Session 1

PODC’17, July 25-27, 2017, Washington, DC, USA

Gossip in a Smartphone Peer-to-Peer Network

Calvin Newport
Georgetown University
Washington, DC, USA
cnewport@cs.georgetown.edu

ABSTRACT

In this paper, we study the fundamental problem of gossip in the mo-
bile telephone model: a recently introduced variation of the classical
telephone model modified to better describe the local peer-to-peer
communication services implemented in many popular smartphone
operating systems. In more detail, the mobile telephone model dif-
fers from the classical telephone model in three ways: (1) each
device can participate in at most one connection per round; (2) the
network topology can undergo a parameterized rate of change; and
(3) devices can advertise a parameterized number of bits about their
state to their neighbors in each round before connection attempts
are initiated. We begin by describing and analyzing new random-
ized gossip algorithms in this model under the harsh assumption of
a network topology that can change completely in every round. We
prove a significant time complexity gap between the case where
nodes can advertise 0 bits to their neighbors in each round, and the
case where nodes can advertise 1 bit. For the latter assumption, we
present two solutions: the first depends on a shared randomness
source, while the second eliminates this assumption using a pseudo-
randomness generator we prove to exist with a novel generalization
of a classical result from the study of two-party communication
complexity. We then turn our attention to the easier case where
the topology graph is stable, and describe and analyze a new gossip
algorithm that provides a substantial performance improvement
for many parameters. We conclude by studying a relaxed version
of gossip in which it is only necessary for nodes to each learn a
specified fraction of the messages in the system. We prove that our
existing algorithms for dynamic network topologies and a single
advertising bit solve this relaxed version up to a polynomial factor
faster (in network size) for many parameters. These are the first
known gossip results for the mobile telephone model, and they
significantly expand our understanding of how to communicate
and coordinate in this increasingly relevant setting.

KEYWORDS

gossip; mobile telephone model; smartphone; peer-to-peer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC’17, , July 25-27, 2017, Washington, DC, USA.

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4992-5/17/07...$15.00.
http://dx.doi.org/10.1145/3087801.3087813

43

1 INTRODUCTION

This paper describes and analyzes new gossip algorithms in the mo-
bile telephone model: an abstraction that captures the local device-
to-device communication capabilities available in most smartphone
operating systems; e.g., as implemented by services such as Blue-
tooth LE [16], WiFi Direct [2], and Apple’s Multipeer Connectivity
framework [20].

Motivation. Smartphones are a ubiquitous communication plat-
form: there are currently over 3.9 billion smartphone subscriptions
worldwide [18]. Most smartphone communication leverages one-
hop radio links to cell towers or WiFi access points. In recent years,
however, the major smartphone operating systems have included
increasingly stable and useful support for local peer-to-peer com-
munication that allows a device to talk directly to a nearby device
(using local radio broadcast) while avoiding cellular and WiFi in-
frastructure.

The ability to create these local links, combined with the ubig-
uity of smartphones, enables scenarios in which large groups of
nearby smartphone users run applications that create peer-to-peer
meshes supporting infrastructure-free networking. There are many
possible motivations for these smartphone peer-to-peer networks.
For example, they can support communication in settings where
network infrastructure is censored (e.g., government protests), over-
whelmed (e.g., a large festival or march), or unavailable (e.g., after
a disaster or at a remote event). In addition, in developing coun-
tries, cellular data minutes are often bought in blocks and carefully
conserved—increasing interest in networking operations that do
not require cellular infrastructure.

To further validate the potential usefulness of smartphone peer-
to-peer networks, consider the FireChat application, which imple-
ments group chat using smartphone peer-to-peer services. In the
few years since its initial release, it has been widely adopted in
over 120 countries and has been used successfully in multiple gov-
ernment protests, festivals (e.g., at Burning Man, which is held far
from cell towers), and disaster scenarios [9].

Developing useful applications for this smartphone peer-to-peer
setting requires distributed algorithms that can provide global re-
liability and efficiency guarantees on top of an unpredictable col-
lection of local links. As detailed below, the models that describe
this emerging setting are sufficiently different from existing models
that new algorithms and analysis techniques are required. This
paper addresses this need by describing and analyzing new gossip
algorithms for this important setting.

The Mobile Telephone Model. The mobile telephone model studied
in this paper was introduced in recent work [10, 23]. It is a variant
of the classical telephone peer-to-peer model (e.g., [3, 6-8, 11-15])
modified to better describe the capabilities and constraints of ex-
isting smartphone peer-to-peer services. The details of the mobile

Session 1

telephone model are inspired, in particular, by the current spec-
ifications of Apple’s Multipeer Connectivity framework [20]: a
peer-to-peer service available in every iOS version since iOS 7 that
allows nodes to advertise services, discover nearby advertisers, and
attempt to connect to nearby advertisers, using only local radio
broadcast. (The definition of the classical telephone model, and
differences between the classical telephone and mobile telephone
model, are detailed and discussed below in the related work section.)

In more detail, the mobile telephone model abstracts the basic
scan-and-connect dynamics of the Multipeer framework as follows.
Time proceeds in synchronous rounds. In each round, a connected
graph describes the underlying network topology for that round.
At the beginning of each round, each device (also called a node
in the following) learns its neighbors in the topology graph (e.g.,
as the result of a scan). Each device can then attempt to initiate a
connection with a neighbor. Each node can support at most one
connection—so if multiple nodes attempt to connect with the same
target, only one connection will succeed. If two nodes connect, they
can perform a bounded amount of reliable communication before
the round ends.

We parameterize this model with a tag length b > 0. At the
beginning of each round, each node can choose a tag consisting of
b bits to advertise. When performing a scan, each node learns both
the ids and chosen tags of its neighbors (where b = 0 means there
are no tags). These tags can change from round to round. In our
previous study of rumor spreading with parameter b = 1 [10], for
example, at the beginning of a given round, each node that already
knows the rumor advertises a 1 with its tag, while other nodes
advertise a 0. This simplified the rumor spreading task by enabling
nodes that know the rumor to only attempt to connect to nodes
that do not. This capability of nodes to use tags to deliver limited
information to their neighbors is motivated by the ability of devices
to choose and change their service advertisements in the Multipeer
framework.

We also parameterize the model with a stability factor t > 1.
The underlying network topology must stay stable for at least ¢
rounds between changes. For 7 = 1, for example, the network topol-
ogy can change completely in every round, while for 7 = oo, the
topology never changes. There exist finer-grained approaches for
capturing intermediate levels of stability (e.g., T-interval connectiv-
ity [19]), but in this paper we study only the two extreme cases of
fully dynamic and fully stable topologies, so our simpler stability
factor definition is sufficient. The need to model topology changes
is motivated by the inherently mobile nature of the smartphone
setting.

Results. In this paper, we describe and analyze new algorithms for
the gossip problem in the mobile telephone model with respect to dif-
ferent model parameter and algorithm assumptions. This problem
assumes a subset of nodes start with messages (also called tokens).
The goal is to spread these messages to the entire network. Gossip
is fundamental in distributed computing and is considered particu-
larly important for ad hoc networks such as the smartphone meshes
studied in this paper (c.f., the introductory discussion in [24]).

Below (and in Figure 1) we state and discuss our main results. In
the following, let n > 1 be the network size and k,1 < k < n, be
the number of tokens in the system. For a given topology graph,

44

PODC’17, July 25-27, 2017, Washington, DC, USA

l Assumptions [Algorithm [Gossip Round Complexity ‘
Standard Gossip
b=0,7>1 BlindMatch O((1/a)kA% log? n)
b=1712>1 SharedBit* O(kn)
b=1,7>1 | SimSharedBit* | O(kn+ (1/a)A"7 log® n)
b=17=0 CrowdedBin O((k/a) log® n)
€-Gossip (0 < € < 1)
b=11t2>1 SharedBit* (0] (%)

Figure 1: A summary of gossip and e-gossip round complex-
ity bounds proved in this paper. (In the e-gossip problem, it
is assumed that every node starts with a message, but each
node need only learn an e-fraction of the n total messages.)
In the following: n is the network size, k is the number of
gossip messages, o and A are the vertex expansion and max-
imum degree, respectively, of the network topology graph, b
is the tag length, and 7 is the stability factor. All results hold
with high probability in n (i.e., at least 1 — 1/n). Notice, the
result for b = 0 and 7 > 1 is the best known result even for
the easier case of b = 0 and 7 = oo. (*) The SharedBit algo-
rithm (alone among all algorithms studied) requires shared
randomness. (**) The SimSharedBit algorithm is existential
in the sense that it depends on a pseudorandomness genera-
tor that we prove exists in Section 5.

we use « to describe its vertex expansion (see the model discussion
below) and A to describe its maximum degree.! We assume the
topologies are connected. All round complexity results hold with
high probability in n (i.e., probability at least 1 — 1/n).

We start by considering the difficult setting where b = 0 and
7 = 1; i.e., nodes cannot use tags and the network topology graph
can change completely in each round. In Section 4, we describe
and analyze a natural strategy for this setting called BlindMatch,
which has nodes select neighbors with uniform randomness to send
connection attempts.? We prove that BlindMatch solves gossip in
O((1/a)kA? log® n) rounds. This bound might seem pessimistic
at first glance, but it is known that disseminating even a single
message in the mobile telephone model with this strategy can take
Q(A?%/+/z) rounds in some networks [23]. Indeed, this lower bound
holds even for the easier assumption that 7 = co. Accordingly, we
do not consider b = 0 and 7 = oo as a distinct case in this paper. (To
provide intuition for why Q(A?) rounds are sometimes necessary,
consider two stars centered on u and v, respectively, where each
star has around A points and u and v are connected by an edge.
Assume u starts with a gossip message. For v to receive this message
two events must happen: (1) u selects v for a connection; and (2) v
accepts u’s connection from all incoming connections in that round.
The first event occurs with probability ~ 1/A, and because v can
expect a constant fraction of its neighbors to send it connection

UIf the topology is dynamic, then « is defined as the minimum expansion over all
rounds, and A is defined as the largest maximum degree over all rounds.

This is essentially the well-known PUSH-PULL strategy from the classical telephone
model with the key exception that in our model if a node receives multiple connection
attempts, only one succeeds. As discussed in the related work and Section 4, this well-
motivated model change requires new analysis techniques to understand information
propagation.

Session 1

attempts in any given round, the second event also occurs with
probability ~ 1/A.) Our BlindMatch result provides the benchmark
against which we attempt to improve with the algorithms that
follow.

In Section 5, we consider the case where b = 1 and 7 > 1;
i.e., the network can still change completely in each round, but
now nodes can advertise a single bit to their neighbors. We begin
by describing and analyzing an algorithm called SharedBit. This
algorithm assumes a shared randomness source which is used to
implement (essentially) a random hash function that allows nodes
to hash their current set of known messages to a single bit to
be used as their one-bit advertising tag. The key guarantee of this
function is that nodes with the same sets advertise the same bit, and
nodes with different sets have a constant probability of advertising
different bits. This helps nodes seek out productive connections
with neighbors (e.g., connections in which at least one node learns
something new). We prove that SharedBit solves gossip in O(kn)
rounds.

We next seek to eliminate the shared randomness assumption.
To do so, we describe SimSharedBit which solves gossip in O(kn +
(1/a)AY 7T log® n) rounds, without assuming a shared randomness
source. Notice, because & > 2/n and A < n, this solution is always
within log factors of the SharedBit for large k, and for small k it is
still comparable for many values of a, A, and/or 7.

The SimSharedBit algorithm depends on a novel generalization
of Newman’s Theorem [21]—a well-known result on public random-
ness simulation from the study of two-party communication com-
plexity. We prove that there exists an appropriate pseudorandom
number generator that can provide sufficient randomness for the
SharedBit strategy. We then elect a leader in O((1/a) A/ log® n)
rounds using an algorithm from [23], and use this leader to dis-
seminate a small generator seed. We note that our generalization
of Newman’s Theorem is potentially of standalone interest as the
techniques we introduced can be used to study pseudorandomness
in many different graph algorithm settings.

In Section 6, we consider the impact of topology changes on
gossip time. In particular, we consider the case where b = 1 and
T = oo; i.e., the network topology is stable. We describe and analyze
CrowdedBin, an algorithm that solves gossip in O((1/a)k log® n)
rounds. This algorithm matches or outperforms the O(kn) round
complexity of SharedBit for all @ values (ignoring log factors). For
well-connected networks (e.g., constant «), it performs almost a
factor of n faster. These results hint that large increases to stability
are more valuable to gossip algorithms than large increases to
tag length (for most of our solutions, increasing b beyond 1 only
improves performance by at most logarithmic factors).

The benefit of stable network topologies is that nodes can trans-
mit larger amounts of information about their current state to their
neighbors by using their single bit advertisement tag over mul-
tiple rounds. CrowdedBin leverages this capability to help nodes
efficiently converge on an accurate estimate of k—which is not
known in advance. This process depends on nodes testing guesses
by throwing their tokens into a number of bins corresponding to
the current guess, and then seeking/spreading evidence of crowding
(as established by a new balls-in-bins algorithm described in Sec-
tion 6). Once all nodes learn an appropriate guess of k, CrowdedBin

45

PODC’17, July 25-27, 2017, Washington, DC, USA

deploys an efficient parallel rumor spreading strategy to efficiently
disseminate the k tokens.

Finally, we consider the e-gossip problem, which is parameterized
with a fraction €,0 < € < 1, assumes that k = n, and relaxes the
gossip problem to require only that every node receives at least ne
of the n total tokens. This variation is useful for settings where it
is sufficient for nodes to learn enough rumors to complete the task
at hand; e.g., when an algorithm requires responses from only a
majority quorum of nodes.

In Section 7, we re-analyze the SharedBit gossip algorithm from
Section 5. Deploying a novel argument based on finding productive
“coalitions" of nodes, we show that SharedBit solves e-gossip in

(@) (n(—'fbgA) rounds. Recall that SharedBit solves regular gossip
€)a

in O(n?) rounds under the k = n assumption. Therefore, when € is

a constant fraction and the network is well-connected (« is large),

SharedBit solves e-gossip up to a (sub-linear) polynomial factor

faster than the standard gossip problem.

Related Work. The mobile telephone model used in this paper
was first introduced in a study of rumor spreading by Ghaffari and
Newport [10]. We also recently studied leader election in this same
model [23]. As noted, the mobile telephone model is a variation
of the classical telephone model (first introduced by Frieze and
Grimmett [7]) adapted to better describe smartphone peer-to-peer
networks. The mobile model differs from the classical model in two
ways: (1) the classical model implicitly fixes b = 0 and (typically) r =
oo; and (2) the classical model allows nodes to accept an unbounded
number of incoming connections.

It is important to emphasize that most of the well-known bounds
in the classical model depend on this assumption of unbounded
connections, and removing this assumption requires new analy-
sis techniques; c.f., the discussion in [10]. We note that work by
Daum et al. [4] (which preceded [10, 23]) also pointed out the
dependence of existing telephone model bounds on unbounded
concurrent connections.

A fundamental problem in peer-to-peer networks is rumor spread-
ing, in which a single message must be disseminated from a desig-
nated source to all nodes (this is equivalent to gossip with k = 1).
This problem is well-understood in the classical telephone model,
where spreading times are often expressed with respect to spectral
properties of the network topology graph such as graph conduc-
tance (e.g., [12]) and vertex expansion (e.g., [3, 6, 13, 15]). This
existing work established that efficient rumor spreading is possible
with respect to both graph properties in the classical model. In [10],
we studied this problem in the mobile telephone model. We proved
that efficient rumor spreading with respect to conductance is not
possible in the mobile telephone model, but efficient spreading with
respect to vertex expansion is possible. We then proved that for
b =1and r > 1, a simple random spreading strategy solves the
problem in O((l/a)Al/Tpolylog(n)) rounds—matching the tight
0((1/a) log2 n) result from the classical telephone model within
log factors for 7 > log A. In [23], we built on these results to solve
leader election in similar asymptotic time.

Though gossip is well-studied in peer-to-peer models (see [24]
for a good overview), little is known about how to tackle the prob-
lem in the mobile telephone model, where concurrent connections

Session 1

are now bounded but nodes can leverage advertising tags.> Finally,
we note that there are application similarities between gossip in the
mobile telephone model and existing reliable multicast solutions
for mobile ad hoc (e.g., [17]) and delay-tolerant (e.g., [1]) networks.
These existing solutions, however, tend to be empirically evaluated
and depend on the ability to predict information about link behav-
ior (e.g., estimated link duration or an advance schedule of when
given links will be present).

2 MODEL AND PROBLEM

We describe a smartphone peer-to-peer network using the mo-
bile telephone model. As elaborated in the introduction, the basic
properties of this model—including its scan-and-connect behavior,
dynamic topologies, and the ability to advertise a bounded tag—
are inspired in particular by the behavior of the Apple Multipeer
Connectivity framework for smartphone peer-to-peer networking.

In more detail, we assume executions proceed in synchronous
rounds labeled 1, 2, We describe a peer-to-peer network topology
in each round r as an undirected connected graph G, = (V, E,) that
can change from round to round, constrained by the stability factor
(see below). We call the sequence of graphs Gy, G, ... that describe
the evolving topology a dynamic graph. We assume the definition
of the dynamic graph is fixed at the beginning of the execution.

We assume a computational process (also called a node in the
following) is assigned to each vertex in V, and use n = |V| to
indicate the network size. We assume all nodes start during round
1. At the beginning of each round r, we assume each node u learns
its neighbor set N(u) in G,. Node u can then select at most one
node from N (u) and send a connection proposal. A node that sends
a proposal cannot also receive a proposal. If a node v does not
send a proposal, and at least one neighbor sends a proposal to
v, then v can accept an incoming proposal. There are different
ways to model how v selects a proposal to accept. In this paper,
for simplicity, we assume v accepts an incoming proposal selected
with uniform randomness from the incoming proposals. If node v
accepts a proposal from node u, the two nodes are connected and
can perform a bounded amount of interactive communication to
conclude the round. We leave the specific bound on communication
per connection as a problem parameter.

Model Parameters. We parameterize the mobile telephone model
with two integers, a tag length b > 0 and a stability factor t > 1.
We allow each node to select a tag containing b bits to advertise at
the beginning of each round. That is, if node u chooses tag b, at
the beginning of a round, all neighbors of u learn b,, before making
their connection decisions in this round. A node can change its tag
from round to round.

We also allow for the possibility of the network topology chang-
ing between rounds. We bound the allowable changes with a stabil-
ity factor 7 > 1. For a given 7, the dynamic graph describing the
changing topology must satisfy the property that at least 7 rounds
must pass between any changes to the topology. For 7 = 1, the

31t might be tempting to simply run k parallel instances of the rumor spreading
strategy from [10] to gossip k messages, but this approach fails for three reasons: (1)
our model allows only O(1) tokens to be sent per connection per round; (2) each of the
k instances requires its own advertising tag bit, whereas all of our new gossip results
focus on the case where b < 1; and (3) nodes do not know k in advance. Accordingly,
most results presented in this paper require substantial technical novelty.

46

PODC’17, July 25-27, 2017, Washington, DC, USA

graph can change arbitrarily in every round. We use the convention
of stating 7 = oo to indicate the graph never changes.

Vertex Expansion and Maximum Degree. Several of our results
express time complexity bounds with respect to the vertex expansion
a of the dynamic graph describing the network topology. To define
a, we first review a standard definition of vertex expansion for a
fixed static unconnected graph G = (V, E).

For a given S C V, define the boundary of S, indicated 48, as
follows: S = {v € V\ S : N(v) NS # 0}: that is, 9S is the set
of nodes not in S that are directly connected to S by an edge in
E. Next define a(S) = |0S|/|S|. As in [10, 13], we define the vertex
expansion a(G) of our static graph G = (V, E) as follows:

min

a(G) =
ScV,0<|S|<n/2

a(S).
Notice that despite the possibility of «(S) > 1 for some S, we always
have a(G) < 1. We define the vertex expansion a of a dynamic
graph Gi, Gs..., to be the minimum vertex expansion over all of the
dynamic graph’s constituent static graphs (i.e., « = min{a(G;) :
i>1)).

Similarly, we define the maximum degree A of a dynamic graph to
be the maximum degree over all of the dynamic graph’s constituent
static graphs.

The Gossip Problem. The gossip problem assumes each node is
provided an upper bound* N > n on the network size and a unique
ID (UID) from [N]. The problem assumes some subset of nodes
begins with a gossip message to spread (which we also call a token).
We use k to describe the size of this subset and assume that k is
not known to the nodes in advance. A given node can start the
execution with multiple tokens, but no token starts at more than
one node. We treat gossip tokens as comparable black boxes that can
only be communicated between nodes through connections (e.g., a
node cannot transmit a gossip token to a neighbor by spelling it out
bit by bit using its advertising tags). If a node begins an execution
with a token or has received the token through a connection, we
say that the node owns, knows or has learned that token. We assume
that a pair of connected nodes can exchange at most O(1) tokens
and O(polylog(N)) additional bits during a one round connection.

Solving the Gossip Problem. The gossip problem requires all nodes
to learn all k tokens, Formally, we say a distributed algorithm solves
the gossip problem in f(n,k,a,b,) rounds, if with probability at
least 1 — 1/n, all nodes know all k tokens by round f(n, k, a, b, 7)
when executed in a network of size n, with k tokens, vertex ex-
pansion «a, tag length b, and stability factor 7. We omit parameters
when not relevant to the bound.

Probability Preliminaries. The analyses that follow leverage the
following well-known probability results:

THEOREM 2.1. Forp € [0,1]: (1—p) < e P and (1 + p) > 2P,

“For the sake of concision, the results described in the introduction and Figure 1 make
the standard assumption that N is a polynomial upper bound on n, allowing us to
replace N with n within logarithmic factors inside asymptotic notation. In the formal
theorem statements for these results, however, we avoid this simplification and leave
N in place where used—enabling a slightly finer-grained understanding of the impact
of the looseness of network size estimation on our complexity guarantees.

Session 1

THEOREM 2.2 (CHERNOFF BoUND: LOWER BounD Form). Let
Y= Zle X; be the sum of t > 0 i.i.d. random indicator variables X1,
Xa,..., X, and let yp = E(Y). Fix some fraction §,0 < & < 1. It follows:

2

S°p
Pr(X < (1-0)p) <e 2.

THEOREM 2.3 (CHERNOFF BOUND: UPPER BOUND FOorM). LetY =
Z;‘:l X be the sum of t > 0 i.i.d. random indicator variables X1,
X2,..., Xt, and let u = E(Y). Fix some value § > 1. It follows:

Sp
Pr(X > (1+8)u) <e 3.

THEOREM 2.4 (CHERNOFF-HOEFFDING BOoUND). Let X1, X2, ..., X¢,
bet > 1ii.d. random indicator variables. Let y = E(X;) and fix some

6 > 0. It follows:
d 2
Pr(ZX[’ > p+5> < e 27
i=1

THEOREM 2.5 (MARKOV’S INEQUAILTY). Let X be a nonnegative
random variable and a > 0 be a real number. It follows:

Pr(X >a) < @.

~ | =

3 TOKEN TRANSFER SUBROUTINE

An obstacle to solving gossip in the mobile telephone model is
deciding which tokens to exchange between two connected nodes.
In more detail, once two nodes u and v with respective token sets Ty,
and T, connect, even if they know Ty, # T, they must still identify
at least one token ¢ ¢ T, N Ty, to transfer for this round of gossip
to be useful. Complicating this task is the model restriction that u
and v can only exchange O(polylog(N)) bits before deciding which
tokens (if any) to transfer. This is not (nearly) enough bits to encode
a full token set (a simple counting argument establishes that every
coding scheme will require Q(N) bits for some sets). Therefore,
a more efficient routine is needed to implement this useful token
transfer.

Here we describe a transfer subroutine that solves this problem
and is used by multiple gossip algorithms described in this paper.
This routine, which we call Trans fer(e), for an error bound €, 0 <
€ < 1, is a straightforward application of an existing algorithmic
tool from the literature on two-party communication complexity. It
guarantees the following: if Trans fer(e) is called by two connected
nodes u and v, with respective token sets T;, and Ty, and T, #
Ty, then with probability at least 1 — € the smallest token t (by
a predetermined token ordering) that is not in Ty, N Ty, will be
transferred by the node that knows ¢ to the node that does not. This
routine requires u and v to exchange only O(log? N - log (lOgeN)
controls bits in addition to token t. It also assumes some fixed
ordering on tokens.

Equality Testing. We use one of the many known existing solu-
tions to the set equality (EQ) problem from the study of two-party
communication complexity. In our setting with u and v (described)
above, these existing solutions provide u and v a way to test the
equality of T, and Ty, and they offer the following guarantee: if
T, = Ty, then u and v will correctly determine their sets are equal
with probability 1, else if T,, # T, then u and v will erroneously

47

PODC’17, July 25-27, 2017, Washington, DC, USA

determine their sets are equal with probability no more than 1/2.
These existing solutions assume only private randomness and re-
quire u and v to exchange no more than O(log N) bits. A nice
property of most such solutions is that each trial is independent.
Therefore, if u and v repeat this test c times, for some integer ¢ > 1,
then the error probability drops exponentially fast with ¢ to 27¢.
Let us fix one such equality testing routine and call it EQTest(c),
where parameter ¢ > 1 determines how many trials to execute in
testing the equality.

The Transfer Subroutine. We now deploy EQTest(e’), for ¢’ =
[log (IOgEN)1, as a subroutine to implement the Trans fer(€) routine.
In particular, recall that for a given u and v, we can understand
T, and T, to both be subsets of the values in [N] (as each node
in the network can label each token with its UID from [N] at the
beginning of the execution). Our goal is to identify the smallest
location value in [N] that is in T, U T, but not in T, N Ty,. To do
so, we can implement a binary search over the interval [N], using
EQTest(e’) to test the equality of the interval in question between
u and v. In more detail:

Transfer(e):
a—1b«N
while a # b
result «— EQTest(¢’) executed on Ty, N [a, |b/2]] and Ty, N
[a, [b/2]]
if result = notequal then b « |b/2] else a « |[b/2] +1
transfer token a to the other node if you know token a

The above logic implements a basic binary search over the interval
[N] to identify the smallest value in this interval that is in exactly
one of the two sets T, and T,. If every call to EQTest succeeds then
the search succeeds and Trans fer behaves correctly. There are at
most log N calls to EQTest, each of which fails with probability
27¢ <¢/ log N. Therefore, by a union bound, the probability that
at least one of the log N calls to EQTest fails is less than e, as
claimed. From a communication complexity perspective, each call
to EQTest(e”) requires O(log N -€’) = O(log N -log (log N /¢)) bits,
and we make log N such calls. Therefore, the total communication

log N
€

complexity is in O(log2 N -log()), as claimed.

4 GOSSIP WITH 0-BIT TAGS AND DYNAMIC
TOPOLOGY

Here we consider the most difficult case for gossip in our model:
nodes cannot advertise any information to their neighbors (b = 0),
and the network topology graph can change arbitrarily in every
round (r = 1). We study the performance of a straightforward
random token propagation strategy.

A detailed treatment of this algorithm, including the full proof
details, are deferred to the full version of this paper [22].

The BlindMatch Gossip Algorithm. At the beginning of each
round r > 1, each node u € V flips a fair coin to decide whether to
be a sender or a receiver in r. If u decides to be a sender, it selects
a neighbor uniformly from among its neighbors in this round and
sends it a connection proposal. If u decides to be a receiver it waits

Session 1

to receive proposals. If two nodes u and v connect, they execute
the token transfer subroutine.

Analysis. Our goal is to prove the following theorem regarding
the performance of BlindMatch:

THEOREM 4.1. The BlindMatch gossip algorithm solves the gos-
sip problem in O((1/a)kA? log? N) rounds when executed with tag
length b = 0 in a network with stability r > 1.

This time bound might seem pessimistically large at first glance,
but as shown in [23], there are networks in which simple random
connection strategies require Q(A%/+/a) rounds to spread even
a single message. The proof details adapt our recent analysis of
leader election strategies in the mobile telephone model under the
assumption that b = 0 [23] to account for multiple gossip messages.

5 GOSSIP WITH 1-BIT TAGS AND DYNAMIC
TOPOLOGY

Here we describe and analyze two gossip algorithm that now as-
sume b = 1 (i.e., nodes can advertise a single bit to their neighbors in
each round). The graph, however, can still change arbitrarily in ev-
ery round (i.e., the algorithms must work for any 7 > 1). Our goal is
exploit the shift from b = 0 to b = 1 to solve gossip more efficiently
in most cases. Our first algorithm, called SharedBit, assumes shared
randomness. Our second algorithm, called SimSharedBit, does not,
but it relies on an existential pseudorandomness generator.

5.1 Shared Randomness

Below we provide a condensed description of the SharedBit gossip
algorithm and discuss its performance. A detailed treatment of this
algorithm, including the full proof details, are deferred to the full
version of this paper [22].

The SharedBit Gossip Algorithm (Overview). The algorithm as-
sumes each node has access to a shared random bit string 7 of length
O(N3log N), where each bit in # is generated with independent
and uniform randomness. At the beginning of each round r, each
node u uses fresh bits from 7 to hash the set of tokens it knows at
the beginning of this round to a single bit by, (r). This bit b, (r) is
what u advertises to its neighbors in round r. If b,,(r) = 0, then u
will receive connection proposals in this round. If b, (r) = 1 and
u has at least one neighbor advertising 0, then u will choose one
these neighbors with uniform randomness and send it a connection
proposal. If two nodes u and v connect in round r, they use the
token transfer subroutine to attempt to exchange tokens. If a node
runs out of fresh bits 7 to use it can cycle back to the beginning of
this shared string.

Analysis. Our goal is to prove the following theorem regarding
the SharedBit gossip algorithm:

THEOREM 5.1. The SharedBit gossip algorithm solves the gossip
problem in O(kn) rounds when executed with shared randomness and
tag length b = 1 in a network with stability r > 1.

The proof of this theorem begins by establishing the following
key property of the token hash strategy used by SharedBit (where
T, (r) is set of tokens known by node u at the beginning of round

r):

48

PODC’17, July 25-27, 2017, Washington, DC, USA

LEMMA 5.2. Fix two nodesu,v € V,u # v,and aroundr,1 <r <
¢N?. Fix ar — 1 round execution of SharedBit, and let p = Pr(by, (r) #
by (r)) be the probability (defined over the random selection of the
relevant bits in) that u and v generate different advertising bits in
round r. If T, (r) = Ty (r) thenp = 0, else if Ty, (r) # Ty (r), then
p=1/2.

This property ensures that any successful connection created by
SharedBit is productive in the sense that at least one endpoint will
learn a new token. The remainder of the proof first notes that with
constant probability there will be some productive connections in
any given round. It then leverages a stochastic dominance argument
(to sidestep inter-round dependencies) to show that ©(kn) rounds
are sufficient to guarantee enough productive rounds to solve the
gossip problem for k tokens.

5.2 Eliminating the Shared Randomness
Assumption

Shared randomness is not always a reasonable assumption. With
this in mind, we describe and analyze SimSharedBit, a variation
of SharedBit that does not require shared randomness. A detailed
description and analysis of SimSharedBit is deferred to the full
version of this paper [22]. Here we summarize the algorithm’s
strategy and state its main performance guarantee.

SimSharedBit Strategy. The high-level strategy for SimSharedBit
is to first elect a leader that disseminates a seed string that can
be used to generate sufficient randomness to run SharedBit. This
leader election uses a strategy from [23], and requires an addi-
tional O((1/a)AY/ Tpolylog(N)) rounds. Notice, however, this time
is asymptotically dominated by kn (ignoring log factors) for many
parameter values.

We emphasize that the number of shared bits required by Shared-
Bit is much too large to be efficiently disseminated directly: our
model restricts connections to deliver polylog(N) bits per round,
while SharedBit requires Q(N?) shared bits. The seed selected and
disseminated by the leader, by contrast, will be small enough to be
fully transmitted over a single round connection.

To prove that there exists a randomness generator that can ex-
tract sufficient randomness for our purpose from seeds of this small
size, we adapt the technical details of Newman’s Theorem [21]
from the simpler world of two-party communication to the more
complicated world of n parties on a distributed and changing net-
work topology. In more detail, we prove the existence of a multiset
R’, containing only poly(N) bit strings of the length required for
SharedBit, that is sufficiently random to guarantee that if a leader
chooses 7 uniformly from R’, the SharedBit algorithm using shared
randomness 7 is still likely to solve gossip efficiently. Because R’
contains only poly(N) strings, the leader can identify the string
it selected using only polylog(N) bits (this selection is the seed it
disseminates)—enabling efficient propagation of this information.
The existential nature of SimSharedBit is entirely encapsulated in
the existence of this set R’.

Analysis. Our goal is to prove the following theorem regarding
SimSharedBit:

THEOREM 5.3. There exists a bit string multiset R’ of size N©(1),
such that the SimSharedBit gossip algorithm using this R’ as its

Session 1

source of simulated shared bit strings solves the gossip problem in
O(kn + (1/a)AY/ T log® N) rounds when executed with tag length
b =1 in a network with stability t > 1.

The key technical novelty in proving this theorem is the proof
of the existence of a sufficiently random R’. Our argument gen-
eralizes the strategy deployed to prove Newman’s Theorem [21].
Whereas the classical Newman’s Theorem result applies the proba-
bilistic method to prove the existence of a sufficiently random bit
string multiset for all possible inputs for two players, we have to
account for n > 2 players, all possible different dynamic graphs,
assignments of tokens, and rounds required for the leader elec-
tion to complete. These counts, however, are of sizes no more than
exponential in N, allowing the probabilistic method argument to
proceed with proper adjustments to constants. Our generalization
is potentially of standalone interest as it can be used to provide
similar public randomness simulation results for other dynamic
network algorithms.

6 GOSSIP WITH 1-BIT TAGS AND STABLE
TOPOLOGY

The preceding gossip algorithms make no assumptions about the
stability of the underlying network topology. Their analysis holds
for every 7 > 1. In some settings, this assumption might be pes-
simistic. Here we seek better performance when the network topol-
ogy graph does not change (i.e., 7 = c0).

In more detail, we describe and analyze the CrowdedBin algo-
rithm, which solves gossip in O(k/a) rounds with b = 1 and 7 = oo
(where O hides polylog(N) factors). This algorithm is comparable
to the trivial Q(k) lower bound for gossiping k tokens in a model
where a node can only send one token per round. It also outper-
forms our best result for 7 = 1—the O(kn) round complexity of
SharedBit—for every @ € w(1/n) (ignoring log factors).

Discussion: Crowded Bins. The name CrowdedBin comes from
a core behavior in the algorithm in which nodes toss their tokens
into a fixed number of bins corresponding to their current estimate
kofk (the number of tokens in the network). Nodes do not know
k in advance. Determining this value is crucial to enabling efficient
parallel dissemination of their tokens. Leveraging a new balls-in-
bins analysis, we upper bound the number of tokens in any given
bin ifthe estimate kis sufficiently large. The nodes therefore search
for crowded bins as evidence that they need a larger estimate of k.
This mechanism provides a way to check that a current guess kis
too small while only paying a time complexity price relative to k
(as there are only k bins required to check for crowding). Because
the sequence of guesses we try are geometrically increasing, the
cost of checking estimates smaller than k will sum up to O(k).

Discussion: Spreading Bits versus Spreading Tokens. We also em-
phasize that the CrowdedBin algorithm makes a clear distinction
between propagating information using the advertising bits and
propagating the tokens themselves (which are treated as black
boxes, potentially large in size, that require a pairwise connection
for transfer). Combining the stability of the network with each
node’s ability to advertise a bit to all its neighbors in each round,
nodes first attempt to stabilize to a consistent and accurate estimate

49

PODC’17, July 25-27, 2017, Washington, DC, USA

of k, and a consistent set of tags describing the network’s tokens.
Once stabilized, this information can then support the efficient
spreading of the tokens, link by link, to the whole network. Ac-
cordingly, CrowdedBin can be understood to occur in two phases
(which, in practice, might substantially overlap). During the first
phase, nodes use their advertising bits to efficiently learn about the
network. During the second phase, nodes use this knowledge to ef-
ficiently spread gossip tokens. The first phase depends on network
stability as this is what allows a node to communicate complicated
information to its neighborhood using its small advertising tag over
many rounds.

The PPUSH Rumor Spreading Strategy. The CrowdedBin algo-
rithm uses a simple rumor spreading strategy called PPUSH as a
subroutine to help spread tokens once the network has stabilized.
This algorithm was introduced in our earlier study of rumor spread-
ing in the mobile telephone model [10]. PPUSH assumes a subset
of nodes start with a common rumor m, and the goal is to spread m
to all nodes. It requires b > 1.

In more detail, the strategy PPUSH works as follows: (1) at the
beginning of each round, if a nodes knows m (i.e., it is informed),
it advertises bit 1, otherwise if it does not know m (i.e., it is unin-
formed), it advertises bit 0; (2) each informed node that has at least
one uninformed neighbor in this round, chooses an uninformed
neighbor with uniform randomness and attempts to form a con-
nection to spread the rumor. In [10], we proved the following key
result about the performance of PPUSH:

THEOREM 6.1 (ADAPTED FROM [10]). With high probability in N :
PPUSH succeeds in spreading the rumor to all nodes in O(log* N/a)
rounds when executed in the mobile telephone model with b > 1,
T = oo, and a topology graph with expansion a.

We will leverage this theorem in our analysis of our gossip algo-
rithm. We also use the following useful property proved in [10]
which relates network diameter to expansion:

THEOREM 6.2 (ADAPTED FROM [10]). Fix a connected graph withn
nodes, expansion o, and diameter D. It follows that D = O(log n/a).

6.1 The CrowdedBin Gossip Algorithm

We are now ready to describe our CrowdedBin algorithm. We
present it here in its own section with its description divided into
parts to clarify its presentation.

In the following, we assume each node u € V identifies itself
with a tag t,, chosen uniformly from the space {1, 2, ..., N’ B }, where
B = 2 is constant we fix in our analysis. Let £ = flog N be the
number of bits needed to describe a tag. To simplify notation, we
assume in the following that N is a power of 2.

Parallelizing Instances. Nodes do not know in advance the value
of k (the number of tokens in the system). They consider log N
estimates of k: k1, ko, ..., klogNs where each k; = 2!. The nodes run
in parallel a separate gossip instance for each estimate. We use the
notation instance i to refer to the instance corresponding to estimate

The actual result we proved in [10] is that it is always possible to spread a rumor
in O(log n/e) rounds in the mobile telephone model in a graph with expansion a.
The rumor spreading time in a given network can never be smaller than the network
diameter, which provides a trivial lower bound on the problem.

Session 1

ki.In order to run log N instances in parallel, each node uses log N
rounds to simulate one round each of the log N instances. That
is, nodes divide rounds into simulation groups consisting of log N
rounds. Round j of simulation group i is used to simulate round i
of instance j.

Instance Schedules. Each instance i groups its rounds into blocks
containing ¢ + log N rounds each. It then groups these blocks into
bins containing y log N blocks each, where y > 1 is a constant we
fix in our analysis below. Finally, it groups the bins into phases
consisting of k; bins each. In other words, the schedule for instance
i is made up of phases, where each phase has k; bins, which are each
made up of y log N blocks, which each contain ¢ + log N rounds:
adding to a total of y (8 + 1)k; log? N total rounds per phase.

Initialization. Each node u € V that begins an execution of the
CrowdedBin algorithm with a gossip token, independently selects
a bin for its token for each of the log N instances. That is, for
each instance i, u selects a bin by, (i) with uniform independent
randomness from {1, 2, ..., k; }. Each node u also maintains, for each
instance i, and each bin j for this instance, a set Ty (i, j) containing
the tags it has seen so far for tokens in bin j in instance i. For each
instance i, if node u has a token it initializes T, (i, by (i)) = {t4} (i.e.,
it places its own tag in the bin it selected for that instance). Node u
also maintains a set Qy, containing the tokens it has received so far,
where each token in Qy, is also labeled with its tag. Finally, each
node u maintains a variable est,,, initialized to 1, which describes
the current instance node u is participating in.

Participation. Each node will only participate in a single instance
at a time, and it will only participate in complete phases of an
instance. In more detail, if some instance i starts a new phase in
round r, and some node u has est,, = i at the start of round r, node
u is now committed to participate in this full phase of instance i.
As we will detail, its estimate cannot change again until this phase
completes.

To participate in a phase of instance i, node u does the following.
First, for each bin j, 1 < j < k;, u orders the tags in Ty, (i,) (if any)
in increasing order. It will use the first £ rounds of the first block to
spell out the smallest such tag, bit by bit, using its advertising bits
(here the assumption that b > 1 is needed). It will then use the first
¢ rounds of the second block to spell out the second smallest tag,
and so on. There are y log N total blocks in this bin. If u knows more
than this many tags for this bin, it transmits only the first y log N.
Node u transmits all 0’s during the blocks in this bin for which it
has no tags to advertise (here is where we use the assumption that
the smallest possible tag is 1—preventing a block of all 0’s from
being mistaken for a tag.)

During the rounds dedicated to bin j, node u also collects the
bits advertised by its neighbors in each block. If it learns of a tag t;,
that is not currently in Ty, (i, j), it will put it aside and then add it to
this set once the rounds dedicated to bin j in this phase conclude.

We have only so far described what node u does during the first
¢ rounds for each block in our fixed instance j. During the remain-
ing log N rounds in these blocks, u will attempt to disseminate the
actual tokens corresponding to the tags advertised (here we em-
phasize the difference between spelling out the bits of a tag using
advertising bits and actually transmitting a token, which requires

50

PODC’17, July 25-27, 2017, Washington, DC, USA

two nodes to form a connection). In more detail, u executes the
PPUSH rumor spreading strategy from [10] (see above) during the
last log N rounds of each block in the current bin. In more detail,
for a given block A in this bin, if u advertised tag ¢ in the first £
rounds of this block, and u actually has the token corresponding
to tag t in Qy, it executes PPUSH in the remaining rounds of this
block using this token as the rumor and advertising 1 (i.e., it runs
PPUSH with the status of an already informed node). Otherwise,
node u runs PPUSH advertising 0 (i.e., it runs the PPUSH as an
uniformed node).

Increasing Size Estimates. A core behavior in this algorithm is
how nodes upgrade their current estimate of the value k (stored in
esty, for each node u). As described above, each node initializes their
estimate to 1. As described below, these estimates can only grow
during an execution. We call an increase in this estimate at a given
node an upgrade. There are two events that trigger an upgrade at a
given node u.

The first event is that node u sees “activity” on an instance
i’ > esty, where esty, is its current estimate. The term “activity" in
this context means seeing a 1-bit advertised in an instance i’ round.
If this event occurs, then u knows that some other node has already
increased its estimate beyond est,, so u should upgrade its estimate
as well. The second event is that node u fills a bin in its current
estimate. That is, there is some bin j such that |T (esty, j)| > y log N.
We call this event a crowded bin, and u can use this as evidence
that est,, does not have enough bins for the number of tags in the
system and therefore est,, is too small of an estimate for k. If this
event occurs, u will increase est;, by 1 (unless est,, is already at its
maximum value in which case it will remain unchanged.).

Recall, as specified above, that if a node u increases its estimate
esty, to a new value, it will complete the phase of whatever instance
it was participating in before switching to the new estimate moving
forward. This restriction simplifies the algorithmic analysis.

6.2 Analysis

Our goal in this section is to prove the below theorem regarding
CrowdedBin. Some proof details have been deferred to the full
version of this paper [22].

THEOREM 6.3. The CrowdedBin gossip algorithm solves the gossip
problem in O((1/a)k log® N) rounds when executed with tag length
b =1 in a network with stability T = co.

At the beginning of an execution each node randomly assigns
a tag from (1,2, ..., N'B} to its token, and then randomly assigns
the token to a bin in each of the log N instances. We call the global
collection of these assignments for a given execution a configuration.
Fix a configuration. We call a given instance i of this configuration,
1 < i < logN, crowded, if the configuration has an instance i
bin with at least y log N unique tags assigned to it. The target
instance for our fixed configuration is the smallest instance i that
is not crowded. If every instance is crowded, then we say the target
instance is undefined. We begin our analysis by defining what it
means for a configuration to be good with respect to these terms:

Definition 6.4. A configuration is good if and only if it satisfies
the following two properties: (1) every token is assigned a unique
tag; and (2) the target instance i is defined, and k; < 2k.

Session 1

A direct corollary of the above definition is that if a configuration
is good, and i is the target, then k; > k/(y log N). We now bound
the probability that the nodes generate a good configuration. We
will show that increasing the constant f, used to define the space
{1,2,...,N iz } from which tags are drawn, and the constant y, used to
define the number of blocks per bin, increases the high probability
that a configuration is good. To make this argument we begin by
establishing a non-standard balls-in-bins argument applicable to
our specific algorithm’s behavior.

LEMMA 6.5. Fix some constanty > 9. Assume k balls, 1 < k < N,
are thrown into k” > k bins with independent and uniform random-
ness. The probability that at least one bin has at least y log N balls, is
less than 1/N(¥/3)-2,

We apply the above balls-in-bin argument to prove the following
lemma which argues that good configurations are likely.

LEMMA 6.6. Fix some constant ¢ > 1. For a tag space constant
B = ¢+ 3, and a bin size constanty > 3c + 9, the nodes generate a
good configuration with probability at least 1 — 1/N°.

The below lemma follows directly from the definition of good
and the mechanism by which our algorithm updates estimates:

LEMMA 6.7. In an execution with a good configuration with target
instance i, no node ever sets its local estimate to a value larger than i.
That is, for all u and all rounds, est, < i.

We now continue our analysis by bounding the time required for
all nodes to reach the target instance. We do so with two arguments:
the first concerning the rounds required for nodes to learn of a
larger estimate existing in the system, and the second concerning
the rounds required for the largest estimate to increase if it is still
less than the target. For the following results, let D describe the
diameter of the static network topology:

LEMMA 6.8. Fix an execution with a good configuration with target
instance i. Assume that at the beginning of round r of this execution
the largest estimate in the system is imqx < i. By roundr’ =r +
O(Dk;,, . log® N) either: the largest estimate in the system is larger
than imax, or all nodes have estimate imqx.

LEMMA 6.9. Fix an execution with a good configuration with target
instance i. Assume that at the beginning of round r of this execution
the largest estimate in the system is imgx < i. By roundr’ = r +
O(Dk;,,, ... log® N) the largest estimate in the system is larger than

Imax-

We now leverage Lemmas 6.8 and 6.9 to bound the rounds re-
quired for all nodes to permanently stabilize to the target instance.

LEmMMA 6.10. Fix an execution with a good configuration with tar-
get instance i. By round r = O(Dk; log® N), every node has estimate
i. That is, for every node u, est;, = i by roundr.

ProoF. By the definition of our algorithm, estimates never de-
crease. By Lemma 6.7, no node will ever adopt an estimate greater
than i. Combined, it follows that we can keep applying Lemma 6.9
to increase the largest estimate until the largest estimate reaches
i. We can then apply a single instance of Lemma 6.8 to ensure all
nodes have this estimate, permanently satisfying the lemma.

51

PODC’17, July 25-27, 2017, Washington, DC, USA

To bound the time required for these applications of the above
lemmas, we leverage our observation that the largest estimate can
only increase. It follows that in the worst case we apply Lemma 6.9
exactly once for each of the estimates leading up to the target i.
Because these estimates form a geometric sequence (e.g., 2,4, 8, ...),
the total rounds needed for these applications of Lemma 6.9 is upper
bounded by:

O(Dkilog® N) + ... + O(Dk; log® N)
O ((Dlog® N)(ky + ko + .. + ki) =

O(Dk; log® N)

The final application of Lemma 6.8 to spread estimate i to all
remaining nodes once it exists in the system adds only a single
an additional O(Dk; log3 N) rounds. The lemma statement follows.

[m]

The preceding arguments bound the rounds required for useful
information to propagate through the network via the nodes’ ad-
vertising bits. We now conclude our proof by turning our attention
to the rounds required for the actual tokens (which must be passed
one at a time through pairwise connections) to spread.

ProoF oF THEOREM 6.3. Assume for now that the configuration
is good and i its target instance. Let round r = O(Dk; log® N) be
the round specified by Lemma 6.10 for the network to converge its
estimate. That is, every node has the same estimate i by round r. By
definition, no bin is crowded for instance i in a good configuration. It
follows that every tag for every bin in this instance will be spread in
everyround by the nodes that know that tag in that round. Following
the same propagation arguments used in Lemmas 6.8 and 6.9, after
at most D more phases of instance i, all nodes will know all tags.
This requires at most O(Dk; log® N) rounds. Therefore by some
round r’ = O(Dk; log® N), the system will have reached a stable
state in which every node has the same estimate i and knows the
tag for every token in the system. This information will never again
change so we can turn our attention for the rounds required to
finish propagating the actual tokens after this point of stabilization.

To bound this token propagation time, fix an arbitrary token ¢
with tag q in instance i. Because we assume the system has sta-
bilized, every node has g assigned to the same block of the same
bin in their instance i phase. It follows that if we append together
the last log N rounds from these blocks (i.e., the rounds in which
nodes run PPUSH for the tag described in the first £ rounds of the
block), we obtain a proper execution of PPUSH rumor spreading
for token t during these rounds. That is, every time we come to
the last log N rounds of ¢’s block, all nodes are running PPUSH for
rumor ¢, picking up where they left off in the previous instance.

Applying Theorem 6.1 from above, it follows that with high
probability in N, O(log* N/a) rounds are sufficient for t to spread
to all nodes after stabilization. Each phase provides log N rounds
of PPUSH, so O(log® N/«) phases are sufficient after stabilization.

The key observation is that each execution of instance i services
all k rumors after stabilization, as each rumor has its own fixed bin
in the instance i phase. Therefore, O(log® N/a) phases are sufficient
to spread all k rumors in parallel. A union bound establishes that all
k < N instances succeed with a slightly reduced high probability.

Session 1

From a probability perspective, we know from Lemma 6.6 that
the configuration is good with high probability. We just argued
above that if the configuration is good, then with an additional
high probability the tokens will all spread in the stated time, once
the system stabilizes. We can increase both high probabilities to
the desired exponent by increasing the constant f and y used in
the definition of crowded bins, and the constant factor in the time
bound for PPUSH. A union bound then shows that both good events
occur with high probability.

From round cost perspective, we established that the time to
stabilization is at most O(Dk; log® N) rounds, while the time to
complete propagation after stabilization is at most O(log> N/a)
instance i phases, which each require O(k; log® N) rounds. The
final time complexity is then in: O(Dk; log® N + (k; log® N)/a).

By the definition of a good configuration, we know k; < 2k,
and by Theorem 6.2, we know D = O(log N/a). We can therefore
simplify this complexity to O((k log® N)/a) rounds, as required. 0

7 e-GOSSIP WITH 1-BIT TAGS AND DYNAMIC
TOPOLOGY

Here we consider e-Gossip: a relaxed version of the gossip problem
that is parameterized with some €, 0 < € < 1 (e.g., as also studied
in [5]). In more detail, the problem assumes all n nodes start with
a token. To solve e-gossip there must be a subset S of the n nodes
in the system, where |S| > en and for every u,v € S, u knows v’s
token and v knows u’s token. Our goal here is to prove that for
reasonably well-connected graphs and constant €, almost solving
gossip can be significantly faster than fully solving gossip.

Crucially, we do not present a new algorithm to tackle this
new problem. We instead reanalyze SharedBit gossip to study how
quickly it achieves e-Gossip for a given € bound. Our goal is to
prove the following result (in the full version of this paper [22]
we also prove a corollary about SimSharedBit achieving a similar
result without requiring shared randomness):

THEOREM 7.1. Fix some €,0 < € < 1. The SharedBit gossip al-

gorithm solves the e-gossip problem in O ((n\/Alog A)/((1 - e)a))
rounds when executed with shared randomness and tag length b = 1
in a network with stability r > 1.

Given that A < n, this new time complexity is faster than the
O(n?) rounds required by SharedBit (for k = n) when € is a constant
fraction and a = w(log A/(4/Alog A)).

The full details of this result are provided in the full version of
this paper [22]. The core idea behind this analysis is to first prove
that in any round such that the problem is not solved, there exists
a coalition of nodes such that: (1) the size of the coalition is ~ en;
and (2) no node not in the coalition has the same token set as a
node in the coalition. Because of the large size of this coalition, we
can then prove that there exist many links from this coalition to
nodes outside its boundaries. By definition, each of these links, if
transformed into a connection, would productively transfer a token.
We can then study the expected number of these links to transform
in this manner. Put another way, for constant e, this proof leverages
the intuition that until a constant fraction of the messages have
spread, there is potential for lots of spreading.

52

PODC’17, July 25-27, 2017, Washington, DC, USA

REFERENCES

[1] Scott Burleigh, Adrian Hooke, Leigh Torgerson, Kevin Fall, Vint Cerf, Bob Durst,
Keith Scott, and Howard Weiss. 2003. Delay-tolerant networking: an approach to
interplanetary internet. IEEE Communications Magazine 41, 6 (2003), 128-136.

[2] Daniel Camps-Mur, Andres Garcia-Saavedra, and Pablo Serrano. 2013. Device-to-
device communications with Wi-Fi Direct: overview and experimentation. IEEE
wireless communications 20, 3 (2013), 96-104.

[3] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. 2010. Rumour
Spreading and Graph Conductance.. In Proceedings of the ACM-SIAM symposium
on Discrete Algorithms (SODA).

[4] Sebastian Daum, Fabian Kuhn, and Yannic Maus. 2016. Rumor Spreading with
Bounded In-Degree. In International Colloguium on Structural Information and
Communication Complexity (SIRROCO).

[5] Shlomi Dolev, Seth Gilbert, Rachid Guerraoui, and Calvin Newport. 2007. Gos-
siping in a multi-channel radio network. In Proceedings of the Symposium on
Distributed Computing (DISC).

[6] Nikolaos Fountoulakis and Konstantinos Panagiotou. 2010. Rumor spreading on
random regular graphs and expanders. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. Springer, 560-573.

[7] Alan M Frieze and Geoffrey R Grimmett. 1985. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics 10, 1 (1985),
57-717.

[8] Alan M Frieze and Geoffrey R Grimmett. 1985. The shortest-path problem for
graphs with random arc-lengths. Discrete Applied Mathematics 10, 1 (1985),
57-71.

[9] Open Garden. Accessed: Feb., 2017. FireChat Phone-to-Phone App. (Accessed:

Feb., 2017). http://www.opengarden.com/FireChat.

Mohsen Ghaffari and Calvin Newport. 2016. How to Discreetly Spread a Rumor in

a Crowd. In Proceedings of the International Symposium on Distributed Computing

(DISC).

George Giakkoupis. 2011. Tight bounds for rumor spreading in graphs of a given

conductance. In Proceedings of the Symposium on Theoretical Aspects of Computer

Science (STACS).

George Giakkoupis. 2011. Tight bounds for rumor spreading in graphs of a given

conductance. In Proceedings of the Symposium on Theoretical Aspects of Computer

Science (STACS).

George Giakkoupis. 2014. Tight bounds for rumor spreading with vertex ex-

pansion. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms

(SODA).

George Giakkoupis and Thomas Sauerwald. 2012. Rumor spreading and vertex

expansion. In Proceedings of the ACM-SIAM symposium on Discrete Algorithms

(SODA). 1623-1641.

George Giakkoupis and Thomas Sauerwald. 2012. Rumor spreading and vertex

expansion. In Proceedings of the ACM-SIAM symposium on Discrete Algorithms

(SODA). SIAM, 1623-1641.

Carles Gomez, Joaquim Oller, and Josep Paradells. 2012. Overview and evaluation

of bluetooth low energy: An emerging low-power wireless technology. Sensors

12, 9 (2012), 11734-11753.

Thiagaraja Gopalsamy, Mukesh Singhal, D Panda, and P Sadayappan. 2002. A

reliable multicast algorithm for mobile ad hoc networks. In Proceedings of the

IEEE International Conference on Distributed Computing Systems (ICDCS). IEEE,

563-570.

Ericsson Inc. Accessed: Feb., 2017. Latest mobile statistics: key figures (Er-

icsson Mobility Report). (Accessed: Feb., 2017). https://www.ericsson.com/

mobility-report/latest-mobile-statistics.

Fabian Kuhn, Nancy Lynch, and Rotem Oshman. 2010. Distributed computation

in dynamic networks. In Proceedings of the Symposium on Principles of Distributed

Computing (PODC). ACM, 513-522.

David Mark, Jayant Varma, Jeff LaMarche, Alex Horovitz, and Kevin Kim. 2015.

Peer-to-Peer Using Multipeer Connectivity. In More iPhone Development with

Swift. Springer, 239-280.

Ilan Newman. 1991. Private vs. common random bits in communication com-

plexity. Information processing letters 39, 2 (1991), 67-71.

Calvin Newport. 2017. Gossip in a Smartphone Peer-to-Peer Network. In Pro-

ceedings of the Symposium on Principles of Distributed Computing (PODC). Full

version available on arXiv and at: http://people.cs.georgetown.edu/~cnewport/
pubs/gossipmobile-full. pdf.

Calvin Newport. 2017. Leader Election in a Smartphone Peer-to-Peer Network.

In Proceedings of the IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS). Full version available online at: http://people.cs.georgetown.edu/

~cnewport/pubs/le-IPDPS2017.pdf.

Devavrat Shah et al. 2009. Gossip algorithms. Foundations and Trends in Net-

working 3, 1 (2009), 1-125.

—_
_

[12

(13

[14

[15

[16

[17

[18

[19

™
=

[21

[22

[23

S
=)

	Abstract
	1 Introduction
	2 Model and Problem
	3 Token Transfer Subroutine
	4 Gossip with 0-bit tags and dynamic topology
	5 Gossip with 1-bit tags and dynamic topology
	5.1 Shared Randomness
	5.2 Eliminating the Shared Randomness Assumption

	6 Gossip with 1-bit tags and stable topology
	6.1 The CrowdedBin Gossip Algorithm
	6.2 Analysis

	7 -Gossip with 1-bit tags and dynamic topology
	References

