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Abstract: Two-dimensional (2-D) atomically thin graphene has exhibited overwhelming 

excellent properties over bulk counterpart quantity graphite, yet their broad applications and 

explorations of unprecedented properties require the diversity of their geometric morphologies, 

beyond their inherently planar structures. In this study, we present a self-folding approach of 

converting 2-D planar free-standing graphene to 2-D and 3-D folded structures through the 

evaporation of its liquid solutions. This approach involves the competition of surface energy 

of liquid, and deformation energy and van der Waals energy of graphene. An energy-based 

theoretical model is developed to describe the self-folding process during liquid evaporation 

by incorporating both graphene dimensions and surface wettability. The critical elastocapillary 

length by liquid evaporation is extracted and exemplified by investigating three typical 

graphene geometries with rectangular, circular and triangular shapes. After the complete 

evaporation of liquid, the critical self-folding length of graphene to a stable folded pattern by 

van der Waals energy is also obtained. In parallel, full-scale molecular dynamics (MD) 

simulations are performed to monitor the evolution of deformation energies and folded patterns 

with liquid evaporation. The simulation results demonstrate the formation of 2-D folded racket-

like and 3-D folded cone-like patterns and show remarkable agreement with theoretical 

predictions in both energy variations and folded patterns. This work offers a quantitative 

guidance for controlling the self-folding of graphene and other 2-D materials into complex 

structures by liquid evaporation. 
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1. Introduction 

Graphene and other two-dimensional (2-D) materials have proved to be excellent and unique 

in numerous properties including mechanical, thermal and electrical properties which rely 

critically on the atomically thin thickness of structures in nature 1. In most applications, non-

planar structures in geometry are desired to leverage these properties. For example, curved 

and/or folded architectures of graphene improve the flexibility of the graphene-enabled sensors 

and actuators 2-4, wrinkled graphene facilitates to achieve mechanically controllable surface 

wettability5 and to realize the anisotropic resistance of electrical transport 6, and crumpled 

graphene is utilized to enhance photo-responsivity of sensors7 and performance of 

supercapacitors.8, 9 These varieties of non-planar geometric structures broaden applications of 

graphene and also advance the exploration of unprecedented properties in 2-D materials, 

beyond the inherent planar structures.  

A few of strategies have been developed to introduce local or/and global curvatures in 2-

D materials, and even to fold them into various patterns so as to achieve on-demand properties. 

For example, a buckled graphene monolayer and multilayer sheets on a soft substrate are 

obtained by applying a mechanical loading10, 11. For a graphene sheet on a substrate, a folded 

racket-like pattern could also be formed by van der Waals (vdW) interactions due to instability 

and has been confirmed in simulations 12, 13. Recently, the origami concept has been applied to 

convert graphene into various shapes, and offers great attention for designing deterministic 

structures of 2-D materials. So far, most folded 2-D materials are achieved by applying a 

mechanical force14, or triggered by decorating functional groups 15, 16 or pre-patterning17.  

As an alternative approach, the evaporation-driven folding of 2-D materials is emerging 

and provides a facile and convenient technique18. For example, folding a thin elastic sheet by 

liquid evaporation, often referred to as elastocapillary phenomenon, is ubiquitous 19-22 and has 

been utilized to fabricate complex 3-D structures 19, 23. To fold a free-standing 2-D materials, 

they are commonly suspended in a liquid solution in advance, and then an elevated temperature 

will be introduced to dry the mixture. As a consequence, the 2-D sheets could be deformed into 

different shapes due to elastocapillary. When numbers of 2-D material sheets are mixed with 

liquid solution, this technique could be used to deform and assemble them into bulk 

nanostructures meanwhile keeping the large accessible surface area of 2-D materials due to the 
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resistance of surface curvature to contact at assembly 24-30.  

In essence, during the liquid evaporation, the deformation energy of 2-D materials will 

increase, and the surface energy of liquid will decrease due to the decrease of liquid volume 

till to complete evaporation. Consequently, their competition determines whether liquid 

evaporation will promote deformation of 2-D materials and triggers the subsequent self-

folding31-33. After the complete evaporation of liquid or below a critical amount of volume, 

where the solid-liquid interaction is very small and can be neglected, the final folded pattern 

will be determined by the vdW interactive energy (also referred to as binding energy) of 2-D 

materials. For a graphene nanoribbon or 1-D nanofiber with a large aspect ratio, numerous 

studies show that deformation and folding are always preferable along the long axis direction 

because of required small deformation energy31-34. However, quantitative study of folding 2-D 

materials with a comparable dimension in two directions is still lacking, and the effect of 

surface wettability is also unclear.  

In the present study, we will conduct a systematic study of evaporation-driven self-folding 

of 2-D graphene suspended in a liquid droplet and develop a theoretical model for predicting 

self-folding process and final folded patterns. The theoretical model is established by 

considering deformation energy of 2-D solid materials, the surface energy of solid and liquid, 

interfacial energy between solid and liquid, and vdW (binding) energy of 2-D materials when 

folded. Geometric features and surface wettability of graphene are also incorporated into the 

model. Three typical graphene geometries, rectangular and circular shapes which represent an 

axial symmetry, and triangular shape which represents a central symmetry, are studied. In 

addition to the self-folded spatial patterns of graphene, the 3-D profile of liquid droplet is also 

extracted to precisely capture the surface energy of liquid. Theoretical analysis shows that 2-D 

folded pattern is obtained in the rectangle and circle graphene after complete evaporation of 

liquid, and the triangle graphene can be folded to a 3-D spatial pattern. The critical 

elastocapillary and self-folding lengths that determine the self-folding by liquid evaporation 

and ultimate formation of a stable folded pattern respectively are obtained. Molecular dynamics 

(MD) simulations are performed to validate the theoretical model and self-folding process of 

graphene with liquid evaporation. Good agreement between theoretical predictions and 

simulations is obtained in both folded spatial patterns and sizes.  
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2. Theoretical model 

Consider a single free-standing graphene suspended in a liquid droplet, the total energy of the 

system is 

𝐸𝑡𝑜𝑡 = 𝐸𝑑𝑒𝑓 + 𝐸𝑠𝑢𝑟𝑓
𝑙 + 𝐸𝑠𝑢𝑟𝑓

𝑔
+ 𝐸𝑖𝑛𝑡𝑒𝑟 + 𝐸𝑣𝑑𝑊               (1) 

where 𝐸𝑑𝑒𝑓 = ∫
𝐵

2𝑟𝑏
2 𝑑𝐴

𝐴𝑑
 is the deformation energy of graphene23, 34-37, 𝐸𝑠𝑢𝑟𝑓

𝑙 = ∫ 𝛾𝑙𝑑𝐴
𝐴𝑙

 is 

the surface energy of liquid, 𝐸𝑠𝑢𝑟𝑓
𝑔

= ∫ 𝛾𝑠𝑑𝐴
𝐴𝑔

 is the surface energy of graphene, 𝐸𝑖𝑛𝑡𝑒𝑟 =

∫ 𝛾𝑖𝑑𝐴
𝐴𝑖

 is the interfacial energy between graphene and liquid, and 𝐸𝑣𝑑𝑊 = ∫ 𝛾𝑏𝑑𝐴
𝐴𝑜

 is the 

binding energy of graphene. 𝐴𝑑 is the area of deformed graphene, 𝐵 is the bending stiffness 

of graphene, 𝑟𝑏  is the radius of curvature, 𝐴𝑙  is the surface area of liquid exposed to 

vacuum/air, 𝛾𝑙 is the surface tension of liquid, 𝐴𝑔 is the surface area of graphene exposed to 

vacuum/air, 𝛾𝑠 is the surface energy density of graphene, 𝐴𝑖 is the contact area between solid 

and liquid, 𝛾𝑖  is the interfacial energy density, 𝐴𝑜  is the overlap area in the deformed 

graphene and 𝛾𝑏  is the vdW binding energy density of overlap area. Once the liquid 

evaporation begins, the surface energy of liquid will decrease, i.e.  ∆𝐸𝑠𝑢𝑟𝑓
𝑙 < 0 , and the 

capillary force will deform the graphene sheet to achieve a conformal contact between them. 

As a consequence, the deformation energy of graphene will increase, i.e. ∆𝐸𝑑𝑒𝑓 > 0, leading 

to a competition between surface energy of liquid and deformation energy of graphene. 

Depending on the contact status between liquid and graphene, both interfacial energy and 

binding energy of graphene may also change, and when the total energy of system keeps 

decreasing, i.e. ∆𝐸𝑡𝑜𝑡 < 0 , and ∆𝐸𝑑𝑒𝑓 > 0 , the liquid evaporation-induced deformation of 

graphene will continue, and otherwise, ∆𝐸𝑡𝑜𝑡 > 0 or ∆𝐸𝑡𝑜𝑡 < 0 and ∆𝐸𝑑𝑒𝑓 < 0, the folding 

will stop and no further folding will occur.  

 

2.1 Elastocapillary by liquid evaporation 

At the beginning of evaporation, there is no overlap in graphene and 𝐴𝑜=0, and thus 𝐸𝑣𝑑𝑊 =

0. The graphene will stay in contact with the outmost surface of water droplet with one surface 

side exposed to the vacuum/air due to the requirement of the minimum system energy, and 

𝐴𝑑 = 𝐴𝑔 = 𝐴𝑖 . Take the rectangular graphene with length 𝑙  and width 𝑤  (𝑙 ≥ 𝑤 ) as an 
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example, as illustrated in Fig. 1a, and assume the deformation is unidirectional along its long 

symmetric axis, 𝑟𝑏 is a constant across the entire deformed graphene with the bending angle 

𝜃𝑏, and 𝜃𝑏 = 𝑙/2𝑟𝑏, Eq. (1) is simplified to 

𝐸𝑡𝑜𝑡 =
2𝐵𝜃𝑏

2

𝜂
+ 𝐴𝑙𝛾𝑙 + 𝑙𝑤𝛾𝑠 + 𝑙𝑤𝛾𝑖                       (2) 

where 𝛾𝑖 = 𝛾𝑠 − 𝛾𝑙𝑐𝑜𝑠𝜃𝑐  38, 𝜃𝑐  is the contact angle and  𝜂 = 𝑙/𝑤 . The surface area of 

liquid 𝐴𝑙 will vary with 𝜃𝑏 (S1 in supplemental materials for details). With these geometric 

relationships, for rectangular shape, the energy analysis shows that the self-folding 

deformation along the long symmetric axis is preferable in energy in comparison with along 

the short axis, consistent with that of graphene nanoribbons 39, as shown in Fig. S8. 

After the folding direction is determined, with liquid evaporation, the bending angle of 

graphene 𝜃𝑏 will increase. As discussed above, both surface energy of graphene 𝑙𝑤𝛾𝑠 and 

interfacial energy 𝑙𝑤𝛾𝑖 remain constant, the total energy 𝐸𝑡𝑜𝑡 in Eq. (2) is a function of 𝜃𝑏 

via the first and second terms and can be solved through numerical iterations, as shown in 

supplemental materials S1. Therefore, a successful self-folding by liquid evaporation requires 

𝐸𝑡𝑜𝑡(𝜃𝑏 + ∆𝜃𝑏) < 𝐸𝑡𝑜𝑡(𝜃𝑏), (∆𝜃𝑏 > 0, 𝜃𝑏 ∈ [0, 𝜋]) . Define ∆𝐸𝑡𝑜𝑡(𝜃𝑏) = 𝐸𝑡𝑜𝑡(𝜃𝑏 + ∆𝜃𝑏) −

𝐸𝑡𝑜𝑡(𝜃𝑏) , if ∆𝐸𝑡𝑜𝑡(𝜃𝑏) < 0 , the evaporation-induced folding can be achieved and a fully 

wrapped state of graphene with liquid droplet will be obtained. As a consequence, from Eq. (2), 

we will have 

∆𝐸𝑡𝑜𝑡 = ∆𝐸𝑑𝑒𝑓 + ∆𝐸𝑠𝑢𝑟𝑓
𝑙                             (3) 

where ∆𝐸𝑑𝑒𝑓 =
2𝐵

𝜂
[(𝜃𝑏 + ∆𝜃𝑏)2 − 𝜃𝑏

2]  represents the increase of deformation energy of 

graphene and ∆𝐸𝑠𝑢𝑟𝑓
𝑙 = 𝐴𝑙(𝜃𝑏 + ∆𝜃𝑏)𝛾𝑙 − 𝐴𝑙(𝜃𝑏)𝛾𝑙  represents the decrease of surface 

energy of liquid. Therefore, the criterion for a successful folding process by liquid evaporation 

can be defined as 

|
∆𝐸𝑑𝑒𝑓

∆𝐸𝑠𝑢𝑟𝑓
𝑙 | < 1, (𝜃𝑏 ∈ [0, 𝜋])                       (4) 

The critical self-folding length of graphene can be calculated via |∆𝐸𝑑𝑒𝑓/∆𝐸𝑠𝑢𝑟𝑓
𝑙 |

𝜃𝑏=𝜋
= 1 

and it is 𝑙𝑒𝑐 = √4𝜋3/(𝜂 + 𝜋)√𝐵/𝛾𝑙 (S2 in supplemental materials for details). 

Following the similar analysis, we also determine the profile and energy for the liquid 
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evaporation-driven folding of circular and triangular graphene (Fig.1b and Fig. 1c, S1 in 

supplemental materials). For circular graphene, the folding line could be arbitrary diameter 

(Fig. 1b), and the analysis leads to 𝑙𝑒𝑐 = 6.32√𝐵/𝛾𝑙  . For triangular graphene, unlike the 

axisymmetric folding of rectangular and circular graphene, its self-folding will be conducted 

along centrosymmetric direction (Fig.1c), and we can have 𝑙𝑒𝑐 = 3.45√𝐵/𝛾𝑙 . By introducing 

a geometric factor, 𝑠, the critical length of these three graphene geometries can be unified into 

(S2 in supplemental materials for details)  

𝑙𝑒𝑐 = 𝑠√
𝐵

𝛾𝑙
                              (5) 

where √𝐵/𝛾𝑙 represents the material constants of solid and liquid, and 𝑠 = √4𝜋3/(𝜂 + 𝜋) 

(Rectangle), 6.32 (Circle) and 3.45 (Triangle). In particualr, for retangular graphene with a 

small aspect ratio, i.e. 𝜂 ≪ 1, 𝑠 = 2𝜋, and the citical length 𝑙𝑒𝑐 in Eq. (5) will be the same 

with that of graphene nanoribbons 32.  
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Figure 1. Evaporation-driven self-folding of a single suspended graphene sheet in a liquid 

environment. Schematics of planar (a) rectangular, (b) circular and (c) triangular graphene, 

their suspended in liquid and self-folded pattern after complete evaporation of liquid. 𝑙 and/or 

𝑤 are size of planar graphene. 𝜃𝑏 is the bending angle of graphene in liquid. 𝑙𝑜 is the length 

of overlap part. 

 

 

2.2 Effect of surface wettability 

In the determination of 𝑙𝑒𝑐 in Eq. (5), a full contact between graphene and liquid droplet is 

assumed, associated with a constant interfacial energy during evaporation. Essentially, 𝑙𝑒𝑐 in 

Eq. (5) reflects the energy competition between liquid surface and deformation of graphene. 

However, the detaching between graphene and liquid may happen during the folding of 

graphene with liquid evaporation, as illustrated in Fig. 2. In particular, when the effect of 

surface wettability of graphene is considered40, 41, the interfacial energy may change with 

evaporation. Besides, once the graphene does not remain in contact with liquid surface, the 
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detached section will recover to be planar 42, 43. Consider the surface area of detached graphene 

𝐴𝑠 (>0), the total energy of the system in Eq. (2) will become 

𝐸𝑡𝑜𝑡 =
𝐵(𝑙𝑤−𝐴𝑠)

2𝑟𝑏
2 + (𝐴𝑙 + 𝐴𝑠)𝛾𝑙 + (𝑙𝑤 + 𝐴𝑠)𝛾𝑠 + (𝑙𝑤 − 𝐴𝑠)𝛾𝑖           (6) 

The energy difference between the scenarios with full (Eq. (2), 𝐸𝑡𝑜𝑡
𝑓𝑜𝑙𝑑

) and partial contact (Eq. 

(6), 𝐸𝑡𝑜𝑡
𝑑𝑒𝑡𝑎𝑐ℎ ) between graphene and water is ∆𝐸𝑡𝑜𝑡

𝑑−𝑓
= 𝐸𝑡𝑜𝑡

𝑑𝑒𝑡𝑎𝑐ℎ − 𝐸𝑡𝑜𝑡
𝑓𝑜𝑙𝑑

 , and define the 

surface wettability of graphene 𝜃𝑐, we can have (S3 in supplemental materials for details) 

∆𝐸𝑡𝑜𝑡
𝑑−𝑓

= 𝐴𝑠 [−
𝐵𝜃𝑏

2

2𝑙2 + 𝛾𝑙(1 + 𝑐𝑜𝑠𝜃𝑐)]                     (7) 

at ∆𝐸𝑡𝑜𝑡
𝑑−𝑓

> 0, no detaching occurs, and the folding will continue with a full contact between 

liquid and graphene, and otherwise, detachment will happen and self-folding will stop. 

Apparently, a hydrophobic surface (larger 𝜃𝑐) will promote the detachment and suppresses the 

self-folding process. With the consideration of this effect of surface wettability, the critical 

length of graphene that can be folded by evaporation, here referred to as wet-capillary critical 

length 𝑙𝑤𝑐, can be derived via ∆𝐸𝑡𝑜𝑡
𝑑−𝑓

= 0 and it is (S3 in supplemental materials for details) 

𝑙𝑤𝑐 = 𝑔√
𝐵

2𝛾𝑙(1+𝑐𝑜𝑠𝜃𝑐)
                            (8) 

where 𝑔 is the geometry factor and 𝑔 = 𝜋 for rectangular and circular graphene, and 𝑔 =

2.9𝜋/√3 for triangular graphene.  

The comparison between Eqs. (5) and (8) shows that the critical length of graphene to be 

folded by liquid evaporation will be determined by both the size dimension and surface 

wettability of graphene, rather than by the sole size dimension via 𝑙𝑒𝑐. For example, given the 

aspect ratio 𝜂, bending stiffness 𝐵 of a rectangular graphene and surface tension 𝛾𝑙 of liquid, 

a critical contact angle 𝜃𝑐
𝑐  can be derived by 𝑙𝑒𝑐 = 𝑙𝑤𝑐 , which yields 𝜃𝑐

𝑐 = 𝑎𝑐𝑜𝑠(𝜂/8𝜋 −

7/8). When 𝜃𝑐 < 𝜃𝑐
𝑐, 𝑙𝑒𝑐 > 𝑙𝑤𝑐 and a successful folding process requires 𝑙 > 𝑙𝑒𝑐, and when 

𝜃𝑐 ≥ 𝜃𝑐
𝑐, a successful folding process requires 𝑙 > 𝑙𝑤𝑐. 
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Figure 2. Schematic illustrations (side view) of full and partial contact of graphene with liquid droplet.  

 

 

2.3 Van der Waals (vdW) energy-driven self-folding 

With the continuous evaporation of liquid and self-folding of graphene, the deformed graphene 

starts to contact with each other (𝐴𝑜 > 0), where the vdW binding energy 𝐸𝑣𝑑𝑊 needs to be 

considered 32. Take the rectangular graphene as an example, the total energy of the system now 

becomes 

𝐸𝑡𝑜𝑡 =
𝐵(𝑙−2𝑙𝑜)𝑤

2𝑟𝑏
2 + 𝐴𝑙𝛾𝑙 + 𝑙𝑤𝛾𝑠 + (𝑙𝑤 − 2𝑙𝑜𝑤)𝛾𝑖 + 𝑙𝑜𝑤𝛾𝑏            (9) 

where 𝑙𝑜  is the overlap length (𝐴𝑜 = 𝑙𝑜𝑤 , as illustrated in Fig. 1a) and 𝛾𝑏  is the binding 

energy density of graphene (=−0.232𝐽/𝑚2 12). In this stage, because most water has been 

evaporated, the surface energy of liquid can be neglected and the interfacial energy between 

solid and liquid could be replaced by the surface energy of solid in theoretical analysis. After 

the complete evaporation of liquid, the folded solid will be independent of liquid and the 

variation of total energy is  

∆𝐸𝑡𝑜𝑡 = ∆𝐸𝑑𝑒𝑓 + ∆𝐸𝑠𝑢𝑟𝑓
𝑔

+ ∆𝐸𝑣𝑑𝑊                  (11) 

With the liquid evaporation, a continuous folding of graphene will lead to ∆𝐸𝑡𝑜𝑡 < 0 , 

∆𝐸𝑑𝑒𝑓 > 0, ∆𝐸𝑠𝑢𝑟𝑓
𝑔

< 0 and ∆𝐸𝑣𝑑𝑊 < 0, and therefore the successful self-folding process 

of graphene will require  

|
∆𝐸𝑑𝑒𝑓

∆𝐸𝑠𝑢𝑟𝑓
𝑔

+∆𝐸𝑣𝑑𝑊
| < 1                        (12) 

During the self-folding process, |∆𝐸𝑑𝑒𝑓/(∆𝐸𝑠𝑢𝑟𝑓
𝑔

+ ∆𝐸𝑣𝑑𝑊)| will increase until to equaling 
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to 1 where a stable self-folded arrives, and the overlap length in the folded graphene 𝑙𝑜 can 

be obtained via |∆𝐸𝑑𝑒𝑓/(∆𝐸𝑠𝑢𝑟𝑓
𝑔

+ ∆𝐸𝑣𝑑𝑊)|=1. Accordingly, the critical self-folding length 

𝑙𝑐𝑟 due to vdW energy can be determined by |∆𝐸𝑑𝑒𝑓/(∆𝐸𝑠𝑢𝑟𝑓
𝑔

+ ∆𝐸𝑣𝑑𝑊)|
𝑙𝑜=0

= 1 and it is 

(S4 in supplemental materials)  

𝑙𝑐𝑟 = 𝑘√
𝐵

|𝛾𝑏−2𝛾𝑠|
                               (13) 

where 𝑘 = 2𝜋 for rectangle, 𝑘=11.72 for circle and 𝑘=13.57 for triangle.  

 

3. Computational modeling and simulations 

To validate the theoretical analysis, full-scale molecular dynamics (MD) simulations were 

conducted using LAMMPS44. SPC/E model was used to model water molecules45, and the 

AIREBO force field was employed to model graphene46, 47. The 12-6 Lennard-Jones (L-J) non-

bonded pairwise potential 𝑉𝐿−𝐽(𝑟) = 4𝜀𝑐−𝑜(𝜎12/𝑟12 − 𝜎6/𝑟6)  was used to model the 

carbon-water vdW interactions, where 𝜀𝑐−𝑜 is the potential well depth, 𝜎 is the equilibrium 

distance and 𝑟  is the distance between two atoms. The coulomb interaction 𝑉𝑞(𝑟) =

𝑞𝑖𝑞𝑗/4𝜋𝜀0𝑟 was used to model the electrostatic interaction between water molecules 𝑖 and 𝑗. 

The cut-off radius of 1.0 nm was chosen, and the particle-particle-particle-mesh (PPPM) with 

a root mean of 0.0001 was employed to calculate the long-range Coulomb interactions between 

oxygen and hydrogen atoms in water molecules. Periodic boundary conditions were applied in 

the 𝑥, 𝑦 and 𝑧 directions of the simulation cubic box that was far larger than the graphene-

water system to avoid the effect of periodic image37, 48. 

The simulations of liquid evaporation included three major steps. First, the equilibrium of 

system consisting of 21296 water molecules and a graphene sheet was reached under the NVT 

ensemble with Nose/Hoover thermostat at 300K at 1.0 atmosphere. The simulations were run 

for 1.0 ns with time step of 1.0 fs. Second, water molecules were removed randomly to mimic 

evaporation of liquid and the evaporation rate was 10000 water molecules per nanosecond 

under the NVE ensemble. Afterward, the system would be re-equilibrated under NVE ensemble 

to ensure a slow liquid evaporation without affecting the deformation of graphene. The 

evaporation and equilibrium procedures were repeated until all the water molecules were 

removed completely. During these process, the coordinates of atoms in both water and 
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graphene were monitored every 10000 time steps to ensure to document enough data. Third, 

the NVE ensemble was run for another 1.0 ns after the complete evaporation of water molecules 

to make sure the arrival of a folded stable graphene.  

 

4. Results 

Fig. 3a illustrates the comparison of the volume of water (𝑉𝑙) and deformation of graphene (𝜃𝑏) 

between the theoretical and simulation results for rectangular planar graphene. With the 

decrease of volume of water (evaporation), the bending angle of graphene increase (folding), 

and good agreement between simulations and theoretical analysis is observed. Moreover, 

Fig.3b shows that both profiles of water and graphene during simulation are well consistent 

with theoretical predictions. Fig.3c shows the history of surface energy of liquid 𝐸𝑠𝑢𝑟𝑓
𝑙  , 

deformation energy of graphene 𝐸𝑑𝑒𝑓 and binding energy of the overlap part in the graphene 

𝐸𝑣𝑑𝑊 with evaporation. During the equilibrium process, 𝐸𝑠𝑢𝑟𝑓
𝑙  shows an obvious decrease 

due to the minimization of liquid surface energy, and 𝐸𝑑𝑒𝑓 and 𝐸𝑣𝑑𝑊 do not change due to 

the large volume of water. Upon liquid evaporation begins, at the elastocapillary folding stage, 

𝐸𝑠𝑢𝑟𝑓
𝑙   continues to decrease, 𝐸𝑑𝑒𝑓  increases steadily and 𝐸𝑣𝑑𝑊  remains to be an 

approximate zero, indicting the deformation of graphene yet without any overlap, which 

validates the assumption made in the derivations of Eqs. (3) and (5) in Section 2.1. As the 

evaporation continues, an overlap appears in the closest region of folded graphene, and 𝐸𝑣𝑑𝑊 

starts to dominate the folding, as discussed in Section 2.3, showing a decrease till to a constant 

that corresponds to the formation of a folded stable pattern. At the same time, 𝐸𝑑𝑒𝑓 increases 

rapidly and reaches a constant along with 𝐸𝑣𝑑𝑊, and 𝐸𝑠𝑢𝑟𝑓
𝑙  quickly decreases to zero due to 

the evaporation of water molecules. Fig. 3d and e shows the energy ratio of these two stages, 

|∆𝐸𝑑𝑒𝑓/∆𝐸𝑠𝑢𝑟𝑓
𝑙 |  and |∆𝐸𝑑𝑒𝑓/(∆𝐸𝑠𝑢𝑟𝑓

𝑔
+ ∆𝐸𝑣𝑑𝑊)| , respectively, and the representative 

snapshots of graphene deformation and water droplet profile (insets in Fig. 3d). A closed pattern 

is obtained at the end of the elastocapillary folding by liquid evaporation, and an ultimately 

stably racket-like pattern is formed at the end of the self-folding by vdW energy. Given the 

bending stiffness of graphene 𝐵 for a specific length 𝑙 and width 𝑤, and surface tension of 
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water 𝛾𝑙, the theoretical energy ratios can be calculated based on Eqs. (4) and (12) and are also 

plotted in Figs. 3d and e. Good agreement in both stages is observed between simulations and 

theoretical analysis. 

 

 

 
Figure 3. Self-folding deformation and energy variation of graphene with initial planar 

rectangular geometry with liquid evaporation. (a) Variation of bending deformation-bending angle 

𝜃𝑏 of graphene with volume of water 𝑉𝑙. (b) Comparison of deformation configuration of graphene and 

water droplet with evaporation between simulations and theoretical analysis (𝑉0 is the initial volume of 

water and 𝑉𝑒 is the evaporated volume of water). (c) Variation of liquid surface energy 𝐸𝑠𝑢𝑟𝑓
𝑙 , binding 

energy in overlap parts of graphene 𝐸𝑣𝑑𝑊 and deformation energy of graphene 𝐸𝑑𝑒𝑓 with simulation 

time. Insets show the MD snapshots of graphene deformation in liquid. (d) Comparison of the energy 

ratio |∆𝐸𝑑𝑒𝑓/∆𝐸𝑠𝑢𝑟𝑓
𝑙 |  and |∆𝐸𝑑𝑒𝑓/(∆𝐸𝑣𝑑𝑊 + ∆𝐸𝑠𝑢𝑟𝑓

𝑔
)|  in the elastocapillary mechanism driven by 

liquid evaporation (1st stage) and self-folding mechanism driven by vdW energy (2nd stage) between 

simulations and theoretical analysis. The size dimension of rectangular graphene: 𝑙=16 nm and 𝜂=2, 

and surface wettability: 𝜃𝑐 = 60°. 
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Figs. 4 and 5 give the comparison between theoretical analysis and simulations for 

graphene with circular and triangular shapes, respectively, including deformation of graphene, 

profile of water droplet and variations of energy. Similarly, good agreement is also obtained. 

we should mentioned that for the triangular graphene, due to its centrosymmetric folding type, 

the maximum bending angle is different from that of axisymmetric folding cases (rectangle and 

circle) and this maximum bending angle can be determined based on the geometric 

characteristic of triangle (𝜃𝑏
𝑚𝑎𝑥=0.72𝜋, S1 in supplemental materials). 

 

 

Figure 4. Self-folding deformation and energy variation of graphene with initial planar circular 

geometry with liquid evaporation. (a) Variation of bending deformation-bending angle 𝜃𝑏  of 

graphene with volume of water 𝑉𝑙. (b) Comparison of deformation configuration of graphene and water 

droplet with evaporation between simulations and theoretical analysis (𝑉0 is the initial volume of water 

and 𝑉𝑒 is the evaporated volume of water). (c) Variation of liquid surface energy 𝐸𝑠𝑢𝑟𝑓
𝑙 , binding energy 

in overlap parts of graphene 𝐸𝑣𝑑𝑊 and deformation energy of graphene 𝐸𝑑𝑒𝑓 with simulation time. 

Insets show the MD snapshots of graphene deformation in liquid. (d) Comparison of the energy ratio 

|∆𝐸𝑑𝑒𝑓/∆𝐸𝑠𝑢𝑟𝑓
𝑙 |  and|∆𝐸𝑑𝑒𝑓/(∆𝐸𝑣𝑑𝑊 + ∆𝐸𝑠𝑢𝑟𝑓

𝑔
)|  in the elastocapillary mechanism driven by liquid 

evaporation (1st stage) and self-folding mechanism driven by vdW energy (2nd stage) between 

simulations and theoretical analysis. The size dimension of circular graphene: 𝑙=16 nm, and surface 

wettability: 𝜃𝑐 = 60°. 
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Figure 5. Self-folding deformation and energy variation of graphene with initial planar triangular 

geometry with liquid evaporation. (a) Variation of bending deformation-bending angle 𝜃𝑏  of 

graphene with volume of water 𝑉𝑙. (b) Comparison of deformation configuration of graphene and water 

droplet with evaporation between simulations and theoretical analysis (𝑉0 is the initial volume of water 

and 𝑉𝑒 is the evaporated volume of water). (c) Variation of liquid surface energy 𝐸𝑠𝑢𝑟𝑓
𝑙 , binding energy 

in overlap parts of graphene 𝐸𝑣𝑑𝑊 and deformation energy of graphene 𝐸𝑑𝑒𝑓 with simulation time. 

Insets show the MD snapshots of graphene deformation in liquid. (d) Comparison of the energy ratio 

|∆𝐸𝑑𝑒𝑓/∆𝐸𝑠𝑢𝑟𝑓
𝑙 |  and|∆𝐸𝑑𝑒𝑓/(∆𝐸𝑣𝑑𝑊 + ∆𝐸𝑠𝑢𝑟𝑓

𝑔
)|  in the elastocapillary mechanism driven by liquid 

evaporation (1st stage) and self-folding mechanism driven by vdW energy (2nd stage) between 

simulations and theoretical analysis. The size dimension of triangular graphene: 𝑙=17 nm, and surface 

wettability: 𝜃𝑐 = 60°. 

 

 

With the continuous evaporation of liquid, once there is an overlap in the folded graphene, 

the theoretical analysis shows that the binding energy starts to dominate the subsequent folding 

process. In the MD simulations, the rectangular and circular graphene will be folded into a 2-

D “racket-like” pattern. In contrast, for the triangular graphene, it will be folded into a 3-D 

“cone-like” structure. Fig. 6 gives the comparison of the overall configuration of the final 

patterns folded from planar rectangular, circular and triangular graphene, and all agree with 

theoretical analyses. Further, Fig. 7a and b plots the overlap length normalized by original size, 

𝑙𝑜/𝑙 for the folded 2-D racket-like pattern, and good agreement between theoretical analysis 

and simulations for both folded patterns is obtained. To characterize the 3-D folded cone-like 
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pattern, two parameters, the ending radius 𝑟𝑒 at the “mouth” and the initial radius 𝑟𝑖 at the 

“bottom” are extracted to describe this structure and are given in Fig. 7c. Remarkable 

agreement between simulations and theoretical analysis is also observed.  

 

 

Figure 6. Comparison of overall configurations of self-folded graphene after complete evaporation of 

liquid between simulations and theoretical analysis. “Racket-like” pattern folded from planar (a) 

rectangular graphene with a length of 𝑙=16 nm, and (b) circular graphene with a length of 𝑙=16 nm. (c) 

“Cone-like” pattern folded from planar triangular graphene with a length of 𝑙=17 nm. Surface wettability of 

graphene in water 𝜃𝑐 = 60°. 

 

 
Figure 7. Parametric characterizations of self-folded profile of graphene after complete evaporation 

of water. 2-D “Racket-like” pattern folded from (a) rectangular and (b) circular graphene. (c) 3-D “Cone-

like” pattern folded from triangular graphene. Surface wettability of graphene in water 𝜃𝑐 = 60°. 
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5. Conclusion 

We propose a theoretical framework to describe the self-folding process of graphene by liquid 

evaporation. The unified theoretical model is built by considering the energy competition of 

solid deformation, liquid surface and solid-liquid interface, and the effect of surface wettability 

is also incorporated. Three representative geometries of graphene sheet, rectangular, circular 

and triangular shapes, are studied. The theoretical analysis shows that the ultimate success of 

self-folding of graphene is determined by both liquid evaporation-induced and vdW energy-

induced self-folding processes, where the former will trigger the self-folding, and the latter will 

determine stability of self-folded pattern. In particular, in the determination of the critical self-

folding length of graphene by liquid evaporation, our theory indicates that a sole elastocapillary 

length of graphene is not sufficient and the effect of surface wettability needs to be taken into 

account. A new critical length, referred to as wet-capillary length, is given by considering the 

variation of interfacial energy during liquid evaporation, and the liquid-evaporation-triggered 

self-folding of graphene relies on the competition with elastocapillary length and wet-capillary 

length. Further, the critical length of graphene induced by vdW energy is determined by 

analyzing competition between deformation energy and binding energy. For different shapes 

of graphene (axial or central symmetry), the modes of deformation change, and eventually 

leads to various folded configurations, including 2-D “racket-like” for graphene with axial 

symmetry in geometry, and 3-D “cone-like” for graphene with central symmetry in geometry. 

The parallel full-atom molecular dynamics (MD) simulations are conducted to verify 

theoretical models from energy evolution and liquid droplet profile with liquid evaporation, to 

the final folded patterns and sizes, and show good agreement with theoretical analysis. The 

proposed framework could be easily extended to study self-folding of other 2-D materials by 

updating the geometric parameters in the models and provides a quantitative guidance on the 

conversion of 2-D materials into other non-planar structures by liquid evaporation required by 

broad applications of 2-D materials.  
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Skubiszewska-Zięba, R. Leboda, E. Tombácz and I. Y. Toth, ACS nano, 2012, 6, 3967-

3973. 

17. B. Wang, M. Huang, N. Y. Kim, B. V. Cunning, Y. Huang, D. Qu, X. Chen, S. Jin, M. 

Biswal, X. Zhang, S. H. Lee, H. Lim, W. J. Yoo, Z. Lee and R. S. Ruoff, Nano letters, 

2017, 17, 1467-1473. 

18. B. Xu and J. A. Rogers, Extreme Mechanics Letters, 2016, 7, 44-48. 

19. C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman and C. N. Baroud, Physical review 

letters, 2007, 98, 156103. 

20. A. Antkowiak, B. Audoly, C. Josserand, S. Neukirch and M. Rivetti, Proceedings of the 

National Academy of Sciences, 2011, 108, 10400-10404. 

21. N. D. Brubaker and J. Lega, Philosophical transactions. Series A, Mathematical, 

physical, and engineering sciences, 2016, 374. 

22. R. W. Style, A. Jagota, C.-Y. Hui and E. R. Dufresne, Annual Review of Condensed 

Matter Physics, 2017, 8, 99-118. 



 18 / 19 
 

23. B. Roman and J. Bico, Journal of physics. Condensed matter : an Institute of Physics 

journal, 2010, 22, 493101. 

24. J. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, M. G. Kanatzidis, J. M. 

Gibson and J. Huang, ACS nano, 2011, 5, 8943-8949. 

25. Y. Chen, F. Guo, A. Jachak, S. P. Kim, D. Datta, J. Liu, I. Kulaots, C. Vaslet, H. D. Jang, 

J. Huang, A. Kane, V. B. Shenoy and R. H. Hurt, Nano letters, 2012, 12, 1996-2002. 

26. X. Ma, M. R. Zachariah and C. D. Zangmeister, Nano letters, 2012, 12, 486-489. 

27. K. Sohn, Y. Joo Na, H. Chang, K. M. Roh, H. Dong Jang and J. Huang, Chemical 

communications, 2012, 48, 5968-5970. 

28. W. N. Wang, Y. Jiang and P. Biswas, The journal of physical chemistry letters, 2012, 3, 

3228-3233. 

29. Y. Nie, Y. Wang and P. Biswas, The Journal of Physical Chemistry C, 2017, 121, 10529-

10537. 

30. Z. Tang, X. Li, Z. Han, L. Yao, S. Shen and J. Yang, RSC Adv., 2016, 6, 87796-87801. 

31. E. De Langre, C. N. Baroud and P. Reverdy, Journal of Fluids and Structures, 2010, 26, 

205-217. 

32. Q. Liu, Y. Gao and B. Xu, Applied Physics Letters, 2016, 108, 141906. 

33. Q. Liu and B. Xu, The Journal of Physical Chemistry C, 2018. 

34. M. Li, Q. Yang, H. Liu, M. Qiu, T. J. Lu and F. Xu, Small, 2016, 12, 4492-4500. 

35. Y. Liu and B. I. Yakobson, Nano letters, 2010, 10, 2178-2183. 

36. Q. Lu and R. Huang, Physical Review B, 2010, 81. 

37. N. Patra, B. Wang and P. Král, Nano letters, 2009, 9, 3766-3771. 

38. P. G. de Gennes, Reviews of Modern Physics, 1985, 57, 827-863. 

39. S. Alben, B. Balakrisnan and E. Smela, Nano letters, 2011, 11, 2280-2285. 

40. T. Werder, J. H. Walther, R. Jaffe, T. Halicioglu and P. Koumoutsakos, The Journal of 

Physical Chemistry B, 2003, 107, 1345-1352. 

41. Y. Zhang, Q. Liu and B. Xu, Journal of Applied Mechanics, 2017, 85, 021006-021006-

021009. 

42. M. Rivetti and A. Antkowiak, Soft Matter, 2013, 9, 6226. 

43. J. Bueno, H. Casquero, Y. Bazilevs and H. Gomez, Meccanica, 2017. 

44. S. Plimpton, P. Crozier and A. Thompson, Sandia National Laboratories, 2007, 18. 

45. P. Mark and L. Nilsson, The Journal of Physical Chemistry A, 2001, 105, 9954-9960. 

46. S. J. Stuart, A. B. Tutein and J. A. Harrison, The Journal of chemical physics, 2000, 112, 

6472-6486. 

47. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, 

Journal of Physics: Condensed Matter, 2002, 14, 783. 

48. T. Werder, J. Walther, R. Jaffe, T. Halicioglu and P. Koumoutsakos, The Journal of 

Physical Chemistry B, 2003, 107, 1345-1352. 

 

 

 

 

 

 



 19 / 19 
 

TOC 

 

Liquid evaporation-driven self-folding of 2-D planar free-standing graphene into 2-D or 3-D 

folded structures is presented in theory and simulations 

 

 

 


