
Gossip in a Smartphone Peer-to-Peer Network

Calvin Newport
Georgetown University
Washington, DC, USA

cnewport@cs.georgetown.edu

ABSTRACT

In this paper, we study the fundamental problem of gossip in themo-

bile telephone model: a recently introduced variation of the classical

telephone model modified to better describe the local peer-to-peer

communication services implemented in many popular smartphone

operating systems. In more detail, the mobile telephone model dif-

fers from the classical telephone model in three ways: (1) each

device can participate in at most one connection per round; (2) the

network topology can undergo a parameterized rate of change; and

(3) devices can advertise a parameterized number of bits about their

state to their neighbors in each round before connection attempts

are initiated. We begin by describing and analyzing new random-

ized gossip algorithms in this model under the harsh assumption of

a network topology that can change completely in every round. We

prove a significant time complexity gap between the case where

nodes can advertise 0 bits to their neighbors in each round, and the

case where nodes can advertise 1 bit. For the latter assumption, we

present two solutions: the first depends on a shared randomness

source, while the second eliminates this assumption using a pseudo-

randomness generator we prove to exist with a novel generalization

of a classical result from the study of two-party communication

complexity. We then turn our attention to the easier case where

the topology graph is stable, and describe and analyze a new gossip

algorithm that provides a substantial performance improvement

for many parameters. We conclude by studying a relaxed version

of gossip in which it is only necessary for nodes to each learn a

specified fraction of the messages in the system. We prove that our

existing algorithms for dynamic network topologies and a single

advertising bit solve this relaxed version up to a polynomial factor

faster (in network size) for many parameters. These are the first

known gossip results for the mobile telephone model, and they

significantly expand our understanding of how to communicate

and coordinate in this increasingly relevant setting.

KEYWORDS

gossip; mobile telephone model; smartphone; peer-to-peer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODC’17, , July 25ś27, 2017, Washington, DC, USA.
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00.
http://dx.doi.org/10.1145/3087801.3087813

1 INTRODUCTION

This paper describes and analyzes new gossip algorithms in the mo-

bile telephone model: an abstraction that captures the local device-

to-device communication capabilities available in most smartphone

operating systems; e.g., as implemented by services such as Blue-

tooth LE [16], WiFi Direct [2], and Apple’s Multipeer Connectivity

framework [20].

Motivation. Smartphones are a ubiquitous communication plat-

form: there are currently over 3.9 billion smartphone subscriptions

worldwide [18]. Most smartphone communication leverages one-

hop radio links to cell towers or WiFi access points. In recent years,

however, the major smartphone operating systems have included

increasingly stable and useful support for local peer-to-peer com-

munication that allows a device to talk directly to a nearby device

(using local radio broadcast) while avoiding cellular and WiFi in-

frastructure.

The ability to create these local links, combined with the ubiq-

uity of smartphones, enables scenarios in which large groups of

nearby smartphone users run applications that create peer-to-peer

meshes supporting infrastructure-free networking. There are many

possible motivations for these smartphone peer-to-peer networks.

For example, they can support communication in settings where

network infrastructure is censored (e.g., government protests), over-

whelmed (e.g., a large festival or march), or unavailable (e.g., after

a disaster or at a remote event). In addition, in developing coun-

tries, cellular data minutes are often bought in blocks and carefully

conservedÐincreasing interest in networking operations that do

not require cellular infrastructure.

To further validate the potential usefulness of smartphone peer-

to-peer networks, consider the FireChat application, which imple-

ments group chat using smartphone peer-to-peer services. In the

few years since its initial release, it has been widely adopted in

over 120 countries and has been used successfully in multiple gov-

ernment protests, festivals (e.g., at Burning Man, which is held far

from cell towers), and disaster scenarios [9].

Developing useful applications for this smartphone peer-to-peer

setting requires distributed algorithms that can provide global re-

liability and efficiency guarantees on top of an unpredictable col-

lection of local links. As detailed below, the models that describe

this emerging setting are sufficiently different from existing models

that new algorithms and analysis techniques are required. This

paper addresses this need by describing and analyzing new gossip

algorithms for this important setting.

TheMobile TelephoneModel. Themobile telephonemodel studied

in this paper was introduced in recent work [10, 23]. It is a variant

of the classical telephone peer-to-peer model (e.g., [3, 6ś8, 11ś15])

modified to better describe the capabilities and constraints of ex-

isting smartphone peer-to-peer services. The details of the mobile

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

43

telephone model are inspired, in particular, by the current spec-

ifications of Apple’s Multipeer Connectivity framework [20]: a

peer-to-peer service available in every iOS version since iOS 7 that

allows nodes to advertise services, discover nearby advertisers, and

attempt to connect to nearby advertisers, using only local radio

broadcast. (The definition of the classical telephone model, and

differences between the classical telephone and mobile telephone

model, are detailed and discussed below in the related work section.)

In more detail, the mobile telephone model abstracts the basic

scan-and-connect dynamics of the Multipeer framework as follows.

Time proceeds in synchronous rounds. In each round, a connected

graph describes the underlying network topology for that round.

At the beginning of each round, each device (also called a node

in the following) learns its neighbors in the topology graph (e.g.,

as the result of a scan). Each device can then attempt to initiate a

connection with a neighbor. Each node can support at most one

connectionÐso if multiple nodes attempt to connect with the same

target, only one connection will succeed. If two nodes connect, they

can perform a bounded amount of reliable communication before

the round ends.

We parameterize this model with a tag length b ≥ 0. At the

beginning of each round, each node can choose a tag consisting of

b bits to advertise. When performing a scan, each node learns both

the ids and chosen tags of its neighbors (where b = 0 means there

are no tags). These tags can change from round to round. In our

previous study of rumor spreading with parameter b = 1 [10], for

example, at the beginning of a given round, each node that already

knows the rumor advertises a 1 with its tag, while other nodes

advertise a 0. This simplified the rumor spreading task by enabling

nodes that know the rumor to only attempt to connect to nodes

that do not. This capability of nodes to use tags to deliver limited

information to their neighbors is motivated by the ability of devices

to choose and change their service advertisements in the Multipeer

framework.

We also parameterize the model with a stability factor τ ≥ 1.

The underlying network topology must stay stable for at least τ

rounds between changes. For τ = 1, for example, the network topol-

ogy can change completely in every round, while for τ = ∞, the
topology never changes. There exist finer-grained approaches for

capturing intermediate levels of stability (e.g.,T -interval connectiv-

ity [19]), but in this paper we study only the two extreme cases of

fully dynamic and fully stable topologies, so our simpler stability

factor definition is sufficient. The need to model topology changes

is motivated by the inherently mobile nature of the smartphone

setting.

Results. In this paper, we describe and analyze new algorithms for

the gossip problem in themobile telephonemodel with respect to dif-

ferent model parameter and algorithm assumptions. This problem

assumes a subset of nodes start with messages (also called tokens).

The goal is to spread these messages to the entire network. Gossip

is fundamental in distributed computing and is considered particu-

larly important for ad hoc networks such as the smartphone meshes

studied in this paper (c.f., the introductory discussion in [24]).

Below (and in Figure 1) we state and discuss our main results. In

the following, let n > 1 be the network size and k, 1 ≤ k ≤ n, be

the number of tokens in the system. For a given topology graph,

Assumptions Algorithm Gossip Round Complexity

Standard Gossip

b = 0, τ ≥ 1 BlindMatch O ((1/α)k∆2 log2 n)

b = 1, τ ≥ 1 SharedBit* O (kn)

b = 1, τ ≥ 1 SimSharedBit** O (kn + (1/α)∆1/τ log6 n)

b = 1, τ = ∞ CrowdedBin O ((k/α) log6 n)

ϵ-Gossip (0 < ϵ < 1)

b = 1, τ ≥ 1 SharedBit* O

(

n
√
∆ log∆

(1−ϵ)α

)

Figure 1: A summary of gossip and ϵ-gossip round complex-

ity bounds proved in this paper. (In the ϵ-gossip problem, it

is assumed that every node starts with a message, but each

node need only learn an ϵ-fraction of the n total messages.)

In the following: n is the network size, k is the number of

gossip messages, α and ∆ are the vertex expansion and max-

imum degree, respectively, of the network topology graph, b

is the tag length, and τ is the stability factor. All results hold

with high probability in n (i.e., at least 1 − 1/n). Notice, the

result for b = 0 and τ ≥ 1 is the best known result even for

the easier case of b = 0 and τ = ∞. (*) The SharedBit algo-

rithm (alone among all algorithms studied) requires shared

randomness. (**) The SimSharedBit algorithm is existential

in the sense that it depends on a pseudorandomness genera-

tor that we prove exists in Section 5.

we use α to describe its vertex expansion (see the model discussion

below) and ∆ to describe its maximum degree.1 We assume the

topologies are connected. All round complexity results hold with

high probability in n (i.e., probability at least 1 − 1/n).
We start by considering the difficult setting where b = 0 and

τ = 1; i.e., nodes cannot use tags and the network topology graph

can change completely in each round. In Section 4, we describe

and analyze a natural strategy for this setting called BlindMatch,

which has nodes select neighbors with uniform randomness to send

connection attempts.2 We prove that BlindMatch solves gossip in

O ((1/α)k∆2 log2 n) rounds. This bound might seem pessimistic

at first glance, but it is known that disseminating even a single

message in the mobile telephone model with this strategy can take

Ω(∆2/
√
α) rounds in some networks [23]. Indeed, this lower bound

holds even for the easier assumption that τ = ∞. Accordingly, we
do not consider b = 0 and τ = ∞ as a distinct case in this paper. (To

provide intuition for why Ω(∆2) rounds are sometimes necessary,

consider two stars centered on u and v , respectively, where each

star has around ∆ points and u and v are connected by an edge.

Assumeu starts with a gossip message. Forv to receive this message

two events must happen: (1) u selects v for a connection; and (2) v

acceptsu’s connection from all incoming connections in that round.

The first event occurs with probability ≈ 1/∆, and because v can

expect a constant fraction of its neighbors to send it connection

1If the topology is dynamic, then α is defined as the minimum expansion over all
rounds, and ∆ is defined as the largest maximum degree over all rounds.
2This is essentially the well-known PUSH-PULL strategy from the classical telephone
model with the key exception that in our model if a node receives multiple connection
attempts, only one succeeds. As discussed in the related work and Section 4, this well-
motivated model change requires new analysis techniques to understand information
propagation.

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

44

attempts in any given round, the second event also occurs with

probability ≈ 1/∆.) Our BlindMatch result provides the benchmark

against which we attempt to improve with the algorithms that

follow.

In Section 5, we consider the case where b = 1 and τ ≥ 1;

i.e., the network can still change completely in each round, but

now nodes can advertise a single bit to their neighbors. We begin

by describing and analyzing an algorithm called SharedBit. This

algorithm assumes a shared randomness source which is used to

implement (essentially) a random hash function that allows nodes

to hash their current set of known messages to a single bit to

be used as their one-bit advertising tag. The key guarantee of this

function is that nodes with the same sets advertise the same bit, and

nodes with different sets have a constant probability of advertising

different bits. This helps nodes seek out productive connections

with neighbors (e.g., connections in which at least one node learns

something new). We prove that SharedBit solves gossip in O (kn)

rounds.

We next seek to eliminate the shared randomness assumption.

To do so, we describe SimSharedBit which solves gossip in O (kn +

(1/α)∆1/τ log6 n) rounds, without assuming a shared randomness

source. Notice, because α ≥ 2/n and ∆ ≤ n, this solution is always

within log factors of the SharedBit for large k , and for small k it is

still comparable for many values of α , ∆, and/or τ .

The SimSharedBit algorithm depends on a novel generalization

of Newman’s Theorem [21]Ða well-known result on public random-

ness simulation from the study of two-party communication com-

plexity. We prove that there exists an appropriate pseudorandom

number generator that can provide sufficient randomness for the

SharedBit strategy. We then elect a leader in O ((1/α)∆1/τ log6 n)

rounds using an algorithm from [23], and use this leader to dis-

seminate a small generator seed. We note that our generalization

of Newman’s Theorem is potentially of standalone interest as the

techniques we introduced can be used to study pseudorandomness

in many different graph algorithm settings.

In Section 6, we consider the impact of topology changes on

gossip time. In particular, we consider the case where b = 1 and

τ = ∞; i.e., the network topology is stable. We describe and analyze

CrowdedBin, an algorithm that solves gossip in O ((1/α)k log6 n)

rounds. This algorithm matches or outperforms the O (kn) round

complexity of SharedBit for all α values (ignoring log factors). For

well-connected networks (e.g., constant α), it performs almost a

factor of n faster. These results hint that large increases to stability

are more valuable to gossip algorithms than large increases to

tag length (for most of our solutions, increasing b beyond 1 only

improves performance by at most logarithmic factors).

The benefit of stable network topologies is that nodes can trans-

mit larger amounts of information about their current state to their

neighbors by using their single bit advertisement tag over mul-

tiple rounds. CrowdedBin leverages this capability to help nodes

efficiently converge on an accurate estimate of kÐwhich is not

known in advance. This process depends on nodes testing guesses

by throwing their tokens into a number of bins corresponding to

the current guess, and then seeking/spreading evidence of crowding

(as established by a new balls-in-bins algorithm described in Sec-

tion 6). Once all nodes learn an appropriate guess of k , CrowdedBin

deploys an efficient parallel rumor spreading strategy to efficiently

disseminate the k tokens.

Finally, we consider the ϵ-gossip problem, which is parameterized

with a fraction ϵ, 0 < ϵ < 1, assumes that k = n, and relaxes the

gossip problem to require only that every node receives at least nϵ

of the n total tokens. This variation is useful for settings where it

is sufficient for nodes to learn enough rumors to complete the task

at hand; e.g., when an algorithm requires responses from only a

majority quorum of nodes.

In Section 7, we re-analyze the SharedBit gossip algorithm from

Section 5. Deploying a novel argument based on finding productive

łcoalitions" of nodes, we show that SharedBit solves ϵ-gossip in

O

(

n
√
∆ log∆

(1−ϵ)α

)

rounds. Recall that SharedBit solves regular gossip

in O (n2) rounds under the k = n assumption. Therefore, when ϵ is

a constant fraction and the network is well-connected (α is large),

SharedBit solves ϵ-gossip up to a (sub-linear) polynomial factor

faster than the standard gossip problem.

Related Work. The mobile telephone model used in this paper

was first introduced in a study of rumor spreading by Ghaffari and

Newport [10]. We also recently studied leader election in this same

model [23]. As noted, the mobile telephone model is a variation

of the classical telephone model (first introduced by Frieze and

Grimmett [7]) adapted to better describe smartphone peer-to-peer

networks. The mobile model differs from the classical model in two

ways: (1) the classical model implicitly fixesb = 0 and (typically) τ =

∞; and (2) the classical model allows nodes to accept an unbounded

number of incoming connections.

It is important to emphasize that most of the well-known bounds

in the classical model depend on this assumption of unbounded

connections, and removing this assumption requires new analy-

sis techniques; c.f., the discussion in [10]. We note that work by

Daum et al. [4] (which preceded [10, 23]) also pointed out the

dependence of existing telephone model bounds on unbounded

concurrent connections.

A fundamental problem in peer-to-peer networks is rumor spread-

ing, in which a single message must be disseminated from a desig-

nated source to all nodes (this is equivalent to gossip with k = 1).

This problem is well-understood in the classical telephone model,

where spreading times are often expressed with respect to spectral

properties of the network topology graph such as graph conduc-

tance (e.g., [12]) and vertex expansion (e.g., [3, 6, 13, 15]). This

existing work established that efficient rumor spreading is possible

with respect to both graph properties in the classical model. In [10],

we studied this problem in the mobile telephone model. We proved

that efficient rumor spreading with respect to conductance is not

possible in the mobile telephone model, but efficient spreading with

respect to vertex expansion is possible. We then proved that for

b = 1 and τ ≥ 1, a simple random spreading strategy solves the

problem in O ((1/α)∆1/τ polylog(n)) roundsÐmatching the tight

Θ((1/α) log2 n) result from the classical telephone model within

log factors for τ ≥ log∆. In [23], we built on these results to solve

leader election in similar asymptotic time.

Though gossip is well-studied in peer-to-peer models (see [24]

for a good overview), little is known about how to tackle the prob-

lem in the mobile telephone model, where concurrent connections

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

45

are now bounded but nodes can leverage advertising tags.3 Finally,

we note that there are application similarities between gossip in the

mobile telephone model and existing reliable multicast solutions

for mobile ad hoc (e.g., [17]) and delay-tolerant (e.g., [1]) networks.

These existing solutions, however, tend to be empirically evaluated

and depend on the ability to predict information about link behav-

ior (e.g., estimated link duration or an advance schedule of when

given links will be present).

2 MODEL AND PROBLEM

We describe a smartphone peer-to-peer network using the mo-

bile telephone model. As elaborated in the introduction, the basic

properties of this modelÐincluding its scan-and-connect behavior,

dynamic topologies, and the ability to advertise a bounded tagÐ

are inspired in particular by the behavior of the Apple Multipeer

Connectivity framework for smartphone peer-to-peer networking.

In more detail, we assume executions proceed in synchronous

rounds labeled 1, 2, We describe a peer-to-peer network topology

in each round r as an undirected connected graphGr = (V ,Er) that

can change from round to round, constrained by the stability factor

(see below). We call the sequence of graphs G1,G2, ... that describe

the evolving topology a dynamic graph. We assume the definition

of the dynamic graph is fixed at the beginning of the execution.

We assume a computational process (also called a node in the

following) is assigned to each vertex in V , and use n = |V | to
indicate the network size. We assume all nodes start during round

1. At the beginning of each round r , we assume each node u learns

its neighbor set N (u) in Gr . Node u can then select at most one

node from N (u) and send a connection proposal. A node that sends

a proposal cannot also receive a proposal. If a node v does not

send a proposal, and at least one neighbor sends a proposal to

v , then v can accept an incoming proposal. There are different

ways to model how v selects a proposal to accept. In this paper,

for simplicity, we assume v accepts an incoming proposal selected

with uniform randomness from the incoming proposals. If node v

accepts a proposal from node u, the two nodes are connected and

can perform a bounded amount of interactive communication to

conclude the round. We leave the specific bound on communication

per connection as a problem parameter.

Model Parameters. We parameterize the mobile telephone model

with two integers, a tag length b ≥ 0 and a stability factor τ ≥ 1.

We allow each node to select a tag containing b bits to advertise at

the beginning of each round. That is, if node u chooses tag bu at

the beginning of a round, all neighbors of u learn bu before making

their connection decisions in this round. A node can change its tag

from round to round.

We also allow for the possibility of the network topology chang-

ing between rounds. We bound the allowable changes with a stabil-

ity factor τ ≥ 1. For a given τ , the dynamic graph describing the

changing topology must satisfy the property that at least τ rounds

must pass between any changes to the topology. For τ = 1, the

3It might be tempting to simply run k parallel instances of the rumor spreading
strategy from [10] to gossip k messages, but this approach fails for three reasons: (1)
our model allows onlyO (1) tokens to be sent per connection per round; (2) each of the
k instances requires its own advertising tag bit, whereas all of our new gossip results
focus on the case where b ≤ 1; and (3) nodes do not know k in advance. Accordingly,
most results presented in this paper require substantial technical novelty.

graph can change arbitrarily in every round. We use the convention

of stating τ = ∞ to indicate the graph never changes.

Vertex Expansion and Maximum Degree. Several of our results

express time complexity bounds with respect to the vertex expansion

α of the dynamic graph describing the network topology. To define

α , we first review a standard definition of vertex expansion for a

fixed static unconnected graph G = (V ,E).

For a given S ⊆ V , define the boundary of S , indicated ∂S , as

follows: ∂S = {v ∈ V \ S : N (v) ∩ S , ∅}: that is, ∂S is the set

of nodes not in S that are directly connected to S by an edge in

E. Next define α (S) = |∂S |/|S |. As in [10, 13], we define the vertex

expansion α (G) of our static graph G = (V ,E) as follows:

α (G) = min
S ⊂V ,0< |S | ≤n/2

α (S).

Notice that despite the possibility of α (S) > 1 for some S , we always

have α (G) ≤ 1. We define the vertex expansion α of a dynamic

graphG1,G2..., to be the minimum vertex expansion over all of the

dynamic graph’s constituent static graphs (i.e., α = min{α (Gi) :

i ≥ 1}).
Similarly, we define themaximumdegree∆ of a dynamic graph to

be the maximum degree over all of the dynamic graph’s constituent

static graphs.

The Gossip Problem. The gossip problem assumes each node is

provided an upper bound4 N ≥ n on the network size and a unique

ID (UID) from [N]. The problem assumes some subset of nodes

begins with a gossip message to spread (which we also call a token).

We use k to describe the size of this subset and assume that k is

not known to the nodes in advance. A given node can start the

execution with multiple tokens, but no token starts at more than

one node.We treat gossip tokens as comparable black boxes that can

only be communicated between nodes through connections (e.g., a

node cannot transmit a gossip token to a neighbor by spelling it out

bit by bit using its advertising tags). If a node begins an execution

with a token or has received the token through a connection, we

say that the node owns, knows or has learned that token. We assume

that a pair of connected nodes can exchange at most O (1) tokens

and O (polylog(N)) additional bits during a one round connection.

Solving the Gossip Problem. The gossip problem requires all nodes

to learn all k tokens, Formally, we say a distributed algorithm solves

the gossip problem in f (n,k,α ,b,τ) rounds, if with probability at

least 1 − 1/n, all nodes know all k tokens by round f (n,k,α ,b,τ)

when executed in a network of size n, with k tokens, vertex ex-

pansion α , tag length b, and stability factor τ . We omit parameters

when not relevant to the bound.

Probability Preliminaries. The analyses that follow leverage the

following well-known probability results:

Theorem 2.1. For p ∈ [0, 1]: (1 − p) ≤ e−p and (1 + p) ≥ 2p .

4For the sake of concision, the results described in the introduction and Figure 1 make
the standard assumption that N is a polynomial upper bound on n, allowing us to
replace N with n within logarithmic factors inside asymptotic notation. In the formal
theorem statements for these results, however, we avoid this simplification and leave
N in place where usedÐenabling a slightly finer-grained understanding of the impact
of the looseness of network size estimation on our complexity guarantees.

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

46

Theorem 2.2 (Chernoff Bound: Lower Bound Form). Let

Y =
∑t
i=1 Xi be the sum of t > 0 i.i.d. random indicator variables X1,

X2,..., Xt , and let µ = E (Y). Fix some fraction δ , 0 < δ < 1. It follows:

Pr(X ≤ (1 − δ)µ) ≤ e−
δ 2µ
2 .

Theorem 2.3 (Chernoff Bound: Upper Bound Form). Let Y =
∑t
i=1 Xi be the sum of t > 0 i.i.d. random indicator variables X1,

X2,..., Xt , and let µ = E (Y). Fix some value δ > 1. It follows:

Pr(X ≥ (1 + δ)µ) ≤ e−
δ µ
3 .

Theorem 2.4 (Chernoff-Hoeffding Bound). Let X1, X2, ..., Xt ,

be t ≥ 1 i.i.d. random indicator variables. Let µ = E (Xi) and fix some

δ > 0. It follows:

Pr *
,

1

t

t
∑

i=1

Xi ≥ µ + δ+
-
≤ e−2δ

2t .

Theorem 2.5 (Markov’s Ineqailty). Let X be a nonnegative

random variable and a > 0 be a real number. It follows:

Pr (X ≥ a) ≤ E (X)

a
.

3 TOKEN TRANSFER SUBROUTINE

An obstacle to solving gossip in the mobile telephone model is

deciding which tokens to exchange between two connected nodes.

In more detail, once two nodesu andv with respective token setsTu
and Tv connect, even if they know Tu , Tv , they must still identify

at least one token t < Tu ∩Tv to transfer for this round of gossip

to be useful. Complicating this task is the model restriction that u

andv can only exchangeO (polylog(N)) bits before deciding which

tokens (if any) to transfer. This is not (nearly) enough bits to encode

a full token set (a simple counting argument establishes that every

coding scheme will require Ω(N) bits for some sets). Therefore,

a more efficient routine is needed to implement this useful token

transfer.

Here we describe a transfer subroutine that solves this problem

and is used by multiple gossip algorithms described in this paper.

This routine, which we call Trans f er (ϵ), for an error bound ϵ , 0 <

ϵ < 1, is a straightforward application of an existing algorithmic

tool from the literature on two-party communication complexity. It

guarantees the following: ifTrans f er (ϵ) is called by two connected

nodes u and v , with respective token sets Tu and Tv , and Tu ,

Tv , then with probability at least 1 − ϵ the smallest token t (by

a predetermined token ordering) that is not in Tu ∩ Tv , will be

transferred by the node that knows t to the node that does not. This

routine requires u and v to exchange only O (log2 N · log (logNϵ))

controls bits in addition to token t . It also assumes some fixed

ordering on tokens.

Equality Testing. We use one of the many known existing solu-

tions to the set equality (EQ) problem from the study of two-party

communication complexity. In our setting with u and v (described)

above, these existing solutions provide u and v a way to test the

equality of Tu and Tv , and they offer the following guarantee: if

Tu = Tv , then u and v will correctly determine their sets are equal

with probability 1, else if Tu , Tv then u and v will erroneously

determine their sets are equal with probability no more than 1/2.

These existing solutions assume only private randomness and re-

quire u and v to exchange no more than O (logN) bits. A nice

property of most such solutions is that each trial is independent.

Therefore, if u and v repeat this test c times, for some integer c ≥ 1,

then the error probability drops exponentially fast with c to 2−c .
Let us fix one such equality testing routine and call it EQTest (c),

where parameter c ≥ 1 determines how many trials to execute in

testing the equality.

The Transfer Subroutine. We now deploy EQTest (ϵ ′), for ϵ ′ =

⌈log (logNϵ)⌉, as a subroutine to implement theTrans f er (ϵ) routine.

In particular, recall that for a given u and v , we can understand

Tu and Tv to both be subsets of the values in [N] (as each node

in the network can label each token with its UID from [N] at the

beginning of the execution). Our goal is to identify the smallest

location value in [N] that is in Tu ∪Tv but not in Tu ∩Tv . To do

so, we can implement a binary search over the interval [N], using

EQTest (ϵ ′) to test the equality of the interval in question between

u and v . In more detail:

Transfer(ϵ):

a ← 1; b ← N

while a , b

result ← EQTest(ϵ ′) executed on Tu ∩ [a, ⌊b/2⌋] and Tv ∩
[a, ⌊b/2⌋]

if result = notequal then b ← ⌊b/2⌋ else a ← ⌊b/2⌋ + 1
transfer token a to the other node if you know token a

The above logic implements a basic binary search over the interval

[N] to identify the smallest value in this interval that is in exactly

one of the two setsTu andTv . If every call to EQTest succeeds then

the search succeeds and Trans f er behaves correctly. There are at

most logN calls to EQTest , each of which fails with probability

2−ϵ
′ ≤ ϵ/ logN . Therefore, by a union bound, the probability that

at least one of the logN calls to EQTest fails is less than ϵ , as

claimed. From a communication complexity perspective, each call

to EQTest (ϵ ′) requiresO (logN ·ϵ ′) = O (logN · log (logN /ϵ)) bits,
and we make logN such calls. Therefore, the total communication

complexity is in O (log2 N · log (logNϵ)), as claimed.

4 GOSSIP WITH 0-BIT TAGS AND DYNAMIC
TOPOLOGY

Here we consider the most difficult case for gossip in our model:

nodes cannot advertise any information to their neighbors (b = 0),

and the network topology graph can change arbitrarily in every

round (τ = 1). We study the performance of a straightforward

random token propagation strategy.

A detailed treatment of this algorithm, including the full proof

details, are deferred to the full version of this paper [22].

The BlindMatch Gossip Algorithm. At the beginning of each

round r ≥ 1, each node u ∈ V flips a fair coin to decide whether to

be a sender or a receiver in r . If u decides to be a sender, it selects

a neighbor uniformly from among its neighbors in this round and

sends it a connection proposal. If u decides to be a receiver it waits

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

47

to receive proposals. If two nodes u and v connect, they execute

the token transfer subroutine.

Analysis. Our goal is to prove the following theorem regarding

the performance of BlindMatch:

Theorem 4.1. The BlindMatch gossip algorithm solves the gos-

sip problem in O ((1/α)k∆2 log2 N) rounds when executed with tag

length b = 0 in a network with stability τ ≥ 1.

This time bound might seem pessimistically large at first glance,

but as shown in [23], there are networks in which simple random

connection strategies require Ω(∆2/
√
α) rounds to spread even

a single message. The proof details adapt our recent analysis of

leader election strategies in the mobile telephone model under the

assumption that b = 0 [23] to account for multiple gossip messages.

5 GOSSIP WITH 1-BIT TAGS AND DYNAMIC
TOPOLOGY

Here we describe and analyze two gossip algorithm that now as-

sumeb = 1 (i.e., nodes can advertise a single bit to their neighbors in

each round). The graph, however, can still change arbitrarily in ev-

ery round (i.e., the algorithms must work for any τ ≥ 1). Our goal is

exploit the shift from b = 0 to b = 1 to solve gossip more efficiently

in most cases. Our first algorithm, called SharedBit, assumes shared

randomness. Our second algorithm, called SimSharedBit, does not,

but it relies on an existential pseudorandomness generator.

5.1 Shared Randomness

Below we provide a condensed description of the SharedBit gossip

algorithm and discuss its performance. A detailed treatment of this

algorithm, including the full proof details, are deferred to the full

version of this paper [22].

The SharedBit Gossip Algorithm (Overview). The algorithm as-

sumes each node has access to a shared random bit string r̂ of length

O (N 3 logN), where each bit in r̂ is generated with independent

and uniform randomness. At the beginning of each round r , each

node u uses fresh bits from r̂ to hash the set of tokens it knows at

the beginning of this round to a single bit bu (r). This bit bu (r) is

what u advertises to its neighbors in round r . If bu (r) = 0, then u

will receive connection proposals in this round. If bu (r) = 1 and

u has at least one neighbor advertising 0, then u will choose one

these neighbors with uniform randomness and send it a connection

proposal. If two nodes u and v connect in round r , they use the

token transfer subroutine to attempt to exchange tokens. If a node

runs out of fresh bits r̂ to use it can cycle back to the beginning of

this shared string.

Analysis. Our goal is to prove the following theorem regarding

the SharedBit gossip algorithm:

Theorem 5.1. The SharedBit gossip algorithm solves the gossip

problem inO (kn) rounds when executed with shared randomness and

tag length b = 1 in a network with stability τ ≥ 1.

The proof of this theorem begins by establishing the following

key property of the token hash strategy used by SharedBit (where

Tu (r) is set of tokens known by node u at the beginning of round

r):

Lemma 5.2. Fix two nodes u,v ∈ V , u , v , and a round r , 1 ≤ r ≤
cN 2. Fix a r − 1 round execution of SharedBit, and let p = Pr(bu (r) ,

bv (r)) be the probability (defined over the random selection of the

relevant bits in r̂) that u and v generate different advertising bits in

round r . If Tu (r) = Tv (r) then p = 0, else if Tu (r) , Tv (r), then

p = 1/2.

This property ensures that any successful connection created by

SharedBit is productive in the sense that at least one endpoint will

learn a new token. The remainder of the proof first notes that with

constant probability there will be some productive connections in

any given round. It then leverages a stochastic dominance argument

(to sidestep inter-round dependencies) to show that Θ(kn) rounds

are sufficient to guarantee enough productive rounds to solve the

gossip problem for k tokens.

5.2 Eliminating the Shared Randomness
Assumption

Shared randomness is not always a reasonable assumption. With

this in mind, we describe and analyze SimSharedBit, a variation

of SharedBit that does not require shared randomness. A detailed

description and analysis of SimSharedBit is deferred to the full

version of this paper [22]. Here we summarize the algorithm’s

strategy and state its main performance guarantee.

SimSharedBit Strategy. The high-level strategy for SimSharedBit

is to first elect a leader that disseminates a seed string that can

be used to generate sufficient randomness to run SharedBit. This

leader election uses a strategy from [23], and requires an addi-

tional O ((1/α)∆1/τ polylog(N)) rounds. Notice, however, this time

is asymptotically dominated by kn (ignoring log factors) for many

parameter values.

We emphasize that the number of shared bits required by Shared-

Bit is much too large to be efficiently disseminated directly: our

model restricts connections to deliver polylog(N) bits per round,

while SharedBit requires Ω(N 3) shared bits. The seed selected and

disseminated by the leader, by contrast, will be small enough to be

fully transmitted over a single round connection.

To prove that there exists a randomness generator that can ex-

tract sufficient randomness for our purpose from seeds of this small

size, we adapt the technical details of Newman’s Theorem [21]

from the simpler world of two-party communication to the more

complicated world of n parties on a distributed and changing net-

work topology. In more detail, we prove the existence of a multiset

R ′, containing only poly(N) bit strings of the length required for

SharedBit, that is sufficiently random to guarantee that if a leader

chooses r̂ uniformly from R ′, the SharedBit algorithm using shared

randomness r̂ is still likely to solve gossip efficiently. Because R ′
contains only poly(N) strings, the leader can identify the string

it selected using only polylog(N) bits (this selection is the seed it

disseminates)Ðenabling efficient propagation of this information.

The existential nature of SimSharedBit is entirely encapsulated in

the existence of this set R ′.

Analysis. Our goal is to prove the following theorem regarding

SimSharedBit:

Theorem 5.3. There exists a bit string multiset R ′ of size NΘ(1) ,

such that the SimSharedBit gossip algorithm using this R ′ as its

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

48

source of simulated shared bit strings solves the gossip problem in

O (kn + (1/α)∆1/τ log6 N) rounds when executed with tag length

b = 1 in a network with stability τ ≥ 1.

The key technical novelty in proving this theorem is the proof

of the existence of a sufficiently random R ′. Our argument gen-

eralizes the strategy deployed to prove Newman’s Theorem [21].

Whereas the classical Newman’s Theorem result applies the proba-

bilistic method to prove the existence of a sufficiently random bit

string multiset for all possible inputs for two players, we have to

account for n ≥ 2 players, all possible different dynamic graphs,

assignments of tokens, and rounds required for the leader elec-

tion to complete. These counts, however, are of sizes no more than

exponential in N , allowing the probabilistic method argument to

proceed with proper adjustments to constants. Our generalization

is potentially of standalone interest as it can be used to provide

similar public randomness simulation results for other dynamic

network algorithms.

6 GOSSIP WITH 1-BIT TAGS AND STABLE
TOPOLOGY

The preceding gossip algorithms make no assumptions about the

stability of the underlying network topology. Their analysis holds

for every τ ≥ 1. In some settings, this assumption might be pes-

simistic. Here we seek better performance when the network topol-

ogy graph does not change (i.e., τ = ∞).
In more detail, we describe and analyze the CrowdedBin algo-

rithm, which solves gossip in Õ (k/α) rounds with b = 1 and τ = ∞
(where Õ hides polylog(N) factors). This algorithm is comparable

to the trivial Ω(k) lower bound for gossiping k tokens in a model

where a node can only send one token per round. It also outper-

forms our best result for τ = 1Ðthe O (kn) round complexity of

SharedBitÐfor every α ∈ ω (1/n) (ignoring log factors).

Discussion: Crowded Bins. The name CrowdedBin comes from

a core behavior in the algorithm in which nodes toss their tokens

into a fixed number of bins corresponding to their current estimate

k̂ of k (the number of tokens in the network). Nodes do not know

k in advance. Determining this value is crucial to enabling efficient

parallel dissemination of their tokens. Leveraging a new balls-in-

bins analysis, we upper bound the number of tokens in any given

bin if the estimate k̂ is sufficiently large. The nodes therefore search

for crowded bins as evidence that they need a larger estimate of k .

This mechanism provides a way to check that a current guess k̂ is

too small while only paying a time complexity price relative to k̂

(as there are only k̂ bins required to check for crowding). Because

the sequence of guesses we try are geometrically increasing, the

cost of checking estimates smaller than k will sum up to Õ (k).

Discussion: Spreading Bits versus Spreading Tokens. We also em-

phasize that the CrowdedBin algorithm makes a clear distinction

between propagating information using the advertising bits and

propagating the tokens themselves (which are treated as black

boxes, potentially large in size, that require a pairwise connection

for transfer). Combining the stability of the network with each

node’s ability to advertise a bit to all its neighbors in each round,

nodes first attempt to stabilize to a consistent and accurate estimate

of k , and a consistent set of tags describing the network’s tokens.

Once stabilized, this information can then support the efficient

spreading of the tokens, link by link, to the whole network. Ac-

cordingly, CrowdedBin can be understood to occur in two phases

(which, in practice, might substantially overlap). During the first

phase, nodes use their advertising bits to efficiently learn about the

network. During the second phase, nodes use this knowledge to ef-

ficiently spread gossip tokens. The first phase depends on network

stability as this is what allows a node to communicate complicated

information to its neighborhood using its small advertising tag over

many rounds.

The PPUSH Rumor Spreading Strategy. The CrowdedBin algo-

rithm uses a simple rumor spreading strategy called PPUSH as a

subroutine to help spread tokens once the network has stabilized.

This algorithm was introduced in our earlier study of rumor spread-

ing in the mobile telephone model [10]. PPUSH assumes a subset

of nodes start with a common rumorm, and the goal is to spreadm

to all nodes. It requires b ≥ 1.

In more detail, the strategy PPUSH works as follows: (1) at the

beginning of each round, if a nodes knowsm (i.e., it is informed),

it advertises bit 1, otherwise if it does not knowm (i.e., it is unin-

formed), it advertises bit 0; (2) each informed node that has at least

one uninformed neighbor in this round, chooses an uninformed

neighbor with uniform randomness and attempts to form a con-

nection to spread the rumor. In [10], we proved the following key

result about the performance of PPUSH:

Theorem 6.1 (Adapted from [10]). With high probability in N :

PPUSH succeeds in spreading the rumor to all nodes in O (log4 N /α)

rounds when executed in the mobile telephone model with b ≥ 1,

τ = ∞, and a topology graph with expansion α .

We will leverage this theorem in our analysis of our gossip algo-

rithm. We also use the following useful property proved in [10]

which relates network diameter to expansion:5

Theorem 6.2 (Adapted from [10]). Fix a connected graph with n

nodes, expansion α , and diameter D. It follows that D = O (logn/α).

6.1 The CrowdedBin Gossip Algorithm

We are now ready to describe our CrowdedBin algorithm. We

present it here in its own section with its description divided into

parts to clarify its presentation.

In the following, we assume each node u ∈ V identifies itself

with a tag tu chosen uniformly from the space {1, 2, ...,N β }, where
β ≥ 2 is constant we fix in our analysis. Let ℓ = β logN be the

number of bits needed to describe a tag. To simplify notation, we

assume in the following that N is a power of 2.

Parallelizing Instances. Nodes do not know in advance the value

of k (the number of tokens in the system). They consider logN

estimates of k : k1,k2, ...,klogN , where each ki = 2i . The nodes run

in parallel a separate gossip instance for each estimate. We use the

notation instance i to refer to the instance corresponding to estimate

5The actual result we proved in [10] is that it is always possible to spread a rumor
in O (logn/α) rounds in the mobile telephone model in a graph with expansion α .
The rumor spreading time in a given network can never be smaller than the network
diameter, which provides a trivial lower bound on the problem.

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

49

ki . In order to run logN instances in parallel, each node uses logN

rounds to simulate one round each of the logN instances. That

is, nodes divide rounds into simulation groups consisting of logN

rounds. Round j of simulation group i is used to simulate round i

of instance j.

Instance Schedules. Each instance i groups its rounds into blocks

containing ℓ + logN rounds each. It then groups these blocks into

bins containing γ logN blocks each, where γ > 1 is a constant we

fix in our analysis below. Finally, it groups the bins into phases

consisting of ki bins each. In other words, the schedule for instance

i is made up of phases, where each phase has ki bins, which are each

made up of γ logN blocks, which each contain ℓ + logN rounds:

adding to a total of γ (β + 1)ki log
2 N total rounds per phase.

Initialization. Each node u ∈ V that begins an execution of the

CrowdedBin algorithm with a gossip token, independently selects

a bin for its token for each of the logN instances. That is, for

each instance i , u selects a bin bu (i) with uniform independent

randomness from {1, 2, ...,ki }. Each node u also maintains, for each

instance i , and each bin j for this instance, a set Tu (i, j) containing

the tags it has seen so far for tokens in bin j in instance i . For each

instance i , if node u has a token it initializesTu (i,bu (i)) = {tu } (i.e.,
it places its own tag in the bin it selected for that instance). Node u

also maintains a set Qu containing the tokens it has received so far,

where each token in Qu is also labeled with its tag. Finally, each

node u maintains a variable estu , initialized to 1, which describes

the current instance node u is participating in.

Participation. Each node will only participate in a single instance

at a time, and it will only participate in complete phases of an

instance. In more detail, if some instance i starts a new phase in

round r , and some node u has estu = i at the start of round r , node

u is now committed to participate in this full phase of instance i .

As we will detail, its estimate cannot change again until this phase

completes.

To participate in a phase of instance i , node u does the following.

First, for each bin j, 1 ≤ j ≤ ki , u orders the tags in Tu (i, j) (if any)

in increasing order. It will use the first ℓ rounds of the first block to

spell out the smallest such tag, bit by bit, using its advertising bits

(here the assumption that b ≥ 1 is needed). It will then use the first

ℓ rounds of the second block to spell out the second smallest tag,

and so on. There areγ logN total blocks in this bin. Ifu knows more

than this many tags for this bin, it transmits only the first γ logN .

Node u transmits all 0’s during the blocks in this bin for which it

has no tags to advertise (here is where we use the assumption that

the smallest possible tag is 1Ðpreventing a block of all 0’s from

being mistaken for a tag.)

During the rounds dedicated to bin j, node u also collects the

bits advertised by its neighbors in each block. If it learns of a tag tv
that is not currently inTu (i, j), it will put it aside and then add it to

this set once the rounds dedicated to bin j in this phase conclude.

We have only so far described what node u does during the first

ℓ rounds for each block in our fixed instance j. During the remain-

ing logN rounds in these blocks, u will attempt to disseminate the

actual tokens corresponding to the tags advertised (here we em-

phasize the difference between spelling out the bits of a tag using

advertising bits and actually transmitting a token, which requires

two nodes to form a connection). In more detail, u executes the

PPUSH rumor spreading strategy from [10] (see above) during the

last logN rounds of each block in the current bin. In more detail,

for a given block h in this bin, if u advertised tag t in the first ℓ

rounds of this block, and u actually has the token corresponding

to tag t in Qu , it executes PPUSH in the remaining rounds of this

block using this token as the rumor and advertising 1 (i.e., it runs

PPUSH with the status of an already informed node). Otherwise,

node u runs PPUSH advertising 0 (i.e., it runs the PPUSH as an

uniformed node).

Increasing Size Estimates. A core behavior in this algorithm is

how nodes upgrade their current estimate of the value k (stored in

estu for each nodeu). As described above, each node initializes their

estimate to 1. As described below, these estimates can only grow

during an execution. We call an increase in this estimate at a given

node an upgrade. There are two events that trigger an upgrade at a

given node u.

The first event is that node u sees łactivity" on an instance

i ′ > estu , where estu is its current estimate. The term łactivity" in

this context means seeing a 1-bit advertised in an instance i ′ round.
If this event occurs, then u knows that some other node has already

increased its estimate beyond estu , so u should upgrade its estimate

as well. The second event is that node u fills a bin in its current

estimate. That is, there is some bin j such that |T (estu , j) | ≥ γ logN .

We call this event a crowded bin, and u can use this as evidence

that estu does not have enough bins for the number of tags in the

system and therefore estu is too small of an estimate for k . If this

event occurs, u will increase estu by 1 (unless estu is already at its

maximum value in which case it will remain unchanged.).

Recall, as specified above, that if a node u increases its estimate

estu to a new value, it will complete the phase of whatever instance

it was participating in before switching to the new estimate moving

forward. This restriction simplifies the algorithmic analysis.

6.2 Analysis

Our goal in this section is to prove the below theorem regarding

CrowdedBin. Some proof details have been deferred to the full

version of this paper [22].

Theorem 6.3. The CrowdedBin gossip algorithm solves the gossip

problem in O ((1/α)k log6 N) rounds when executed with tag length

b = 1 in a network with stability τ = ∞.

At the beginning of an execution each node randomly assigns

a tag from {1, 2, ...,N β } to its token, and then randomly assigns

the token to a bin in each of the logN instances. We call the global

collection of these assignments for a given execution a configuration.

Fix a configuration. We call a given instance i of this configuration,

1 ≤ i ≤ logN , crowded, if the configuration has an instance i

bin with at least γ logN unique tags assigned to it. The target

instance for our fixed configuration is the smallest instance i that

is not crowded. If every instance is crowded, then we say the target

instance is undefined. We begin our analysis by defining what it

means for a configuration to be good with respect to these terms:

Definition 6.4. A configuration is good if and only if it satisfies

the following two properties: (1) every token is assigned a unique

tag; and (2) the target instance i is defined, and ki ≤ 2k .

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

50

A direct corollary of the above definition is that if a configuration

is good, and i is the target, then ki > k/(γ logN). We now bound

the probability that the nodes generate a good configuration. We

will show that increasing the constant β , used to define the space

{1, 2, ...,N β } fromwhich tags are drawn, and the constantγ , used to

define the number of blocks per bin, increases the high probability

that a configuration is good. To make this argument we begin by

establishing a non-standard balls-in-bins argument applicable to

our specific algorithm’s behavior.

Lemma 6.5. Fix some constant γ ≥ 9. Assume k balls, 1 ≤ k ≤ N ,

are thrown into k ′ ≥ k bins with independent and uniform random-

ness. The probability that at least one bin has at least γ logN balls, is

less than 1/N (γ /3)−2.

We apply the above balls-in-bin argument to prove the following

lemma which argues that good configurations are likely.

Lemma 6.6. Fix some constant c ≥ 1. For a tag space constant

β ≥ c + 3, and a bin size constant γ ≥ 3c + 9, the nodes generate a

good configuration with probability at least 1 − 1/N c .

The below lemma follows directly from the definition of good

and the mechanism by which our algorithm updates estimates:

Lemma 6.7. In an execution with a good configuration with target

instance i , no node ever sets its local estimate to a value larger than i .

That is, for all u and all rounds, estu ≤ i .

We now continue our analysis by bounding the time required for

all nodes to reach the target instance. We do so with two arguments:

the first concerning the rounds required for nodes to learn of a

larger estimate existing in the system, and the second concerning

the rounds required for the largest estimate to increase if it is still

less than the target. For the following results, let D describe the

diameter of the static network topology:

Lemma 6.8. Fix an execution with a good configuration with target

instance i . Assume that at the beginning of round r of this execution

the largest estimate in the system is imax ≤ i . By round r ′ = r +

O (Dkimax log
3 N) either: the largest estimate in the system is larger

than imax , or all nodes have estimate imax .

Lemma 6.9. Fix an execution with a good configuration with target

instance i . Assume that at the beginning of round r of this execution

the largest estimate in the system is imax < i . By round r ′ = r +

O (Dkimax log
3 N) the largest estimate in the system is larger than

imax .

We now leverage Lemmas 6.8 and 6.9 to bound the rounds re-

quired for all nodes to permanently stabilize to the target instance.

Lemma 6.10. Fix an execution with a good configuration with tar-

get instance i . By round r = O (Dki log
3 N), every node has estimate

i . That is, for every node u, estu = i by round r .

Proof. By the definition of our algorithm, estimates never de-

crease. By Lemma 6.7, no node will ever adopt an estimate greater

than i . Combined, it follows that we can keep applying Lemma 6.9

to increase the largest estimate until the largest estimate reaches

i . We can then apply a single instance of Lemma 6.8 to ensure all

nodes have this estimate, permanently satisfying the lemma.

To bound the time required for these applications of the above

lemmas, we leverage our observation that the largest estimate can

only increase. It follows that in the worst case we apply Lemma 6.9

exactly once for each of the estimates leading up to the target i .

Because these estimates form a geometric sequence (e.g., 2, 4, 8, ...),

the total rounds needed for these applications of Lemma 6.9 is upper

bounded by:

O (Dk1 log
3 N) + ... +O (Dki log

3 N) =

O
(

(D log3 N) (k1 + k2 + ... + ki)
)

= O (Dki log
3 N)

The final application of Lemma 6.8 to spread estimate i to all

remaining nodes once it exists in the system adds only a single

an additional O (Dki log
3 N) rounds. The lemma statement follows.

□

The preceding arguments bound the rounds required for useful

information to propagate through the network via the nodes’ ad-

vertising bits. We now conclude our proof by turning our attention

to the rounds required for the actual tokens (which must be passed

one at a time through pairwise connections) to spread.

Proof of Theorem 6.3. Assume for now that the configuration

is good and i its target instance. Let round r = O (Dki log
3 N) be

the round specified by Lemma 6.10 for the network to converge its

estimate. That is, every node has the same estimate i by round r . By

definition, no bin is crowded for instance i in a good configuration. It

follows that every tag for every bin in this instance will be spread in

every round by the nodes that know that tag in that round. Following

the same propagation arguments used in Lemmas 6.8 and 6.9, after

at most D more phases of instance i , all nodes will know all tags.

This requires at most O (Dki log
3 N) rounds. Therefore by some

round r ′ = O (Dki log
3 N), the system will have reached a stable

state in which every node has the same estimate i and knows the

tag for every token in the system. This information will never again

change so we can turn our attention for the rounds required to

finish propagating the actual tokens after this point of stabilization.

To bound this token propagation time, fix an arbitrary token t

with tag q in instance i . Because we assume the system has sta-

bilized, every node has q assigned to the same block of the same

bin in their instance i phase. It follows that if we append together

the last logN rounds from these blocks (i.e., the rounds in which

nodes run PPUSH for the tag described in the first ℓ rounds of the

block), we obtain a proper execution of PPUSH rumor spreading

for token t during these rounds. That is, every time we come to

the last logN rounds of q’s block, all nodes are running PPUSH for

rumor t , picking up where they left off in the previous instance.

Applying Theorem 6.1 from above, it follows that with high

probability in N , O (log4 N /α) rounds are sufficient for t to spread

to all nodes after stabilization. Each phase provides logN rounds

of PPUSH, so O (log3 N /α) phases are sufficient after stabilization.

The key observation is that each execution of instance i services

all k rumors after stabilization, as each rumor has its own fixed bin

in the instance i phase. Therefore,O (log3 N /α) phases are sufficient

to spread all k rumors in parallel. A union bound establishes that all

k ≤ N instances succeed with a slightly reduced high probability.

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

51

From a probability perspective, we know from Lemma 6.6 that

the configuration is good with high probability. We just argued

above that if the configuration is good, then with an additional

high probability the tokens will all spread in the stated time, once

the system stabilizes. We can increase both high probabilities to

the desired exponent by increasing the constant β and γ used in

the definition of crowded bins, and the constant factor in the time

bound for PPUSH. A union bound then shows that both good events

occur with high probability.

From round cost perspective, we established that the time to

stabilization is at most O (Dki log
3 N) rounds, while the time to

complete propagation after stabilization is at most O (log3 N /α)

instance i phases, which each require O (ki log
3 N) rounds. The

final time complexity is then in: O (Dki log
3 N + (ki log

6 N)/α).

By the definition of a good configuration, we know ki ≤ 2k ,

and by Theorem 6.2, we know D = O (logN /α). We can therefore

simplify this complexity toO ((k log6 N)/α) rounds, as required. □

7 ϵ-GOSSIP WITH 1-BIT TAGS AND DYNAMIC
TOPOLOGY

Here we consider ϵ-Gossip: a relaxed version of the gossip problem

that is parameterized with some ϵ , 0 < ϵ < 1 (e.g., as also studied

in [5]). In more detail, the problem assumes all n nodes start with

a token. To solve ϵ-gossip there must be a subset S of the n nodes

in the system, where |S | ≥ ϵn and for every u,v ∈ S , u knows v’s

token and v knows u’s token. Our goal here is to prove that for

reasonably well-connected graphs and constant ϵ , almost solving

gossip can be significantly faster than fully solving gossip.

Crucially, we do not present a new algorithm to tackle this

new problem. We instead reanalyze SharedBit gossip to study how

quickly it achieves ϵ-Gossip for a given ϵ bound. Our goal is to

prove the following result (in the full version of this paper [22]

we also prove a corollary about SimSharedBit achieving a similar

result without requiring shared randomness):

Theorem 7.1. Fix some ϵ , 0 < ϵ < 1. The SharedBit gossip al-

gorithm solves the ϵ-gossip problem in O
(

(n
√

∆ log∆)/((1 − ϵ)α)
)

rounds when executed with shared randomness and tag length b = 1

in a network with stability τ ≥ 1.

Given that ∆ ≤ n, this new time complexity is faster than the

O (n2) rounds required by SharedBit (for k = n) when ϵ is a constant

fraction and α = ω (log∆/(
√

∆ log∆)).

The full details of this result are provided in the full version of

this paper [22]. The core idea behind this analysis is to first prove

that in any round such that the problem is not solved, there exists

a coalition of nodes such that: (1) the size of the coalition is ≈ ϵn;

and (2) no node not in the coalition has the same token set as a

node in the coalition. Because of the large size of this coalition, we

can then prove that there exist many links from this coalition to

nodes outside its boundaries. By definition, each of these links, if

transformed into a connection, would productively transfer a token.

We can then study the expected number of these links to transform

in this manner. Put another way, for constant ϵ , this proof leverages

the intuition that until a constant fraction of the messages have

spread, there is potential for lots of spreading.

REFERENCES
[1] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst,

Keith Scott, and Howard Weiss. 2003. Delay-tolerant networking: an approach to
interplanetary internet. IEEE Communications Magazine 41, 6 (2003), 128ś136.

[2] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. 2013. Device-to-
device communications with Wi-Fi Direct: overview and experimentation. IEEE
wireless communications 20, 3 (2013), 96ś104.

[3] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. 2010. Rumour
Spreading and Graph Conductance.. In Proceedings of the ACM-SIAM symposium
on Discrete Algorithms (SODA).

[4] Sebastian Daum, Fabian Kuhn, and Yannic Maus. 2016. Rumor Spreading with
Bounded In-Degree. In International Colloquium on Structural Information and
Communication Complexity (SIRROCO).

[5] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport. 2007. Gos-
siping in a multi-channel radio network. In Proceedings of the Symposium on
Distributed Computing (DISC).

[6] Nikolaos Fountoulakis and Konstantinos Panagiotou. 2010. Rumor spreading on
random regular graphs and expanders. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. Springer, 560ś573.

[7] Alan M Frieze and Geoffrey R Grimmett. 1985. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics 10, 1 (1985),
57ś77.

[8] Alan M Frieze and Geoffrey R Grimmett. 1985. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics 10, 1 (1985),
57ś77.

[9] Open Garden. Accessed: Feb., 2017. FireChat Phone-to-Phone App. (Accessed:
Feb., 2017). http://www.opengarden.com/FireChat.

[10] Mohsen Ghaffari and Calvin Newport. 2016. How to Discreetly Spread a Rumor in
a Crowd. In Proceedings of the International Symposium on Distributed Computing
(DISC).

[11] George Giakkoupis. 2011. Tight bounds for rumor spreading in graphs of a given
conductance. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science (STACS).

[12] George Giakkoupis. 2011. Tight bounds for rumor spreading in graphs of a given
conductance. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science (STACS).

[13] George Giakkoupis. 2014. Tight bounds for rumor spreading with vertex ex-
pansion. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA).

[14] George Giakkoupis and Thomas Sauerwald. 2012. Rumor spreading and vertex
expansion. In Proceedings of the ACM-SIAM symposium on Discrete Algorithms
(SODA). 1623ś1641.

[15] George Giakkoupis and Thomas Sauerwald. 2012. Rumor spreading and vertex
expansion. In Proceedings of the ACM-SIAM symposium on Discrete Algorithms
(SODA). SIAM, 1623ś1641.

[16] Carles Gomez, Joaquim Oller, and Josep Paradells. 2012. Overview and evaluation
of bluetooth low energy: An emerging low-power wireless technology. Sensors
12, 9 (2012), 11734ś11753.

[17] Thiagaraja Gopalsamy, Mukesh Singhal, D Panda, and P Sadayappan. 2002. A
reliable multicast algorithm for mobile ad hoc networks. In Proceedings of the
IEEE International Conference on Distributed Computing Systems (ICDCS). IEEE,
563ś570.

[18] Ericsson Inc. Accessed: Feb., 2017. Latest mobile statistics: key figures (Er-
icsson Mobility Report). (Accessed: Feb., 2017). https://www.ericsson.com/
mobility-report/latest-mobile-statistics.

[19] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. 2010. Distributed computation
in dynamic networks. In Proceedings of the Symposium on Principles of Distributed
Computing (PODC). ACM, 513ś522.

[20] David Mark, Jayant Varma, Jeff LaMarche, Alex Horovitz, and Kevin Kim. 2015.
Peer-to-Peer Using Multipeer Connectivity. In More iPhone Development with
Swift. Springer, 239ś280.

[21] Ilan Newman. 1991. Private vs. common random bits in communication com-
plexity. Information processing letters 39, 2 (1991), 67ś71.

[22] Calvin Newport. 2017. Gossip in a Smartphone Peer-to-Peer Network. In Pro-
ceedings of the Symposium on Principles of Distributed Computing (PODC). Full
version available on arXiv and at: http://people.cs.georgetown.edu/~cnewport/
pubs/gossipmobile-full.pdf.

[23] Calvin Newport. 2017. Leader Election in a Smartphone Peer-to-Peer Network.
In Proceedings of the IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). Full version available online at: http://people.cs.georgetown.edu/
~cnewport/pubs/le-IPDPS2017.pdf.

[24] Devavrat Shah et al. 2009. Gossip algorithms. Foundations and Trends in Net-
working 3, 1 (2009), 1–125.

Session 1 PODC’17, July 25-27, 2017, Washington, DC, USA

52

	Abstract
	1 Introduction
	2 Model and Problem
	3 Token Transfer Subroutine
	4 Gossip with 0-bit tags and dynamic topology
	5 Gossip with 1-bit tags and dynamic topology
	5.1 Shared Randomness
	5.2 Eliminating the Shared Randomness Assumption

	6 Gossip with 1-bit tags and stable topology
	6.1 The CrowdedBin Gossip Algorithm
	6.2 Analysis

	7 -Gossip with 1-bit tags and dynamic topology
	References

