and R, and an edge set

{{u, v} | u ∈ L, v ∈ R, {u, v} ∈ Gi}, and r = τ̂ . It follows

from Theorem V.2 applied to these parameters that there is

a constant probability p, such that with probability at least

p, at least |Si| · (α/4) · (1/f(τ̂)) nodes in Ui connect with a

node from Si (and therefore shift to Si+1). Put another way,

with probability at last p, |Si| grows by a factor of at least
(

1 + α
4·f(τ̂)

)

between phase i and i + 1—exactly matching

the first case of our definition of good (Definition VII.3).

The second case to consider is when |Si| > n/2. Here we

can apply the same argument as for the first case, with the

exception that now m ≥ |Ui|·(α/4). The result is that with in

this case, with probability at least p, |Ui| shrinks by a factor

of
(

1− α
4·f(τ̂)

)

between phase i and i+1—exactly matching

the second case of our definition good (Definition VII.3).

Combining these two cases it is clear that the lemma holds

for probability pg = p.

We can now tackle our main theorem.

Proof (of Theorem VII.2): We begin by assuming that

at the beginning of the execution each node selects a unique

ID tag. This occurs with high probability in n that grows

with the multiplicative constant β in the definition of k.

We now calculate how many phases are needed to ensure

at least tmax (from Lemma VII.4) are good, with high prob-

ability. To do so, for any given phase t, let Xt be the random

indicator variable that evaluates to 1 if phase t is good (or

bt = ⊥), and otherwise evaluates to 0. For any given integer

T > 0, and phase i > 0, let YT,i =
∑i+T−1

t=i Xt be the

number of good (or already converged) phases in the T
phases i, i+ 1, ..., i+ T − 1. We know from Lemma VII.5

and linearity of expectation that E(YT,i) ≥ pgT . We cannot

directly concentrate on this expectation, however because Xt

and Xt′ might be dependent for t 	= t′.
To overcome this issue, for each phase t, fix X̂t to

be the trivial random variable that evaluates to 1 with

independent probability pg , and otherwise evaluates to 0.

By Lemma VII.5 we know that Pr(Xt = 1) ≥ pg ,

regardless of the behavior in previous phases It follows that

for every t, Xt stochastically dominates X̂t. Accordingly,

if ŶT,i =
∑i+T−1

t=i X̂t is greater than some x with some

probability p̂, then YT,i is greater than x with probability at

least p̂.

A Chernoff bound applied to ŶT,i, for any phase i and

T = c · tmax (where c ≥ 1 is a sufficiently large constant

defined with respect to constant pg and the Chernoff form

deployed), provides that ŶT,i ≥ tmax with high probability

in n. It follows the same holds for YT,i.

We have established, therefore, that with high probability,

every Θ(tmax) phases we experience at least tmax good

phase. By Lemma VII.4, this is a sufficient number of

good phases to ensure that the maximum difference bit

either increases or converges to ⊥. We can advance the

maximum difference bit at most k = Θ(logn) times before

it converges to ⊥. Therefore, applying a union bound to the

(at most) k advances, and the assumption that all ID tags

are unique, it follows that with high probability (with an

exponent that grows with constants β and c) our algorithm

converges to a single unique ID in at most: O
(

tmax log n
)

=
O
(

(1/α)f(τ̂) log2 n
)

= O
(

(1/α)∆1/τ̂ τ̂ log3 n
)

phases. To

obtain our final time complexity result, we note that each

phase consists of 2k log∆ ∈ O(log2 n) rounds.

VIII. LEADER ELECTION WITH ASYNCHRONOUS

ACTIVATIONS

The bit convergence leader election algorithm described

and analyzed in Section VII assumes all nodes start during

the same round, providing them a global round counter. Here

we consider the harder case where nodes might activate

during different rounds.

Below we describe and analyze a modified version of

our bit convergence algorithm from Section VII that solves

leader election in this asynchronous activation setting only

a polylogarithmic factor slower than the original algorithm.

The new version requires an advertising tag length b =
log logn + O(1), which is larger than the b = 1 required

by the original algorithm, but still small.

The Non-Synchronized Bit Convergence Leader Elec-

tion Algorithm: As in the original algorithm, nodes ran-

domly generate ID tags containing k = β logN bits (for

some constant β ≥ 1 fixed in the analysis) to pair with

their UIDs, and keep track of the smallest ID pair they

have received so far in the execution. Also as in the original

algorithm, nodes divide their rounds into groups consisting

of 2 log∆ rounds each. Notice, however, unlike the original

algorithm, group boundaries are not necessarily synchro-

nized between different nodes as they can now activate at

different rounds.

Each node u, at the beginning of each of its groups, selects

a bit position i ∈ [k] with uniform randomness. During all

2 log∆ rounds of the this group, u advertises the position

i, as well as the value of the bit in position i of the ID tag

of its current smallest ID pair. Notice, advertising i requires

up to log k bits (as there are k bit positions). One extra bit

is required to describe the bit in position i. Therefore, any

tag length b > �log k� = log logn+O(1) is sufficient.

Fix some group during which node u is advertising the bit

in position i. During this group, u runs a slightly modified

version of the PPUSH information spreading strategy used

in the original algorithm. In particular, if u is advertising a 1
bit in position i, it receives connection proposals during the

rounds of the group. On the other hand, if u is advertising
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a 0 bit for position i, it sends PPUSH connection proposals

during the rounds of this group. In more detail, in each

round, it chooses a recipient for a connection proposal

uniformly from neighbors that: (1) are also advertising

position i; and (2) advertise a 1 in that bit position (if any

such neighbors happen to exist). In other words, nodes only

want to deal with other nodes that happen to be advertising

the same ID tag bit position in that round.

If two nodes u and v connect, they behave the same as

in the original algorithm: they trade smallest ID pairs, and

update their locally stored smallest ID pair if the pair they

received is smaller than what they are currently storing.

Analysis: The goal of our analysis is to prove the below

theorem regarding the performance of our modified leader

election algorithm. Roughly speaking, the extra polyloga-

rithmic factor in the time complexity comes from the need

for nearby nodes to both randomly pick the same bit position

in order to make progress. The proof details are deferred to

the full version of this paper [21].

Theorem VIII.1. The non-synchronized bit convergence

leader election algorithm solves the leader election problem

in O
(

(1/α)∆1/τ τ log8 n
)

rounds after the last node is

activated when executed in the mobile telephone model

with asynchronous activations, maximum degree ∆, vertex

expansion α, stability factor at least τ , 1 ≤ τ ≤ log∆, and

tag length b = �log k�+ 1 = log logn+O(1).
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