
J. Math. Fluid Mech. 20 (2018), 445–472
c© 2017 Springer International Publishing
1422-6928/18/020445-28
https://doi.org/10.1007/s00021-017-0328-3

Journal of Mathematical
Fluid Mechanics

Linear Inviscid Damping for Couette Flow in Stratified Fluid

Jincheng Yang and Zhiwu Lin

Communicated by R. Shvydkoy

Abstract. We study the inviscid damping of Couette flow with an exponentially stratified density. The optimal decay
rates of the velocity field and the density are obtained for general perturbations with minimal regularity. For Boussinesq
approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the
decay rates for the full Euler equations of stratified fluids, which were not studied before. For both models, the decay rates
depend on the Richardson number in a very similar way. Besides, we also study the dispersive decay due to the exponential
stratification when there is no shear.

1. Introduction

Couette flow in exponentially stratified fluid is a shear flow U(y) = Ry with the density profile ρ0(y) =
Ae−βy. The stability of such a flow was first studied by Taylor [21] in the half space by the method of
normal modes. He presented a convincing but somewhat incomplete analysis to show that the spectrum
of the linearized equation (now called Taylor–Goldstein equation) is quite different when the Richardson
number B2 = βg

R2 (g is the gravitational constant) is greater or less than 1/4. He found that there exist
infinitely many discrete neutral eigenvalues when B2 > 1

4 and no such neutral eigenvalues exist when
B2 < 1

4 . This claim was later proved by Dyson [10] and Dikki [9]. However, Taylor did not provide a clear
answer to the problem of stability of Couette flow. From 1950s, there have been lots of work trying to
understand the stability of stratified Couette flow, by studying the initial value problem. They include
Høiland [15], Eliassen et al. [11], Case [6], Dikki [8], Kuo [16], Hartman [14], Chimonas [7], Brown and
Stewartson [4], Farrell and Ioannou [13]. We refer to Section 3.2.3 of the book of Yaglom [23] for a detailed
survey of the literature. Most of the papers used the Boussinesq approximation. One exception is Dikki
[8], where he proved the Liapunov stability of Couette flow in the half space for the full stratified Euler
equations, and for any B2 > 0. We note that for the exponentially stratified fluid (i.e. ρ0(y) = Ae−βy),
the Boussinesq approximation is valid only when β is small. One interesting result following from the
initial value approach is the inviscid damping of velocity fields. Such inviscid damping phenomena was
known by Orr [18] in 1907, where the Couette flow in a homogeneous fluid was considered. Orr showed
that the horizontal and vertical velocities decay by t−1 and t−2 respectively. Such damping is not due
to the viscosity, but instead is due to the mixing of the vorticity under the Couette flow. In recent
years, the inviscid damping phenomena attracted new attention. In [17], Lin and Zeng showed that if we
consider initial (vorticity) perturbation in the Sobolev space Hs

(
s < 3

2

)
then the nonlinear damping is

not true due to the existence of nonparallel steady flows of the form of Kelvin’s cats eye near Couette.
In [2], Bedrossian and Masmoudi proved the nonlinear inviscid damping for perturbations near Couette
in Gevrey class (i.e. almost analytic). The linear inviscid damping for more general shear flows in a
homogeneous fluid were also studied in [22,24].

In this paper, our goal is to get the precise estimates of linear decay rates for Couette flow in
exponentially stratified fluid, which might be useful in the future study of nonlinear damping. We
restrict ourselves to the case in the whole space. The including of the boundary (half space, finite
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channel) causes additional complication, as can be seen from Taylor’s results mentioned at the begin-
ning.

Our first result is about the linear decay estimates for solutions of the linearized equations under
Boussinesq approximation. Consider the steady shear flow v0 = (Ry, 0) with an exponentially stratified
density profile ρ0(y) = Ae−βy, where R ∈ R, A > 0, β ≥ 0 are constants. Denote B2 = βg

R2 to be the
Richardson number. When β is small, we approximate ρ0(y) by A (1 − βy) and the linearized equations
under the Boussinesq approximation (see Sect. 2.1) is

(∂t + Ry∂x) Δψ = −∂x

( ρ

A

)
g, (1.1)

(∂t + Ry∂x)
( ρ

A

)
= β∂xψ, (1.2)

where ψ and ρ
A are the perturbations of stream function and relative density variation.

Theorem 1.1. Let
(
ψ(t;x, y), ρ

A (t;x, y)
)

be the solution of (1.1)–(1.2) with the initial data

ψ(0;x, y) = ψ0(x, y),
ρ(0;x, y)

A
= ρ0(x, y),

where y ∈ R and x is periodic with period L. Denote the velocity v = ∇⊥ψ = (vx, vy). Below, f � g

stands for f ≤ Cg for a constant C depending only on R, β, g. We denote 〈f〉 :=
√

1 + f2 and P �=0 to be
the projection to nonzero Fourier modes (in x), that is,

P �=0f(t;x, y) = f(t;x, y) − 1
L

∫ L

0

f(t;x, y)dx.

The following estimates hold true:

(i) If 0 < B2 < 1
4 , let ν =

√
1
4 − B2, then

‖P �=0v
x‖L2 � 〈t〉− 1

2+ν
(
‖ψ0‖H1

xH2
y

+ ‖ρ0‖L2
xH1

y

)
,

‖vy‖L2 � 〈t〉− 3
2+ν

(
‖ψ0‖H1

xH3
y

+ ‖ρ0‖L2
xH2

y

)
,

‖P �=0
ρ

A
‖L2 � 〈t〉− 1

2+ν
(
‖ψ0‖H1

xH2
y

+ ‖ρ0‖L2
xH1

y

)
.

(ii) If B2 > 1
4 then

‖P �=0v
x‖L2 � 〈t〉− 1

2

(
‖ψ0‖H1

xH2
y

+ ‖ρ0‖L2
xH1

y

)
,

‖vy‖L2 � 〈t〉− 3
2

(
‖ψ0‖H1

xH3
y

+ ‖ρ0‖L2
xH2

y

)
,

‖P �=0
ρ

A
‖L2 � 〈t〉− 1

2

(
‖ψ0‖H1

xH2
y

+ ‖ρ0‖L2
xH1

y

)
.

(iii) If B2 = 1
4 , then

‖P �=0v
x‖L2 � 〈t〉− 1

2 〈log 〈t〉〉
(
‖ψ0‖H1

xH2
y

+ ‖ρ0‖L2
xH1

y

)
,

‖vy‖L2 � 〈t〉− 3
2 〈log 〈t〉〉

(
‖ψ0‖H1

xH3
y

+ ‖ρ0‖L2
xH2

y

)
,

‖P �=0
ρ

A
‖L2 � 〈t〉− 1

2 〈log 〈t〉〉
(
‖ψ0‖H1

xH2
y

+ ‖ρ0‖L2
xH1

y

)
.

(iv) If B2 = 0, i.e., β = 0, then
∥
∥ ρ

A

∥
∥

L2 (t) = ‖ρ0‖L2 and

‖P �=0v
x‖L2 � ‖ρ0‖L2

xH1
y

+ 〈t〉−1 ‖ψ0‖H1
xH3

y
,

‖vy‖L2 � 〈t〉−1 ‖ρ0‖L2
xH2

y
+ 〈t〉−2 ‖ψ0‖H1

xH4
y
.
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(v) If B2 = ∞, i.e. R = 0, then g
β

∥
∥ ρ

A

∥
∥2

L2 + ‖v‖2
L2 is conserved. The following decay estimates hold

true in L2
xL∞

y ,

‖P �=0v
x‖L2

xL∞
y

� |t|− 1
3

(
‖ψ0‖

H
3/2
x

(
H

9/2
y ∩W 1,1

y

) + ‖ρ0‖
H

1/2
x

(
H

9/2
y ∩W 1,1

y

)

)
,

‖vy‖L2
xL∞

y
� |t|− 1

3

(
‖ψ0‖

H
5/2
x

(
H

7/2
y ∩L1

y

) + ‖ρ0‖
H

3/2
x

(
H

7/2
y ∩L1

y

)

)
,

‖P �=0
ρ

A
‖L2

xL∞
y

� |t|− 1
3

(
‖ψ0‖

H
5/2
x

(
H

9/2
y ∩W 1,1

y

) + ‖ρ0‖
H

3/2
x

(
H

7/2
y ∩L1

y

)

)
.

Theorem 1.1 gives a complete picture of the linear damping for the Couette flow in an exponentially
stratified fluid in an infinite channel (i.e. −∞ < y < +∞ and x periodic). More specifically, we obtain
optimal decay rates for initial perturbations of minimal regularity. We make some comments to relate
our results to the previous works on this problem. When B2 > 1

4 , the decay rates t−
3
2 for vy and t−

1
2

for vx were obtained by Booker and Bretherton [3] for a special class of solutions, which generalized the
earlier results in [19, Chap. 5] for B2 
 1 . In [14], the decay rates as in Theorem 1.1 (i)–(iii) were
obtained for special solutions by hypergeometric functions, which are similar to g1, g2 defined in (3.4)
and (3.5). However, it was not shown in [14] that general solutions can be expressed by these special
solutions. Chimonas [7] considered the case B2 < 1

4 and wrongly claimed that vy decays at the rate t2ν−1

and vx grows by t2ν . Later, an error in [7] was pointed out by Brown and Stewartson [4], where they also
found the correct decay rates as in Theorem 1.1. In [4], the initial value problem was solved for analytic
initial data by taking the Laplace transform in time and then the decay rates were obtained from the
asymptotic analysis of the inverse Laplace transform of the solutions. Moreover, it was assumed in [4] that
the discrete neutral eigenvalues do no exist, such that there are no poles in the Laplace transform of their
solutions. In our analysis, we do not need to assume the nonexistence of discrete neutral eigenvalues,
which actually follows as a corollary from the decay estimates in Theorem 1.1 for any B2 > 0. This
contrasts significantly with the case in the half space [9,10,21] or in a finite channel [11], where it was
shown that there exist infinitely many discrete neutral eigenvalues when B2 > 1

4 . In Theorem 1.1, the
decay rates are optimal with the minimal regularity requirement for the initial data. In particular, when
B2 < ∞ it suffices to have the initial perturbations of vorticity and density variation ω (0) , ρ0 ∈ H1 to
get the optimal decay for ‖vx‖L2 , and ω (0) , ρ0 ∈ H2 to get the optimal decay for ‖vy‖L2 . These minimal
regularity requirement on the initial data are consistent with the results in [17] for the Couette flow with
constant density. Moreover, if B → 0+ (i.e. ν → 1

2−), the decay rates for the horizontal and vertical
velocities are t−

1
2+ν and t−

3
2+ν respectively even when ρ0 = 0, which are almost one order slower than

the rates (t−1 and t−2 respectively) for homogeneous fluids (i.e. B = 0). This suggests that the stratified
effects cannot be ignored even when the steady density is a small deviation of the constant.

The decay rate t−
1
3 for the case B2 = ∞ (i.e. no shear flow) is optimal (see the example at the end

of Sect. 6.1). When (x, y) ∈ R
2, the optimal decay rate was shown to be t−

1
2 in [12]. We note that the

decay mechanisms are very different for the cases of B2 = ∞ and B2 < ∞. When B2 < ∞, the decay
of ‖v‖L2 is due to the mixing of vorticity caused by the shear motion. When B2 = ∞, ‖v‖L2 does not
decay while the decay of ‖v‖L∞ is due to dispersive effects of the linear waves in a stably stratified fluid.

Most papers on Couette flow used the Boussinesq approximation to analyze the linearized solutions.
However, this approximation is valid only when β is small. For β not small, the full Euler equations
should be used. In this case, the linearized equations at the Couette flow (Ry, 0) with the exponential
density profile ρ0(y) = Ae−βy become

β [R∂x − (∂t + Ry∂x) ∂y] ψ + (∂t + Ry∂x) Δψ = −∂x

(
ρ

ρ0

)
g, (1.3)

(∂t + Ry∂x)
(

ρ

ρ0

)
= β∂xψ. (1.4)
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We obtain similar results on decay estimates in the e− 1
2βy weighted norms.

Theorem 1.2. Let
(
ψ(t;x, y), ρ

ρ0
(t;x, y)

)
be the solution of (1.3)–(1.4) with the initial data

ψ(0;x, y) = ψ0(x, y),
ρ(0;x, y)

ρ0(y)
= ρ0(x, y),

where y ∈ R and x is periodic with period L. Let v = ∇⊥ψ = (vx, vy). The following is true:

(i) If 0 < B2 < 1
4 , let ν =

√
1
4 − B2, then

‖e− 1
2βyP �=0v

x‖L2 � 〈t〉− 1
2+ν

(
‖e− 1

2βyψ0‖H1
xH2

y
+ ‖e− 1

2βyρ0‖L2
xH1

y

)
,

‖e− 1
2βyvy‖L2 � 〈t〉− 3

2+ν
(
‖e− 1

2βyψ0‖H1
xH3

y
+ ‖e− 1

2βyρ0‖L2
xH2

y

)
,

‖e− 1
2βyP �=0ρ/ρ0‖L2 � 〈t〉− 1

2+ν
(
‖e− 1

2βyψ0‖H1
xH2

y
+ ‖e− 1

2βyρ0‖L2
xH1

y

)
.

(ii) If B2 > 1
4 then

‖e− 1
2βyP �=0v

x‖L2 � 〈t〉− 1
2

(
‖e− 1

2βyψ0‖H1
xH2

y
+ ‖e− 1

2βyρ0‖L2
xH1

y

)
,

‖e− 1
2βyvy‖L2 � 〈t〉− 3

2

(
‖e− 1

2βyψ0‖H1
xH3

y
+ ‖e− 1

2βyρ0‖L2
xH2

y

)
,

‖e− 1
2βyP �=0ρ/ρ0‖L2 � 〈t〉− 1

2

(
‖e− 1

2βyψ0‖H1
xH2

y
+ ‖e− 1

2βyρ0‖L2
xH1

y

)
.

(iii) If B2 = 1
4 , then

‖e− 1
2βyP �=0v

x‖L2 � 〈t〉− 1
2 〈log 〈t〉〉

(
‖e− 1

2βyψ0‖H1
xH2

y
+ ‖e− 1

2βyρ0‖L2
xH1

y

)
,

‖e− 1
2βyvy‖L2 � 〈t〉− 3

2 〈log 〈t〉〉
(
‖e− 1

2βyψ0‖H1
xH3

y
+ ‖e− 1

2βyρ0‖L2
xH2

y

)
,

‖e− 1
2βyP �=0ρ/ρ0‖L2 � 〈t〉− 1

2 〈log 〈t〉〉
(
‖e− 1

2βyψ0‖H1
xH2

y
+ ‖e− 1

2βyρ0‖L2
xH1

y

)
.

(iv) If B2 = 0, i.e, β = 0, then the results are the same as in the Boussinesq case, with ρ/ρ0 replacing
ρ
A .

(v) If B2 = ∞, i.e. R = 0, then
∥
∥
∥e− 1

2βyv
∥
∥
∥

2

L2
+

g

β

∥
∥
∥
∥e

− 1
2βy ρ

ρ0

∥
∥
∥
∥

2

L2

is conserved and

‖e− 1
2βyP �=0v

x‖L2
xL∞

y
� |t|− 1

3

(
‖e− 1

2βyψ0‖
H

3/2
x

(
H

9/2
y ∩W 1,1

y

)

+‖e− 1
2βyρ0‖

H
1/2
x

(
H

9/2
y ∩W 1,1

y

)

)
,

‖e− 1
2βyvy‖L2

xL∞
y

� |t|− 1
3

(
‖e− 1

2βyψ0‖
H

5/2
x

(
H

7/2
y ∩L1

y

)

+‖e− 1
2βyρ0‖

H
3/2
x

(
H

7/2
y ∩L1

y

)

)
,

‖e− 1
2βyP �=0ρ/ρ0‖L2

xL∞
y

� |t|− 1
3

(
‖e− 1

2βyψ0‖
H

5/2
x

(
H

9/2
y ∩W 1,1

y

)

+‖e− 1
2βyρ0‖

H
3/2
x

(
H

7/2
y ∩L1

y

)

)
.
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Compared with Theorem 1.1, it is interesting to note that for the e− 1
2βy weighted v and ρ, the decay

rates and the initial regularity requirement for the full equations are exactly the same as in the Boussinesq
approximation.

Lastly, we make some comments on the proof. First, we use Fourier transform on the linearized
equations in the sheared coordinates and then reduce them to a second order ODE for the stream
function. The general solution is expressed by two special solutions of hypergeometric functions. The
decay rates and initial regularity are then obtained by using the asymptotic behaviors of hypergeometric
functions. In the case of B2 = ∞ (i.e. no shear), the decay rates are obtained by the dispersive estimates
and oscillatory integrals.

This paper is organized as follows. In Sect. 2, we derive the linearized equations and give some
identities of hypergeometric functions to be used later. In Sect. 3, we solve the linearized equations by
hypergeometric functions. In Sects. 4 and 5, we obtain the decay estimates from the solution formula for
the case B2 < ∞. In Sect. 6, the dispersive decay estimates are obtained for the case B2 = ∞.

2. Preliminary

2.1. Linearized Euler Equation and Boussinesq Approximation

The equations for two dimensional inviscid incompressible flows in stratified fluids are

ρ (∂t + v · ∇)v + ∇p = ρg, (2.1)
(∂t + v · ∇) ρ = 0,

∇ · v = 0, (2.2)

where (x, y) ∈ T × R, v = (vx, vy) is the velocity, ρ is the density and g = (0,−g) is the gravitational
acceleration directing downward with g being the gravitational constant. The simplest stationary solution
is the shear flow, with v0 = (U(y), 0) and ρ0 = ρ0(y). Let ψ = ψ(t;x, y) be the stream function such that
v = ∇⊥ψ. Here ∇⊥ = (−∂y, ∂x).

We consider the linearized equations near a shear (v0, ρ0). Let v = ∇⊥ψ and ρ be infinitesimal
perturbations of velocity and density. The linearized equations are

ρ0 [(∂t + U(y)∂x)v + (vy∂y)v0] + ∇p = ρg, (2.3)
(∂t + U(y)∂x) ρ + vyρ′

0 (y) = 0.
∇ · v = 0. (2.4)

Taking the curl of (2.3), we get

−ρ′
0(y)
ρ0

[U ′(y)∂xψ + (∂t + U(y)∂x) (−∂yψ)]

+ (∂t + U(y)∂x) Δψ − U ′′(y)∂xψ = −∂x

(
ρ

ρ0

)
g. (2.5)

The Eq. (2.4) can be written as

(∂t + U(y)∂x)
ρ

ρ0
= −∂xψ

ρ′
0(y)
ρ0

. (2.6)

Consider Couette flow with an exponential density profile, that is, U(y) = Ry , ρ0(y) = Ae−βy. Then
(2.5)–(2.6) become

β [R∂x − (∂t + Ry∂x) ∂y] ψ + (∂t + Ry∂x) Δψ = −∂x

(
ρ

ρ0

)
g, (2.7)

(∂t + Ry∂x)
(

ρ

ρ0

)
= β∂xψ. (2.8)
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If R �= 0, denote B2 = βg
R2 to be the Richardson number, T = Rρ

βρ0(y) be the relative density perturbation,
ω = −Δψ be the vorticity perturbation and let t′ = Rt. Then we have

−β [∂x − (∂t′ + y∂x) ∂y] ψ + (∂t′ + y∂x)ω = B2∂xT,

(∂t′ + y∂x)T = ∂xψ.

For convenience we still use t for t′. Thus the resulting linearized system is

− β [∂x − (∂t + y∂x) ∂y] ψ + (∂t + y∂x)ω = B2∂xT, (2.9)
(∂t + y∂x)T = ∂xψ, (2.10)

ω = −Δψ. (2.11)

The system (2.9)–(2.11) is rather complicated. Many authors, including Høiland [15], Case [6], Kuo
[16], Hartman [14], Chimonas [7], Brown and Stewartson [4], Farrell and Ioannou [13], chose to consider
the Boussinesq approximation, where the variation of density is ignored except for the gravity force term
ρg. To apply the Boussinesq approximation, the density perturbation should be relatively small compared
with the constant density. Under this approximation, the Euler momentum equation becomes

ρ̄ (∂t v+ (v · ∇)v) + ∇p = ρg,

where ρ̄ is a constant and ρ is the variation of density. The linearized Boussinesq equations near a shear
flow (U (y) , 0) with the density variation profile ρ0 (y) is

(∂t + U(y)∂x)Δψ − U ′′(y)∂xψ = −∂x

(
ρ

ρ̄

)
g, (2.12)

(∂t + U(y)∂x)
ρ

ρ̄
= −∂xψ

ρ′
0

ρ̄
. (2.13)

Compared this with the linearized original equation (2.5), it can be regarded as the case when ρ′
0/ρ0 is

very small, such that the first term of (2.5) is neglected and ρ0 is taken to be a constant ρ̄. For Couette
flow U(y) = Ry with the exponential profile ρ0 = Ae−βy, to use the Boussinesq approximation, β should
be small which implies that ρ0 ≈ A (1 − βy). Thus, we consider the linearized Boussinesq equations near
Couette flow (Ry, 0) with the linear density variation profile ρ0 (y) = −Aβy and a constant density
background ρ̄ = A. Then (2.12)–(2.13) become

(∂t + Ry∂x) Δψ = −∂x

( ρ

A

)
g, (2.14)

(∂t + Ry∂x)
( ρ

A

)
= β∂xψ. (2.15)

If R �= 0, denoting B2 = βg
R2 , T = Rρ

βA and scaling the time t by Rt, then we have

(∂t + y∂x)ω = B2∂xT, (2.16)
(∂t + y∂x)T = ∂xψ, (2.17)

ω = −Δψ. (2.18)

2.2. Sobolev Spaces

Without loss of generality, from now on we assume period length L in x direction is 2π. Define the Fourier
transform of f(x, y) ((x, y) ∈ T × R), as

f̂(k, η) =
1
2π

∫

T×R

e−ixk−iyηf(x, y)dxdy, (k, η) ∈ Z × R.

Fourier inversion formula is
f(x, y) =

1
2π

∑

k∈Z

∫

R

eixk+iyη f̂(k, η)dxdy.
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The Sobolev space Hsx
x H

sy
y is defined to be all functions f in L2 (T × R) satisfying

∑

k∈Z

(1 + k2)sx

∫

R

(
1 + η2

)sy

∣
∣
∣f̂(k, η)

∣
∣
∣
2

dη < +∞,

with the norm

‖f‖Hsx
x H

sy
y

=

(
∑

k∈Z

(1 + k2)sx

∫

R

(
1 + η2

)sy

∣
∣
∣f̂(k, η)

∣
∣
∣
2

dη

) 1
2

.

Similarly, we define

‖f‖Hsx
x W

sy,p
y

=

(
∑

k∈Z

(1 + k2)sx‖f̂(k, y)‖2
W

sy,p
y

) 1
2

,

where W
sy,p
y is the Lp Sobolev space in R and

f̂(k, y) =
1√
2π

∫

T

e−ixkf(x, y)dx, k ∈ Z.

2.3. Hypergeometric Functions

Gaussian hypergeometric function F (a, b; c; z) is defined by the power series

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!

for |z| < 1, where

(x)n =
{

1 n = 0,
x(x + 1) · · · (x + n − 1) n > 0.

Its value F (z) for |z| ≥ 1 is defined by the analytic continuation. If c, z ∈ R, and a, b are complex
conjugate, then F (a, b; c; z) is also real. The following lemma is known as Gauss’ contiguous relation.

Lemma 2.1. The derivative of F (z) = F (a, b; c; z) can be expressed as

dF

dz
=

ab

c
F (a + 1, b + 1; c + 1; z)

=
c − 1

z
(F (a, b; c − 1; z) − F (a, b; c; z))

=
1

c(1 − z)
[(c − a) (c − b) F (a, b; c + 1; z) + c (a + b − c) F (a, b; c; z)] .

Hypergeometric functions are related to solutions of Euler’s hypergeometric differential equation.

Lemma 2.2. Assume c is not an integer. Euler’s hypergeometric differential equation

z(1 − z)f ′′(z) + [c − (a + b + 1)z] f ′(z) − abf(z) = 0 (2.19)

has two linearly independent solutions

f1(z) = F (a, b; c; z),

f2(z) = z1−cF (1 + a − c, 1 + b − c; 2 − c; z).
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The proof of these two lemmas can be found in pages 57 and 74 of the book [1].
Hypergeometric functions have one branch point at z = 1, and another at z = ∞. The default cut-line

connecting these two branch points is chosen as z > 1, z ∈ R. Pfaff transform can relate the value of a
hypergeometric functions near z = 1 to the value of another one near z = ∞ in the following way:

F (a, b; c; z) = (1 − z)−bF

(
c − a, b; c;

z

z − 1

)
, (2.20)

F (a, b; c; z) = (1 − z)−bF

(
c − a, b; c;

z

z − 1

)
. (2.21)

By combining these two transforms, we obtain the Euler transform

F (a, b; c; z) = (1 − z)c−a−bF (c − a, c − b; c; z) . (2.22)

When Re(c) > Re(a + b) we have the Gauss formula

F (a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

. (2.23)

When Re(c) < Re(a + b), F (a, b; c; 1) is infinity.
The following lemma plays an important role in solving the linearized equations in the next Section.

Lemma 2.3. The Wronskian of the two solutions listed above is

W (z) = f1(z)f ′
2(z) − f ′

1(z)f2(z) = (1 − c)z−c(1 − z)c−1−a−b.

Proof. By Liouville’s formula, the Wronskian of Euler’s hypergeometric differential equation (2.19) can
be written as

W (z) = C exp
(

−
∫

c − (a + b + 1)z
z(1 − z)

dz

)

= C exp (− log(1 − z)(a + b + 1 − c) − c log(z))

= Cz−c(1 − z)c−1−a−b = Cz−c + O(z−c−1)

To determine the constant C, it is sufficient to calculate the leading order term of W (z) in the power
series expansion near z = 0. By the definition,

f1(0) = 1, f ′
1(0) =

ab

c
, f2(z) ∼ z1−c, f ′

2(z) ∼ (1 − c)z−c

when z → 0, so C = 1 − c and W (z) = (1 − c)z−c(1 − z)c−1−a−b. �

3. Solutions by Hypergeometric Functions

In this section, we apply Fourier transform on the linearized systems (2.16–2.18) based on the Boussinesq
approximation and (2.9–2.11) based on full Euler equations respectively. Then we reduce them to a second
order ODE in t, and solve it explicitly by using hypergeometric functions. We will study these equations
in the sheared coordinates (z, y) = (x − ty, y) and define

f(t; z, y) = ω(t; z + ty, y) = ω(t;x, y),

φ(t; z, y) = ψ(t; z + ty, y) = ψ(t;x, y),

τ(t; z, y) = T (t; z + ty, y) = T (t;x, y).
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3.1. Boussinesq Approximation

In the new coordinates (z, y), equations (2.16–2.18) become the following:

∂tf(t; z, y) = (∂t + y∂x) ω(t;x, y) = B2∂xT (t;x, y) = B2∂zτ(t; z, y),
∂tτ(t; z, y) = (∂t + y∂x) T (t;x, y) = ∂xψ(t;x, y) = ∂zφ(t; z, y),

[
∂zz + (∂y − t∂z)2

]
φ(t; z, y) = ψxx + ψyy = −ω(t;x, y) = −f(t; z, y).

By the Fourier transform (z, y) → (k, η), we get

f̂t = B2(ik)τ̂ , τ̂t = (ik)φ̂,
[
(ik)2 + (iη − ikt)2

]
φ̂ = −f̂ . (3.1)

Differentiate (3.1) twice with respect to t to get
[
(ik)2 + (iη − ikt)2

]
φ̂t + 2(iη − ikt)(−ik)φ̂ = −f̂t = −B2(ik)τ̂ ,

[
(ik)2 + (iη − ikt)2

]
φ̂tt + 4(iη − ikt)(−ik)φ̂t + 2(−ik)2φ̂

= −f̂tt = −B2(ik)τ̂t = −B2(ik)2φ̂. (3.2)

For fixed k �= 0 and η, define s = t − η
k and s0 = −η

k . Then we obtain a second order linear ODE for φ̂

(1 + s2)φ̂tt + 4sφ̂t + (2 + B2)φ̂ = 0. (3.3)

First, we look for special solutions of the form φ̂(t; k, η) = g(−s2). Let u = −s2, then φ̂t = −2sg′ and
φ̂tt = 4s2g′′ − 2g′. Equation (3.3) becomes

u(1 − u)g′′ +
(

1
2

− 5
2
u

)
g′ − 2 + B2

4
g = 0.

This is in the form of Euler’s hypergeometric differential equation (2.19) with c = 1
2 and a, b = 3

4 ± ν
2 ,

where ν =
√

1
4 − B2. By Lemma 2.2, it has two linearly independent solutions

g1(s) = F (a, b; c;u) = F

(
3
4

− ν

2
,
3
4

+
ν

2
;
1
2
;−s2

)
, (3.4)

g2(s) = −iu1−cF (1 + a − c, 1 + b − c; 2 − c;u) = sF

(
5
4

− ν

2
,
5
4

+
ν

2
;
3
2
;−s2

)
. (3.5)

Therefore, the general solutions to the Eq. (3.3) can be written as

φ̂ = C1g1(s) + C2g2(s), (3.6)

where C1, C2 are some constants depending only on (k, η). Note that although a hypergeometric function
has a branch point or singularity at z = 1, we only need its value at z = −s2 which lies on the negative
real axis. Therefore, there is no ambiguity or singularity in (3.6).

The coefficients C1, C2 are determined by the initial conditions ψ(0;x, y) and T (0;x, y).
Let ψ̂0(k, η), T̂ 0(k, η) be the Fourier transforms of ψ(0;x, y) and T (0;x, y). First,

φ̂(0; k, η) = φ̂0(k, η) = ψ̂0(k, η),

and by Eq. (3.2),
f̂t = k2(1 + s2)φ̂t + 2k2sφ̂.

Noticing that when t = 0, s = −η
k = s0, so we have

φ̂t(0; k, η) =
f̂t(0; k, η) − 2k2s0φ̂(0; k, η)

k2(1 + s2
0)

=
B2(ik)τ̂(0; k, η) − 2k2s0φ̂(0; k, η)

k2(1 + s2
0)

=
1

1 + s2
0

(
iB2

k
τ̂0 − 2s0φ̂

0

)
=

1
1 + s2

0

(
iB2

k
T̂ 0 − 2s0ψ̂

0

)
.
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Now we have a linear system for (C1, C2)

C1g1(s0) + C2g2(s0) = ψ̂0,

C1g
′
1(s0) + C2g

′
2(s0) =

1
1 + s2

0

(
iB2

k
T̂ 0 − 2s0ψ̂

0

)
.

Therefore, the coefficients are

C1(k, η) =
1
Δ

[
g′
2(s0) +

2s0

1 + s2
0

g2(s0)
]

ψ̂0(k, η)

+
1
Δ

[
− iB2

1 + s2
0

g2(s0)
]

T̂ 0(k, η)
k

,

(3.7)

C2(k, η) =
1
Δ

[
−g′

1(s0) − 2s0

1 + s2
0

g1(s0)
]

ψ̂0(k, η)

+
1
Δ

[
iB2

1 + s2
0

g1(s0)
]

T̂ 0(k, η)
k

,

(3.8)

where by Lemma 2.3

Δ = g1(s0)g′
2(s0) − g′

1(s0)g2(s0)

= −i(−2s0)
(

1 − 1
2

)
(−s2

0

)− 1
2
(
1 + s2

0

)−2
=

1

(1 + s2
0)

2 ,

which is strictly positive for all s0 ∈ R.
Thus the solution of (3.3) is given explicitly by

φ̂(t; k, η) = C1(k, η)g1(s) + C2(k, η)g2(s).

As for τ̂ , from Eq. (3.2), for B2 > 0 we have

τ̂(t; k, η) = − ik

B2

(
(1 + s2)φ̂t + 2sφ̂

)
,

= − ik

B2

[
(1 + s2) (C1(k, η)g′

1(s) + C2(k, η)g′
2(s))

+2s (C1(k, η)g1(s) + C2(k, η)g2(s))] . (3.9)

3.2. Full Euler Equations

Now we solve the linearized systems (2.9)–(2.11) based on the full Euler equations. With f, φ, τ defined
at the beginning of this section, Eqs. (2.9)–(2.11) turn into

− β [∂z − ∂t (∂y − t∂z)] φ + ∂tf = B2∂zτ,

∂tτ = ∂zφ, − [∂zz + (∂y − t∂z)2
]
φ = f. (3.10)

By the Fourier transform (z, y) → (k, η), (3.10) becomes

− β [ik − ∂t (iη − ikt)] φ̂ + f̂t = B2(ik)τ̂ . (3.11)

Differentiate above with respect to t, we get

−β [ik∂t − ∂tt (iη − ikt)] φ̂ + f̂tt = B2(ik)τ̂t.

Substituting
τ̂t = (ik)φ̂, f̂ = − [(ik)2 + (iη − ikt)2

]
φ̂, (3.12)

we have
∂tt

[
k2 + (η − kt)2 + β(iη − ikt)

]
φ̂ − β(ik)φ̂t + B2k2φ̂ = 0.
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Define χ = e− 1
2βyφ, then φ̂(k, η) = χ̂(k, η + 1

2 iβ) and the above equation implies

∂tt

[

k2 +
(

η − 1
2
iβ − kt

)2

+ β

(
i

(
η − 1

2
iβ

)
− ikt

)]

χ̂

− β(ik)χ̂t + B2k2χ̂ = 0,

After simplification, we have

∂tt

[
1
4
β2 + k2 + (η − kt)2

]
χ̂ − iβkχ̂t + B2k2χ̂ = 0.

For k �= 0, again define s = t − η
k , s0 = −η

k , then

∂tt

[(
1
4
β2 + k2 + k2s2

)
χ̂

]
− iβkχ̂t + B2k2χ̂ = 0.

Define m =
√

1
4β2 + k2, κ = k

m , β1 = β
2m , then we have

∂tt

[(
m2 + k2s2

)
χ̂
]− iβkχ̂t + B2k2χ̂ = 0,

∂tt

[(
1 + κ2s2

)
χ̂
]− 2iβ1κχ̂t + B2κ2χ̂ = 0.

Set u = −iκs, then

−∂uu

(
1 − u2

)
χ̂ − 2β1χ̂u + B2χ̂ = 0,

(
1 − u2

)
χ̂uu + (2β1 − 4u)χ̂u − (2 + B2)χ̂ = 0.

Define v = 1−u
2 , then

v (1 − v) χ̂vv + (−β1 + 2 − 4v)χ̂v − (2 + B2)χ̂ = 0, (3.13)

which is of the form of Euler’s hypergeometric differential equation (2.19) with c = 2−β1 and a, b = 3
2 ±ν,

where ν =
√

1
4 − B2. By Lemma 2.2, it has two linear independent solutions,

g3(s) = F

(
3
2

− ν,
3
2

+ ν; 2 − β1; v
)

= F

(
3
2

− ν,
3
2

+ ν; 2 − β1;
1 + iκs

2

)
,

g4(s) =
(

1 + iκs

2

)−1+β1

F

(
1
2

+ β1 − ν,
1
2

+ β1 + ν;β1;
1 + iκs

2

)

Therefore, the general solution to Eq. (3.13) is

χ̂ = C3g3(s) + C4g4(s),

where C3, C4 are constants depending only on (k, η). Note that we only need values of g1, g2 at 1
2 + κs

2 i

(s ∈ R), that is, on the line Re(z) = 1
2 . Therefore, the branch point at z = 1 will not cause any ambiguity

or singularity.
The initial conditions ψ(0;x, y) and T (0;x, y) are used to determine the coefficients C3, C4. Denote

μ = e− 1
2βyτ , Ψ0 = e− 1

2βyψ0,Υ0 = e− 1
2βyT 0, then

χ̂(0; k, η) = φ̂0

(
k, η − 1

2
iβ

)
= ̂e− 1

2βyψ0 = Ψ̂0.

By Eqs. (3.11) and (3.12), we have

φ̂t =
1

1 + s2 − iβ
k s

[(
2iβ

k
− 2s

)
φ̂ +

iB2

k
τ̂

]
.
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Hence

χ̂t(t; k, η) = φ̂t

(
t; k, η − 1

2
iβ

)

=
1

1 +
(
s + iβ

2k

)2

− iβ
k

(
s + iβ

2k

)

[(
2iβ

k
− 2s − 2

iβ

2k

)
χ̂ +

iB2

k
μ̂

]

=
1

1 + |s̃|2
(

iB2

k
χ̂ − 2s̃μ̂

)
,

and

χ̂t(0; k, η) =
1

1 + |s̃0|2
(

iB2

k
Υ̂0 − 2s̃0Ψ̂0

)
,

where s̃ = s − iβ
2k , s̃0 = s0 − iβ

2k .
So we have a linear system for (C3, C4) :

C3g3(s0) + C4g4(s0) = Ψ̂0,

C3g
′
3(s0) + C4g

′
4(s0) =

1
1 + |s̃0|2

(
iB2

k
Υ̂0 − 2s̃0Ψ̂0

)
,

which gives

C3(k, η) =
1
Δ

[
g′
4(s0) +

2s̃0

1 + |s̃0|2 g4(s0)
]

Ψ̂0(k, η)

+
1
Δ

[
− iB2

1 + |s̃0|2 g4(s0)
]

Υ̂0(k, η)
k

,

C4(k, η) =
1
Δ

[
−g′

3(s0) − 2s̃0

1 + |s̃0|2 g3(s0)
]

Ψ̂0(k, η)

+
1
Δ

[
iB2

1 + |s̃0|2 g3(s0)
]

Υ̂0(k, η)
k

,

where by Lemma 2.3

Δ = g3(s0)g′
4(s0) − g′

3(s0)g4(s0)

=
κi

2
(−1 + β1)

(
1
2

+
κs0

2
i

)−2+β1
(

1
2

− κs0

2
i

)−2−β1

,

which is never zero, because |κ|, β1 ∈ (0, 1) by definition. Moreover,

|κ| ≥ 1
√

1
4β2 + 1

, 1 − β1 ≥ 1 − β/2
√

1
4β2 + 1

are both uniformly bounded away from zero for all integers k �= 0. Hence

|Δ|−1 =
∣
∣
∣
∣
1
2

+
κs0

2
i

∣
∣
∣
∣

4 ∣
∣
∣
κ

2

∣
∣
∣
−1

(1 − β1)
−1 � 〈s0〉4 .

By Eqs. (3.11) and (3.12), for B2 > 0 we have

τ̂(t; k, η) = − ik

B2

[
−2iβ

k
φ̂ − iβ

k
sφ̂t + (1 + s2)φ̂t + 2sφ̂

]
,
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and

μ̂(t; k, η) = τ̂

(
t; k, η − 1

2
iβ

)

= − ik

B2

[

−2iβ

k
χ̂ − iβ

k

(
s +

iβ

2k

)
χ̂t +

(

1 +
(

s +
iβ

2k

)2
)

χ̂t

+2
(

s +
iβ

2k

)
χ̂

]

= − ik

B2

[(
1 + s2 +

β2

4k2

)
χ̂t + 2

(
s − iβ

2k

)
χ̂

]

= − ik

B2

[(
1 + |s̃|2) χ̂t + 2s̃χ̂

]
.

4. Decay Estimates in the Case of Boussinesq Approximation

In this section, we use the solution formula obtained in the last section to obtain the inviscid decay
estimates in Theorem 1.1, for solutions of the linearized equations under Boussinesq approximation.

4.1. The Case B2 > 0 and B2 �= 1
4

By expanding g1(s), g2(s), g′
1(s0), g′

2(s0) at infinity, we obtain the following asymptotics

g1(s) =
√

π

[
Γ(ν)

Γ(− 1
4 + ν

2 )Γ( 3
4 + ν

2 )
s− 3

2+ν

+
Γ(−ν)

Γ(− 1
4 − ν

2 )Γ( 3
4 − ν

2 )
s− 3

2−ν

]
+ O

(
|s|− 7

2+Re(ν)
)

,

(4.1)

g2(s) =
√

π

2

[
Γ(ν)

Γ( 1
4 + ν

2 )Γ( 5
4 + ν

2 )
s− 3

2+ν

+
Γ(−ν)

Γ( 1
4 − ν

2 )Γ( 5
4 − ν

2 )
s− 3

2−ν

]
+ O

(
|s|− 5

2+Re(ν)
)

,

(4.2)

g′
1(s0) = 2

√
π

[ (− 3
4 + ν

2

)
Γ(ν)

Γ(− 1
4 + ν

2 )Γ( 3
4 + ν

2 )
s

− 5
2+ν

0

+

(− 3
4 − ν

2

)
Γ(−ν)

Γ(− 1
4 − ν

2 )Γ( 3
4 − ν

2 )
s

− 5
2−ν

0

]

+ O
(
|s0|− 7

2+Re(ν)
)

,

(4.3)

g′
2(s0) =

√
π

[ (− 3
4 + ν

2

)
Γ(ν)

Γ( 1
4 + ν

2 )Γ( 5
4 + ν

2 )
s

− 5
2+ν

0

+

(− 3
4 − ν

2

)
Γ(−ν)

Γ( 1
4 − ν

2 )Γ( 5
4 − ν

2 )
s

− 5
2−ν

0

]

+ O
(
|s0|− 7

2+Re(ν)
)

.

(4.4)

For B2 < 1
4 or > 1

4 , ν is real or pure imaginary. We treat these cases separately.
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4.1.1. The Case 0 < B2 < 1
4
. In this case ν is a real number between 0 and 1

2 . By using the above
asymptotics of g1 (s) , g2 (s), we obtain bounds for the coefficients of C1, C2 (defined in (3.7), (3.8)). Since

1
Δ

[
g′
2(s0) +

2s0

1 + s2
0

g2(s0)
]

� 〈s0〉4 〈s0〉− 5
2+ν = 〈s0〉

3
2+ν

,

1
Δ

[
− iB2

1 + s2
0

g2(s0)
]

� 〈s0〉4 〈s0〉− 7
2+ν = 〈s0〉

1
2+ν

,

1
Δ

[
−g′

1(s0) − 2s0

1 + s2
0

g1(s0)
]

� 〈s0〉4 〈s0〉− 5
2+ν = 〈s0〉

3
2+ν

,

1
Δ

[
iB2

1 + s2
0

g1(s0)
]

� 〈s0〉4 〈s0〉− 7
2+ν = 〈s0〉

1
2+ν

,

and
|g1(s)|, |g2(s)| � 〈s〉− 3

2+ν
,

so we have

|C1(k, η)| � 〈s0〉
3
2+ν

⎛

⎝
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ ,

|C2(k, η)| � 〈s0〉
3
2+ν

⎛

⎝
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ .

Therefore ∣
∣
∣φ̂(t; k, η)

∣
∣
∣ = |C1(k, η)g1(s) + C2(k, η)g2(s)|

� 〈s〉− 3
2+ν 〈s0〉

3
2+ν

⎛

⎝
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ . (4.5)

To get the decay estimates in the physical space (x, y) from above, we note that the term 〈s〉− 3
2+ν does

not decay when t ≈ η
k (i.e. s ≈ 0) and as compensation the additional regularity of initial data is needed

to ensure the decay. This is made precise in the following lemma.

Lemma 4.1. Assume that there exists a > 0 and b, c ∈ R such that

|ĝ(t; k, η)| � 〈s〉−a 〈s0〉b |k|c
∣
∣
∣ĥ(k, η)

∣
∣
∣ , 0 �= k ∈ Z, η ∈ R, (4.6)

then
‖P �=0g (t)‖L2(T×R) � 〈t〉−a ‖h‖Hc

xHb+a
y

.

Proof. We have
∫

R

|ĝ(t; k, η)|2 dη =
∫

|s|=|t− η
k |≥ 1

2 |t|
|ĝ(t; k, η)|2 dη +

∫

|t− η
k |≤ 1

2 |t|
|ĝ(t; k, η)|2 dη

= I1 + I2.

By (4.6), we have

I1 � 〈t〉−2a
∫

|t− η
k |≥ 1

2 |t|
〈s0〉2b |k|2c

∣
∣
∣ĥ(k, η)

∣
∣
∣
2

dη.

Since
∣
∣t − η

k

∣
∣ ≤ 1

2 |t| implies |s0| =
∣
∣η
k

∣
∣ ≥ 1

2 |t|, so

I2 � 〈t〉−2a
∫

|t− η
k |≤ 1

2 |t|
〈s0〉2b+2a |k|2c

∣
∣
∣ĥ(k, η)

∣
∣
∣
2

dη.



Vol. 20 (2018) Inviscid Damping for Couette Flow 459

Thus
∫

R

|ĝ(t; k, η)|2 dη � 〈t〉−2a
∫

R

〈s0〉2b+2a |k|2c
∣
∣
∣ĥ(k, η)

∣
∣
∣
2

dη,

and

‖P �=0g (t)‖2
L2(T×R) =

∑

k �=0

∫

R

|ĝ(t; k, η)|2 dη

� 〈t〉−2a
∑

k �=0

|k|2c
∫

R

〈η〉2b+2a
∣
∣
∣ĥ(k, η)

∣
∣
∣
2

dη

� 〈t〉−2a ‖h‖2
Hc

xHb+a
y

.

�

Since the velocity perturbation

vx(t;x, y) = − ∂yψ(t;x, y) = (−∂y + t∂z)φ(t; z, y),

vy(t;x, y) = ∂xψ(t;x, y) = ∂zφ(t; z, y),

so by (4.5), we have

|v̂x (t; k, η)| =
∣
∣
∣iksφ̂(t; k, η)

∣
∣
∣

≤ 〈s〉− 1
2+ν 〈s0〉

3
2+ν

⎛

⎝|k|
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉

⎞

⎠ ,

|v̂y (t; k, η)| =
∣
∣
∣ikφ̂(t; k, η)

∣
∣
∣

≤ 〈s〉− 3
2+ν 〈s0〉

3
2+ν

⎛

⎝|k|
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉

⎞

⎠ .

From Eq. (3.9) we know

|τ̂(t; k, η)| ≤
∣
∣
∣
∣

k

B2

∣
∣
∣
∣
[
(1 + s2) |C1(k, η)g′

1(s) + C2(k, η)g′
2(s)|

+2|s| |C1(k, η)g1(s) + C2(k, η)g2(s)|]

� 〈s〉− 1
2+ν 〈s0〉

3
2+ν

⎛

⎝|k|
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉

⎞

⎠ .

By Lemma 4.1,

‖P �=0v
x‖L2 � 〈t〉− 1

2+ν
(
‖ψ0‖H1

xH2
y

+ ‖T 0‖L2
xH1

y

)
,

‖vy‖L2 � 〈t〉− 3
2+ν

(
‖ψ0‖H1

xH3
y

+ ‖T 0‖L2
xH2

y

)
,

and

‖P �=0T (t; ·, ·)‖L2 = ‖P �=0τ(t; ·, ·)‖L2 � 〈t〉− 1
2+ν

(
‖ψ0‖H1

xH2
y

+ ‖T 0‖L2
xH1

y

)
.
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4.1.2. The Case B2 > 1
4
. In this case, ν =

√
1
4 − B2 is pure imaginary. Then from (4.1–4.4), we have

|g1(s)| � 〈s〉− 3
2 , |g2(s)| � 〈s〉− 3

2 ,

|g′
1(s0)| � 〈s0〉− 5

2 , |g′
2(s0)| � 〈s0〉− 5

2 .

By similar calculations,

‖P �=0v
x‖L2 � 〈t〉− 1

2

(
‖ψ0‖H1

xH2
y

+ ‖T 0‖L2
xH1

y

)
,

‖vy‖L2 � 〈t〉− 3
2

(
‖ψ0‖H1

xH3
y

+ ‖T 0‖L2
xH2

y

)
,

‖P �=0T‖L2 � 〈t〉− 1
2

(
‖ψ0‖H1

xH2
y

+ ‖T 0‖L2
xH1

y

)
.

Since T is just ρ/A times a positive constant, this completes the proof of Theorem 1.1 (i)–(ii).

4.2. The Case B2 = 1
4

When B2 = 1
4 , ν = 0, the asymptotic approximations (4.1) and (4.2) no longer hold true, but the following

expansions at infinity emerge instead,

g1(s) = F

(
3
4
,
3
4
;
1
2
;−s2

)

=
2
√

π

Γ
(− 1

4

)
Γ
(

3
4

)s− 3
2 log (s) − 2

√
π
(
γ + �

(
3
4

)
+ 2
)

Γ
(− 1

4

)
Γ
(

3
4

) s− 3
2 + O

(
|s|− 7

2

)
,

g2(s) = sF

(
5
4
,
5
4
;
3
2
;−s2

)

=
√

π

Γ
(

1
4

)
Γ
(

5
4

)s− 3
2 log (s) −

√
π
(
γ + �

(
1
4

)
+ 2
)

Γ
(

1
4

)
Γ
(

5
4

) s− 3
2 + O

(
|s|− 7

2

)

where γ is the Euler constant, �(x) = Γ′(x)
Γ(x) is the digamma function. It can be seen that with the

logarithm function, both solutions decay a little bit slower than before.
Similarly, their derivatives also have different asymptotic approximations

g′
1(s0) = − 9

4
s0F

(
7
4
,
7
4
;
3
2
;−s2

0

)

= − 3
√

π

Γ
(− 1

4

)
Γ
(

3
4

)s− 5
2

0 log (s0)

+
3
√

π
(
γ + �

(
3
4

)
+ 8

3

)

Γ
(− 1

4

)
Γ
(

3
4

) s
− 5

2
0 + O

(
|s0|− 7

2

)
,

g′
2(s0) =F

(
5
4
,
5
4
;
3
2
;−s2

0

)
− 25

12
s2
0F

(
9
4
,
9
4
;
5
2
;−s2

0

)

= − 3
√

π

2Γ
(

1
4

)
Γ
(

5
4

)s− 5
2

0 log (s0)

+
3
√

π
(
γ + �

(
1
4

)
+ 8

3

)

2Γ
(

1
4

)
Γ
(

5
4

) s
− 5

2
0 + O

(
|s0|− 7

2

)
.
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Therefore, we obtain the following estimates

|g1(s)| � 〈s〉− 3
2 〈log 〈s〉〉 , |g2(s)| � 〈s〉− 3

2 〈log 〈s〉〉 ,

|g′
1(s0)| � 〈s0〉− 5

2 〈log 〈s0〉〉 , |g′
2(s0)| � 〈s0〉− 5

2 〈log 〈s0〉〉 ,

and as a result

|C1(k, η)| � 〈s0〉
3
2 〈log 〈s0〉〉

⎛

⎝
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ ,

|C2(k, η)| � 〈s0〉
3
2 〈log 〈s0〉〉

⎛

⎝
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ .

Therefore, we have
∣
∣
∣φ̂(t; k, η)

∣
∣
∣ = |C1(k, η)g1(s) + C2(k, η)g2(s)|

� 〈s〉− 3
2 〈s0〉

3
2 〈log 〈s〉〉 〈log 〈s0〉〉

⎛

⎝
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣T̂ 0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ ,

from which the estimates of |v̂x (t; k, η)| , |v̂y (t; k, η)| and |τ̂(t; k, η)| follow. Then the decay rates of
vx, vy, T can be obtained similarly as in the proof of Lemma 4.1, so we only sketch it. Notice that for
any a ≥ 1

2 , the function h (x) = 〈x〉a

〈log〈x〉〉 is increasing for all x ≥ 0. When |s| ≤ 1
2 |t| (implying |s0| ≥ 1

2 |t|),
we have

〈s〉−a 〈s0〉
3
2 〈log 〈s〉〉 〈log 〈s0〉〉 ≤ 〈s0〉

3
2 〈log 〈s0〉〉 ≤ h (s0)

h
(

1
2 t
) 〈s0〉

3
2 〈log 〈s0〉〉

� 〈t〉−a 〈log 〈t〉〉 〈s0〉
3
2+a

.

On the other hand, when |s| ≥ 1
2 |t|, we have

〈s〉−a 〈s0〉
3
2 〈log 〈s〉〉 〈log 〈s0〉〉 � 〈t〉−a 〈log 〈t〉〉 〈s0〉

3
2+a

,

since 〈log 〈s0〉〉 ≤ 〈s0〉a. Similar to the proof of Lemma 4.1, we get

‖P �=0v
x‖L2 � 〈t〉− 1

2 〈log 〈t〉〉
(
‖ψ0‖H1

xH2
y

+ ‖T 0‖L2
xH1

y

)
,

‖vy‖L2 � 〈t〉− 3
2 〈log 〈t〉〉

(
‖ψ0‖H1

xH3
y

+ ‖T 0‖L2
xH2

y

)
.

and

‖P �=0T‖L2 � 〈t〉− 1
2 〈log 〈t〉〉

(
‖ψ0‖H1

xH2
y

+ ‖T 0‖L2
xH1

y

)
.

4.3. The Case B2 = 0

When B2 = 0, that is, β = 0, then by (2.14)–(2.15), we get

(∂t + Ry∂x) Δψ = − ∂x

( ρ

A

)
g,

(∂t + Ry∂x)
( ρ

A

)
= 0.
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For convenience, we let R = 1. Again, we define

f(t; z, y) =ω(t; z + ty, y) = ω(t;x, y),

φ(t; z, y) =ψ(t; z + ty, y) = ψ(t;x, y),

τ(t; z, y) =
ρ

A
(t; z + ty, y) =

ρ

A
(t;x, y).

Then

∂tf(t; z, y) = g∂zτ(t; z, y), ∂tτ(t; z, y) = 0.

So

τ̂(t; k, η) = τ̂(0; k, η),

f̂ (t; k, η) = f̂ (0; k, η) + tikgτ̂(0; k, η) = ω̂0(k, η) + tikgρ̂0 (k, η) ,

where ω(0;x, y) = ω0(x, y), ρ
A (0;x, y) = ρ0 (x, y). Thus by (3.1), we get

∣
∣
∣φ̂(t; k, η)

∣
∣
∣ =

1
k2 (1 + s2)

∣
∣
∣f̂ (t; η, k)

∣
∣
∣

� 〈s〉−2 〈s0〉2
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+ |t| 1

|k| 〈s〉−2 ∣∣ρ̂0(k, η)
∣
∣ .

Therefore

|v̂x (t; k, η)| � 〈s〉−1 〈s0〉2 |k|
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+ |t| 〈s〉−1 ∣∣ρ̂0(k, η)

∣
∣ ,

|v̂y (t; k, η)| � 〈s〉−2 〈s0〉2 |k|
∣
∣
∣ψ̂0(k, η)

∣
∣
∣+ |t| 〈s〉−2 ∣∣ρ̂0(k, η)

∣
∣ .

By Lemma 4.1, we get

‖P �=0v
x‖L2 � ‖ρ0‖L2

xH1
y

+ 〈t〉−1 ‖ψ0‖H1
xH3

y
,

‖vy‖L2 � 〈t〉−1 ‖ρ0‖L2
xH2

y
+ 〈t〉−2 ‖ψ0‖H1

xH4
y
.

Also,
∥
∥ ρ

A

∥
∥

L2 (t) =
∥
∥ρ0

∥
∥. When ρ0 �= 0, there is no decay for ρ

A and P �=0v
x. When ρ0 = 0, we get

‖P �=0v
x‖L2 � 〈t〉−1 ‖ψ0‖H1

xH3
y
, ‖vy‖L2 � 〈t〉−2 ‖ψ0‖H1

xH4
y
,

which exactly recovers the linear decay results in [17] for the homogeneous fluids.

Remark 4.2. For small B > 0, the decay rates for ‖P�=0v
x‖L2 and ‖vy‖L2 are t−

1
2+ν and t−

3
2+ν respectively

even when ρ0 = 0. Hence, if B → 0+ (i.e. ν → 1
2−), surprisingly the decay rates are almost one order

slower than the case of homogeneous fluids (B = 0). This apparent gap is due to the vanishing of the
coefficient of 〈s〉− 3

2+ν terms in the asymptotics of hypergeometric functions (4.1)–(4.4).

5. Decay Estimates for the Full Euler Equation

In this section, we prove the decay estimates in Theorem 1.2 for the linearized system of the full Euler
equation. The proof is very similar to the Boussinesq case, so we only sketch it.
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5.1. The Case 0 < B2 < ∞

For each B2 > 0, we can find similar bounds for

χ̂ = C3(k, η)g3(s) + C4(k, η)g4(s)

as in the Boussinesq case. For B2 > 0 and B2 �= 1
4 , the asymptotics of g3, g4 at s = ∞ are

g3(s) =
(

1
2

− iκs

2

)−1−β1
[

Γ(2 − β1)Γ(−2ν)
Γ
(

3
2 − ν

)
Γ
(

1
2 − β1 − ν

)
(

− iκs

2

)− 1
2+β1−ν

+
Γ(2 − β1)Γ(2ν)

Γ
(

3
2 + ν

)
Γ
(

1
2 − β1 + ν

)
(

− iκs

2

)− 1
2+β1+ν

+ O
(
|s|− 3

2+Re(ν)
)
]

g4(s) =
(

1
2

+
iκs

2

)−1+β1
[

Γ(β1)Γ(−2ν)
Γ
(− 1

2 − ν
)
Γ
(

1
2 + β1 − ν

)
(

− iκs

2

)− 1
2−β1−ν

+
Γ(β1)Γ(2ν)

Γ
(− 1

2 + ν
)
Γ
(

1
2 + β1 + ν

)
(

− iκs

2

)− 1
2−β1+ν

+ O
(
|s|− 3

2+Re(ν)
)
]

g′
3(s) =

(
iκ

2

)(
1
2

− iκs

2

)−β1
[(

3
2 + ν

)
Γ(2 − β1)Γ(−2ν)

Γ
(

3
2 − ν

)
Γ
(

1
2 − β1 − ν

)
(

− iκs

2

)− 5
2+β1−ν

+

(
3
2 − ν

)
Γ(2 − β1)Γ(2ν)

Γ
(

3
2 + ν

)
Γ
(

1
2 − β1 + ν

)
(

− iκs

2

)− 5
2+β1+ν

+ O
(
|s|− 7

2+Re(ν)
)
]

g′
4(s) =

(
iκ

2

)(
1
2

+
iκs

2

)β1
[(− 3

2 − ν
)
Γ(2 − β1)Γ(−2ν)

Γ
(− 1

2 − ν
)
Γ
(

1
2 + β1 − ν

)
(

iκs

2

)− 5
2−β1−ν

+

(− 3
2 + ν

)
Γ(2 − β1)Γ(2ν)

Γ
(− 1

2 + ν
)
Γ
(

1
2 + β1 + ν

)
(

iκs

2

)− 5
2−β1+ν

+ O
(
|s|− 7

2+Re(ν)
)
]

.

For B2 = 1
4 , the expansions at s = ∞ are

g3(s) =
(

1
2

− iκs

2

)−β1

×
[

2Γ(2 − β)√
πΓ
(

1
2 − β

)
(

− iκs

2

)− 3
2+β1

log
(

− iκs

2

)
+ O

(
|s|− 3

2+β1

)
]

,

g4(s) =
(

1
2

+
iκs

2

)β1

×
[

Γ(β)
2
√

πΓ
(

1
2 + β

)
(

− iκs

2

)− 3
2−β1

log
(

− iκs

2

)
+ O

(
|s|− 3

2−β1

)
]

,

g′
3(s) =

(
iκ

2

)(
1
2

− iκs

2

)−β1

×
[

3Γ(2 − β)√
πΓ
(

1
2 − β

)
(

− iκs

2

)− 5
2+β1

log
(

− iκs

2

)
+ O

(
|s|− 5

2+β1

)
]

,
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g′
4(s) =

(
iκ

2

)(
1
2

+
iκs

2

)β1

×
[

3Γ(β)
4
√

πΓ
(

1
2 + β

)
(

− iκs

2

)− 5
2−β1

log
(

− iκs

2

)
+ O

(
|s|− 5

2−β1

)
]

.

Thus, we have the same bounds for χ̂, that is, allowdisplaybreaks

|χ̂(t; k, η)| � 〈s〉− 3
2+ν 〈s0〉

3
2+ν

⎛

⎝
∣
∣
∣Ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣Υ̂0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ ,

when 0 < B2 < 1
4 ;

|χ̂(t; k, η)| � 〈s〉− 3
2 〈s0〉

3
2

⎛

⎝
∣
∣
∣Ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣Υ̂0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ ,

when B2 > 1
4 , and

|χ̂(t; k, η)| � 〈s〉− 3
2 〈s0〉

3
2 〈log 〈s〉〉 〈log 〈s0〉〉

⎛

⎝
∣
∣
∣Ψ̂0(k, η)

∣
∣
∣+

∣
∣
∣Υ̂0(k, η)

∣
∣
∣

〈s0〉 |k|

⎞

⎠ ,

when B2 = 1
4 .

Since

e− 1
2βyvy(t;x, y) = e− 1

2βy∂xψ(t;x, y) = ∂xe− 1
2βyφ(t;x − ty, y) = ∂zχ(t; z, y),

e− 1
2βyvx(t;x, y) = e− 1

2βy (−∂yψ(t;x, y)) = e− 1
2βy(−∂y + t∂z)φ(t; z, y)

= (−∂y + t∂z)
(
e− 1

2βyφ(t; z, y)
)

− 1
2
βe− 1

2βyφ(t; z, y)

=
(

−∂y + t∂z − 1
2
β

)
χ(t;x, y),

the decay estimates for e− 1
2βyvx and e− 1

2βyvy (in Theorem 1.2 (i)–(iii)) can be proved as in the Boussinesq
case. The decay of the density variation can be obtained similarly.

5.2. The Case B2 = 0

When B2 = 0, i.e., β = 0, the linearized equations are exactly the same as the Boussinesq case. Thus all
the estimates are the same.

6. Dispersive Decay in the Absence of Shear

The shear plays a crucial role in the inviscid damping. Without a shear, the decay mechanism is totally
different. When B2 < ∞, the decay of ‖v‖L2 is due to the mixing of vorticity caused by the shear motion.
When B2 = ∞, ‖v‖L2 does not decay but we have the decay of ‖v‖L∞ due to dispersive effects of the
linear waves in a stably stratified fluid.
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6.1. Boussinesq Case

When there is no shear, i.e. R = 0, B2 = ∞, the equations (2.14–2.15) become

∂tΔψ = −∂x

( ρ

A

)
g, ∂t

( ρ

A

)
= β∂xψ.

Denote T = ρ
βA , then above equations become

Δψt = −∂xTβg, (6.1)
∂tT = ∂xψ. (6.2)

6.1.1. The L2 Stability. Multiplying (6.1) by ψ and then integrating by parts with (6.2), we get the
following invariant

d
dt

(
βg

∫∫
T 2dxdy +

∫∫
|∇ψ|2 dxdy

)
= 0.

This shows that in the L2 norm, the perturbations of velocity and density are Liapunov stable but do
not decay. However, below we show that their L∞ norms decay due to the dispersive effects.

6.1.2. The L∞ Decay. First, we solve (6.1)–(6.2) by Fourier transforms. Denote N2 = βg to be the
squared Brunt-Väisälä frequency. By Fourier transform (x, y) → (k, η),

(
(iη)2 + (ik)2

)
ψ̂t = −(ik)N2T̂ , (6.3)

T̂t = (ik)ψ̂. (6.4)

Combining (6.3)–(6.4), we get
d2

dt2
ψ̂ = −λ2ψ̂,

where λ2(k, η) = k2N2

k2+η2 . For k �= 0, its solutions are

ψ̂(t) = C1e
iλt + C2e

−iλt.

By initial conditions,

ψ̂(0) = C1 + C2 = ψ̂0, ψ̂′(0) = iλ(C1 − C2) =
iλ2

k
T̂ 0,

thus

C1,2 =
1
2

(
ψ̂0 ± λ

k
T̂ 0

)
.

By (6.3),

T̂ = − ik

λ2
ψ̂t =

k

λ

(
C1e

iλt − C2e
−iλt

)
.

To prove the L∞ decay of solutions, we need two lemmas.

Lemma 6.1. (Van der Corput) Let h(x) be either convex or concave on [a, b] with −∞ ≤ a < b ≤ ∞.
Then

∣
∣
∣
∣

∫ a

b

eih(η)dη

∣
∣
∣
∣ ≤ 2

(
min
[a,b]

|h′|
)−1

,

∣
∣
∣
∣

∫ a

b

eih(η)dη

∣
∣
∣
∣ ≤ 4

(
min
[a,b]

|h′′|
)− 1

2

. (6.5)

Lemma 6.2. For λ(k, η) = |k|N√
k2+η2

and n sufficiently large,

∣
∣
∣
∣

∫ n

−n

ei(λt+ηy)dη

∣
∣
∣
∣ � |k| 3

2 |Nt|− 1
3 + |Nt|− 1

2 |k|− 1
2 n

3
2 .
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Proof. We can assume N = 1 without loss of generality. Notice that

λ(η) =
1

√
1 +

(
η
k

)2
=
〈η

k

〉−1

,

λ′(η) = − η

k2

〈η

k

〉−3

,

λ′′(η) =
2η2 − k2

k4

〈η

k

〉−5

,

and λ(η) has two inflection point, η1,2 = ±
√

2
2 k. Let n >

√
2

2 |k|. Choose ε > 0 so small that all the Taylor’s
expansion below are valid in (ηi − ε, ηi + ε) , i = 1, 2. Define

S1 = (−n, η1 − ε) ∪ (η1 + ε, η2 − ε) ∪ (η2 + ε, n) .

By (6.5), we have
∣
∣
∣
∣

∫

S1

ei(λt+ηy)dη

∣
∣
∣
∣ ≤ 4

(
min
[a,b]

|t||λ′′|
)− 1

2

= 4|t|− 1
2

(
2n2 − k2

k4

〈n

k

〉−5
)− 1

2

� |k|− 1
2 |t|− 1

2 n
3
2 ,

provided n = n(ε) is sufficiently large. For large t, we can divide (η1−ε, η1+ε) =
{

|t|− 1
3 < |η − η1| < ε

}
∪

{
|η − η1| ≤ |t|− 1

3

}
= S2 ∪ S3, so that

∣
∣
∣
∣

∫ η1+ε

η1−ε

ei(λt+ηy)dη

∣
∣
∣
∣ ≤ 4|t|− 1

2

(
min
S2

|λ′′|
)− 1

2

+ 2|t|− 1
3 .

For η ∈ S2, we have

|λ′′(η)| =

∣
∣2η2 − k2

∣
∣

k4

〈η

k

〉−5

=
2 |η − η1| |η − η2|

k4

〈η

k

〉−5

>
2 |η − η2|

k4

〈η

k

〉−5

|t|− 1
3

� |k|−3|t|− 1
3 .

Therefore ∣
∣
∣
∣

∫ η1+ε

η1−ε

ei(λt+ηy)dη

∣
∣
∣
∣ � 4|t|− 1

2

(
|k|−3|t|− 1

3

)− 1
2

+ 2|t|− 1
3 � |k| 3

2 |t|− 1
3 .

Applying similar estimates to (η2 − ε, η2 + ε) will complete the proof of this lemma. �

Now we prove the L∞ decay of the solutions of (6.1)–(6.2). By Fourier inverse transform formula,

P �=0ψ(t;x, y) =
1
2π

∑

k �=0

(
eikx

∫ ∞

−∞
ψ̂(t)eiηydη

)

=
1
2π

∑

k �=0

(
eikx

∫ ∞

−∞

(
C1(k, η)eiλt + C2(k, η)e−iλt

)
eiηydη

)
,
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where
∣
∣
∣
∣

∫ ∞

−∞
C1(k, η)eiλteiηydη

∣
∣
∣
∣

≤ 1
2

∣
∣
∣
∣

∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣
∣
∣
∣+

1
2|k|

∣
∣
∣
∣

∫ ∞

−∞
λT̂ 0(k, η)eiλteiηydη

∣
∣
∣
∣ .

Define

I(y) =
∫ n

−n

eiλ(k,η)tψ̂0(k, η)eiηydη

=
√

2π
(
eiλ(k,η)tχ[−n,n]ψ̂0(k, η)

)∨
(y)

=
(
eiλ(k,η)tχ[−n,n]

)∨
∗ ψ̂0(k, y),

then

‖I(y)‖L∞ ≤
∥
∥
∥
∥
(
eiλ(k,η)tχ[−n,n]

)∨∥∥
∥
∥

L∞
y

‖ψ̂0(k, ·)‖L1
y

≤
∥
∥
∥
∥

∫ n

−n

eiλ(k,η)teiηydη

∥
∥
∥
∥

L∞
y

‖ψ̂0(k, ·)‖L1
y
.

Here, ∨ stands for the inverse Fourier transform. By Lemma 6.2, we have
∣
∣
∣
∣

∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣
∣
∣
∣

≤
∫

|η|>n

∣
∣
∣ψ̂0(k, η)

∣
∣
∣ dη + |I(y)|

�
(∫

|η|>n

〈η〉−2α dη

) 1
2

‖ψ̂0(k, ·)‖Hα
y

+
(
|k| 3

2 |Nt|− 1
3 + |k|− 1

2 |Nt|− 1
2 n

3
2

)
‖ψ̂0(k, ·)‖L1

y

�
(
n−α+ 1

2 + |k| 3
2 |t|− 1

3 + |k|− 1
2 |t|− 1

2 n
3
2

)(
‖ψ̂0(k, ·)‖Hα

y
+ ‖ψ̂0(k, ·)‖L1

y

)
.

Choose n = |t| 1
2α+2 , for α ∈ ( 1

2 , 7
2

]
, we have

∣
∣
∣
∣

∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣
∣
∣
∣ � |k| 3

2 |t|− 2α−1
4α+4

(
‖ψ̂0‖Hα

y
+ ‖ψ̂0‖L1

y

)
.

If the initial condition is smooth enough, then
∣
∣
∣
∣

∫ ∞

−∞
ψ̂0(k, η)eiλteiηydη

∣
∣
∣
∣ � |k| 3

2 |t|− 1
3

(
‖ψ̂0‖

H
7/2
y

+ ‖ψ̂0‖L1
y

)
.

Similarly, ∣
∣
∣
∣

∫ ∞

−∞
λT̂ 0(k, η)eiλteiηydη

∣
∣
∣
∣ � N |k| 3

2 |t|− 1
3

(
‖T̂ 0‖

H
7/2
y

+ ‖T̂ 0‖L1
y

)
.

Therefore, we have

‖P �=0ψ̂(t; k, ·)‖L∞
y

� |t|− 1
3

(
|k| 3

2 ‖ψ̂0‖
H

7/2
y

+ |k| 3
2 ‖ψ̂0‖L1

y

+|k| 1
2 ‖T̂ 0‖

H
7/2
y

+ |k| 1
2 ‖T̂ 0‖L1

y

)
.
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Hence the decay in L2
xL∞

y is obtained:

‖P �=0ψ‖L2
xL∞

y
� |t|− 1

3

(
‖ψ0‖

H
3/2
x H

7/2
y

+ ‖ψ0‖
H

3/2
x L1

y

+ ‖T 0‖
H

1/2
x H

7/2
y

+ ‖T 0‖
H

1/2
x L1

y

)
,

‖P �=0v
x‖L2

xL∞
y

� |t|− 1
3

(
‖ψ0‖

H
3/2
x H

9/2
y

+ ‖ψ0‖
H

3/2
x W 1,1

y

+ ‖T 0‖
H

1/2
x H

9/2
y

+ ‖T 0‖
H

1/2
x W 1,1

y

)
,

‖vy‖L2
xL∞

y
� |t|− 1

3

(
‖ψ0‖

H
5/2
x H

7/2
y

+ ‖ψ0‖
H

5/2
x L1

y

+ ‖T 0‖
H

3/2
x H

7/2
y

+ ‖T 0‖
H

3/2
x L1

y

)
.

Similarly, for the density we have

‖P �=0T‖L2
xL∞

y
� |t|− 1

3

(
‖ψ0‖

H
5/2
x H

9/2
y

+ ‖ψ0‖
H

5/2
x W 1,1

y

+‖T 0‖
H

3/2
x H

7/2
y

+ ‖T 0‖
H

3/2
x L1

y

)
.

Below, we show that the decay rate |t|− 1
3 obtained above is sharp by constructing an example. Recall

that the solution to (6.3)–(6.4) is

ψ̂(t; k, η) = C1e
iλt + C2e

−iλt.

where k �= 0, λ2(k, η) = k2N2

k2+η2 and C1,2(k, η) are determined by ψ̂0, T̂ 0. Therefore, for a fixed k, we
consider a function of the form

ψ̂(t; k, η) = f(η)eiλt,

where f(η) is to be chosen below. By the Fourier inverse formula

ψ(t; k, y) =
1√
2π

∫ ∞

−∞
f(η)eiλt+iηydη.

We will look at the value of ψ at y = ct where c is a constant to be determined later. Define

g(η) := λ (η) + cη =
kN

√
k2 + η2

+ cη.

We note that η∗ = k√
2

is one inflection point of λ (η) (the other one is − k√
2
). Let c = 2N

3
√

3k
, then

g′′ (η∗) = λ′′ (η∗) = 0,

g′ (η∗) = −η∗N
k2

〈
η∗

k

〉−3

+ c = − 2N

3
√

3k
+ c = 0,

and

g′′′ (η∗) = −N

k3

〈
η∗

k

〉−7
(

−9
η∗

k
+ 6

(
η∗

k

)3
)

=
N

k3

16
27

√
3 > 0

Thus near η∗, we have

g (η) = g(η∗) +
1
6
g′′′ (η∗) (η − η∗)3 + o

(
(η − η∗)3

)
, (6.6)

and

g′ (η) =
1
2
g′′′ (η∗) (η − η∗)2 + o

(
(η − η∗)2

)
. (6.7)
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Choose δ > 0 small such that (6.6) and (6.7) hold true in I = (η∗ − δ, η∗ + δ). In particular, g′ (η) >
0 when η ∈ I and η �= η∗, thus g (η) is monotone in I. For a function f with its support in I, letting
u = g(η) we have

ψ̂(t; k, ct) =
1√
2π

∫ ∞

−∞
f(η)eiλt+iηctdη

=
1√
2π

∫ ∞

−∞
f(g−1(u))eiut 1

g′ (g−1(u))
du.

In the above, 1
g′(g−1(u)) has singularity at u∗ = g(η∗) = 4

√
2

3
√

3
N . Since

u = g (η) = u∗ + O(η − η∗)3, η ∈ I,

so the order of singularity is

1
g′ (g−1(u))

= O

(
1

|η − η∗|2
)

= O

(
1

|u − u∗| 2
3

)

. (6.8)

Choose

f(η) =
g′ (η)

|g (η) − u∗| 2
3
χI (η) =

g′ (g−1(u)
)

|u − u∗| 2
3

χI (η) ,

which by (6.8) is smooth in its support I. Hence the inverse Fourier transform of f is smooth, and has
finite Hs

y norm for arbitrarily s > 0. By (6.6),

a− = g (η∗ − δ) − g (η∗) < 0, a+ = g (η∗ + δ) − g (η∗) > 0.

Therefore, we have

ψ̂(t; k, ct) =
1
2π

∫ g(η∗+δ)

g(η∗−δ)

1

|u − u∗| 2
3
eiutdu

=
eiu∗t

2π

∫ a+

a−
ξ− 2

3 eiξtdξ

=
eiu∗t

2πt
1
3

∫ a+t

a−t

ξ′ − 2
3 eiξ′

dξ′,

while

lim
t→+∞

∫ a+t

a−t

ξ′ − 2
3 eiξ′

dξ′ =
∫ ∞

−∞
x− 2

3 eixdx =
√

3Γ
(

1
3

)
.

Therefore, ‖ψ̂(t; k, ·)‖L∞
y

cannot decay faster than t−
1
3 .

Remark 6.3. The optimal t−
1
3 decay obatined above for (x, y) ∈ T × R is essentially for the one dimen-

sional case (in y ). By contrast, in [12] the dispersive decay of solutions of (6.1)–(6.2) was shown to
be t−

1
2 for the 2D case, i.e., (x, y) ∈ R

2. The decay rate in [12] was obtained by the Littlewood-Paley
decomposition and stationary phase lemma.

6.2. Original Euler Equation

When there is no shear, i.e. R = 0, the original Euler equations (2.7–2.8) become

−β∂t∂yψ + ∂tΔψ = − ∂x

(
ρ

ρ0

)
g,

∂t

(
ρ

ρ0

)
=β∂xψ.
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Likewise, define T = ρ
βρ0(y) , then the equations read

(−β∂y + Δ)ψt = −∂xTβg, (6.9)
∂tT = ∂xψ. (6.10)

Let Ψ = e− 1
2βyψ,Υ = e− 1

2βyT , then the Eqs. (6.9)–(6.10) become
(

−1
4
β2 + Δ

)
Ψt = −N2∂xΥ, ∂tΥ = ∂xΨ. (6.11)

By the Fourier transform (x, y) → (k, η), we have
(

−1
4
β2 + (iη)2 + (ik)2

)
Ψ̂t = −(ik)N2Υ̂, Υ̂t = (ik)Ψ̂.

Therefore,

d2

dt2
Ψ̂ = −λ2Ψ̂,

where

λ2 =
k2N2

k2 + η2 + β2

4

.

Its solutions are

Ψ̂(t) = C1e
iλt + C2e

−iλt,

where

C1,2 =
1
2

(
Ψ̂0 ± λ

k
Υ̂0

)
.

Similar to the Boussinesq case, we have the following conservation law for (6.11)

0 =
d
dt

(∫∫ (
1
4
β2 |Ψ|2 + |∇Ψ|2 + N2 |Υ|2

)
dxdy

)
.

By integration by parts,
∫∫ (

1
4
β2 |Ψ|2 + |∇Ψ|2 + N2 |Υ|2

)
dxdy

=
∥
∥
∥e− 1

2βyvx
∥
∥
∥

2

L2
+
∥
∥
∥e− 1

2βyvy
∥
∥
∥

2

L2
+

g

β

∥
∥
∥
∥e

− 1
2βy ρ

ρ0

∥
∥
∥
∥

2

L2

.

This shows that there is no decay in the L2 norm for e− 1
2βyv and e− 1

2βy ρ
ρ0

. For the L∞ decay, notice that

λ2 =
k2N2

k2 + η2 + β2

4

=
m2 (κN)2

m2 + η2
.

where m =
√

1
4β2 + k2, κ = k

m . By Lemma 6.2 we have

∣
∣
∣
∣

∫ n

−n

ei(λt+ηy)dη

∣
∣
∣
∣ � |m| 3

2 |κNt|− 1
3 + |κNt|− 1

2 |m|− 1
2 n

3
2

� |k| 3
2 |t|− 1

3 + |t|− 1
2 |k|− 1

2 n
3
2 ,



Vol. 20 (2018) Inviscid Damping for Couette Flow 471

since κ � 1,m � k. Accordingly, we have

‖e− 1
2βyP �=0ψ‖L2

xL∞
y

� |t|− 1
3

(
‖Ψ0‖

H
3/2
x H

7/2
y

+ ‖Ψ0‖
H

3/2
x L1

y

+ ‖Υ0‖
H

1/2
x H

7/2
y

+ ‖Υ0‖
H

1/2
x L1

y

)
,

‖e− 1
2βyP �=0v

x‖L2
xL∞

y
� |t|− 1

3

(
‖Ψ0‖

H
3/2
x H

9/2
y

+ ‖Ψ0‖
H

3/2
x W 1,1

y

+ ‖Υ0‖
H

1/2
x H

9/2
y

+ ‖Υ0‖
H

1/2
x W 1,1

y

)
,

‖e− 1
2βyvy‖L2

xL∞
y

�|t|− 1
3

(
‖Ψ0‖

H
5/2
x H

7/2
y

+ ‖Ψ0‖
H

5/2
x L1

y

+ ‖Υ0‖
H

3/2
x H

7/2
y

+ ‖Υ0‖
H

3/2
x L1

y

)
,

‖e− 1
2βyP �=0T‖L2

xL∞
y

� |t|− 1
3

(
‖Ψ0‖

H
5/2
x H

9/2
y

+ ‖Ψ0‖
H

5/2
x W 1,1

y

+ ‖Υ0‖
H

3/2
x H

7/2
y

+ ‖Υ0‖
H

3/2
x L1

y

)
.
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