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ABSTRACT
We propose a simple analytic model to understand when star formation is time steady versus
bursty in galaxies. Recent models explain the observed Kennicutt–Schmidt relation between
star formation rate and gas surface densities in galaxies as resulting from a balance between
stellar feedback and gravity. We argue that bursty star formation occurs when such an equilib-
rium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation
should be bursty: (i) at high redshift (z � 1) for galaxies of all masses, and (ii) at low masses
(depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic
dynamical time-scales become too short for supernova feedback to effectively respond to grav-
itational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas
in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively
average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the
early Universe. Our model can thus explain the bursty star formation rates predicted in these
regimes by recent high-resolution galaxy formation simulations, as well as the bursty star for-
mation histories observationally inferred in both local dwarf and high-redshift galaxies. In our
model, bursty star formation is associated with particularly strong spatiotemporal clustering
of supernovae. Such clustering can promote the formation of galactic winds and our model
may thus also explain the much higher wind mass loading factors inferred in high-redshift
massive galaxies relative to their z ∼ 0 counterparts.

Keywords: stars: formation – galaxies: dwarf – galaxies: formation – galaxies: high-redshift –
galaxies: ISM– galaxies: starburst.

1 INTRODUCTION

Observations of relatively tight relationships between the star for-
mation rates (SFRs) of galaxies and their stellar masses (M�; e.g.
Noeske et al. 2007; Reddy et al. 2012; Rodighiero et al. 2014)
and between their SFRs and gas surface densities (the Kennicutt–
Schmidt, KS, relation; e.g. Kennicutt 1998; Genzel et al. 2010)
indicate that star formation must proceed relatively smoothly in
typical galaxies when the SFR is averaged over long time-scales
(�100Myr). In most galaxy formation models to date, includ-
ing large-volume cosmological hydrodynamic simulations (e.g.
Springel & Hernquist 2003; Vogelsberger et al. 2014; Schaye
et al. 2015; Davé, Thompson & Hopkins 2016), semi-analytic
models (e.g. Fu et al. 2013; Benson 2014; Henriques et al. 2015;
Somerville, Popping & Trager 2015) and analytic ‘equilibrium’
models tied to gas accretion rates from the intergalactic medium
(e.g. Bouché et al. 2010; Davé, Finlator & Oppenheimer 2012;
Lilly et al. 2013), star formation in individual galaxies is in fact
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effectively assumed to proceed smoothly in intervals between dis-
turbances like galaxy mergers.

However, several recent galaxy simulations with resolution suf-
ficient to resolve the gravitational collapse of individual gravita-
tionally bound clouds (GBCs) in the interstellar medium (ISM) and
to model stellar feedback on the scale of individual star-forming
regions predict much more variable star formation histories in some
regimes. Bursty star formation1 at high redshift and in dwarf galax-
ies is in particular a key prediction of the Feedback In Realis-
tic Environments (FIRE) cosmological zoom-in simulations, which
model stellar feedback in a spatially and temporally resolved man-
ner (e.g. Hopkins et al. 2014; Faucher-Giguère et al. 2015; Mu-
ratov et al. 2015; Sparre et al. 2017). This is illustrated in Fig. 1,
which shows star formation histories for five simulated galaxies
from the FIRE project, ranging from dwarf galaxies to Milky Way-
mass galaxies, normalized by the running mean SFR averaged over
a time-scale of ≈300Myr. All FIRE galaxies are bursty at high

1 In this paper, ‘bursty’ refers to galaxies in which a significant fraction of
star formation occurs in recurrent bursts, even if the SFR is time steady when
averaged over cosmological time-scales. This is in contrast, for example, to
isolated bursts of star formation triggered by galaxy mergers.
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Figure 1. Normalized SFR versus redshift for simulated galaxies from the
FIRE project, in decreasing order of z = 0 halo mass (labelled at the top-left
of each panel) from top to bottom. The instantaneous SFR is normalized by
the running mean SFR, boxcar averaged over ≈300Myr. At high redshift (z
�1), all simulated galaxies exhibit bursty star formation. The more massive
galaxies settle into a more time-steady mode of star formation at lower
redshifts but the dwarf galaxies sustain bursty star formation down to z = 0.
Data from Muratov et al. (2015).

redshift (z � 1, though with significant dispersion in the transi-
tion redshift). The more massive simulated galaxies (halo mass
Mh ∼ 1012 M�) settle into a more time-steady mode of star forma-
tion at z� 1, while lower mass galaxies continue to be bursty all the
way to the present time. In simulations of ∼L� galaxies, the transi-
tion from bursty star formation at high redshift to more time-steady
star formation at later times seems to be associated with the transi-
tion from highly dynamic and morphologically disturbed galaxies
to more well-ordered discs familiar from observations of the nearby
Universe (e.g. Hopkins et al. 2014; Agertz & Kravtsov 2015).

Our goal in this paper is to develop an analytic model to un-
derstand when and where galactic star formation is expected to be
bursty versus time steady.We seek in particular to explain the results
of simulations like the FIRE simulations. We however stress that
similar bursty star formation is not limited to the FIRE simulations
but is also seen in many other high-resolution simulations using
different codes (e.g. Governato et al. 2012; Teyssier et al. 2013;
Agertz & Kravtsov 2015; Domı́nguez et al. 2015).
Bursty star formation has particularly important implications for

dwarf galaxies, as simulations indicate that the accompanying time-
variable outflows can transfer energy to the central parts of dark
matter haloes. This process produces cored darkmatter halo profiles,
resolving a primary tension between the predictions of pure cold
dark matter simulations and observations of dwarf galaxies (e.g.
Pontzen & Governato 2012; Madau, Shen &Governato 2014; Chan
et al. 2015; Oñorbe et al. 2015; Wetzel et al. 2016; Fitts et al. 2017).
Bursty star formation continuing to late times in dwarfs causes their
outflows to recycle many times (Anglés-Alcázar et al. 2017), which
likely plays an important role in maintaining a population of dwarf

galaxies blue to z∼ 0, a challenge in many galaxy formationmodels
(e.g. Henriques et al. 2015).

The burstiness of star formation identified in recent galaxy for-
mation simulations may explain several observational indications
of time variable star formation on different time-scales. Observa-
tionally, the burstiness of star formation can be probed by com-
paring SFR measurements using indicators sensitive to different
time-scales (Weisz et al. 2012; Domı́nguez et al. 2015; Sparre
et al. 2017). Two of the most used indicators for this purpose are
the Hα nebular optical recombination line and the ultraviolet (UV)
continuum. Whereas Hα is excited by ionizing radiation from the
most massive stars and is sensitive to SFR variations on time-scales
�5Myr, the UV continuum is due to non-ionizing photospheric
emission from stars with lifetimes up to ∼300Myr.

In the local Universe, observations show that the scatter in the
Hα-to-UV ratio increases with decreasing galaxy mass (e.g. Weisz
et al. 2012). By modelling the observations using toy star formation
histories, Weisz et al. (2012) showed that the increased scatter to-
wards lowmasses can be explained by increasing burstiness in dwarf
galaxies.2 Using a different observational approach combining the
4000Å break and HδA stellar absorption line indices with SFR/M�

derived from emission line measurements, Kauffmann (2014) also
found that the burstiness of recent star formation increases from
M� ∼ 1010 to ∼108 M�. Interestingly, this technique probes vari-
ability on longer times scales, �100Myr, indicating that SFRs can
fluctuate on a broad range of time-scales. A similar conclusion was
reached by Bauer et al. (2013) based on an analysis of the distribu-
tion of specific SFRs as a function of stellar mass at z � 0.3. Both
Weisz et al. (2012) and Kauffmann (2014) find that in low-mass
galaxies the amplitude of star formation bursts can be up to a fac-
tor of ∼30. While some differences between SFRs inferred using
different observational indicators can be explained in the context of
steady star formation histories, such as due to incomplete sampling
of the initial mass function (IMF), explanations based on constant
SFRs tend to underestimate the magnitude of observed effects (e.g.
Lee et al. 2009; Fumagalli, da Silva & Krumholz 2011).

At higher redshift, Guo et al. (2016) find that the observedHβ-to-
UV ratio increaseswithM� at 0.4< z< 1.3 By comparingwith lower
redshift measurements, Guo et al. (2016) also show that the Hβ-
to-UV ratio decreases with increasing redshift. Guo et al. (2016)
argue that their results are well explained by increasing star for-
mation burstiness with both decreasing stellar mass and increasing
redshift. van der Wel et al. (2011) identified an abundant population
ofM� ∼ 108 M� ‘extreme emission line’ galaxies at z∼ 1.7, which
they interpret as having recently experienced intense starbursts of
duration∼15Myr (for observations of extreme emission line galax-
ies at higher redshift, see Forrest et al. 2017). At 2.1 < z < 2.6,
Shivaei et al. (2015) measure larger scatter in the SFR–M� relation
forM� ∼ 109.5–1011.5 M� galaxies when Hα is used to measure the
SFR relative to the UV continuum (see also Smit et al. 2016 for ob-
servational constraints at z∼ 4). While Shivaei et al. (2015) caution
that uncertainties in dust attenuation and IMF variations preclude
directly interpreting this measurement in terms of bursty star for-
mation, Sparre et al. (2017) compared the difference in the scatter

2 The mean Hα-to-UV ratio decreases with decreasing galaxy mass, which
can also be interpreted as a signature of bursty star formation: if time intervals
between bursts are sufficiently long, Hα will be depressed relative to the
UV continuum most of the time.
3 Since Hβ is also powered by ionizing radiation, it probes the same time-
scale as Hα.
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between the simulated Hα- and UV continuum-derived SFR–M�

relations predicted by the FIRE simulations to the observations of
Shivaei et al. (2015) and showed that the observed scatter difference
is consistent with the order-of-magnitude SFR variations predicted
by the simulations on time-scales as short as a few Myr.

Our model for bursty star formation builds on previous work on
understanding the regulation of star formation by stellar feedback.
Several studies have shown that simple analytic models in which
ISM pressure sustained by stellar feedback (e.g. via turbulence)
balances the weight of disc gas can explain the observed KS re-
lation (e.g. Thompson, Quataert & Murray 2005; Ostriker, McKee
& Leroy 2010; Ostriker & Shetty 2011; Faucher-Giguère, Quataert
& Hopkins 2013). Recently, Torrey et al. (2017) showed that such
equilibrium models break down in galactic nuclei, where local dy-
namical time-scales are too short for stellar feedback to effectively
respond and establish a steady balance between feedback and grav-
ity. Torrey et al. (2017)’s simulations showed that the failure of
stellar feedback to establish a steady equilibrium leads to bursty
star formation in galactic nuclei. We analyse here other limits of
feedback-regulated star formation models and argue that bursty star
formation at high redshift and in dwarf galaxies can be understood
as two different failures of stellar feedback to establish a steady
equilibrium, the first due to the time-scale for stellar feedback and
the second due to the discreteness (stochastic sampling) of star-
forming regions. At high redshift, where gas fractions are elevated,
the two effects act in concert. Our derivations deliberately involve
a number of simplifications and are intended to explain in simple
terms why star formation is bursty in some systems but time steady
in others, rather than to be quantitatively exact. The fully dynamical
numerical simulations referenced above are better suited for more
detailed predictions.

We describe our star formation burstiness model and present our
results in Section 2. Section 3 discusses our findings and concludes.
Appendices summarize supporting data and calculations. Through-
out, we assume a standard flat � cold dark matter (�CDM) cos-
mology with parameters consistent with the latest constraints (H0

≈ 70 km s−1 Mpc−1,�m = 1− �� ≈ 0.27 and�b ≈ 0.046; Planck
Collaboration XIII 2016).

2 ANALYTIC MODEL

2.1 Preliminaries

Our model is based on several ideas for how star formation is
regulated in galaxies. There are different models for galactic star
formation in the literature but there is as yet no generally agreed
upon theory. We therefore begin by briefly reviewing the key as-
sumptions necessary to understand our model. This is not intended
to be a thorough review of the field (for reviews that also discuss al-
ternate theories, see e.g. McKee & Ostriker 2007; Krumholz 2014)
but rather to summarize the elements that we adopt in our mod-
elling. We also note that our model for star formation burstiness
is primarily based on recent simulations and analytic models of
star formation regulation in galaxies. Although we review some ob-
servational constraints on star-forming regions for context below,
we generally do not anchor our modelling to them; as we will ex-
plain, many results on individual star-forming regions are likely not
representative of the physics that modulate galaxy-integrated SFRs.

Most star formation occurs in Toomre-scale GBCs. It is well
known that stars form in molecular clouds (e.g. Myers et al. 1986;
Mooney & Solomon 1988; Scoville & Good 1989; Williams &
McKee 1997). In this paper, we are interested in variability in the

integrated SFR of galaxies, which is a sum over the SFRs of indi-
vidual star-forming clouds. To correctly capture the expected SFR
variance, it is critical to carefully define what counts as independent
star-forming regions in the sum.

The ISM is turbulent and highly inhomogeneous. As a result,
clouds that undergo gravitational collapse generally have several
different centres of collapse, each potentially corresponding to its
own overdensity of molecular gas and nascent star cluster. These
multiple centres of collapse and resulting star clusters are evident in
the filamentary images of GBC simulations (e.g. Padoan, Haugbølle
& Nordlund 2012; Lee, Chang & Murray 2015; Grudić et al. 2016;
Raskutti, Ostriker & Skinner 2016). The same simulations show
that when the parent cloud collapses, a fraction εGBC of the initial
gas mass is converted into stars on a time-scale of just ≈(1–3)tGBCff ,
where tGBCff is the gravitational free fall time of the cloud evaluated
at its mean initial density. When stellar feedback is included, it
usually truncates star formation and limits εGBC. Since the different
centres of collapse all form their stars during the collapse of the
parent cloud, the parent cloud can be approximated as experiencing
a single coherent burst on a time-scale ≈(1–3)tGBCff .

If we are interested in galaxy-integrated burstiness, what distribu-
tion of independent star-forming clouds should we sum over? Since
parent GBCs can each contains a large number of molecular over-
densities and form a large number of different star clusters, the usual
molecular cloud or star cluster mass functions measured in observa-
tions (e.g. Rosolowsky 2005; Fall &Chandar 2012; Rice et al. 2016;
Miville-Deschênes, Murray & Lee 2017) do not count the relevant
independent star formation units but are instead expected to include
correlated centres of collapse. We therefore appeal to theory to
guide us.

In general, galactic discs appear to be well described by a Toomre
Q parameter near unity (Toomre 1964; Goldreich & Lynden-
Bell 1965), corresponding to a state of marginal gravitational stabil-
ity. In a smooth disc withQ= 1, a single physical scale, the ‘Toomre
mass’ MT ≈ πh2	g (where h is the disc thickness and 	g is its gas
surface density) is subject to gravitational instability. Perturbations
on smaller length scales are stabilized by pressure in the disc, while
perturbations on larger scales are stabilized by rotation. Smooth
discs are therefore expected to fragment into GBCs of a definite
mass scale ∼MT. During gravitational collapse, each Toomre-scale
GBC would then hierarchically fragment into a large collection of
smaller clouds, which together would correspond to the observed
cloud mass function.

Real galactic discs are not smooth but turbulent and in reality
turbulent density fluctuations make a finite range of physical scales
unstable to gravitational collapse. Hopkins (2013) developed a gen-
eral theory of gravitational fragmentation in turbulent media and
addressed the ‘clouds within clouds’ problem using an excursion
set formalism (a generalization of the methodology used in cosmo-
logical structure formation to distinguish locally bound structures
from larger structures that contain them; e.g. Bond et al. 1991). In
the excursion set terminology, the largest (parent) gravitationally
bound structures correspond to ‘first crossings’ of the collapse bar-
rier.When applied to rotating discs, Hopkins (2013) showed that the
mass in first-crossing structures is strongly concentrated in objects
near the Toomre scale (Hopkins 2013 ’s fig. 3).

While the full mass function of GBCs extends over many orders
of magnitude, with a mass spectrum dN/dm ∼ m−α with α ∼ 2 in
agreement with observational constraints on molecular cloud and
star cluster mass functions, the first-crossing mass distribution de-
creases much more steeply with decreasing mass. The first-crossing
mass distribution is instead strongly peaked nearMT (i.e. with most
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of the mass contained within just∼1–3 orders of magnitude ofMT).
These first-crossing, parent, Toomre-scale GBCs undergoing coher-
ent gravitational collapse are the independent clouds that we should
sum over to properly capture the variance expected from stochastic
sampling of star-forming regions.

Within an individual GBC, star formation occurs in a burst.
As mentioned above, dynamical simulations indicate that GBCs
typically form stars in one main burst lasting ≈(1–3)tGBCff . During
this burst, the SFR in the GBC increases with time, until the collapse
of the cloud is disrupted by stellar feedback. For example, the
numerical simulations of Lee et al. (2015) indicate that SFR ∝ t in
GBCs. At high redshift, where GBCmasses tend to be large because
of elevated gas fractions and where free fall times are shorter (see
Sections 2.3–2.5 below), this can lead to quite intense bursts in
individual GBCs:

SFR ∼ 10M� yr−1
( εGBC

0.1

) (
m

109 M�

) (
tGBCff

10Myr

)
. (1)

Wemust address here observations that appear to contradict rapid,
time dependent in star formation in molecular clouds. Indeed, a
large number of measurements indicate low star formation efficien-
cies per free fall time in molecular gas, εmol

ff ∼ 0.01, across large
cloud samples and on different scales (e.g. Krumholz & Tan 2007;
Garcı́a-Burillo et al. 2012; Krumholz, Dekel&McKee 2012; Evans,
Heiderman & Vutisalchavakul 2014; Heyer et al. 2016). Unfortu-
nately, because the relevant units of coherent star formation in our
model are Toomre-scale GBCs, it is generally not possible to di-
rectly compare star formation efficiencies measured for individual
molecular clouds to our assumption of dynamic star formation in
GBCs. This is because most observed star-forming clouds are not
representative of Toomre-scale GBCs. Indeed, as explained above,
most molecular clouds identified in observations are likely subunits
of more massive GBCs. Furthermore, most observed molecular
clouds are not actually gravitationally bound. In the large molecu-
lar cloud catalogue of Miville-Deschênes et al. (2017), for example,
only some of the most massive clouds are bound according to their
measured virial parameter; by number most molecular clouds are
unbound.

Nevertheless, observations do provide some support for dynamic
star formation. Simulations with continuously driven turbulence
predict that the star formation efficiency per free fall time is not
universal but rather a function of the virial parameter of the cloud,
αvir, whichmeasures the degree of gravitational boundedness via the
ratio of kinetic energy to gravitational binding energy (Bertoldi &
McKee 1992). Dynamic star formation, on average, predicts an in-
creasing star formation efficiency with decreasing virial parameter
(e.g. Padoan et al. 2012; Lee et al. 2015). A strong trend in qual-
itative agreement with this prediction has recently been observed
in M51(Leroy et al. 2017). In the Milky Way, attempts to identify
a similar relationship with the virial parameter have however not
revealed a clear trend (e.g. Vutisalchavakul et al. 2016). This sug-
gests that the observational results may be sensitive to choices of
observational tracers or definitions of the virial proxy or star for-
mation efficiency (e.g. Leroy et al. studied regions of fixed size,
whereas Vutisalchavakul et al. analysed clouds of varying size).
Following a different approach, Lee, Miville-Deschênes & Murray
(2016) analysed the dispersion of observationally inferred εmol

ff in
Milky Way molecular clouds and argued that the large dispersion
is inconsistent with a time-independent εmol

ff and instead favours a
time-variable efficiency.

Although clearly more work is needed test dynamic star forma-
tion observationally, we take the fact that dynamic star formation

appears to be a generic prediction of simulations with self-gravity as
our main motivation for assuming a time-dependent SFR in GBCs.

On galactic scales, star formation is regulated by a balance be-
tween gravity and stellar feedback. Averaged over entire galaxies,
the star formation efficiency per free fall time, ε

gal
ff , has low mean

value ∼0.02 and relatively small dispersion (e.g. Kennicutt 1998;
Genzel et al. 2010; Krumholz et al. 2012). Our view in this pa-
per is that the low star formation efficiency per free fall time on
galactic scales is set by a global balance between the ISM pres-
sure excited by stellar feedback and gravity, with only a weak (or
no) dependence on the local star formation efficiency within indi-
vidual GBCs. In this picture, ε

gal
ff is low because only a relatively

small SFR is needed for stellar feedback to support the ISM against
runaway gravitational collapse. Several analytic models have been
formulated based on this ansatz and appear broadly consistent with
observed star formation efficiencies (Thompson et al. 2005; Os-
triker & Shetty 2011; Faucher-Giguère et al. 2013). Moreover, a
number of hydrodynamic simulations including stellar feedback
indicate that feedback can maintain the galactic ISM in rough ver-
tical hydrostatic balance and/or that the star formation efficiency
in a feedback-regulated ISM is not sensitive to the small-scale
(sub-GBC) star formation prescription (e.g. Hopkins, Quataert &
Murray 2011; Shetty & Ostriker 2012; Kim & Ostriker 2015; Orr
et al. 2017; Torrey et al. 2017).

Our picture of feedback-regulated star formation is distinct from
another popular class of models in which it is assumed that the
star formation efficiency in molecular clouds is universally low
owing to the properties of supersonic turbulence inmedia with virial
parameter of order unity (e.g. Krumholz&McKee 2005; Krumholz,
McKee & Tumlinson 2009; Federrath 2013). In those models, the
low star formation efficiency on galactic scales is inherited from the
low star formation efficiency εmol

ff ∼ 0.02 in molecular clouds. In
future work, it would be interesting to also investigate the galaxy-
scale star formation variability predicted by universal star formation
efficiency models, as this could provide a new test of the physics of
star formation regulation.

2.2 The FG13 feedback equilibrium model

The starting point for our analysis is the analytic feedback-regulated
model of Faucher-Giguère et al. (2013, hereafter FG13). The FG13
model predicts a KS relation that emerges from a balance between
gravity and supernova (SN) feedback in galactic discs, and also
shows how the KS relation imposes certain consistency require-
ments on the number of massive star-forming GBCs active at any
time. We refer to that paper for more details and summarize here
only the essential elements.

We approximate galaxies with a two-zone model consisting of
a volume-filling ISM and a collection of Toomre-scale GBCs in
which star formation is confined. The ISM is modelled as a thin disc
with radius-dependent mean gas density ρ̄ and is assumed to be in
vertical hydrostatic balance, supported by turbulence excited by SN
feedback. For simplicity we assume flat rotation curves, which we
model using an isothermal potential with velocity dispersion σ (see
also Thompson et al. 2005). The circular velocity is then vc = √

2σ .
Throughout this paper, we assume that galactic discs tend to

self-regulate to a Toomre parameter:

Q = κcT

πG	g
= 2σcT

πG	gr
≈ 1, (2)

where κ ≡
√

4�2 + d�2/d ln r = 2σ/r is the epicyclic frequency
and cT is the velocity dispersion of the turbulence (e.g. Quirk 1972;
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Kennicutt 1989; Martin & Kennicutt 2001). We expect the ISM to
self-regulate to this value, corresponding to marginal gravitational
stability, because turbulence dissipation tends to decrease Q below
unity. When Q < 1, gravitational fragmentation increases the SFR
and the associated heating of the disc by stellar feedback pushes the
disc back to Q ≈ 1. Using 	g ≡ 2hρ̄, where h is the gaseous disc
scale height, we can solve for the free fall time in the ISM at the
half-mass radius r1/2,

tdiscff (r1/2) =
(

3π

32Gρ̄(r1/2)

)1/2

=
(

3Q

64 × 21/2

)1/2

torb(r1/2), (3)

where torb(r) ≡ 2πr/vc is the orbital time. For Q = 1, the free fall
time reduces to a constant fraction of the orbital time:

tdiscff (r1/2) ≈ 0.2torb(r1/2). (4)

By balancing the turbulent pressurewith theweight of the gaseous
disc normal to the disc plane, FG13 derived the following expression
for the KS relation:

	̇� = 2
√
2πGQ

F
(

P�

m�

)−1

	2
g . (5)

Here, 	̇� is the star formation rate surface density, P�/m� is
the momentum injected in turbulence by SN feedback per stellar
mass formed and F encapsulates uncertain factors of order unity.
FG13 showed that F = 2 provides a good fit to observations for
P�/m� ≈ 3000 km s−1, appropriate for SN feedback and a standard
Kroupa IMF (e.g. Cioffi, McKee & Bertschinger 1988; Ostriker &
Shetty 2011; Martizzi, Faucher-Giguère & Quataert 2015). FG13
also showed that the prediction of this model can be expressed in
terms of the dimensionless star formation efficiency per free fall
time on galactic scales (such that 	̇� ≡ ε

gal
ff 	g/t

disc
ff ) as

ε
gal
ff ≈

√
3π

27/4F
fgvc

P�/m�

, (6)

where fg is the gas mass fraction. For most observed galaxies, this
galaxy-scale star formation efficiency is small, of order one to a few
per cent (e.g. Genzel et al. 2010; Krumholz et al. 2012). Starbursts
can be induced in galaxy mergers as a result of strong gravitational
torques that efficiently funnel large amounts of gas into the nucleus
of the merger remnant (e.g. Toomre & Toomre 1972; Barnes &
Hernquist 1991). In this case, the burst can occur on a short time-
scale because the high-density gas concentration in the nucleus can
reach short dynamical times �1Myr in the inner 100 pc. However,
galaxy mergers are too rare to explain the frequent SFR fluctuations
seen in Fig. 1.
In the following sections, we describe two regimes in which

ordinary (non-merging) galaxies can experience large deviations
from the KS relation. These deviations and the accompanying bursts
of star formation can occur either spontaneously due to instabilities
in the disc or as a result more minor external perturbations, such as
smooth inflows from the intergalactic medium.

2.3 Breakdown of equilibrium due to the supernova feedback
time-scale

Implicit in FG13’s equilibrium model is the assumption that SN
feedback can respond sufficiently rapidly to gravitational collapse
of the disc to establish hydrostatic balance. Torrey et al. (2017)
noted that this assumption breaks down in galactic nuclei, where

Figure 2. Momentum flux output by the main stellar feedback processes
(ionizing radiation, stellar winds and core-collapse SNe) per stellar mass
formed as a function of time since a burst of star formation (see Section 2.3
for details). Prompt feedback from ionizing radiation and stellar winds can
disrupt stellar birth clouds but the integrated momentum output in the ISM
is dominated by SNe.

local dynamical time-scales are shorter than a ‘stellar feedback’
time-scale. We argue here that a similar effect is in part responsible
for bursty star formation in high-redshift galaxies (as a whole).
In the early Universe the characteristic dynamical time-scales of
galaxies were shorter, but stellar evolution proceeded at a constant
rate. As the disc free fall time becomes smaller than the stellar
feedback time-scale, it becomes impossible for the bulk of galaxies
to reach a tight balance between feedback and gravity. In this limit,
the instantaneous star formation efficiency in the disc can deviate
from the median KS relation by a large factor.

Fig. 2 shows the momentum flux output by the main stellar feed-
back processes (ionizing radiation, stellar winds and core-collapse
SNe) per stellar mass formed as a function of time since a burst
of star formation. The plot, produced using STARBURST99 v7.0.1
(Leitherer et al. 1999), assumes a Kroupa (2001) IMF and solar
metallicity. The SN energy rate returned by STARBURST99 is for the
‘prompt’ kinetic energy of SN ejecta. As SNe expand into the ISM,
the radial momentum of SN remnants is enhanced by about an order
of magnitude during the Sedov–Taylor (energy-conserving) phase
(e.g. Cioffi et al. 1988; Blondin et al. 1998; Martizzi et al. 2015).
This ‘boosted’ momentum is themomentum available to drive inter-
stellar turbulence and galactic winds. We therefore plot in the figure
the boosted SN momentum calculated using fits to the evolution of
SNRs in an inhomogeneous ISM from the simulations of Martizzi
et al. (2015).4 As the figure shows, SNe dominate the momentum
input in the ISM by a large factor relative to radiation and stellar
winds.

SN feedback has two characteristic time-scales. The first is the
time-scale (t1st ≈ 3Myr) for the first SNe to explode following a
burst of star formation. Before this time, SN feedback cannot oppose
the gravitational collapse converting gas into stars. The second is
the time-scale for most SNe to explode. This is roughly the time-
scale over which SN feedback acts. For a Kroupa IMF,≈60 per cent
of the cumulative energy and momentum from core-collapse SNe
have been returned in the ISM by ≈20Myr following a burst of

4 Specifically, we use the fit appropriate for an inhomogeneous ISM with
mean density 〈nH〉 = 1 cm−3, Mach numberM = 30 and solar metallicity.
Each SN is assumed to have an energy of 1051 erg.
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star formation (insensitive to metallicity). We thus assume a SN
feedback time-scale tSN ≈ 20Myr for the numerical estimates in
this paper.

The characteristic time-scales of SN feedback introduce two dif-
ferent effects. In a medium with tff � t1st, most of the gas can be
converted into stars in a rapid burst before SN feedback can disperse
the birth cloud. As we will show below, typical free fall times are
particularly short in the early Universe so this limit could be rele-
vant for explaining the early formation of bound star clusters that
are observed as old globular clusters today (which requires a high
star formation efficiency). Properly understanding this limit would
require modelling the effects of radiative feedback that acts before
t1st, which is beyond the scope of this paper. We focus instead on
effects introduced by the longer time-scale tSN. Since SNe domi-
nate the total momentum output into the ISM, we assume that SN
feedback is the primary source of turbulent pressure in the ISM.5

When tdiscff � tSN, a feedback-supported galactic disc will be sus-
ceptible to large deviations from the KS relation.

Initially, this is because gravitational collapse on a time-scale
≈tdiscff can form stars with an elevated efficiency before SN feed-
back can respond (on a time-scale ≈tSN) and push the disc back
towards vertical hydrostatic balance with Q ≈ 1. Subsequently, an
overshoot effect can occur. This is because stellar feedback contin-
ues to operate for a fixed period of time (set by stellar evolution)
after star formation ends locally, regardless of the state of the sur-
rounding gas, which can lead to strong gas blowouts. Such bursts
of outflowing gas are seen in the galactic nucleus simulations of
Torrey et al. (2017). They are also seen as ‘gusty’ galactic winds
following star formation bursts in cosmological simulations such as
the FIRE simulations shown in Fig. 1. The near evacuation of the
ISM by strong outflows explains the periods of highly suppressed
star formation apparent in Fig. 1, where blowouts can suppress the
instantaneous SFR by up to �2 orders of magnitude.
We show below that the limit of unstable feedback regulation

described above, leading to star formation burst-outflow-suppressed
star formation cycles, is typical of high-redshift (z � 1) galaxies of
all masses and of gas-rich dwarf galaxies all the way to the present
time.

For the free fall time, we use a simple model for the cosmological
evolution of galactic discs, inspired by classic models in which disc
sizes can be predicted by assuming that baryons have the same
specific angular momentum as their parent dark matter haloes (e.g.
Fall & Efstathiou 1980; Dalcanton, Spergel & Summers 1997; Mo,
Mao & White 1998). Specifically, we assume that at any redshift
the half-mass disc radius is a constant fraction ≈2 per cent of the
halo virial radius:

r1/2 ≈ 0.02Rvir. (7)

Shibuya, Ouchi & Harikane (2015) show that this scaling holds in
observations (on average to better than a factor of 2) from z = 0 to
z ∼ 8. In a study focused at low redshift, Kravtsov (2013) found
that galaxies obey a consistent scaling over more than eight or-
ders of magnitude in stellar mass. Here, Rvir is the virial radius
for haloes defined to have a redshift-dependent enclosed overden-
sity 
c(z) relative to the critical density, ρc, following Bryan &

5 There may be exceptions, such as at very high gas surface densities where
multiple scatterings of re-processed infrared radiation can enhance radiative
feedback (Scoville 2003; Thompson et al. 2005) or in low surface density
regions, where photoionization and photoheating can be important (e.g.
Ostriker et al. 2010).

Norman (1998). Section A1 in Appendix A provides more details
on how we compute galaxy radii.

We note that cosmological hydrodynamic simulations clearly
show that feedback (and not just angular momentum inherited from
halo formation) is critical to produce realistic galaxy sizes (e.g.
Sales et al. 2010; Crain et al. 2015; Agertz & Kravtsov 2016). We
do not attempt here to model in detail what sets galaxy sizes, but
rather simply use the above observationally supported scaling. We
focus in this paper on late-type star-forming galaxies. Early-type
galaxies, which we do not consider, may retain a smaller fraction
of the specific angular momentum of their parent haloes and may
therefore be somewhat more compact (e.g. Genel et al. 2015).

Next, we need a model for the circular velocities of galaxies.
In Section A2 of Appendix A, we show that a model in which
galaxy circular velocities are a constant factor of the maximum
circular velocity of NFW (Navarro, Frenk & White 1997) haloes
simultaneously matches the observed Tully–Fisher relation at z = 0
and its evolution to z= 2. In this model, the galaxy circular velocity
is related to halo properties following:

vc ≈ 0.465

(
cvir

A(cvir)

)1/2 (
GMvir

Rvir

)1/2

, (8)

where cvir is the halo concentration (see equation A9) and A is a
dimensionless function of concentration (see equation A8). We use
the Moster, Naab & White (2013) abundance matching relation to
convert between halo mass and galaxy stellar mass.

For a disc with Q = 1, we can use equation (4) to evaluate the
free fall time in the ISM:

tff (r1/2) ≈ 0.0264

(
1

Gρc(z)

)1/2

g(z)

≈ 0.0764

H (z)
g(z), (9)

where

g(Mvir, z) ≡
(

A(cvir)


c(z)cvir

)1/2

(10)

and H is the Hubble parameter. In our numerical calculations, we
evaluate the function g using the full equations given in the Ap-
pendix but note that it is only weakly dependent on mass and red-
shift.

Fig. 3 compares tdiscff (r1/2) for different fixed stellarmasses and tSN
versus redshift. For z � 1.3, tSN < tdiscff (r1/2) and SN feedback has
enough time to establish an equilibrium and effectively regulate star
formation in galaxies. At z � 1.3, however, the feedback time-scale
becomes longer than tdiscff (r1/2) so galaxies can experience intense
bursts of star formation to which SN feedback cannot respond suf-
ficiently rapidly.6 This result is nearly independent of galaxy mass
and we propose that it explains in part why high-resolution cosmo-
logical simulations with time-resolved stellar feedback show bursty

6 Another relevant time-scale is the time necessary for pre-existing ISM
turbulence to dissipate (absent a driving source) tturb. If tturb were longer
than tdiscff , turbulent pressure support would prevent the disc from collapsing
on a free fall time and our argument would require modification. However,
we can show that tturb � tdiscff in general. Assuming that the largest turbulent
eddies have a size equal to the disc thickness h, tturb ≈ h/cT (this is true
for both supersonic and subsonic turbulence, and also in the presence of
magnetic fields; e.g. Stone, Ostriker & Gammie 1998; Mac Low 1999).
Using h/r ≈ cT/vc (FG13) to eliminate h and cT in favour of r and vc,
we find that for a disc with Q ≈ 1, tturb ≈ 0.16torb � tdiscff (see equation 4),
independent of other disc properties.
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Figure 3. Comparison of the free fall time at the half-mass radius of galac-
tic discs, tdiscff , as a function of redshift for different stellar masses (solid
coloured curves) to the SN feedback time-scale tSN = 20Myr (over which
most of the SN feedback acts; dashed black) as a function of redshift. Galac-
tic dynamical times are a constant fraction of the age of the Universe, so
they are shorter at high redshift (only weakly dependent on galaxy mass),
while the SN feedback time-scale is constant. At z � 1, characteristic free
fall times become shorter than the SN feedback time-scale and the feedback
cannot effectively respond to gravitational collapse. Galactic star formation
should be bursty in this regime The grey band covers ±5Myr around the
fiducial feedback time-scale as an indication of the sensitivity of the results
to the particular choice.

star formation histories at high redshift for all galaxies (e.g. Hop-
kins et al. 2014; Feldmann et al. 2017). Quantitatively, this result
is in good agreement with the transition from bursty to time-steady
star formation occurring around z ∼ 1 for massive galaxies in the
FIRE simulations (Fig. 1).

Since g is only weakly dependent onMvir and z, we can push our
analytics further to derive an expression for the ‘burstiness redshift’
zburst above which we expect bursty star formation. For this estimate,
we use g ≈ 0.034. Then,

tdiscff (r1/2) ≈ 0.0026

H (z)
. (11)

This is a version applied to galactic discs of the well-known result
that the characteristic dynamical time of haloes is a constant fraction
of 1/H(z). Since the age of the Universe ∼1/H(z) at any redshift,
this implies that the characteristic free fall times of galactic discs
must become shorter than the constant tSN at high redshift.

At z � 1, where dark energy is negligible, H (z) ≈
H0

√
�m(1 + z)3. We can then analytically solve for zburst by setting

tSN = tdiscff (r1/2):

zburst ≈
(

0.0026

H0tSN
√

�m

)2/3

− 1

≈ 2.3

(
tSN

20Myr

)−2/3

− 1. (12)

This matches the nearly mass-independent crossing of tSN and
tdiscff (r1/2) in Fig. 3. The transition from bursty to time steady will
in practice be gradual around that redshift because feedback and
gravitational collapse both operate continuously in time, as well
as because galaxies have significant dispersion in their proper-
ties at any mass and redshift (which affect their internal free fall
times). We indicate this in the figure with the horizontal grey band,
which covers ±5Myr around the fiducial feedback time-scale as an

approximation of the sensitivity of our results to the choice of feed-
back time-scale.

2.4 Breakdown of equilibrium due to the discreteness of star
formation

In the FIRE simulations shown in Fig. 1, massive galaxies settle
into a more time-steady mode of star formation at low redshift but
dwarf galaxies continue to experience bursty star formation down
to z ∼ 0. The burstiness of dwarfs at z < 1 cannot be explained
by the previous galaxy-scale time-scale argument, but we propose
that it can instead be explained by the discreteness of star-forming
regions.

As discussed in Section 2.1, most of the star formation in galax-
ies at any given time occurs in Toomre-scale GBCs. In individual
GBCs, the simulations summarized in Section 2.1 show that the SFR
tends to be bursty as the cloud collapses. In the limit in which only
a small number of GBCs contribute to the galactic SFR at any given
time, the galactic SFR will inherit the time dependence of GBC-
scale star formation. In nearby galaxies in which the KS relation has
been studied at high spatial resolution, the scatter is measured to
increase by a large factor when the relation is measured for galaxy
patches of size�300 pc–1 kpc (Schruba et al. 2010; Liu et al. 2011)
rather than averaging over the entire galaxy. These observations are
consistent with stochastic sampling of bright star-forming regions
causing departures from the median KS relation, since fewer star-
forming regions are averaged over when measuring on small scales
within galaxies (e.g. Orr et al. 2017; Torrey et al. 2017). In analogy
with the averaging necessary for the KS relation to be tight, we
expect that only galaxies in which a sufficiently large number of
GBCs efficiently form stars at any time can produce time-steady
galactic SFRs.

In what follows, we derive a scaling for how the number of
Toomre-scale GBCs depends on galaxy properties. Since galaxies
contain GBCs spanning a spectrum of masses but most star forma-
tion is expected to occur within coherently collapsing Toomre-scale
clouds, we characterize galaxies by the parameterNU, defined as the
number of GBCs that would be present if all of the self-gravitating
mass were distributed in clouds of mass MU ≈ MT, the maximum
(upper) GBC mass. Appendix B shows how the minimum normal-
ized SFR variance, σ SFR/〈SFR〉, scales with NU. Specifically, for
individual GBCs with SFR ∝ t,

σSFR

〈SFR〉 ≈ 1√
γNU/0.5

, (13)

where γ is the fraction of the time eachGBC actually forms stars. As
shown in the Appendix, the exact numerical value of the numerator
in the above expression depends on the parameters describing the
GBCmass function, but only weakly. This result shows that the SFR
variance is roughly the Poisson variance expected for the number of
Toomre-scale GBCs actively forming stars at any given time. Equa-
tion (13) is the minimum SFR variance expected because it only
takes into account stochastic sampling of Toomre-scale regions.
In particular, this estimate neglects the near-complete SFR sup-
pression that can follow star formation bursts owing to evacuation
of the gas reservoir (see Section 2.3), or temporary enhancements
due to accretion of new gas (either smoothly from the intergalac-
tic medium or in galaxy mergers). These effects can significantly
increase the actual SFR variance that will be observed in bursty
galaxies.

Assuming that all star formation proceeds in GBCs and that each
GBC ultimately converts a fraction εGBCint of its initial gas mass
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into stars (determined by how stellar feedback operates in GBCs),
the requirement that galaxies lie on the KS relation constrains the
fraction fGBC of the total ISM mass found in GBCs at any time.
Using MU ≈ MT ≈ πh2	g, we find that

NU = 2(πr21/2)	g(r1/2)fGBC

MU

= 2
( r1/2

h

)2
fGBC

= 16

Q2f 2
g

fGBC. (14)

The last expression uses the fact that for our disc model
h/r = Qfg/23/2 (i.e. more gas-rich discs are thicker) to eliminate
the disc thickness in favour of the gas fraction. Using this relation,
we can also show that MU ∝ f 3

g M�. We note that, because the SFR
in individual GBCs is time dependent, only a fraction of all GBCs
will be observed as luminous star-forming regions at any given
time, consistent with the wide range of instantaneous star formation
efficiencies inferred in Milky Way GBCs (e.g. Lee et al. 2016).

To make progress, we need an expression for fGBC. FG13 showed
that since we assume that all star formation occurs in GBCs, we can
write

ε
gal
ff = fGBC

t̃GBC
εGBCint , (15)

where

t̃GBC ≡
(

tGBC

tdiscff

)
(16)

and tGBC is the lifetime of GBCs. This is simply the consistency
condition that the sum of star formation occurring in all GBCs must
equal the total galactic star formation. In what follows, we assume
t̃GBC ≈ 1. This is a good approximation to the GBC simulations
discussed in Section 2.1, noting that GBCs assemble on a time-
scale tdiscff , and models show that GBCs collapse and get dispersed
by stellar feedback on a time-scale comparable to their free fall time
(e.g. Grudić et al. 2016; Kim, Kim & Ostriker 2016). Then

fGBC ≈ ε
gal
ff

εGBCint
, (17)

and therefore, using equation (6) for ε
gal
ff ,

NU ≈ 8
√
3πvc

23/4FQ2fg(P�/m�)εGBCint
. (18)

The model thus predicts decreasing NU, and therefore increasing
SFR variability, with increasing gas fraction (at fixed vc).
Defining a critical minimum number of Toomre-scale GBCs nec-

essary to exhibit steady star formation, N crit
U , we can derive a mini-

mum galaxy circular velocity necessary for steady star formation:

vc,burst ≈ 23/4FQ2(P�/m�)εGBCint fg

8
√
3π

N crit
U

≈ 46 km s−1

(
fg

0.2

) (
P�/m�

3000 km s−1

)

×
(

εGBCint

0.1

) (
N crit

U

10

)
, (19)

where the last numerical expression assumes Q = 1, F = 2 and
P�/m� = 3000 km s−1 as before. Fig. 4 plots NU versus vc for dif-
ferent gas fractions. We note that in reality there is no single critical

Figure 4. Number of Toomre-scale GBCs as a function of galaxy circular
velocity, for different gas mass fractions indicated by the different colours
(the curves do not depend on redshift). Within a single GBC, star formation
can be highly time dependent as gravitational collapse proceeds, so a large
number of GBCs must contribute in order for the galactic average to be time
steady. The horizontal dashed lines indicate different values NU = 1, 3 and
10 below which we expect increased SFR variability (Section 2.4 quantifies
the minimum SFR variance expected versus NU). Burstiness is predicted
to increase in dwarf galaxies with low vc. Burstiness should also increase
with increasing gas fraction at fixed stellar mass because the Toomre mass
increases strongly with fg, so that the total number of Toomre-scale GBCs
decreases.

threshold below which galaxies will be bursty; rather that there will
be a gradual transition of increasing burstiness with decreasing NU,
with minimum variance quantified by equation (13) or its more
general version in Appendix B.

If we crudely assume that a galaxy must have at least N crit
U ≈ 10

Toomre-scale GBCs in order to exhibit time-steady star formation,
then this implies that for a fiducial gas fraction fg = 0.2 galaxies
with circular velocity vc � 46 km s−1 should be bursty, regardless
of redshift. For gas fractions of fg ≈ 0.5, which are common at
high redshift, all galaxies with vc � 116 km s−1 should be bursty.
Indeed, the observations compiled in Section A3 of Appendix A
show that gas fractions can be near unity at high redshift, in which
case the star-forming discreteness effect can induce burstiness up
to circular velocities vc ∼ 230 km s−1 corresponding to massive
galaxies. We stress, however, that our model also predicts a smooth
transition from time-steady to bursty star formation with decreasing
vc, which is consistent with the trends found in observations (e.g.
Weisz et al. 2012; Kauffmann 2014).

We can also express our predictions forNU in terms of stellarmass
using the model for theM�–vc relation summarized in the previous
section. This is done in Fig. 5. The curves in this figure depend
on redshift because the conversion between M� and vc depends on
redshift. To connect more directly with observations, the solid grey
curves in each panel show our model predictions for the typical gas
fractions as a function galaxy mass and redshift evaluated using the
scaling relations summarized in Appendix A.

2.5 Feedback time-scale and discreteness effects acting
together: the effects of gas fractions

One effect apparent in Fig. 5 is that high-redshift galaxies (here
with emphasis on z = 2) can be bursty owing to both because their
discs collapsing too rapidly for feedback to respond effectively and
because they contain few Toomre-scale GBCs at any given time.
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Figure 5. Number of Toomre-scale GBCs (as in Fig. 4) as a function of galaxy stellar mass. These curves depend on redshift because the M�–vc relation
is redshift dependent. In each panel, the solid coloured curves show predictions for fixed gas fractions and the thick grey curve shows the prediction for the
typical gas fraction for the given galaxy mass and redshift using the scaling relations summarized in Appendix A. The horizontal dashed lines indicate different
values NU = 1, 3 and 10 below which we expect increased SFR variability (Section 2.4 quantifies the minimum SFR variance expected versus NU). At z = 2,
galaxies of a given stellar mass are predicted to be more bursty (fewer massive GBCs) because of their enhanced gas fractions. This effect is in addition to the
burstiness expected at high redshift from the SN feedback time-scale being longer than the characteristic ISM free fall times (Fig. 3).

As mentioned above, this is because high-redshift galaxies have
high typical gas fractions, fg � 0.5 being common (e.g. Daddi
et al. 2010; Tacconi et al. 2010, 2013). This result is in agreement
with rest-UV observations of massive high-redshift galaxies, which
show a relatively small number of very massive ‘giant’ star-forming
clumps (the analogues of local GMCs; e.g. Elmegreen et al. 2007;
Genzel et al. 2011; Wuyts et al. 2012). As a consistency check,
present-day galaxies like the MilkyWay should exhibit time-steady
star formation according to our model, and this is in agreement
with high-resolution cosmological simulations that predict that such
galaxies settle into a more steady mode of star formation at z � 1
(Hopkins et al. 2014; Muratov et al. 2015; Sparre et al. 2017).
Fig. 6 summarizes the parameter space in which we expect bursti-

ness either due to short galactic dynamical time-scales or to the small
number of Toomre-scale GBCs. As the figure shows, our model pre-
dicts that only relatively massive galaxies at low redshift can sustain
time-steady star formation.

In a different analytic analysis also expanding on the FG13 KS
relation model, Hayward & Hopkins (2017) noted a different effect
of gas fractions. At high gas fractions – corresponding to thick
discs with high turbulent velocities – stellar feedback is predicted
to be more efficient at driving galactic winds. Hayward & Hopkins
(2017) argue that this effect explains why strong galactic winds are
prevalent at high redshift but becomeweaker at late times inmassive
galaxies. When strong galactic winds are present, the fallback on to
galaxies of outflows as they recycle (e.g. Oppenheimer et al. 2010;
Anglés-Alcázar et al. 2017) can enhance the time variability of star
formation by sustaining a recurrent series of ‘inflow–star formation–
outflow’ cycles, on top of the gas accretion (and galaxy mergers)
expected from the development of large-scale structure.

3 DISCUSSION AND CONCLUSIONS

By examining two limits in which a feedback-regulated model for
the origin of the KS relation (FG13) breaks down, we have shown
that the SFRs of galaxies are expected to be bursty at z � 1 (for
galaxies of all masses) and in dwarf galaxies (at all redshifts). At
z � 1, the characteristic free fall time in galactic discs is generically

Figure 6. Summary of where bursty star formation is expected in the space
of galaxy circular velocity versus redshift. All galaxies at z�1 are expected
to be bursty (the model predicts a transition at z = 1.3). Below z ∼ 1,
low circular velocity galaxies are also bursty (depending on gas fraction).
In this figure, the horizontal lines for different gas fractions correspond to
NU = 10, but in reality a continuum of burstiness is expected, increasing
with decreasing NU. The only galaxies in which stellar feedback can sustain
steady star formation are relatively massive galaxies at z � 1.

shorter than the time-scale tSN ≈ 20Myr necessary for SN feed-
back to output most of its energy. Therefore, SN feedback cannot
establish a stable balance with gravity (Section 2.3). Below z ≈ 1,
galaxies in which star formation is confined to just a small num-
ber Toomre-scale GBCs will inherit a time-dependent SFR from
their GBCs. Only in galaxies in which a reasonably large num-
ber of Toomre-scale GBCs (quantified by the parameter NU) con-
tribute to the galactic SFR can the total SFR become time steady by
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averaging (Section 2.4). Our model predicts that NU decreases with
galaxy mass (or, equivalently, galaxy circular velocity) and can thus
explain why dwarf galaxies remain bursty all the way to z = 0. The
effect is enhanced by the high gas fractions in dwarf galaxies, which
make individual Toomre-scale GBCs relatively massive compared
to the stellar mass of the galaxy.

At high redshift, including around the peak of the cosmic star
formation history at z∼ 2 that is the focus of a number of large-scale
observational efforts (e.g. Grogin et al. 2011; Steidel et al. 2014;
Kriek et al. 2015; Wisnioski et al. 2015), both the time-scale and
discreteness effects that we have identified should simultaneously
occur owing to elevated gas fractions. In other words, high-redshift
galaxies are expected to exhibit bursty star formation both because
stellar feedback cannot respond sufficiently rapidly to gravitational
collapse of the disc and because star formation occurs in a small
number of massive clumps.

Overall, our model predicts that galaxies with time-steady SFRs
are the exception rather than the norm, with only fairly massive
galaxies at z � 1 (such as the Milky Way) being capable of sus-
taining time-steady star formation. We stress that on cosmological
time-scales, galactic SFRs are sustained by gas accretion from the
intergalactic medium (e.g. Kereš et al. 2005; Dekel et al. 2009;
Faucher-Giguère, Kereš & Ma 2011; Davé, Finlator & Oppen-
heimer 2012). As a result, galaxy-averaged SFRs can evolve
smoothly on cosmological time-scales even in the regimes in which
our model predicts variability on shorter time-scales (the short time-
scale variability must average out to satisfy constraints on the evolu-
tion of the SFRon cosmological time-scales imposed by the external
gas supply). The amplitude of the SFR variability is increased by gas
blowouts that follow star formation bursts (which can completely
suppress star formation for a time) and gas fallback (which can fuel
enhanced star formation). We also note that the causes of SFR vari-
ability identified in this paper are in addition to other known sources
of star formation burstiness, such as galaxy mergers (e.g. Barnes &
Hernquist 1991; Hopkins et al. 2010; Sparre & Springel 2016).

Themechanisms identified in this paper can induce star formation
variability on a broad range of time-scales. The shorter time-scale
variability should be apparent in indicators sensitive to star forma-
tion on�5Myr time-scales, such as Hα, but would be missed when
SFRs are measured using indicators sensitive only to longer time-
scales, such as the UV continuum or its dust-processed counterparts
in the infrared or millimetre ranges (e.g. Hayward et al. 2014). As
shown in previous studies, the intrinsic SFR burstiness in nearby
dwarf galaxies owing to the discreteness of star formation units
(sometimes phrased in terms of stochastic sampling of star clusters)
likely plays an important role in explaining the observed distribu-
tion of Hα-to-UV ratios (Fumagalli et al. 2011; Weisz et al. 2012),
in addition to stochastic sampling of the IMF. Our model predicts
that galaxies, including more massive ones, are also bursty at high
redshift. The intrinsic SFR variability should thus contribute to dif-
ferences in SFRs inferred with different indicators at high redshift
as well. One intriguing possibility is that recurrent star formation
bursts in ordinary galaxies could explain substantial populations of
extreme emission line galaxies observed at high redshift (e.g. van
der Wel et al. 2011; Forrest et al. 2017).

A testable prediction, for which there is already some support, is
that the scatter in the SFR–M� relation should be larger when mea-
sured using Hα than with longer time-scale SFR indicators at high
redshift and in dwarfs (see Sparre et al. 2017). The transitions from
bursty to time steady at late time and in massive galaxies predicted
by the model are also found in recent cosmological hydrodynamic
simulations that model stellar feedback in a spatially and time re-

solved manner (e.g. Hopkins et al. 2014; Agertz & Kravtsov 2015).
It is in fact a generic prediction of such simulations that the SFRs of
relatively massive galaxies like the Milky Way only become time
steady at z � 1. Lower resolution simulations that do not explicitly
resolve star formation into GBC units or do not model the time
correct dependence of stellar feedback processes cannot capture the
effects identified in this work. This is typically the case even in
the latest, state-of-the-art large-volume cosmological simulations,
which still have relatively coarse resolution in the ISM (e.g. Vogels-
berger et al. 2014; Schaye et al. 2015; Davé et al. 2016). Because of
this, current large-volume simulations likely predict star formation
histories that are artificially smooth.

In this paper, we assumed that FG13’s KS relation model could
be applied to all galaxies, but that model was developed for high-	g

galaxies and assumes that the ISM is primarily supported by SN-
driven turbulence. Our burstiness criteria could be quantitatively
refined by considering modifications of the KS relation model in-
volving other feedback processes and interstellar chemistry, which
can be more important at lower 	g. We nevertheless expect the ar-
guments presented herein to hold approximately outside the range
of strict applicability of the FG13 model. This is because a KS
relation is observed across essentially the entire galaxy population
(e.g. Kennicutt 1998; Bigiel et al. 2008; Genzel et al. 2010) and
previous theoretical studies have shown that the basic principles of
star formation regulation by stellar feedback can be generalized to
other feedback mechanisms, including stellar radiation (Thompson
et al. 2005; Ostriker et al. 2010; Hayward & Hopkins 2017). Ex-
tensions of our feedback-regulated model that include additional
processes such as radiation and ISM chemistry should be subject
to similar failures of stable regulation as the ones identified for SN
feedback in this paper, but may differ in their detailed predictions.

Finally, we note that observations suggest that galactic winds
are most prevalent in the high-redshift and dwarf regimes in which
our model predicts bursty star formation (e.g. Martin 2005; Steidel
et al. 2010; Bordoloi et al. 2014) and that galaxy-scale outflows
become significantly weaker at late times in large galaxies (e.g.
Heckman 2002; Heckman et al. 2015). Similar trends are found
in the wind mass loading factors predicted by recent cosmologi-
cal simulations that resolve the generation of galaxy-scale outflows
from the injection of feedback energy on the scale of star-forming
regions (e.g. Muratov et al. 2015; Anglés-Alcázar et al. 2017). It
would thus be very interesting to understand better the connection
between SFR variability and galactic winds. One intriguing possi-
bility is that powerful galactic winds are associated with galaxies in
which SNe are strongly clustered in space and/or time (conditions
associated with bursty star formation in our model). SN cluster-
ing can promote the formation of hot superbubbles that can more
effectively break out of galactic discs than isolated SN remnants
and this may be key to driving powerful outflows (e.g. Martizzi,
Faucher-Giguère & Quataert 2015; Girichidis et al. 2016; Fielding
et al. 2017; Li, Bryan & Ostriker 2017).
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Grudić M. Y., Hopkins P. F., Faucher-Giguère C.-A., Quataert E., Murray
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Faucher-Giguère C.-A., Quataert E., Murray N., 2015, MNRAS, 454,
2092
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APPENDIX A: GALAXY SCALING RELATIONS

To predict in which galaxies star formation is expected to be bursty,
we need to know how galaxy properties evolve with mass and
redshift. This appendix summarizes galaxy scaling relations that
we use for this purpose.

A1 Disc radii

For the disc radii, we follow the observational study of Shibuya
et al. (2015) and assume that the half-mass radius of a galaxy7

at any redshift is a constant fraction of the halo virial radius,

7 In Shibuya et al. (2015), this result is demonstrated empirically for the
effective radii of galaxies; here we identify the effective radius with the
half-mass radius.

Figure A1. Model half-mass radius of galaxy discs r1/2 ≈ 0.02Rvir as a
function of redshift, for different fixed stellar masses. At fixed mass, galaxy
discs are smaller at high redshift.

r1/2 ≈ 0.02Rvir. We use the Bryan &Norman (1998) halo definition,
in which the mean enclosed overdensity depends on redshift:


c = 18π2 + 82d − 39d2, (A1)

where, in a flat Universe with �m + �� = 1,

d ≡ �z
m − 1 (A2)

and

�z
m = �m(1 + z)3

�m(1 + z)3 + ��

. (A3)

The halo virial mass and radius are related by

Mvir = 4π

3
R3

vir
c(z)ρc(z), (A4)

where

ρc = 3H 2

8πG
(A5)

is the critical density. At high redshift, 
c → 178 but 
c(z = 0) ≈
97. For any halo, we define the virial velocity as

Vvir =
(

GMvir

Rvir

)1/2

. (A6)

To connect to observations, we also require a conversion between
halo mass and the stellar mass of the central galaxy. For this, we use
the fitting formula as a function of both mass and redshift from the
abundance matching analysis of Moster et al. (2013) for M�–Mvir.
Fig. A1 shows the predicted evolution of galaxy discs sizes as a
function of redshift, for different fixed stellar masses. Galaxies of a
given mass are smaller at high redshift because Rvir ∝ (1 + z)−1 as
z → ∞ (at fixed halo mass).

A2 Disc circular velocities

To obtainmore accurate results, it is useful to use the galaxy rotation
velocity rather than the virial velocity of the parent halo in our
calculations (although the two are similar to order unity). To do
this, we derive a simple model calibrated to observations of the
Tully–Fisher relation to capture the mass and redshift evolution of
the relation between galaxy rotation velocity, vc, and stellar mass.
Our model is based on the analysis of the evolution of haloes in
cold dark matter cosmologies by Bullock et al. (2001).
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Figure A2. Stellar mass versus galaxy circular velocity. The solid curves show the halo-based model used in this paper. At z = 0 (left), the model is compared
to observational constraints on the Tully–Fisher relations from McGaugh (2005) and Dutton et al. (2010). At z = 2, the model is compared to observations of
massive galaxies at 1.5 � z � 2.5 from Cresci et al. (2009). The model accurately reproduces the observed z = 0 Tully–Fisher relation over a large dynamic
range of galaxy masses and correctly predicts its evolution to z = 2 (at least at the massive end).

For haloes that follow an NFW profile (Navarro et al. 1997), the
maximum circular velocity in the halo, vmax, is related to the halo
virial velocity through

V 2
max

V 2
vir

≈ 0.216
cvir

A(cvir)
, (A7)

where cvir is the halo concentration and

A(cvir) ≡ ln (1 + cvir) − cvir

1 + cvir
. (A8)

For the concentration, we use

cvir ≈ 15

(
Mvir

1012 M�

)−0.2

(1 + z)−1. (A9)

At z = 0, this matches the mass dependence from Seljak (2000) and
at higher redshift this follows the scaling cvir ∝ (1 + z)−1 proposed
by Bullock et al. (2001).We assume that the galaxy circular velocity
at r1/2 (vc) is a constant fraction of vmax,

vc = βVmax, (A10)

and calibrate β to observations of the Tully–Fisher relation. As we
show below, β = 0.9 provides a good fit to both z ≈ 0 and z ≈ 2
observational constraints, and so we adopt this value.

With these ingredients, we can compute the galaxy circular ve-
locity for any combination of stellar mass and redshift. In Fig. A2,
we plotM� versus vc for our model at z = 0 and z = 2. At z = 0, we
also show the best-fitting Tully–Fisher relation from Dutton et al.
(2010) for massive galaxies and an approximate fit to lower mass
galaxies to the observations compiled by McGaugh (2005),

M� ≈ 3 × 109 M�
( vc

90 km s−1

)8.3
(vc < 90 km s−1). (A11)

This fit to the McGaugh (2005) data is only approximate because
many of the low-mass galaxies in the sample only have an up-
per limit on their stellar mass. At z = 2, we show stellar masses
and circular velocities measured using integral field observations
of massive galaxies from the Spectroscopic Imaging survey in the
Near-infrared with SINFONI (SINS) survey by Cresci et al. (2009).
As the figure shows, our simple model for the M�–vc relation pro-
vides a good fit to both the z = 0 and z = 2 observations.

Figure A3. Gas mass fraction as a function of galaxy stellar mass used to
evaluate our model predictions at z = 0 and z = 2 (solid curves). The red
squares show gas fractions derived from observations of disc galaxies in
Tacconi et al. (2013) in the redshift interval 1.5 < z < 2.5.

A3 Gas fractions

For the gas fractions, we start with the fitting formulae fromHopkins
et al. (2009):

fg,0 =
[
1 +

(
M�

109.15 M�

)0.4
]−1

,

fg(M�, z) = fg,0

[
1 − τ (z)(1 − f

3/2
0 )

]−2/3
, (A12)

where τ (z) is the fractional lookback time to redshift z (such that
τ (z = 0) = 0 and τ (z → ∞) = 1). At z = 2, we find that multi-
plying the fg implied by these expressions by 1.2 provides a better
fit to the more recent gas fraction measurements compiled in Tac-
coni et al. (2013). We therefore multiply fg by this factor for our
z = 2 predictions (but not for z = 0). At this redshift, we only
consider relatively massive galaxies for which there are good gas
fraction measurements (M� ∼ 109–1011 M�). Fig. A3 shows the
gas fractions used to evaluate our model predictions as a function
of stellar mass, at z = 0 and z = 2. In this figure, the data points
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from Tacconi et al. (2013) are restricted to galaxies in the redshift
interval 1.5 < z < 2.5 and that are classified as discs (we exclude
galaxies classified as mergers or dispersion dominated). Two trends
are noteworthy: gas fractions increase with decreasing stellar mass
and with increasing redshift. These gas fraction trends drive the
burstiness due to star formation discreteness in dwarf galaxies and
in high-redshift galaxies predicted in Section 2.4.

APPENDIX B: SFR VARIANCE VERSUS NU

In Section 2.4, we related the burstiness of star formation to the
expected number of most massive (Toomre-scale) GBCs, NU, in
a galaxy. In this section, we show that the fractional variance of
the instantaneous galaxy SFR is primarily determined by NU under
general assumptions consistent with the star formation model on
which this paper is based (see Section 2.1). Specifically, we derive
an explicit expression for

σSFR

〈SFR〉 (B1)

in terms ofNU,where 〈SFR〉 is themeanSFR in the galaxy (averaged
over a long time-scale�100Myr) andσ SFR is the standard deviation
of the instantaneous SFR.

We start with a general function describing the time evolution of
the SFR within an individual GBC as a function of massm and time
t since GBC formation, SFRi(m, t). We will later evaluate our final
result for different variations of SFRi. The GBC mass function,

dN

dm
=

{
Am−α ML ≤ m ≤ MU,

0 otherwise,
(B2)

describes the distribution of GBCs present in the galaxy at any given
time. At any time, each such GMC will be ‘caught’ at a random
time 0 ≤ t < tGBC during its evolution, where tGBC is the GBC
lifetime. The total galactic SFR is, by definition, the sum over the
star formation rates of GBCs in the galaxy:

SFR = 	
Ntot
i=1 SFRi . (B3)

We treat SFRi as a function of two random variables, m and t. For
each i, m and t are drawn from a joint distribution

fm,t (m, t) = fm(m)ft (t), (B4)

which factors into marginal probability density functions for m and
t since these are independent random variables.

The probability density function form is proportional to theGMC
mass function, but normalized such that

∫
dmfm(m) = 1:

fm(m) =
{

Ãm−α ML < m ≤ MU,

0 otherwise,
(B5)

where

Ã = (α − 1)(MLMU)α−1

Mα−1
U − Mα−1

L

(B6)

= α − 1

(β1−α − 1)
Mα−1

U . (B7)

In the last expression, we defined β ≡ ML/MU, which will simplify
later results. The probability density function for t is simply uniform
over the GBC lifetime:

ft (t) =
{
1/tGBC 0 ≤ t ≤ tGBC,

0 otherwise.
(B8)

We are now ready to evaluate 〈SFR〉 and σ SFR:

〈SFR〉 = Ntot〈SFRi〉, (B9)

where

Ntot =
∫ MU

ML

dm
dN

dm
(B10)

= A
(β1−α − 1)

α − 1
M1−α

U . (B11)

For the variance, we start with the general result

σ 2
SFR = 〈SFR2〉 − 〈SFR〉2, (B12)

and proceed to evaluate 〈SFR2〉. We have

SFR2 = 	
Ntot
i SFR2

i + 	i �=jSFRiSFRj , (B13)

and therefore, since SFRi and SFRj are independent but identically
distributed for i �= j,

〈SFR2〉 = Ntot〈SFR2
i 〉 + Ntot(Ntot − 1)〈SFRi〉2. (B14)

As before, the problem reduces to evaluating moments of SFRi, the
SFR evolution of an individual GBC.

Using equations (B9), (B12) and (B14), we find that

σ 2
SFR

〈SFR2〉 = 1

Ntot

〈SFR2
i 〉

〈SFRi〉2 + Ntot(Ntot − 1)

N2
tot

− 1 (B15)

≈ 1

Ntot

〈SFR2
i 〉

〈SFRi〉2 . (B16)

The last approximation holds so long as Ntot � 1. To connect with
the results of Section 2.4, we must express our results in terms of
NU rather than Ntot. By definition,

NU =
∫ MU

ML
dm(dN/dm)m

MU
(B17)

= A
(1 − β2−α)

2 − α
M1−α

U , (B18)

and therefore, using equation (B11),

Ntot = (2 − α)

(α − 1)

(β1−α − 1)

(1 − β2−α)
NU. (B19)

Equation (B16) is convenient because it allows us to calculate how
the fractional variance of the galactic SFR depends on parameters
of the GBC mass function and on the function SFRi describing the
time evolution of individual GBCs.

Consider a specific, but rather general parametrization of GBC
evolution:

SFRi(m, t) =
{

0 −(1 − γ )tGBC ≤ t < 0,

Bmtδ 0 ≤ t ≤ γ tGBC.
(B20)

In this expression, tGBC is the total GBC lifetime. The parameter
γ defines the fraction of tGBC during which the GBC forms stars
at a significant rate. This parameter allows us to model a possible
early phase during which, for example, strong turbulence generated
during the assembly of the GBC prevents star formation from occur-
ring bymaintaining a high virial parameter (e.g. Padoan et al. 2012).
The proportionality to m captures the fact that, on average, we ex-
pect the SFR of an individual GBC to scale with its mass. This is
true, for example, if SFRi ∼ m/tGBC. Finally, the power-law index
δ characterizes the SFR evolution as the cloud collapses. Recent
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simulations suggest that to a good approximation the SFR within
GBCs increases linearly with time (δ ≈ 1) after the first stars form
(Lee et al. 2015; Grudić et al. 2016; Raskutti et al. 2016). Real GBC
are likely disrupted more gradually than the abrupt cut-off at the
end implied by the simple model in equation (B20). For simplicity,
we do not model this explicitly here but note that the sensitivity of
our main result below on different SFRi parametrizations can be
gauged from the dependence on the parameters γ and δ. The con-
stant pre-factor B defines the absolute normalization of the SFR; its
value has no impact on the following result as it cancels out exactly
in equation (B12).

For the SFRi in equation (B20), we find

σ 2
SFR

〈SFR〉2 = 1

γNU

(1 + δ)2

(1 + 2δ)

(
2 − α

3 − α

) (
1 − β3−α

1 − β2−α

)
. (B21)

This expression involves several parameters but its numerical value
is not very sensitive to most. For example,

σSFR

〈SFR〉 = S√
γNU/0.5

, (B22)

where S ≈ 1.1, 1.1, 1.0, 0.9, 0.8 and 1.2 for (α, β, δ) = (1.5, 0.1, 1),
(1.8, 0.1, 1), (2, 0.1, 1), (1.8, 0.01, 1), (1.8, 0.001, 1) and (1.8, 0.1,
2).

This result has a simple interpretation. In ourmodel, the total SFR
is dominated by Toomre-scale GBCs. Thus, at any given time the
galactic SFR is roughly a sumover∼γNU Toomre-scaleGBCs, each
caught at a random time during its evolution after star formation has
begun. Since in individual GBCs the SFR is assumed to increase
with time (before disruption by feedback), the total SFR can be
approximated as a sum over some GBCs that are effectively in
a ‘low SFR’ state and others that are in a ‘high SFR’ state. The
number of ‘high SFR’ GBCs varies with time due to stochastic
effects, with a Poisson fractional standard deviation ∝1/

√
γNU.

This quantitatively illustrates our claim in the main text that the
variability of the galactic SFR increases with decreasing NU.
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