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Abstract—In this paper, we study the fundamental problem
of leader election in the mobile telephone model: a recently
introduced variation of the classical telephone model modified
to better describe the local peer-to-peer communication services
implemented in many popular smartphone operating systems.
In more detail, the mobile telephone model differs from the
classical telephone model in three ways: (1) each device can
participate in at most one connection per round; (2) the
network topology can undergo a parameterized rate of change;
and (3) devices can advertise a parameterized number of bits
to their neighbors in each round before connection attempts
are initiated. We begin by describing and analyzing a new
leader election algorithm in this model that works under the
harshest possible parameter assumptions: maximum rate of
topology changes and no advertising bits. We then apply this
result to resolve an open question from [1] on the efficiency of
PUSH-PULL rumor spreading under these conditions. We then
turn our attention to the slightly easier case where devices can
advertise a single bit in each round. We demonstrate a large
gap in time complexity between these zero bit and one bit cases.
In more detail, we describe and analyze a new algorithm that
solves leader election with a time complexity that includes the
parameter bounding topology changes. For all values of this
parameter, this algorithm is faster than the previous result,
with a gap that grows quickly as the parameter increases
(indicating lower rates of change). We conclude by describing
and analyzing a modified version of this algorithm that does
not require the assumption that all devices start during the
same round. This new version has a similar time complexity
(the rounds required differ only by a polylogarithmic factor),
but now requires slightly larger advertisement tags.

I. INTRODUCTION

This paper describes and analyzes new leader election
algorithms in the mobile telephone model: an abstraction that
captures the local peer-to-peer communication capabilities
of existing commodity smartphone operating systems (e.g.,
as implemented by services such as Bluetooth LE [2], Wi-
Fi Direct [3], and Apple’s Multipeer Connectivity frame-
work [4]). The growing ubiquity of smartphones, combined
with the rapid improvement of operating system support
for direct wireless communication between nearby devices,
creates a compelling opportunity for the emergence of
easy to deploy and widely used smartphone peer-to-peer
applications.

There are several standard use cases for such applications.
For example, in developing countries cellular data minutes
are often bought in small blocks and carefully conserved by
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users—generating an interest in networking operations that
can avoid infrastructure. In addition, smartphone peer-to-
peer networks can be used to bypass censorship in countries
where infrastructure networks are monitored (c.f., the use
of peer-to-peer smartphone chat among protestors in Hong
Kong [5]), and bring connectivity to settings such as disaster
zones, festivals, or wilderness where traditional cellular
and WiFi coverage is compromised, overwhelmed, or non-
existent.

Ultimately, however, it is likely unnecessary for computer
scientists to figure out in advance the killer app for this
massive platform. If we can develop network algorithms and
tools that simplify the design of useful distributed systems on
top of local peer-to-peer connections, the most compelling
use cases will emerge naturally from the vast competitive
marketplace of smartphone application developers. With this
in mind, this paper focuses on describing and analyzing
new provably correct and efficient leader election algorithms
that can be implemented and executed on top of existing
smartphone peer-to-peer services. These algorithms provide
a key primitive that supports the development of more
sophisticated distributed systems by simplifying tasks such
as event ordering, agreement, and synchronization.

The Mobile Telephone Model: The mobile telephone
model (introduced in our recent study of rumor spread-
ing [1]) is a variation of the classical telephone model
modified to better describe smartphone peer-to-peer commu-
nication. Its details are inspired, in particular, by the current
capabilities of Apple’s Multipeer Connectivity framework—
a peer-to-peer communication service available in every iOS
version since i0OS 7. Like most smartphone peer-to-peer ser-
vices, the Multipeer Connectivity framework allows devices
to advertise a service, and scan for the services advertised
by nearby devices, using local radio broadcast. A device
can then attempt to form a reliable unicast connection with a
nearby device discovered in this scan. A key limitation is that
each device can only support a small number of concurrent
connections.

The mobile telephone model captures these capabilities
by assuming that in each round there is a graph describ-
ing the underlying network topology. At the beginning of
each round, each device learns its current neighborhood
(e.g., implementing a scan) and can attempt to initiate a
connection with a neighbor. If two devices connect they
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can then perform a bounded amount of communication to
conclude the round. Each device can only participate in one
connection per round. We parameterize the model with a
tag length b > 0. At the beginning of each round, each
device can choose a fag consisting of b bits to advertise
to its neighbors. When a device scans its neighborhood it
learns both the ids of its neighbors and their chosen tags.
(This capability is motivated by the ability of devices to
choose and change their service advertisement labels in the
Multipeer Connectivity framework.) A key question in the
mobile telephone model is the power of such advertisements.
In our study of rumor spreading [1], we found a big com-
plexity gap between b = 0 and b = 1, but little additional
improvement for larger tags. As described below, we find a
similar gap in our study of leader election.

We also parameterize our model with a stability factor
7 > 0. The underlying topology graph must be stable for
at least 7 rounds between changes. Notice, for 7 = 1, the
network topology can change arbitrarily in every round.
By contrast, for 7 0o, the network topology never
changes. The need to model topology changes is important
when studying smartphone peer-to-peer networks as the
underlying devices are inherently mobile. In this paper, we
study leader election algorithms that require no advance
knowledge of 7, and can gracefully adapt to whatever level
of stability they encounter in an execution.

Our Results: We study the leader election problem in
the mobile telephone model. This problem assumes each de-
vice starts with a unique id (UID), and requires the devices to
stabilize to the same UID as the leader. We study how many
rounds are required to reach this stabilization point with
high probability in the network size. An issue with worst
case analysis in this setting is that some network topologies
are inherently slower than others, so we sometimes include
the network topology’s vertex expansion, denoted «, (a value
which ranges from a constant, indicating lots of connectivity,
to something close to 1/n, indicating very little connectivity)
in our round complexity results (see Section II).

We begin in Section VI by studying the difficult case
where b = 0 and 7 = 1; i.e., devices cannot advertise any
extra information and the topology can change arbitrarily
in every round. In this setting, we describe and analyze an
algorithm called blind gossip leader election that implements
a straightforward random connection strategy. We show this
algorithm stabilizes to a single leader in O((1/a)A?log® n)
rounds, where A is the maximum neighborhood size and n
is the network size. We then show our analysis near tight by
describing a stable network in which Q(A2 / \/a) rounds are
necessary for this algorithm. Finally, we leverage the new
analysis techniques introduced in this section to answer an
open question from [1] about rumor spreading in the mobile
telephone model.

Next, in Section VII, we turn our attention to the slightly
easier case where b = 1. In this setting, we describe and
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analyze an algorithm called bit convergence leader election.
This algorithm has devices partition rounds into groups
corresponding to the bits in the id of their current candidate
for the leader. During a group mapped to a given bit position
i, devices leverage their 1-bit tags to advertise the value in
bit ¢ in the id of their current leader candidate. Devices
with a 0 in position 7 use these advertisements to attempt
to connect with devices with a 1 in this position to send
them a potentially smaller id. This task is complicated by
the fact that each device can only accept a single connection
per round and the graph can change every 7 rounds. The
devices must therefore attempt, in a fully distributed manner,
to approximate a maximum matching in each group to
maximize the number of unique connections between 0-
bit and 1-bit devices for the current position i: a goal that
becomes particularly difficult for small 7.

We show this algorithm stabilizes to a single leader in
O((1/a)AY7#1og” n) rounds, where # = min{r,log A}.
Notice, as 7 grows from 1 to log A , the time complexity
advantage of this algorithm versus the blind gossip algorithm
grows from a factor of A to a factor of A? (ignoring the
log terms). For 7 > log A and a = O(1) (e.g., a reasonably
stable and well-connected network), the bit convergence
algorithm requires time only polylogarithmic in the network
size to stabilize.

A shortcoming of our bit convergence algorithm is that it
assumes all devices activate during the same round, which is
useful to the algorithm as it allows it to assume synchronized
round counters. We overcome this issue in Section VIII,
where we describe and analyze a variation of this algorithm
that does not require devices to activate during the same
round. This new variation has a similar time complexity
(it is slower by a log®n factor). It now also requires that
b = loglogn+ O(1), which is slightly larger than the b = 1
required by the original bit convergence algorithm. This new
algorithm features characteristics of self-stabilization in that
if you connect isolated network components that have been
running the algorithm for arbitrary durations, the combined
network will still stabilize to a single leader in the same
stabilization time cited above.

Our algorithm analyses build on a key graph theoretic
result from [1] in which we proved a strong connection
between a graph’s vertex expansion and the amount of
information that can concurrently travel across an arbitrary
cut. The bit convergence algorithm variations also leverage
a key theorem from [1] that can be interpreted as bounding
the approximation ratio of random maximum matching
strategies. See Section V for a detailed treatment of these
useful results.

Related Work: The mobile telephone model studied in
this work was introduced by Ghaffari and Newport [1]. It is
a variation of the classical telephone model first introduced
by Frieze and Grimmett [6]. A key difference is that the
classical model allows a node to accept an unbounded



number of connections while the mobile version only allows
one. As elaborated in [1], [7], many existing analyses in
the classical model depend on this assumption, and new
techniques are therefore required when it is eliminated.

A fundamental problem in telephone-style models is ru-
mor spreading: a rumor must spread from a single source
to the whole network. Early studies of this problem in these
models focused on restricted network topologies such as
cliques (e.g., [8]), where epidemic-style spreading enables
fast termination for simple random spreading strategies. In
the past half-decade, attention has turned to studying rumor
spreading with respect to spectral properties of the network
topology graph, such as graph conductance (e.g., [9]) and
vertex expansion (e.g., [10], [11], [12], [13]). Our recent
work [1] proes: (1) efficient rumor spreading with respect
to conductance is impossible in the mobile telephone model,
while efficient rumor spreading with respect to vertex expan-
sion is possible;' (2) the well-studied PUSH-PULL rumor
spreading strategy from the classical model cannot guarantee
to be efficient with respect to « for b = 0; (3) a variation
of PUSH-PULL called PPUSH is efficient with respect to «
with b = 1 and reasonably stable networks (7 > log A).

Information dissemination in a key subproblem in solving
leader election. Our algorithms from Section VII and VIII,
which tackle the case where b > 0, deploy a modified
version of the PPUSH rumor spreading strategy from [1]
as a subroutine. Accordingly, we borrow two useful results
from [1] to aid our analysis (see Section V). We emphasize
that our bit convergence leader election algorithm terminates
only a logn factor slower than PPUSH rumor spreading
algorithm from [1] in a network of size n, even though it
tackles a much more complicated task.

Finally, we note that leader election is well studied in
many classical distributed computing models under various
constraints; c.f., [14], [15], [16], [17]. This problem has also
been studied in models with changing network topologies;
c.f., [18], [19], [20]. Perhaps most relevant to our work is the
leader election algorithm from [19], which deterministically
solves leader election in O(n?) rounds in a network topology
that can change in every round, but which allows nodes to
reliably broadcast O(1) UIDs to all of their neighbors in
each round.

II. PRELIMINARIES

In this section we describe some useful notation, defini-
tions, assumptions and probability facts.

Graph Notation: In this paper, we model network topolo-
gies with connected undirected graphs. Here we describe
useful notation regarding such graphs. In particular, fix some
undirected and connected graph G = (V| F), defined over a
non-empty node set of V. For each u € V, we use N (u) to

1By “possible” and “impossible” we are describing the performance of
an offline optimal algorithm.
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describe u’s neighbors and N+ (u) to describe N (u)U {u}.
We define A = max,ecv {|N(u)|} and for each node v € V,
fix d(u) = |N(u)|. To simplify notation in our algorithm
analyses, we assume A is a power of 2 (i.e., log A is a
whole number).

Vertex Expansion: For a given S C V, we define the
boundary of S, indicated 95, as follows: S = {v € V' \
S : N(v)NS # 0}: that is, S is the set of nodes not
in S that are directly connected to S by an edge in . We
define a(S) = |0S5|/|S]. Asin [13], [1], we define the vertex
expansion o of a given graph G = (V, E) as follows:

a= min a(S).

SCV,0<|S|<n/2
Notice that despite the possibility of «(S) > 1 for some S,
we always have a < 1.

Dynamic Graphs: Our model defined below sometimes
describes the network topology with a dynamic graph which
can change from round to round. Formally, a dynamic graph
G is a sequence of static graphs, G; = (V,E1),Gy =
(V, E3),... When using a dynamic graph G to describe a
network topology, we assume the %" graph in the sequence
describes the topology during round . We define the vertex
expansion « of a dynamic graph G to be the minimum vertex
expansion over all of G’s constituent static graphs. Similarly,
we define the maximum degree A of a dynamic graph to be
the maximum degree over all its static graphs.

Probability Preliminaries: Finally, we state a pair of well-
known inequalities that will prove useful in our analyses:

Fact IL.1. For p € [0,1], we have (1 —p) < e P and (1 +
p) > 2P,

III. THE MOBILE TELEPHONE MODEL

We describe a smartphone peer-to-peer network using a
variation of the classical telephone model called the mobile
telephone model. In more detail, we describe a peer-to-peer
network topology in each round as an undirected connected
graph G = (V,E). We assume a computational process
(called a node in the following) is assigned to each vertex
in V, and use n = |V] to indicate the network size. Time
proceeds in synchronized rounds. At the beginning of each
round, we assume each node u learns its neighbor set N (u).
Node u can then select at most one node from N(u) and
send a connection proposal. A node that sends a proposal
cannot also receive a proposal. However, if a node v does
not send a proposal, and at least one neighbor sends a
proposal to v, then v can accept an incoming proposal. There
are different ways to model how v selects a proposal to
accept. In this paper, for simplicity, we assume v accepts an
incoming proposal selected with uniform randomness from
the incoming proposals. If node v accepts a proposal from
node u, the two nodes are connected and can perform a
bounded amount of interactive communication during the



round. We leave the specific bound on communication per
connection as a problem parameter.

We parameterize the mobile telephone model with two
integers, a tag length b > 0 and a stability factor T > 1. If
b > 0, then we allow each node to select a tag containing
b bits to advertise at the beginning of each round. That
is, if node u chooses tag b, at the beginning of a round,
all neighbors of u learn b, before making their connection
decisions in this round. A node can change its tag from
round to round.

We also allow for the possibility of the network topology
changing, which we formalize by describing the network
topology with a dynamic graph G. We bound the allowable
changes in G with a the stability factor 7. For a given 7, G
must satisfy the property that at least 7 rounds must pass
between any changes to the graph topology. For 7 = 1,
the graph can change arbitrarily in every round. We use the
convention of stating 7 = oo to indicate no changes.

IV. THE LEADER ELECTION PROBLEM

The leader election problem assumes each node begins the
execution provided with a unique id (UID). We also assume
each node is provided with a polynomial upper bound N
on the network size n. To keep our solutions as general
as possible, we treat the UID as comparable black boxes
that can only be communicated between nodes through
connections. In addition, we assume that a pair of connected
nodes can exchange at most O(1) UIDs and O(polylog(V))
additional bits during one round of connection.

Each node must maintain a leader variable that points
to a UID. These variables are initialized to each node’s
own UID. As a node learns other UIDs through peer-to-
peer connections it can update the variable. The goal of the
leader election problem is for all nodes to stabilize to a
state where every leader variable points to the same UID.
Formally, we say the system is stabilized by round r, if there
is some UID =z such that for every round r’ > r, every node
u € V ends the round with leader = x. We say a distributed
algorithm solves the leader election problem, if it guarantees
with probability 1 that the system will eventually stabilize.
We say an algorithm solves the leader election problem in
f(n,a, b, T) rounds, if with probability at least 1 —1/n, the
system stabilizes by round f(n,«,b,7) when executed in a
network with size n, vertex expansion «, tag length b, and
stability factor 7.

V. USEFUL EXISTING RESULTS CONCERNING RUMOR
SPREADING

The rumor spreading problem attempts to spread a single
piece of information (the rumor) from a subset of nodes to
all nodes in a network. In [1], we studied the time complexity
of simple rumor spreading strategies in the mobile telephone
model. Here we replicate a pair of results from this existing
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study that will prove useful in our analyses of leader election
algorithms in this paper.

A Formal Connection Between Expansion and Maximum
Matchings: We begin by connecting graph expansion to the
size of maximum matchings across network cuts. For a given
graph G = (V, E) and node subset S C V, we define B(S)
to be the bipartite graph with bipartitions (5, V' \ S) and the
edge set Eg = {(u,v) : (u,v) € E,u e S,and v € V\ S}.
Recall that the edge independence number of a graph H,
denoted v(H ), describes the size of a maximum matching
on H. For a given S, therefore, v(B(S)) describes the
maximum number of concurrent connections that a network
can support in the mobile telephone model between nodes
in .S and nodes outside of S. This property follows from the
restriction in this model that each node can participate in
at most one connection per round. This property is not true
of the classical telephone model in which a given node can
participate in multiple connections per round.

We now replicate an important (and non-obvious) result
from our earlier investigation of the mobile telephone model.
This lemma connects edge independence over cuts (the real
bound of concurrent information flow) to a graph’s vertex
expansion (the property we use to describe our graph’s
connectivity):

Lemma V.1 (from [1]). Fix a graph G (V, E)
with |V| n with vertex expansion o. Let ry
mingcv,sj<n/2{¥(B(S))/|S|}. It follows that v > a/4.

The Performance of PPUSH Rumor Spreading: We now
replicate a result regarding the short term performance of
a straightforward rumor spreading strategy in the mobile
telephone model. For the setting where b = 1, an obvious
approach to rumor spreading is to deploy the productive
PUSH (PPUSH) algorithm, which works as follows: At the
beginning of each round, if you know the rumor advertise
tag 0, otherwise advertise tag 1. If you advertise 1, you
will only receive connection proposals in this round. If you
advertise tag 0, you will choose a neighbor advertising 1 (if
any) uniformly at random to send a connection proposal. If
a 0 connects with a 1 then the former sends the rumor to
the latter.

At the beginning of any given round, we can partition
the nodes into those that are informed (know the rumor)
and those that are uninformed (do not know the rumor).
There is a matching of some size m across this cut. This
value m represent the maximum number of nodes that can
become newly informed in a single round. (As noted above
in Lemma V.1, this matching has a size proportional to the
connectivity across the cut indicated by the graph’s vertex
expansion.) The following theorem from [1] bounds how
well PPUSH approximates m successful connections across
the cut for a given number of stable rounds. The proof of this
theorem analyzes PPUSH as a random matching strategy:



Theorem V.2 (from [1]). Fix a bipartite graph G with
bipartitions L and R, such |R| > |L| m and G
has a matching of size m. Assume G is a subgraph of
some (potentially) larger network G’, and all uninformed
neighbors in G' of nodes in L are also in R. Fix an integer
r, 1 <r <logA, where A is the maximum degree of G.
Consider an v round execution of PPUSH in G' in which
the nodes in L start with the rumor and the nodes in R do
not. The exists a constant probability p and constant ¢ > 1,
such that with probability p: at least m/f(r) nodes in R
learn the rumor;, where f(r) = A" . c.r-logn.

VI. LEADER ELECTION WITHb =0 AND T > 1

We begin by considering the leader election problem in
the difficult case where b 0. We analyze a straight-
forward gossip-style strategy and prove it converges in
O((1/a)A2log® n) rounds, even with 7 = 1 (i.e., the max-
imum possible amount of topology change). We show that
the analysis is not far from optimal in the sense that there
exists stable networks in which this algorithm requires at
least (A2 //a) rounds. We then leverage the new analysis
techniques introduced here to answer an important open
question from our previous study of rumor spreading [1].
We begin by describing our algorithm.

Blind Gossip Leader Election Algorithm: For each
node u, let I, describe u’s UID. For each round » > 0,
let I,,(r) be the smallest UID v has received by the end of
round r (including its own). By definition, fu(O) = I,. For
each round r > 1, and each node u, node u flips a fair coin to
determine whether to send or receive connection proposals.
If u decides to send, it selects a neighbor uniformly from its
neighborhood in round r. If two nodes v and v connect, they
send each other I,,(r — 1) and I,(r — 1), respectively. Node
u sets both I,,(r) and leader to min{I,(r — 1), I,(r — 1)}
to conclude the round.

Analysis: Our goal is to prove the following perfor-
mance bound on this blind gossip strategy:

Theorem VI.1. The blind gossip leader election algorithm
solves the leader election problem in O((1/a)A?log® n)
rounds when executed in the mobile telephone model with
maximum degree A, vertex expansion q, stability factor T >
1 and tag length b = 0.

The key to this analysis is bounding the time for the
smallest UID in the network (call this I ) to spread to all
nodes—at which point the network is stabilized. The intu-
ition behind the A2 term is the observation that a successful
connection between a node u with I and a neighboring node
v that needs to earn [ requires two events to occur: (1) u
decides to send a connection proposal and selects v; (2)
v decides to receive connection proposals, and among the
incoming proposals, it accepts the proposal from wu. In the
worst-case, this probability can be ~ A~2. The (1/a) log®n
term, roughly speaking, captures the time required for these
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successful connections to spread I to the entire network.
If « = O(1), for example, then the network is very well
connected and an epidemic style spread can stabilize the
network in only polylogarithmic rounds. If « = O(1/n), on
the other hand, then the network is not well connected and
it will take a long time for the spread of Ito complete.

Two issues complicate the formalization of this intuition.
The first is the changing network topology. In each round,
the set of potentially useful edges can change and the
definition of useful itself can change depending on the be-
havior in previous rounds. The second issue is probabilistic
dependencies. In a given round, it is straightforward to
calculate the probability that a given edge connects, but
there are potential dependencies between nearby edges with
respect to these probabilities.

To tame these dependency issues, we define a more
pessimistic event that is sufficient (but not necessary) for a
connection between a pair of neighboring nodes in a given
round. Before we provide this definition we need to specify,
without loss of generality, a technical detail about how our
algorithm makes its random choices. In more detail, assume
some node w decides to receive connection proposals in a
given round. According to our model (see Section III), u
will choose an incoming proposal (if any come in) with
uniform randomness. Here we specify exactly how it makes
this uniform choice. In particular, we assume that u first
generates a random permutation of its neighbors for the
round. It then receives incoming proposals and selects the
proposal highest ranked in its permutation. Below we call
this u’s selection permutation With this detailed specified,
we give the following definition:

Definition VL.2. Fix some round r > 1. Let {u,v} be an
edge in the network topology graph for round r. Let e =
(u,v) be an ordered version of this pair. We say ordered
edge e is good in round r if and only if the following events
occur in this round:

u decides to send connection proposals;

v decides to receive connection proposals;

u chooses v as the neighbor to send a proposal to; and
v’s selection permutation has u ranked first

Let X (r) be the random indicator variable that evaluates
to 1 if e is good in round r, and otherwise evaluates to 0.

Notice that if an edge e is good then u and v will definitely
connect. There are cases, however, where an edge is not
good and v and v still connect. This condition is therefore
sufficient but not necessary for a given connection. Crucially,
for two edges e and ¢’ with no nodes in common, X, (r) and
X (r) are independent as the definition of good is based
on events that depend only on the graph topology for the
round and local independent coin flips made by individual
nodes. Similarly, for any e and ¢’ (not necessarily disjoint)
and rounds 7’ > r, X (r) and X,/ (r') are also independent.



Finally, it is straightforward to verify that for any such e
and 7, Pr(X.(r) = 1) > 1/(4A2).

We now establish a useful graph property that follows
from a direct application of Lemma V.1 from Section V.
The lemma statement, as well as some of the arguments that
follow, leverage the definition B(Q) (the bipartite subgraph
with bipartitions @ and V' \ Q) also defined in Section V.

Lemma VL3. Fix some Q C V such that |Q| < n/2. Fix
some round r > 1. Let M be a maximum matching on B(Q)
defined with respect to the topology graph for round r. It
Sollows that |M| > Q] - («/4).

We now prove the core technical lemmas of this analysis.
In the following, let I be the smallest UID in the network,
and for each round r > 1, let S, = {u | I,(r —1) = I} to
be the set of nodes that have adopted I by the start of round
r. We will prove that with high probability S, grows by a
factor of &~ (1 + «) in any interval of length ©(A?logn)
rounds. The below proofs leverage the definition of good
from Definition VI.2 as well as Lemma VI.3 from above.

Lemma VI.4. Fix some round v > 1 such that |S,| < n/2.
There exists a constant ¢ > 1 such that with high probability:
ISy | = (14 9)[S,|, where v/ =1 +c- A? - logn.

Proof: Fix some r and S, as specified by the lemma
statement. Let k¥ = |S,| - (a/4). Fix t = c¢- A? - logn,
for a constant ¢ > 1 that we will fix later in this proof.
By Lemma VL3 we know that in every round ' € R =
{r,r+1,...,7+t— 1}, there is a matching M, of size at
least k£ in B(S,.) defined with respect to the topology graph
for v’ (that is, there is a matching of size k from nodes in
S, to nodes not in S, in this round). We define a set Z of
edge/round pairs based on these matchings as follows:

Z ={((u,v),r") | 7" € R, {u,v} € My,u € S,}.

In the following, for each edge/round pair p = ((u,v),7’) €
Z, we define the notation p.first = u, p.second = v,
p.edge = (u,v) and p.round = r’. We say a given
edge/round pair p is good if ordered edge p.edge is good
in round p.round (see Definition VI.2). A good edge/round
pair from Z indicates that a node in .S, connected to a node
not in S,—allowing S, to grow.

We must show enough edge/round pairs are good to
ensure S, grows enough to satisfy the lemma statement in
interval R. We are helped in these efforts by our careful def-
inition of good and Z, which ensure that for p,p’ € Z where
p # p’, whether p is good is independent of whether p’ is
good (formally, X, cige(p-round) and X, cdge(p’.round)
are independent). We can therefore calculate a lower bound
on the expected number of good edge/round pairs in Z, and
then use their independence to concentrate on this mean.
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Unfortunately for the cause of simplicity, bounding the
number of good edge/round pairs in Z is not sufficient
as many such pairs might be redundant. In particular, if
two such pairs p and p’ are defined such that p.second =
p’.second, then combined they only grow S, by one more
node. To satisfy our lemma, therefore, we must take more
care in organizing Z.

To do so, we start by partitioning Z into equivalence
classes based on the edge endpoints not in S,.. In particular,
let Y = {p.second | p € Z} be the set of endpoints in
V' \ S, that show up in edge/round pairs in Z. For each
v € Y we define Z, = {p € Z | p.second = v}. Notice
that Z = {Z, | v € Y'} describes a partitioning of Z.

A key property of these equivalence classes is that if
p € Z, and p' € Z,, for v # v/, then p and p’' are not
redundant, as by definition the edge/round pairs have distinct
second endpoints (p.second # p’.second). At this point, we
know little about the size or number of these partitions—
complicating our ability to bound the number that contain at
least one good edge/round pair. This brings us to the second
step of our organization of Z in which we greedily pack
these equivalence classes into better structured sets we call
buckets as follows:

1) Initialize k& buckets By, Bs,..., By to be empty. Ini-

tialize set W « Z.
Remove the largest class Z, that remains in WW. Let
¢ be the smallest index from {1,2,...,k} such that
B; contain less than ¢/2 edge/round pairs. If no such
1 exists, we terminate successfully. Else, add every
edge/round pair in Z, to B; and repeat this step.

We must now show that this procedure will always
terminate successfully. To do so, we point out several key
properties about our partition of Z. First, we know that in
each round r' € R, |M,/| > k and therefore |Y| > k. It
follows that there are at least k classes in Z. We also know
that each endpoint in Y can show up at most once per round
in that round’s matching, so each class can have at most ¢
edge/round pairs in it. Finally, we know each round adds at
least k new edge/round pairs to Z, so we have at least ¢ - k
such pairs total.

A standard greedy packing argument now establishes
successful termination. The key observation is that because
we add equivalence classes to buckets in order of largest to
smallest, if a given bucket B; has less than ¢/2 edge/round
pairs in it, then all of the classes remaining in set W are of
size at most ¢/2. Similarly, no class in 7 has more than t
pairs. It follows that a bucket never has more than ¢ pairs in
it. We also know there are at least ¢ -k edges to distribute, so
all buckets will receive enough edge/round pairs to exceed
the ¢/2 threshold by this procedure before we run out of
classes to distribute to buckets.

We are finally ready to analyze the probability of sufficient
goodness. Recall, at the beginning of this argument, we fixed
an execution prefix through » — 1 rounds and identified a set

2)



S, of nodes that know I be the start of round r. We then
divided into buckets a collection of edge/round pairs that
describe edges that will occur in the dynamic graph over
the next ¢ rounds. Each pair describes a future opportunity
for a node in S, to connect to a node not in S,.. We now
analyze the probability that in the ¢ rounds that follow we
have at least one good edge/round pair in each bucket—
ensuring at least k£ new nodes learn I, as required by our
lemma. To do so, or a given bucket B;, let Y; be the number
of good edge/round pairs in B;. Note that:

E(Y))

Z Xp.edge(p-round)
(t/ 2/)(1 /(4A2))
(C log n)/8

As argued, the X indicator variables are independent. It
follows that we can apply a Chernoff bound to E(Y;) to
prove that for a sufficiently large constant ¢ (defined with
respect to the form of the Chernoff bound we use and the
level of high probability needed by the analysis), YV; > 1
with high probability. A union bound over the k buckets
establishes that with high probability every bucket has at
least one good edge/round pair in it. Because we did not
split any equivalence classes between buckets, it follows that
at least & nodes not in S, connect with nodes in S,—as
required to satisfy the lemma. ]

The following lemma follow from a symmetric version of
the proof applied to Lemma VI1.4:

Y

Lemma VLS. Fix some round r > 1 such that |S;| > n/2.
Let U, = V \ S,. There exists a constant ¢ > 1 such that
with high probability: |U,.| < (1 — §)|U,|, where 1’
r+c- A2 logn.

The proof of Theorem VI.1 now follows as a standard
epidemic expansion argument that leverages Lemmas VI.4
and VLS. See the full version of this paper [21] for details.

A New Bound for PUSH-PULL Rumor Spreading:
Notice that our blind gossip leader election algorithm can be
directly applied to solve the rumor spreading problem (see
Section V) in the mobile telephone model with b = 0. In
particular, in this setting, it describes the classical PUSH-
PULL strategy. In [1], we identified the performance of
PUSH-PULL in the mobile telephone model with b = 0
as an open question. In this previous work, we proved a
lower bound that established its performance would not be
efficient, but stopped short of providing a upper bound (due,
in part, to the complexity of the dependency issues tamed in
our above analysis with the careful deployment of bucketed
collections of good edges). Our above analysis, therefore,
yields the following corollary which resolves this question:

Corollary VI.6. PUSH-PULL rumor spreading succeeds
with high probability in O((1/a)A?log®n) rounds when
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executed in the mobile telephone model with maximum
degree A\, vertex expansion o, stability factor T > 1 and
tag length b = 0.

Analysis Optimality: A time complexity in (A2 /a)
might seem pessimistic as A can be as large as n. But in the
full version of this paper [21], we describe a stable network
in which this algorithm requires 2(A?/,/a) rounds.

VII. LEADER ELECTION WITHb=1AND T > 1

We now consider leader election with b = 1. We describe
and analyze a new algorithm that leverages this single bit
advertisement to achieve potentially large efficiency gains
over the blind gossip algorithm of Section VI. The algorithm
works for any 7 > 1 and requires no advance knowledge
of 7. It does assume, however, that all nodes start during
the same round—allowing them to rely on a global round
counter to align groups of rounds in useful ways. In Sec-
tion VIII, we describe how to modify the below algorithm so
that it still works even in a setting where nodes can activate
in different rounds and have only local round counters. The
algorithm description below references the PPUSH infor-
mation dissemination strategy. See Section V for a reminder
of how this strategy works. Due to space constraints some
proofs below have been omitted. The missing proofs are in
the full version of this paper [21].

The Bit Convergence Leader Election Algorithm: For
each node u, let I, be u’s UID. At the beginning of the
execution, each u chooses an ID tag, indicated ¢,,, uniformly
from the space 1 to n”, for some constant 3 > 1 (fixed in
the below analysis). Let k = [Slogn| be the number of bits
required to describe each ID tag. We call the combination
(Iy,t,) an ID pair.

Nodes partition rounds into groups of length 2 log A. They
then partition groups into phases consisting of k groups
each. In the following, we label the phases 1, 2, ..., and label
the groups in each phase 1,2, ..., k. At the beginning of each
phase, each node u sets a local pair (1., ,) « (I’,t'), where
(I’,t') is the ID pair with the smallest tag ¢’ of all ID pairs
it has encountered up to this point. We refer to £, as u’s
smallest ID tag and (I, t,) as u’s smallest ID pair. Notice,
at the beginning of the first phase, (I,,%,) = (I, t.), by
default. If a node u has received more than one ID pair with
the same smallest tag, it can break ties with the ordering on
the UID element of the pairs. After setting its smallest ID
pair (fu,fu) at the beginning of a phase, node u then sets
leader + I.

The nodes can now proceed with the k groups that make
up the current phase. For each group ¢ of the phase, each
node u executes PPUSH as follows: it uses bit position ¢
of the binary encoding of %, as the bit it advertises during
PPUSH; if a given u connects with a node v, then they
send each other (fu,fu) and (fv,fv), respectively, during
their connection. We emphasize that nodes only update their



smallest ID pairs at the beginning of each phase. ID pairs
received during a phase are stored locally until the next such
update.

Analysis Preliminaries: We now introduce several use-
ful pieces of notation. At the start of phase ¢, let b; be the
most significant bit position such that there exists two nodes
w and v where £, and £, differ in position b;. (For example,
b; = 2 indicates that at the start of phase ¢, all nodes have
the same value in the most significant bit of their smallest ID
tags, but there are at least two nodes with different values
in the second most significant bit.) If all nodes have the
same smallest ID tag in phase i, we define b, = L. In
the following, we call bit b; the maximum difference bit for
phase i.

For a given phase i, let S; be the set of nodes with 0 in
bit position b; of their smallest ID tags, and U; = V' \ S;
be the set of nodes with a 1 in this position. Notice, for
b; # L, both S; and U, are well-defined and non-empty.
Let f(r) = AY" . c-r-logn be the approximation factor
function fixed in Theorem V.2 in Section V. And finally, let
7 = min{7,log A} be the relevant stability for this analysis
(performance is not improved as we grow 7 past log A).

Before continuing to the main analysis we first prove some
important properties about b; and S;. At a high-level, the
below lemma formalizes the intuition that the maximum
difference bit can only grow between phases (as once all
nodes have the same bits through a given position in their
tags, this cannot change going forward), and that during
phases with the same maximum difference bit the set of
nodes with O in that position can only grow (as a node will
never swap its smallest ID tag for a larger tag).

Lemma VIL.1. Fix two phases i and j such that i < j.
The following three properties follow: (1) if b; = L then
bj = 1;(2)if b # L and b; # L then b; < bj; and (3) if
b, = bj 75 L then |Sz‘ < |Sj‘

Analysis: Our goal is to prove the following theorem
regarding the performance of the bit convergence algorithm
in the mobile telephone model:

Theorem VIL2. The bit convergence leader elec-
tion algorithm solves the leader election problem in
O((1/a)AV"7 log® n) rounds when executed in the mobile
telephone model with maximum degree A, vertex expansion
«a, stability factor at least T, 1 < 7 < log A, and tag length
b=1.

We begin by studying the spread of small ID tags in the
network. To do so, fix some phase i such that b; # L.
By definition, the bit convergence leader election algorithm
executes PPUSH during group b; of this phase with the
nodes in S; acting as the informed nodes and those in U;
acting as the uninformed nodes. Similar to our analysis of
rumor spreading in [1], we call this phase good if we grow
S; (or, equivalently, shrink U;) by a sufficient magnitude,
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where in this context we define “sufficient” with respect to
the graph’s vertex expansion « and the approximation factor
f(7) defined above in the analysis preliminaries.

Definition VIL3. Fix some phase i with b; #* 1. We
consider two cases for considering a phase good:

o If|S;| < n/2, we call this phase good if: (1) b;y1 # bi;
or (2) [Sita| > (1 + %(T)NSZ'

o Elseif |St| > n/2, we call this phase good if (1) bjy1 #
bi,’ or (2) |U,‘,+1| S (1 - ﬁ(ﬂ)”ﬁ‘
In our analysis of the bit convergence algorithm, the

core unit of progress is advancing maximum bit difference

values. This advancement matters because these values can
only increase a bounded number of times before it must
be the case that all nodes have converged to the same
smallest ID tag (which, under the assumption that these
tags are unique, implies convergence to a single leader).

The following lemma bounds the number of good phases

required to guarantee the maximum bit difference increases.

Notice, the below proof leverages Lemma VII.1 to ensure

we do not backtrack between good phases. It also uses the

definition of 7 from the analysis preliminaries.

Lemma VII4. Fix some phase i such that b; # L. Let
tmaz = [(1/a)8f(7)logn]. Assume there are at least t,qy
good phases between phase i and some phase j > i+ tpqq-
It follows that either b; = L or b; > b;.

The properties studied so far have been deterministic. We
now turn to the probabilistic nature of the algorithm by
lower bounding the probability that a given phase is good.
This argument leverages Theorem V.2 from Section V which
describes the effectiveness of PPUSH for a bounded number
of stable rounds.

Lemma VILS. There exists a constant probability p, > 0
such that for any phase i with b; # L, the probability that
phase i is good is at least p,.

Proof: Fix some phase ¢ as specified by the lemma
statement. Consider group b; in phase 7. Recall that 7 =
min{7,log A}. Because each group consists of 2logA
rounds, it follows that there must be a stretch of 7 con-
secutive stable rounds in this group (i.e., rounds in which
the graph does not change). Let G; be stable graph during
these 7 consecutive rounds in group b; of phase .

Now we study the properties for G;. In particular, let M;
be a maximum matching between S; and U; in G;. Formally,
M; is a maximum matching in B(S;) defined with respect
to G; (see Section V for the formal definition of B). Let
m = |M;| be the size of this matching.

We consider two cases with respect to the size of .S;. The
first case is that |.S;| < n/2. In this case, by Lemma V.1 in
Section V applied to G, it follows that m/|S;| > «/4 =
m > 1S;| - (a/4).



We now consider how many pairs in this matching of
size m we expect to successfully connect in the 7 rounds
during which the graph remains stable as G;. To then end,
we deploy Theorem V.2 from Section V. In more detail,
we apply this theorem where L C S; contains all nodes in
S; that are endpoints of an edge in the matching M;, R
contains the neighbors of L in G; that are also in U;, G is
the bipartite graph with bipartitions L and R, and an edge set
{{u,v} |ve L,v € R,{u,v} € G;}, and r = 7. It follows
from Theorem V.2 applied to these parameters that there is
a constant probability p, such that with probability at least
p, at least |\S;|- (a/4) - (1/f(7)) nodes in U; connect with a
node from .S; (and therefore shift to S;11). Put another way,
with probability at last p, |.S;| grows by a factor of at least
(1 + ﬁ(ﬂ) between phase ¢ and ¢ + 1—exactly matching
the first case of our definition of good (Definition VII.3).

The second case to consider is when |S;| > n/2. Here we
can apply the same argument as for the first case, with the
exception that now m > |U;|-(«/4). The result is that with in
this case, with probability at least p, |U;| shrinks by a factor
of (1— ﬁ(ﬂ) between phase i and i+ 1—exactly matching
the second case of our definition good (Definition VIL.3).
Combining these two cases it is clear that the lemma holds
for probability p, = p ]

We can now tackle our main theorem.

Proof (of Theorem VIL.2): We begin by assuming that
at the beginning of the execution each node selects a unique
ID tag. This occurs with high probability in n that grows
with the multiplicative constant 3 in the definition of k.

We now calculate how many phases are needed to ensure
at least ¢,,4, (from Lemma VII.4) are good, with high prob-
ability. To do so, for any given phase ¢, let X; be the random
indicator variable that evaluates to 1 if phase ¢ is good (or
b, = 1), and otherwise evaluates to 0. For an%: given integer
T > 0, and phase ¢ > 0, let Yr; Xt be the
number of good (or already converged) phases in the T'
phases 7,7+ 1,...,2 + 7T — 1. We know from Lemma VIL.5
and linearity of expectation that E (Y7 ;) > pg,T. We cannot
directly concentrate on this expectation, however because X
and X might be dependent for ¢ # t'.

To overcome this issue, for each phase ¢, fix Xt to
be the trivial random variable that evaluates to 1 with
independent probability p,, and otherwise evaluates to 0.
By Lemma VIL5 we know that Pr(X; = 1) > pg,
regardless of the behavior in previous phases It follows that
for every t, X, stochastlcally dominates X;. Accordingly,
if YTZ = f’z Xt is greater than some z with some
probability p, then Yr ; is greater than = with probability at
least p.

A Chernoff bound applied to YT’Z-, for any phase ¢ and
T = ¢ timaer (Where ¢ > 1 is a sufficiently large constant
defined with respect to constant p, and the Chernoff form
deployed), provides that YTJ- > tmaz With high probability
in n. It follows the same holds for Y7 ;.
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We have established, therefore, that with high probability,
every O(tma.) phases we experience at least ¢4, good
phase. By Lemma VIL4, this is a sufficient number of
good phases to ensure that the maximum difference bit
either increases or converges to L. We can advance the
maximum difference bit at most k = ©(logn) times before
it converges to L. Therefore, applying a union bound to the
(at most) k advances, and the assumption that all ID tags
are unique, it follows that with high probability (with an
exponent that grows with constants 3 and c) our algorithm
converges to a single unique ID in at most: O (t,nq4 log n)
O((1/a)f(#)log*n) = O((1/a)AY/7#1og® n) phases. To
obtain our final time complexity result, we note that each
phase consists of 2klog A € O(log? n) rounds. [ |

VIII. LEADER ELECTION WITH ASYNCHRONOUS
ACTIVATIONS

The bit convergence leader election algorithm described
and analyzed in Section VII assumes all nodes start during
the same round, providing them a global round counter. Here
we consider the harder case where nodes might activate
during different rounds.

Below we describe and analyze a modified version of
our bit convergence algorithm from Section VII that solves
leader election in this asynchronous activation setting only
a polylogarithmic factor slower than the original algorithm.
The new version requires an advertising tag length b =
loglogn + O(1), which is larger than the b = 1 required
by the original algorithm, but still small.

The Non-Synchronized Bit Convergence Leader Elec-
tion Algorithm: As in the original algorithm, nodes ran-
domly generate ID tags containing & = [log N bits (for
some constant S > 1 fixed in the analysis) to pair with
their UIDs, and keep track of the smallest ID pair they
have received so far in the execution. Also as in the original
algorithm, nodes divide their rounds into groups consisting
of 2log A rounds each. Notice, however, unlike the original
algorithm, group boundaries are not necessarily synchro-
nized between different nodes as they can now activate at
different rounds.

Each node u, at the beginning of each of its groups, selects
a bit position ¢ € [k] with uniform randomness. During all
2log A rounds of the this group, u advertises the position
1, as well as the value of the bit in position ¢ of the ID tag
of its current smallest ID pair. Notice, advertising ¢ requires
up to log k bits (as there are k bit positions). One extra bit
is required to describe the bit in position ¢. Therefore, any
tag length b > [log k] = loglogn + O(1) is sufficient.

Fix some group during which node w is advertising the bit
in position 4. During this group, u runs a slightly modified
version of the PPUSH information spreading strategy used
in the original algorithm. In particular, if u is advertising a 1
bit in position ¢, it receives connection proposals during the
rounds of the group. On the other hand, if u is advertising



a 0 bit for position i, it sends PPUSH connection proposals
during the rounds of this group. In more detail, in each
round, it chooses a recipient for a connection proposal
uniformly from neighbors that: (1) are also advertising
position %; and (2) advertise a 1 in that bit position (if any
such neighbors happen to exist). In other words, nodes only
want to deal with other nodes that happen to be advertising
the same ID tag bit position in that round.

If two nodes uw and v connect, they behave the same as
in the original algorithm: they trade smallest ID pairs, and
update their locally stored smallest ID pair if the pair they
received is smaller than what they are currently storing.

Analysis: The goal of our analysis is to prove the below
theorem regarding the performance of our modified leader
election algorithm. Roughly speaking, the extra polyloga-
rithmic factor in the time complexity comes from the need
for nearby nodes to both randomly pick the same bit position
in order to make progress. The proof details are deferred to
the full version of this paper [21].

Theorem VIII.1. The non-synchronized bit convergence
leader election algorithm solves the leader election problem
in O((1/a)AY7r1log®n) rounds after the last node is
activated when executed in the mobile telephone model
with asynchronous activations, maximum degree A, vertex
expansion «, stability factor at least 7, 1 < 1 <log A, and
tag length b = [log k] + 1 = loglogn + O(1).
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