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Abstract. We study the inviscid damping of Couette flow with an exponentially stratified density. The optimal decay
rates of the velocity field and the density are obtained for general perturbations with minimal regularity. For Boussinesq
approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the
decay rates for the full Euler equations of stratified fluids, which were not studied before. For both models, the decay rates
depend on the Richardson number in a very similar way. Besides, we also study the dispersive decay due to the exponential
stratification when there is no shear.

1. Introduction

Couette flow in exponentially stratified fluid is a shear flow U(y) = Ry with the density profile po(y) =
Ae™PY. The stability of such a flow was first studied by Taylor [21] in the half space by the method of
normal modes. He presented a convincing but somewhat incomplete analysis to show that the spectrum
of the linearized equation (now called Taylor—Goldstein equation) is quite different when the Richardson
number B? = % (g is the gravitational constant) is greater or less than 1/4. He found that there exist
infinitely many discrete neutral eigenvalues when B? > % and no such neutral eigenvalues exist when
B? < 1. This claim was later proved by Dyson [10] and Dikki [9]. However, Taylor did not provide a clear
answer to the problem of stability of Couette flow. From 1950s, there have been lots of work trying to
understand the stability of stratified Couette flow, by studying the initial value problem. They include
Hpiland [15], Eliassen et al. [11], Case [6], Dikki [8], Kuo [16], Hartman [14], Chimonas [7], Brown and
Stewartson [4], Farrell and Toannou [13]. We refer to Section 3.2.3 of the book of Yaglom [23] for a detailed
survey of the literature. Most of the papers used the Boussinesq approximation. One exception is Dikki
[8], where he proved the Liapunov stability of Couette flow in the half space for the full stratified Euler
equations, and for any B2 > 0. We note that for the exponentially stratified fluid (i.e. po(y) = Ae=PY),
the Boussinesq approximation is valid only when 3 is small. One interesting result following from the
initial value approach is the inviscid damping of velocity fields. Such inviscid damping phenomena was
known by Orr [18] in 1907, where the Couette flow in a homogeneous fluid was considered. Orr showed
that the horizontal and vertical velocities decay by ¢! and t~2 respectively. Such damping is not due
to the viscosity, but instead is due to the mixing of the vorticity under the Couette flow. In recent
years, the inviscid damping phenomena attracted new attention. In [17], Lin and Zeng showed that if we
consider initial (vorticity) perturbation in the Sobolev space H* (s < 2) then the nonlinear damping is
not true due to the existence of nonparallel steady flows of the form of Kelvin’s cats eye near Couette.
In [2], Bedrossian and Masmoudi proved the nonlinear inviscid damping for perturbations near Couette
in Gevrey class (i.e. almost analytic). The linear inviscid damping for more general shear flows in a
homogeneous fluid were also studied in [22,24].

In this paper, our goal is to get the precise estimates of linear decay rates for Couette flow in
exponentially stratified fluid, which might be useful in the future study of nonlinear damping. We
restrict ourselves to the case in the whole space. The including of the boundary (half space, finite
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channel) causes additional complication, as can be seen from Taylor’s results mentioned at the begin-
ning.

Our first result is about the linear decay estimates for solutions of the linearized equations under
Boussinesq approximation. Consider the steady shear flow vy = (Ry,0) with an exponentially stratified
density profile po(y) = Ae™PY, where R € R, A > 0,3 > 0 are constants. Denote B? = % to be the
Richardson number. When 3 is small, we approximate po(y) by A (1 — By) and the linearized equations
under the Boussinesq approximation (see Sect. 2.1) is

-
(00 + Ryd,) b = =0, (£) . (L1)

(0c + Ryd,) (%) = 60,0 (1:2)
where 1 and 4 are the perturbations of stream function and relative density variation.

Theorem 1.1. Let (¢(t;x,y), §(t;2,y)) be the solution of (1.1)~(1.2) with the initial data

v0sa,) = 0(y), PEBD oy ),

where y € R and x is periodic with period L. Denote the velocity v = V1 = (v¥,vY). Below, f < g

stands for f < Cg for a constant C depending only on R, 3,g. We denote (f) := /1 + f2 and Py to be
the projection to nonzero Fourier modes (in x), that is,

Pyof(t;z,y) = f(t;2,y) — / [t z,y)d
The following estimates hold true:
(i) If0 < B> < L let v =/t — B2, then
1Peov”llze 075 (1 Nz + 1%l a2y )
lo¥llze 5 @673 (19 0y + 10lrzms )
1Pl 73 (1 Nmamz + 10°ls2my ) -
(it) If B* > & then
1Paov”llze S 0% (10 Mz + 16223 )
lo¥llzz S (7% (1l + 16 azms )
1PsoSlice S 0% (19 Narams + 6%l s2my ) -

(iii) If B> = 1, then

N\»—A

1Psovllze S (8)* og (1)) (I8 Nzmz + 0l )
lo¥lize S (&% (og () (19 llapmg + 16 2z )
1Pao Sl < 07 (log (&) (10 sz + 116%) 22y ) -
(iv) If B> =0, i.e., 3 =0, then H%Hm (t) = p°llz> and
1P2ov" L2 S N0 Nc2ms + B 1002 s
lo¥llee S 67 1oz + 0 19l g
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(v) If B?> = oo, i.e. R =0, then % H%H; + H’U||2Lz is conserved. The following decay estimates hold

; 27100
true in Ly Ly°,

_1
1Paov® lp2nse S 11173 (nwOHHgm(HgmmW;,l) + IIP°IIH;/2(H;/20W;,1>) ,
_1
lo¥llpans S 173 (nwn,{gm(,{;mn%) + |p°||Hg/2(H;/2M;)) ,

p _1
e X ([ T VL ey §

Theorem 1.1 gives a complete picture of the linear damping for the Couette flow in an exponentially
stratified fluid in an infinite channel (i.e. —00 < y < 400 and x periodic). More specifically, we obtain
optimal decay rates for initial perturbations of minimal regularity. We make some comments to relate
our results to the previous works on this problem. When B? > %, the decay rates t=2 for v¥ and ¢t~ 2
for v* were obtained by Booker and Bretherton [3] for a special class of solutions, which generalized the
earlier results in [19, Chap. 5] for B? > 1 . In [14], the decay rates as in Theorem 1.1 (i)—(iii) were
obtained for special solutions by hypergeometric functions, which are similar to g, gs defined in (3.4)
and (3.5). However, it was not shown in [14] that general solutions can be expressed by these special
solutions. Chimonas [7] considered the case B? < 1 and wrongly claimed that v¥ decays at the rate 2~
and v® grows by 2. Later, an error in [7] was pointed out by Brown and Stewartson [4], where they also
found the correct decay rates as in Theorem 1.1. In [4], the initial value problem was solved for analytic
initial data by taking the Laplace transform in time and then the decay rates were obtained from the
asymptotic analysis of the inverse Laplace transform of the solutions. Moreover, it was assumed in [4] that
the discrete neutral eigenvalues do no exist, such that there are no poles in the Laplace transform of their
solutions. In our analysis, we do not need to assume the nonexistence of discrete neutral eigenvalues,
which actually follows as a corollary from the decay estimates in Theorem 1.1 for any B? > 0. This
contrasts significantly with the case in the half space [9,10,21] or in a finite channel [11], where it was
shown that there exist infinitely many discrete neutral eigenvalues when B? > i. In Theorem 1.1, the
decay rates are optimal with the minimal regularity requirement for the initial data. In particular, when
B? < oo it suffices to have the initial perturbations of vorticity and density variation w (0),p° € H' to
get the optimal decay for |[v*[ ., and w (0), p® € H? to get the optimal decay for |[v¥||, .. These minimal
regularity requirement on the initial data are consistent with the results in [17] for the Couette flow with

1

constant density. Moreover, if B — 0+ (i.e. v — 5—), the decay rates for the horizontal and vertical

velocities are t~2+ and ¢t~ 3+ respectively even when p° = 0, which are almost one order slower than
the rates (t~1 and ¢ =2 respectively) for homogeneous fluids (i.e. B = 0). This suggests that the stratified
effects cannot be ignored even when the steady density is a small deviation of the constant.

The decay rate t3 for the case B2 = oo (i.e. no shear flow) is optimal (see the example at the end
of Sect. 6.1). When (z,y) € R2, the optimal decay rate was shown to be =2 in [12]. We note that the
decay mechanisms are very different for the cases of B?> = oo and B? < co. When B? < oo, the decay
of ||v]|; . is due to the mixing of vorticity caused by the shear motion. When B? = oo, ||v|;. does not
decay while the decay of ||v||, - is due to dispersive effects of the linear waves in a stably stratified fluid.

Most papers on Couette flow used the Boussinesq approximation to analyze the linearized solutions.
However, this approximation is valid only when ( is small. For 8 not small, the full Euler equations
should be used. In this case, the linearized equations at the Couette flow (Ry,0) with the exponential
density profile po(y) = Ae™?¥ become

0

(9 + Ryd,) (:}) = B0, (1.4)
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We obtain similar results on decay estimates in the e 2Py weighted norms.

Theorem 1.2. Let (w(t;m,y), p%(t; x,y)) be the solution of (1.3)—(1.4) with the initial data

p(O,zE,y) 0
b(0;2,y) =90 (x,y), == = p’(,y),
( ) (2,y) 000 (z,y)
where y € R and x is periodic with period L. Let v = V+¢ = (v®,vY). The following is true:

(i) F0<B2< letv= \/ﬁ, then
le™ 2 P lie < (03 (e 30 sy + le™ 20 12y )
e g2 S (072 (lle™ 2200 g + e 4 llrzms )
le=2%Y Paop/pollne < (8) 72T (||€7%ﬁy¢0||H;H,§ + ||€7%ByPOHLiH5) '

(i) If B> > % then

le™5 Pagv®lzs S (7 (e3P  myz + e 370 2y )
e~ 30 ze S (0 F (Il 0 arpary + 170 23
le™ 22 Pop/pollzz S (7% (e 40N mms + e 27012y )

(iii) If B* = %, then

vl

_1 — _1 1
le™ 3 Pagv® 12 5 (1) {1og (8)) (Ile™ 3 sz + e300 z2mmy )

1 _3 _1 1
e300 2 S (8% Qlog 1)) (Ile™ 2P0 g + lle™ 46 llnzms )

_1 — _1 _1
e Pop/pollzz S (&) Glog (1) (Ile™ 2740 sz + e 4 amy )

(iv) If B> =0, i.e, 3 = 0, then the results are the same as in the Boussinesq case, with p/po replacing
P

[

Z.
(v) If B?> = 00, i.e. R =0, then
2
e—%ﬁyﬁ

2
s
Po

Lz

L2
is conserved and

le™ 27V Paov®|| 2 e S 175 <||6éﬁylpOHHS/z(Hg/z“Wyl’l)
+||e5ﬁyﬂ°||H;/2(H2/20WJ‘)> ’
||e‘%5yvy||Lng° <SS <||e—;ﬂywoan/a(H;ﬂnL;)
+||e_%ByPOHHg/Z(HZ/?ﬁLé)) ;
lle=2"P1op/pollrars SIH ™3 <”ew%O”Hi/Z(Hg/Q“W;I)

,lﬁy 0
+||e 2 p ||H3/2(HZ/2OL;))
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Compared with Theorem 1.1, it is interesting to note that for the e3Py weighted v and p, the decay
rates and the initial regularity requirement for the full equations are exactly the same as in the Boussinesq
approximation.

Lastly, we make some comments on the proof. First, we use Fourier transform on the linearized
equations in the sheared coordinates and then reduce them to a second order ODE for the stream
function. The general solution is expressed by two special solutions of hypergeometric functions. The
decay rates and initial regularity are then obtained by using the asymptotic behaviors of hypergeometric
functions. In the case of B2 = oo (i.e. no shear), the decay rates are obtained by the dispersive estimates
and oscillatory integrals.

This paper is organized as follows. In Sect. 2, we derive the linearized equations and give some
identities of hypergeometric functions to be used later. In Sect. 3, we solve the linearized equations by
hypergeometric functions. In Sects. 4 and 5, we obtain the decay estimates from the solution formula for
the case B? < oo. In Sect. 6, the dispersive decay estimates are obtained for the case B? = oo.

2. Preliminary
2.1. Linearized Euler Equation and Boussinesq Approximation

The equations for two dimensional inviscid incompressible flows in stratified fluids are

p (O +v-V)v+Vp=pg, (2.1)
(Ot +v-V)p=0,
V.-v =0, (2.2)

where (z,y) € T x R, v = (v”,0Y) is the velocity, p is the density and g = (0, —g) is the gravitational
acceleration directing downward with g being the gravitational constant. The simplest stationary solution
is the shear flow, with vg = (U(y),0) and pg = po(y). Let ¢ = 1(¢; x, y) be the stream function such that
v = V1. Here V4 = (=0, ;).

We consider the linearized equations near a shear (v, pp). Let v = V+1 and p be infinitesimal
perturbations of velocity and density. The linearized equations are

o [(0r + U(y)0z) v + (vY0y) vo] + Vp = pg, (2.3)
(0 + U(y)dx) p+vYpg (y) = 0.
V.v=0. (2.4)

Taking the curl of (2.3), we get

7& U (y)0:¢ + (01 + U(y)0s) (—0y1)]

Po
(0 + U)0a) A — U ()06 = —0, (;’) 0 (25)
The Eq. (2.4) can be written as
@+ U)on) £ = 0,00 (2.6
Po Po

Consider Couette flow with an exponential density profile, that is, U(y) = Ry , po(y) = Ae PY. Then
(2.5)—(2.6) become

BIRDs — (D + Rydy) 0, + (0 + Rydy) A — —0, (/f) 0 @.7)
0

(0 + Ry0y) (;) = 30,1 (2.8)
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If R # 0, denote B? = % to be the Richardson number, T' = %‘(’y) be the relative density perturbation,

w = —A1 be the vorticity perturbation and let ¢/ = Rt. Then we have
—B[0z — (0 + y0z) O] + (O + yOy)w = B0, T,
(8,5/ + yax)T = 896111

For convenience we still use ¢ for ¢'. Thus the resulting linearized system is

— B0z — (01 + y0s) 0] + (0 + ydy)w = B9, T, (2.9)
w = —A. (2.11)

The system (2.9)—(2.11) is rather complicated. Many authors, including Hgiland [15], Case [6], Kuo
[16], Hartman [14], Chimonas [7], Brown and Stewartson [4], Farrell and Ioannou [13], chose to consider
the Boussinesq approximation, where the variation of density is ignored except for the gravity force term
pg. To apply the Boussinesq approximation, the density perturbation should be relatively small compared
with the constant density. Under this approximation, the Euler momentum equation becomes

p(0r v+ (v-V)v) + Vp = pg,

where p is a constant and p is the variation of density. The linearized Boussinesq equations near a shear
flow (U (y),0) with the density variation profile pg (y) is

(O + U(y)02) A = U" (y)0uth = 0y (Z) g, (2.12)

(00 + U(y)s) g =- w”—po (2.13)

Compared this with the linearized original equation (2.5), it can be regarded as the case when p{,/po is
very small, such that the first term of (2.5) is neglected and py is taken to be a constant p. For Couette
flow U(y) = Ry with the exponential profile pg = Ae™%Y, to use the Boussinesq approximation, 3 should
be small which implies that pg = A (1 — By). Thus, we consider the linearized Boussinesq equations near

Couette flow (Ry,0) with the linear density variation profile pg (y) = —ApBy and a constant density
background p = A. Then (2.12)—(2.13) become
—_a. (P
(00 + Ryd,) A = =0, (L) . (2.14)
Py _

(0: + Ryd) (£) = po.v. (2.15)

If R # 0, denoting B? = %, T = % and scaling the time ¢ by Rt, then we have
(0r + yO,)w = B?0,T, (2.16)
(8t + yam)T = 0%, (217)
w=—Ad. (2.18)

2.2. Sobolev Spaces

Without loss of generality, from now on we assume period length L in x direction is 2. Define the Fourier
transform of f(z,y) ((z,y) € T x R), as

1 . )
flen) = o [ e ny)dady, (bn) €2 xR
T JTxR

Fourier inversion formula is

fla) = 3= 3 [ 0 ey,

kEZ
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The Sobolev space H3* H," is defined to be all functions f in L? (T x R) satisfying

2\Sz 2\ Sy
> (A +k) /R(lJrn)

kEZ

2
f(k,n)‘ dn < +o0,

with the norm
1

1F | gz v = (Z(1+k2)sr/ (1+7n%)™ f(k,n)rdﬁ) :

keZ R

Similarly, we define

1
2
1l ige wzvr = (Z(l+k2)8”||f(k7y)lliv;y=p> ,

kEZ

where W,*"” is the L? Sobolev space in R and

f(k,y) = \/%/Te*”kf(x,y)dx, keZ.

2.3. Hypergeometric Functions

Gaussian hypergeometric function F'(a,b;¢; z) is defined by the power series

F(a,b;c;z)zzi—:

n=0

for |z| < 1, where

(@) = 1 n =0,
" lzz+1)--(x+n—-1) n>0.
Its value F(z) for | is defined by the analytic continuation. If ¢,z € R, and a,b are complex

zl > 1
conjugate, then F(a,b;c; z) is also real. The following lemma is known as Gauss’ contiguous relation.

Lemma 2.1. The derivative of F(z) = F(a,b;c;z) can be expressed as

dF  ab
PR+ 1,b+ et 1;2)
dz c

_ C;1 (F(a,b;c —1;2) — F(a,b; ¢; 2))
- c(llfz) [(c—a)(c—=b) Fla,b;e+152) +c(a+b—c) Fla,bc; 2)].

Hypergeometric functions are related to solutions of Euler’s hypergeometric differential equation.
Lemma 2.2. Assume c is not an integer. Euler’s hypergeometric differential equation
zZ(1=2)f"(z)+[c—(a+b+1)z] f'(z) —abf(z) =0 (2.19)
has two linearly independent solutions

f1(z) = F(a,b;c; 2),
fo(2) =2 CF(l4+a—c,1+b—c;2—c;2).



452 J. Yang, Z. Lin JMFM

The proof of these two lemmas can be found in pages 57 and 74 of the book [1].

Hypergeometric functions have one branch point at z = 1, and another at z = co. The default cut-line
connecting these two branch points is chosen as z > 1,z € R. Pfaff transform can relate the value of a
hypergeometric functions near z = 1 to the value of another one near z = oo in the following way:

F(a,bic;2) = (1—2)7°F <c —a,b;c Zl> , (2.20)
- —

F(a,b;c;2) = (1 — 2)7°F (c —a,b;c ZZ_1> . (2.21)

By combining these two transforms, we obtain the Euler transform
Fla,b;c;2) = (1 —2) " PF(c—a,c—b;c;2). (2.22)
When Re(c) > Re(a + b) we have the Gauss formula

T'(c)T(c—a—10)

Flabiei1) = T(c—a)l(c—b)

(2.23)

When Re(c) < Re(a +b), F(a,b;c;1) is infinity.
The following lemma plays an important role in solving the linearized equations in the next Section.

Lemma 2.3. The Wronskian of the two solutions listed above is
W(2) = fi(2)f2(2) = [i(2) fa(z) = (L = )z 7oL —z) 17070

Proof. By Liouville’s formula, the Wronskian of Euler’s hypergeometric differential equation (2.19) can

be written as
B c—(a+b+1)z
W(z)-Cexp( / 1= 2) dz)

=Cexp(—log(l—2)(a+b+1—c)—clog(z))
_ szc(l _ Z)cflfafb =Cz “+ O(chfl)

To determine the constant C, it is sufficient to calculate the leading order term of W(z) in the power
series expansion near z = 0. By the definition,

b
fl(o) =1, f{(O) = %a fg(Z) ~ Zl_cv fé(z) ~ (1 - c)z_c
when z — 0,50 C =1 —cand W(z) = (1 —¢)z7¢(1 — z)¢~17a7b, O

3. Solutions by Hypergeometric Functions

In this section, we apply Fourier transform on the linearized systems (2.16-2.18) based on the Boussinesq
approximation and (2.9-2.11) based on full Euler equations respectively. Then we reduce them to a second
order ODE in ¢, and solve it explicitly by using hypergeometric functions. We will study these equations
in the sheared coordinates (z,y) = (z — ty,y) and define

f(tiz,y) =w(t; z +ty,y) = w(t;z,y),

(t;z,y) = U(t; 2 +ty,y) = Y(t; x,y),
T(t;z,y) = T(t; 2z + ty,y) = T(t; 2, y).
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3.1. Boussinesq Approximation

In the new coordinates (z,y), equations (2.16-2.18) become the following;:
Oif(t;2,y) = (0 + yOu) w(t;x,y) = B2, T(t;x,y) = B20.7(t; 2,y),
Oyt (t;2,y) = (O +y0:) T(t;3,y) = Oup(t; 2, y) = 0:0(t; 2, 9),
[azz + (ay - t82)2] (b(t? z,y) = Ypg + z/’yy = —W(t;x,y) = _f(t§ Zvy)‘
By the Fourier transform (z,y) — (k,n), we get

fo = B2(ik)?, # = (ik)o,

[(ik)? + (in — ikt)*] ¢ = —f. (3.1)
Differentiate (3.1) twice with respect to ¢ to get
[(ik)? + (in — ikt)?] b¢ + 2(in — ikt)(—ik)$ = — f, = —B2(ik)7,
[(ik)? + (in — ikt)?] gy + Alin — ikt)(—i >¢3 +2(—ik)¢
= —fu = —B2(ik)#, = —B(ik)?¢. (3.2)
For fixed k£ # 0 and 7, define s =t — ¢ and so = —3. Then we obtain a second order linear ODE for (;3
(14 52 + 4s¢; + (2+ B2d = 0. (3.3)

First, we look for special solutions of the form ¢(t; k,n) = g(—s2). Let u = —s2, then ¢, = —2s¢’ and
b = 4s2¢" — 2¢'. Equation (3.3) becomes

1 5 2+ B?
u(l—u)g”—|—<2—u>g'— + g=0.

2 4
This is in the form of Euler’s hypergeometric differential equation (2.19) with ¢ = 5 and a,b = % + g,
where v = ,/i — B2. By Lemma 2.2, it has two linearly independent solutions

3 v 3 v 1
—Flabeuw=F((2_-22 2 4
gl(s) (a7 ,C,’U,) <4 274 2 2 —$ )7 (3 )
5 v o v 3
. 1—c 2
=— F(1 —cl+b—c2—cu)=sF|-—= -4+ =;=;— .
go(s) = i F (I +a—c1+b-c2—cu)=s (4 VoLl ) (35)
Therefore, the general solutions to the Eq. (3.3) can be written as
¢ = Crgi(s) + Caga(s), (3.6)
where C7, C5 are some constants depending only on (k,7). Note that although a hypergeometric function
has a branch point or singularity at z = 1, we only need its value at z = —s? which lies on the negative

real axis. Therefore, there is no ambiguity or singularity in (3.6).
The coefficients Cp,Co are determined by the initial conditions ¢(0;z,y) and T(0;z,y).
Let ¢°(k,n), T°(k,n) be the Fourier transforms of 1 (0;z,y) and T(0;z,y). First,

é((); kﬂ?) = éo(k% 77) = '(/A)O(k’n)’
and by Eq. (3.2),
ft = k2(1 + 82)¢;t + 2/<:23¢A).

Noticing that when t =0, s = —% = 50, so we have
G0 ) = L0 RT) = k2506 (05 ko) _ BER)F(0; K, ) — 2K2509(03 k)
e R+ s) R+ s)
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Now we have a linear system for (C7,Cs)

C191(50) + Caga(so) = ¥°,

C l( C ! . 1 ﬁfo . 2 7.0
191(80) + C2g5(s0) = 752 \ % soy | -

Therefore, the coefficients are

1 s R
Crllon) =5 |dh(on) + T gn(on)| 890k )
80
) A (3.7)
+l _ iB? ( ) To(kﬂ?)
A 1+s2 92130 ko
1 2s R
Calbon) = |=8150) = Ttano0)| 8°(kn)
80
. A (3.8)
N 1 iB? (s0) T%(k,n)
Allt s% 91(S0 7
where by Lemma 2.3
A = g1(s0)g5(s0) — 91(s0)g2(50)
1 -1 -2 1
=—i(—2s0) (1 — =) (=s3) 2 (1+s3 = —7,
( 0)< 2> (=s0) * (1+s0) (1+52)°
which is strictly positive for all sy € R.
Thus the solution of (3.3) is given explicitly by
Ot kym) = Cr(k,m)gr(s) + Calk,m)ga(s)-
As for 7, from Eq. (3.2), for B2 > 0 we have
R ik - -
#tiko) == 55 (L4780 +256)
ik
== 53 [(1+5%) (Cr(k, g} (5) + Ca(k, m)ga(s))
+2s (C1(k,m)g1(s) + Ca(k,m)g2(s))] - (3.9)

3.2. Full Euler Equations

Now we solve the linearized systems (2.9)—(2.11) based on the full Euler equations. With f, ¢, 7 defined
at the beginning of this section, Egs. (2.9)—(2.11) turn into

— 6 [82 — 8,5 (8y — t@z)} Qb + atf = 32627',

Ot =0.¢0, —[0..+ (9, —10.)*] ¢ = . (3.10)
By the Fourier transform (z,y) — (k,7), (3.10) becomes
— Blik — 9, (in — ikt)] 6 + fr = B(ik)7. (3.11)

Differentiate above with respect to t, we get

Substituting

#o=(ik)g, f=—[(ik)* + (in — ikt)?] ¢, (3.12)
we have

O [k + (n — kt)® + B(in — ikt)] & — B(ik)dr + B*k*¢ = 0.
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Define y = e~ 25%¢, then d(k,n) = R(k,n+ 1i/3) and the above equation implies

) 1. 2 . 1. . N
k +(77—225—kt> +5(2(77—215)_Zkt) X

— Bik)x: + B*k*x = 0,

Opt

After simplification, we have
1
Ot [452 +k 4+ (n— kt)Q} X —iBkxe + B*k*X = 0.
For k # 0, again define s =t — jl, 50 = —{, then

1
Ou {(452 + K+ W) X] — iBkxe + B2k2x = 0.

Define m = ,/%62 + k2 k= %,61 = %, then we have

O [(m* + k*s®) {] — iBkxy + B*k*x =0,

Ot [(1 + 5232) )Z] — 2if1kXt + B2n2§( =0.
Set u = —iks, then

—Ouu (1= %) X = 261X + B*X =0,
Define v = 1_?“7 then
v (1 =) Xoo + (=61 +2 = 40)x, — (2+ B*)x =0, (3.13)

which is of the form of Euler’s hypergeometric differential equation (2.19) with ¢ = 2—; and a,b = %:l:V,
where v = ,/i — B2. By Lemma 2.2, it has two linear independent solutions,

3 3 3 3 144
93(5):F(—V,+V;2—ﬂ1;11> :F<—z/,+1/;2—51;+2m‘9)7

2 2 2 2
L4+irs\ T /1 1 1+ iks
94(s)=< 5 ) Flgtbh—vig+bitviby—F

Therefore, the general solution to Eq. (3.13) is

X = C393(s) + Caga(s),

where Cs, Cy are constants depending only on (k,n). Note that we only need values of g1, g2 at % + 5
(s € R), that is, on the line Re(z) = 3. Therefore, the branch point at z = 1 will not cause any ambiguity
or singularity.

The initial conditions ¥(0;z,y) and T'(0;x,y) are used to determine the coefficients Cs, Cy. Denote
= 6*%'6?17, PO = e*%'@ywo, 10 = e*%ﬁyTo, then

—

A~ 1 7 R
)A((O, k7’l’}) — Q/)(] (k,'r’ —_ 22/8) = e—aﬂy¢0 — p0.

By Egs. (3.11) and (3.12), we have

. 1 2i3 - iB?%
e, (B -2) o+ 57
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Hence
. . 1.
Xe(t;k,n) = ¢ (t; k,n— 2lﬂ)
' 2
S L (-
i3 i i
1+(s+ﬁ> _?(5“!_%)
_ 1 @A — 923/
T e )
and
1 iB?% . .
5 (0 _ 2 N0 _ 95,90
Xt(07/€a77) 1+|§0|2 ( k 250 )7
Where§:S*%7§0:‘907% .
So we have a linear system for (Cs, Cy):
C3g3(s0) + Cagalso) = ¥°,
1 iB? - ~
Csg; Cug) = ——— [ —7T0 - 25,00
393(50) + Cag4(s0) 1+ [30]? ( 2 S0 >,
which gives
1 230 -
Calln) = 5 dh(50) + 12z 9°(6)
1 iB? TO(k,n)
1 250
04(ka77) :Z 93(80) 1+ |§ ‘293(80) v (kﬂ?)
1 iB? YO(k,n)
A {1+ E |2g3(‘9°)] ko

where by Lemma 2.3

A = g3(s0)94(s0) — g5(50)94(50)

. —241 —2—5
K1 1  ksp. 1 ksp.
= — —1 — —_— _—— —

which is never zero, because ||, 1 € (0,1) by definition. Moreover,

1 5/2
Vs +1

= 1-f>1-

Vst +1
are both uniformly bounded away from zero for all integers k # 0. Hence

1 1  ksp. :

By Egs. (3.11) and (3.12), for B% > 0 we have

tikn) =~y | 220 = o+ (1 )60+ 259
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and

1
_ ik

. . . . 2
52 —228)%—f<8+;]‘z>)%t+<1+<8+£>>)%t
+2(8+;i))2}
ik BN . 3 .
:—;32{(1+52+4k2)><t+2<s—;k)x]
ik

=- 5 [(1+15%) e +25%] -

4. Decay Estimates in the Case of Boussinesq Approximation
In this section, we use the solution formula obtained in the last section to obtain the inviscid decay

estimates in Theorem 1.1, for solutions of the linearized equations under Boussinesq approximation.

4.1. The Case B?> > 0 and B? # 1

By expanding g1(s), g2(5), g1(s0), g(so) at infinity, we obtain the following asymptotics

T(-1+5T(E+%) 41
. I(-v) gé—v] +0 (Js|7FRe0), Y
M3 - 50G-3)
T I'(v) 34y
2E =" [F(HZ)F(%Z)S + (4.2)
4 L(=v) s‘g—”] +0 <|s _5+Re(”)) , |
OG- 50 -5
<—§ + H) F(l/) -S54
ilso) =2V ln—ﬁ AREEN -
4.3
(49T 3 ~JHRe(v
oo gt ORI TY),
, B (—§ —+ K) P(V) —3+v
R e e (4.4)
(-3-5T(1) 5., R |
goprg g ) o).

For B? < i or > %, v is real or pure imaginary. We treat these cases separately.
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4.1.1. The Case 0 < B? < %. In this case v is a real number between 0 and % By using the above
asymptotics of g; (s), g2 (s), we obtain bounds for the coefficients of C, Cy (defined in (3.7), (3.8)). Since

1 250 T 4 54, 3.,
A [9§(80)+1+5392(80)_ S(s0) (s0) "2 = (s0)2 ",
1 iB? T N 1.,

A [_14—5392(80) <(s0)* (s0) "2 = (s0) 2,

1 25 T ) 34y
& |60~ Tt 0] £ o) o) E = (s
1 [ iB? T T, 1.,

A [1—1—3891(50) < (so)! (s0) 2T = (s0) 2,

and ,
191()], lg2(s)| S (s)72 7",
so we have

s (10 70k, n)
Calkom)] S 4s0) 2 | [°km)|+ st |

s 1 70k, n)
|02(k777)| /S <50>§+V wo(kﬂl)’ + <50> |k|

Therefore

6t k,m)| = 11k m)ga () + Calk. m)ga(s)

1°(k, 77)‘

7%4»1/ S %Jru
§<S> < 0> <80> ‘k|

(4.5)

WO (k, 77)‘ +

_3
To get the decay estimates in the physical space (z,y) from above, we note that the term (s)” 2 does
not decay when t ~ ] (i.e. s = 0) and as compensation the additional regularity of initial data is needed
to ensure the decay. This is made precise in the following lemma.

Lemma 4.1. Assume that there exists a > 0 and b,c € R such that

19(t; k) < ()% (s0)” K[ |h(k,m)|, O£ k € Z,n€R, (4.6)

then
HP;éOg (t)HLQ(Tx]R) < <t>7a ||h||H;HZ+“ :
Proof. We have
[ otk an = | gtesknldn+ [ 9t k)
R ls|=]t—2|> 41t |e—2]<3 1]

=1+ Is.
By (4.6), we have

R 2
nse [ o™ e it dn
|t— %[> 51l
Since |t — 7| < 1|t| implies |so| = |%] > 1[¢], so
R 2
Bse™ [ (s0)*2 k[ [k )| .
|t=#|<51t]
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Thus
A 2
itk Pan s @7 [ (0 1 itk | dn,
and
1Pa0g Ol = Y [ lateskml* dn
k07 R
N 2
SO [ k)| dy
k0 R

—2 2
<072 e

Since the velocity perturbation

v (tx,y) = — Oyth(t;a,y) = (—0y + t0.)o(t; 2, v),
v (tx,y) = 0.0(t x,y) = 0.9(t: 2, y),

so by (4.5), we have

67 (t: k)| = [iksdts k)|

(s0)

< () TH (o) BT (m [0 ()| + ‘T(kn)‘) :

|0Y (t; k,m)| =

iho(t )|

(s0)

< (s)7H (s0) 2 (kl [0 (k)| + ‘To(k’”)‘> .

From Eq. (3.9) we know

[#(t: )] < \g [(1+5%)C1 (k)i (5) + Call, mgh(s)]

+2|s] [C1(k,m)g1(s) + Ca(k,m)g2(s)]]

S{s) 7 (s0) 2T (|k| [0 (k)| + ‘TO(’“’”)‘) .

(s0)
By Lemma 4.1,
_1
1Peov”llze S @07 (1 iz + 1T N2 )
_3
lo¥llee < 672 (10 g + 1Tl nz 3 )
and
_1
IP2T(t: ) lze = 1 Peor(ts- Mize < 072 (19°0ar2az + 1T 2z )
y Y

459
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4.1.2. The Case B2 > i. In this case, v = \/i — B2 is pure imaginary. Then from (4.1-4.4), we have

g1 S )77, 1ga(s)] S ()72,

(50) %, lgh(s0)] < {s0)

/A4

5
2

|91 (50)]
By similar calculations,
1Povllze S48 % (10 lmmz + 1T sy )
ol S 0% (19 g + 17023
1PaoTle S 0% (10l + 1T Nszmy ) -

Since T is just p/A times a positive constant, this completes the proof of Theorem 1.1 (i)—(ii).

4.2. The Case B? = i

When B? = %, v = 0, the asymptotic approximations (4.1) and (4.2) no longer hold true, but the following
expansions at infinity emerge instead,

331
:F 77'7'—2
91(8) <474127 3)

WE 5) 4 2) .
=————5 2log(s) — 4 s 2—|—O(|$ 2),
r=9)r@) r=9)r@)
55 3
92(8) =sF <47 17 ia _82)
1) +2
= %s_%log(s) - ﬁ(’VtF(%) +2) 240 (|s —5>
r(Hr(3) T(3)T(3)
where ~ is the Euler constant, f (x) = 1;/((;)) is the digamma function. It can be seen that with the

logarithm function, both solutions decay a little bit slower than before.
Similarly, their derivatives also have different asymptotic approximations

9 773
g1(s0) = — ZSOF <47 1 25—53>
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Therefore, we obtain the following estimates

91()| S {5) 7% (log (s)) , |ga(s)] S ()72 (log (s)),
194 (s0)] < (s0) ™2 (log (s0)) » |gh(s0)| S (s0) ™2 (log (s0)) ,

and as a result

(s0) [K]

3 0 ‘To(k,ﬂ)(
Otk (50} log G50l | [6°k,m) |+ L |

. ( \T°<k,n>()
C sl 5 (s0)® (1o (o)) [ [0k m)| + - |

Therefore, we have

|6t k.m)| = €1 (k,m)g1 () + Calh, m)ga ()|

< /-3 3 ‘To(kﬂ?)‘
S 4617 (o) o {s)) Clog so)) | [9°0k )| + L |

from which the estimates of |0 (¢;k,n)|, |0Y (¢ k,n)| and |7(¢; k,n)| follow. Then the decay rates of
v®,v¥, T can be obtained similarly as in the proof of Lemma 4.1, so we only sketch it. Notice that for
any a > . the function h (z) = % is increasing for all z > 0. When [s| < 1|¢| (implying |so| > $¢|),
we have

()™ (s0)* (log (s)) (log (s)) < (s0)? (log (o)) < hé

{t) ™ (log (t)) (s0)>™

0)
t)

Vel

3
2

(s0)* (log (s0))

[Nl >
8 N[

A

On the other hand, when |s| > 1|t|, we have

{(s)™" (s0)* (log (s)) (log (so}) < ()™ {log (1)) (s0)* ™",

since (log (s0)) < (o). Similar to the proof of Lemma 4.1, we get
1Pa007llze 4 o (1)) (100 lmg + TNz
o¥llze )% (tog () (10 rsarg + 17Nz ) -

and
IP2oTllze S () Glog &) (14 lmms + 1Tz )

4.3. The Case B2 =0
When B? = 0, that is, 8 = 0, then by (2.14)—(2.15), we get
- _ 4
(00 + Rydy) &0 = — 0, (£) g,

(@ + Ryd.) (%) =o.
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For convenience, we let R = 1. Again, we define
[t z,y) =wt;z +ty,y) = w(t;z,y),
ot 2,y) =v(t; 2 + ty,y) = Y(t; 2, y),
T(t;2,y) = %(t; z+ty,y) = %(t; z,y).
Then
Ouf(t; 2,y) = g0.7(t; 2,y), OT(t;2,y) = 0.
So

.
F (5 k,n) = F (0; k) + tikg?(0; k,n) = &°(k, n) + tikgp® (k,n) ,

where w(0;z,y) = w’(x,y), §(0;2,y) = p° (z,y). Thus by (3.1), we get

‘cfﬁ(t; k, 77)’ = m ‘f(t; , k)‘
S 7 (s0)” |90 + b ()

P°(k,m)| -

Therefore

)

67 (b k)| S ()" (o) [k [0 (k)| + [£] )™ [7° (R, )

67 (¢, m)| S ()7 (s0)” IRl [ 600k m)| + [¢] ) 72 (k)|

By Lemma 4.1, we get

—1
1P2ov®|IL2 S N1p° Nz my + () 19° | a2,

0¥z < @& 10llzmz + O 160N mras-
Also, H%HL2 (t) = HpOH. When p° # 0, there is no decay for 4 and Pov®. When p’ =0, we get
1Psov e S (07 100 emmg, 0¥ ze S (8 16y,
which exactly recovers the linear decay results in [17] for the homogeneous fluids.

Remark 4.2. For small B > 0, the decay rates for || P.ov®|| 2 and ||[v¥|| 2 are t=2 and ¢~ 2 T respectively

even when p° = 0. Hence, if B — 0+ (i.e. v — %—), surprisingly the decay rates are almost one order

slower than the case of homogeneous fluids (B = 0). This apparent gap is due to the vanishing of the

coefficient of (s)ng”/ terms in the asymptotics of hypergeometric functions (4.1)—(4.4).

5. Decay Estimates for the Full Euler Equation

In this section, we prove the decay estimates in Theorem 1.2 for the linearized system of the full Euler
equation. The proof is very similar to the Boussinesq case, so we only sketch it.
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5.1. The Case 0 < B? < oo

For each B? > 0, we can find similar bounds for

X = 03(k7n)93(5) + 04(k7n)94(5)

as in the Boussinesq case. For B2 > 0 and B? # 1, the asymptotics of g3, g4 at s = oo are

g3(s) = (; - “;S> o [ (% _) e éi/)— 5 (l',;s>§+ﬁ1u
uuE +(2y> 517 A 51 — < ) L +i+v o (|S|S+Re(u))‘|

ga(s) = <; + Z;s> o ll“ & _(ﬂ;)FE 2+V)ﬁ1 — <_m;>éﬁ1u

D(6:)(2 s\ 2T 3
+ ﬁl) ( V) (_Z";S) _~_O<|S|—2+Re(y))‘|

(2 +v)T(2 - BT (-2v) (_mzs> ~5+81—v

V)T(2=BT(2v) [ irs) 2T ST HRew)
fard s C3) o)

(
i =(3) (;w;)ml(r(g—;i)y)@ e ()
(

(3T _pre () ol +Re<y>)],

L(—3+7)T(3+A+v) \ 2

For B? = %, the expansions at s = oo are
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gi(s) = (2) (; N 2);3

|t (5) e (5) o)

Thus, we have the same bounds for y, that is, allowdisplaybreaks

Xt ko] S ()72 (o) 1 { |00k n)‘ + M
) ) ~ ) <50>|k‘ Y
when 0 < B? < 4
Rtk S (97 (o) (9000 >]+‘To(k’")’
) Ny ~ S 2 (80)? ’ TN )
when B? > %, and
10k, m)|

3
2

[X(t: k)| S ()% (50)  (log (s)) (log {s0)) | [#°(k,m)| +

(so) [k ]

when B? = i.

Since

e B0 (1, y) = e 20t y) = Dee” EPVG(t o — ty,y) = Dux(t; 2,Y),

ety y) = e B0V (=Bt a,y)) = e 3 (=D, + 10.)¢(t; 2,y)

= (=0, +10.) (7965 2,9)) — 507 39(t:2,)

1
= (_ay +taz - 25) X(t;xay)v

JMFM

the decay estimates for e~ 2%%v® and e~ 29%v¥ (in Theorem 1.2 (i)(iii)) can be proved as in the Boussinesq

case. The decay of the density variation can be obtained similarly.

5.2. The Case B2 =0

When B2 =0, i.e., 3 = 0, the linearized equations are exactly the same as the Boussinesq case. Thus all

the estimates are the same.

6. Dispersive Decay in the Absence of Shear

The shear plays a crucial role in the inviscid damping. Without a shear, the decay mechanism is totally
different. When B? < oo, the decay of ||v]| ;. is due to the mixing of vorticity caused by the shear motion.
When B? = oo, ||v]|;. does not decay but we have the decay of ||v||, .. due to dispersive effects of the

linear waves in a stably stratified fluid.
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6.1. Boussinesq Case

When there is no shear, i.e. R =0, B? = oo, the equations (2.14-2.15) become

Py
o =0, ()9 0 (%)= sy,
Denote T' = ,BiAv then above equations become

Ay = —0,TBg, (6.1)
0T = 0y (6.2)

6.1.1. The L? Stability. Multiplying (6.1) by ¢ and then integrating by parts with (6.2), we get the

following invariant
d
O <ﬁg//T2dzdy+//|V1/)|2dxdy> =0.

This shows that in the L? norm, the perturbations of velocity and density are Liapunov stable but do
not decay. However, below we show that their L°>° norms decay due to the dispersive effects.

6.1.2. The L* Decay. First, we solve (6.1)—(6.2) by Fourier transforms. Denote N? = (g to be the
squared Brunt-Vaisild frequency. By Fourier transform (z,y) — (k,n),

((in)? + (ik)?) Yy = —(ik)N*T
[y = (ik)i). (6.4)
Combining (6.3)—(6.4), we get
N2
dt2¢ A%,
where \2(k,n) = k2+ 5. For k # 0, its solutions are
1[)(15) _ Clei/\t + 02671;)\15.

By initial conditions,

P(0) = C1 4 Cy =0, ' (0) = iX(Cy — Cy) = %TO
thus
Cio= % (z/?o + 2T0> )
By (6.3),
T = —%1; k 1 (Cre™ = Cae™™).

To prove the L°° decay of solutions, we need two lemmas.

Lemma 6.1. (Van der Corput) Let h(x) be either convex or concave on [a,b] with —co < a < b < oo.

Then
-1 a 7%
/ m(mdn‘ <2 (mm h/) 7 / (")dn’ <4 (mm |h”|> . (6.5)
b [a,b] b [a,b]

Lemma 6.2. For A(k,n) = \/I:zl% and n sufficiently large,
n

[ eeema < Ve el




466 J. Yang, Z. Lin

Proof. We can assume N = 1 without loss of generality. Notice that

_ Lyt
A(n) e <k> ,

Y= (1)

e

and A(n) has two inflection point, 7y 2 = :I:gk. Let n > §|k| Choose € > 0 so small that all the Taylor’s

expansion below are valid in (n; — €,m; + €), i = 1,2. Define
Si=(nm—-eUm+emn—eU(+en).
By (6.5), we have

1
2

/ ei()‘tJr”y)dn‘ <4 <min |t||/\”|>
S1 [a,b]

a4y (‘Wk; K <n>‘5)

3
2

< |k 75|t "0,

[N

Bl

provided n = n(e) is sufficiently large. For large ¢, we can divide (n; —€,m1 +¢€) = {|t|*% <|ln—ml|< 6} U

{|77_771\ < \t|7%} = S5 U S3, so that

nmte 1 1
/ e’o‘””y)dn‘ < 4lt|"2 (n}qin|)\"|> +2|t|7 3.
n 2

1—€

N

For n € S3, we have

20 = K?| ymy\ 3
1" _1=r "1 N
V)| == ()

_ 2[n—mlln—n <Q>*5
k4 k
2|n—m2| yo\"5,, _1
> = ()
> k| 73]t 75.

Therefore

—1
2

T,l+6 i(\t 1 3 1 1 3 1
[ cermag < aje=# (160 H) 7 2l S S
n

~

1—€

Applying similar estimates to (72 — €,72 + €) will complete the proof of this lemma.

Now we prove the L> decay of the solutions of (6.1)—(6.2). By Fourier inverse transform formula,

k0 -

Prot(t;z,y) = % > (e““ /Oo iﬁ(t)ei"ydn>

_ % (eikm / (Cl(k, n)ei)\t + CQ(k7 n)efi)\t) einydn) ,
k0 —o0
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where
o . .
‘/ Cl(km)ez”ez”ydn‘
1|~ - b
Define
I(y)=/ A0 (k, )et
‘ N v
=Var (A ) ()
, (VAR
= (BZA(k’n)tX[—n,n]> *wo(kay)a
then
N v X
@)= < || (A X nm) || 190kl
Ly
<|| [ eemreimay| o1,
Here, ¥ stands for the inverse Fourier transform. By Lemma 6.2, we have

‘/ PO (k, n)e”te“”’dn’

<

_/|n|>n
< —2(Jéd ’ A0 k-’, «
< ( /|| (n) n) 10 (k, )l

+ (RN 4 K3 N0 ) 0k, )

ol 3, _1 _1,,_1 3
S (7 RE IS+ R R0 ) (100 (k. e + 1990k, )l )

wAO(km)‘dn+ 11(y)|

Choose n = |t|7a72, for o € (3, 1], we have

[ ntementeman) < B (g + 197y

If the initial condition is smooth enough, then
‘ / ) 1&0<k,n>ememydn\ S [l E=F (1900 0 + 114013 ) -
Similarly,
\ / Z Afo(k,n)emei"ydn‘ S NIREI S (I gz + 170013 -
Therefore, we have
1Psotbt e Mg S 173 (11RO 772 + o121

kI ITO ) g2 + R FITO) 1y )

7
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Hence the decay in LgL;o is obtained:

1Peotllezs S 17 (100 gz + 160 e

1T 32 pgrn + 1T ey )
1Paov?lzrg S 107H (101 aregrove + 191 vy
I gz grorn + 1T N /g )

V¥l L2 e < [ (||1/10||Hg/2H;/2 + 10l gzre

1T 32 pgrn + 1Ty ) -

Similarly, for the density we have

1PeoTlzzeg SI07F (10 s/ pmsro + 100 ooy

1T g3/ pyrn + 1T ey ) -

Below, we show that the decay rate |t|_% obtained above is sharp by constructing an example. Recall
that the solution to (6.3)—(6.4) is

b(t;k,n) = Cre™ + Che™ ™.

where k # 0, A\2(k,n) = % and C2(k,n) are determined by ¢0,7°. Therefore, for a fixed k, we

consider a function of the form
Y(ts k) = fm)e™,
where f(n) is to be chosen below. By the Fourier inverse formula
1 o0 o
tik,y) = —— eIy,
witskog) = <= [ e rmay
We will look at the value of 1) at y = ¢t where ¢ is a constant to be determined later. Define

kN
gn) =) +en= \/ﬁ +cn.

k

We note that #* = 5 is one inflection point of A(n) (the other one is f%) Let ¢ = %, then
g// (77*) — )\// (,’7*) — 07
-3
. N /S 2N
=— Y 4e=—"—r4c=0,
g (") 2 < k> VT
and
N S\ /Y
" *\ _ T o _qg o
=S (2
N 16
Thus near n*, we have
* 1 * * *
9(n) =g+ cg" (") (=) + 0 ((n=n""), (6.6)

and
g (n) = %g’” ") (n—n")?+o0 ((77 - ?7*)2) : (6.7)
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Choose 6 > 0 small such that (6.6) and (6.7) hold true in I = (n* — §,n* +§). In particular, ¢’ (n) >
0 when n € T and n # n*, thus g(n) is monotone in I. For a function f with its support in I, letting
u = g(n) we have

N 1 o0 . )

t; k’ ct) = —— eiAt—&-mctd
o ) N [ N f(n) n
- [ e sa

Vor ) g (g7 (w)

In the above, m has singularity at u* = g(n*) = %N. Since

u=g(n) =u"+0mn-n")° nel,

so the order of singularity is

1 1 1
i~ () =0 () 68)

/ (=1
fn) = % fo (n),
lg (n) — w*[? lu—u*]?
which by (6.8) is smooth in its support I. Hence the inverse Fourier transform of f is smooth, and has
finite H, norm for arbitrarily s > 0. By (6.6),

a-=gm" —6)—gn’) <0, ax =g(n*+3)—gn*)>0.

Choose

r(n)=

Therefore, we have

R 1 g(n*+9) 1 )
V(t;k,ct) = / — s e"du
g

2T (77**5) \u—u*|§
eiu*t a4 ]
— / g el
2 Ja.
iu*t 4t

a
—o [ et
27t3 Ja_t

while

att —2 > 2 1
lim g3l de = / 7 3edr = V30 () .
t—+oo [, 4 oo 3

Therefore, ||i(t; k, I zee cannot decay faster than t3.

Remark 6.3. The optimal ts decay obatined above for (z,y) € T x R is essentially for the one dimen-
sional case (in y ). By contrast, in [12] the dispersive decay of solutions of (6.1)—(6.2) was shown to

be t~2 for the 2D case, i.e., (x,y) € R%. The decay rate in [12] was obtained by the Littlewood-Paley
decomposition and stationary phase lemma.

6.2. Original Euler Equation

When there is no shear, i.e. R = 0, the original Euler equations (2.7-2.8) become

— B0 + O A = — B, (p’;) 9,

o (L) =sosu.
Po
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Likewise, define T' = -—£—, then the equations read
Bpo(y)

(—=B0y + A)py = —0,T By, (6.9)
0T = 0,1). (6.10)

Let U = ¢~ 2%, T = ¢~ 2PYT, then the Eqgs. (6.9)—(6.10) become
1
(—4/32 + A) ¥, = —N%9,Y, 9, =0,0. (6.11)
By the Fourier transform (z,y) — (k,n), we have

(iw + (in)? + (ik)2> U, = —(ik)N?T, T, = (ik)V.

Therefore,
d? .
— =\
dt? ’
where
2 k‘2N2
= -
k2 +n%+ 7

Its solutions are

where

_ L e0 . Aso
e b (102210).

Similar to the Boussinesq case, we have the following conservation law for (6.11)

d 1
=2 (// (452 W2+ V[ 4 N2 |T|2> dxdy) .

1
// (4ﬁ2 B? + Ve[ + N2 |T|2> dady

2
g
L2+ﬁ

By integration by parts,

2
eféﬂyﬁ

_1
- He 2ﬁyvz '
Lo L2

2
s
L2

This shows that there is no decay in the L? norm for e~ 2Py and e*%ﬁyp%. For the L*° decay, notice that

\2 k2N? m2 (kN)?

R mr g

where m = \/%52 + k2 k= % By Lemma 6.2 we have

n
‘/ ei(’\”"y)dn‘ < Iml2 kN ~5 + [Nt~ 2|m| " 2n?

—n

= k|35 + ]2 || 50,
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since k ~ 1,m ~ k. Accordingly, we have
||67%Byp;ﬁ0w“L§L§° S |t|7% (||‘I’O||Hg/2H;/2 + H\IIOHHS”L%J
+ 10N gz gz + ||T0HH;/2%) ,
||e*%"yP¢ovzHLgL;c <Ses <||‘1’0||Hg/2Hg/2 L PRVER
F Il 272 ggrn + TN o)
le™ 20V 12 poe SJt|73 (H‘I’OHH;%/?H;M + ||‘I’0||Hg/2Lé
ey + Iz )

_1 _1
e PaoT s < 1073 (1000 o gave + 190 /oy

+ HTOHHg/zHZ/Z + ||T0HH2/2L111) .
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