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Abstract: Although native extracellular matrix (ECM) is viscoelastic, synthetic biomaterials used in
biomedical engineering to mimic ECM typically exhibit a purely elastic response when an external
strain is applied. In an effort to truly understand how living cells interact with surrounding ECM
matrix, new biomaterials with tunable viscoelastic properties continue to be developed. Here we
report the synthesis and mechanical characterization of a gelatin methacrylate-alginate (Gel-Alg)
composite hydrogel. Results obtained from creep and compressive tests reveal that the alginate
component of Gel-Alg composite, can be effectively crosslinked, un-crosslinked and re-crosslinked
by adding or chelating Ca*" ions. This work demonstrates that Gel-Alg is capable of tuning its
viscoelastic strain and elastic recovery properties, and can be potentially used to design ECM-
mimicking hydrogels.
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1. Introduction

Living cells are inherently dynamic and continuously adapt and remodel their extracellular
matrix (ECM) [1]. Since these cell-ECM interactions play a critical role in several biological
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processes, several biomaterials have been used to mimic the unique properties of native ECM. For
the past two decades, synthetic hydrogel biomaterials have emerged as the ideal biomaterial to
investigate cell-ECM interaction as it closely resembles the mechanical properties of native ECM as
well as its hydrated state facilitates diffusion of essential nutrients [2,3,4]. Synthetic hydrogels such
as polyethylene glycol have therefore, been used to answer basic biologic questions about how cells
respond to changes in their environment. However, most synthetic hydrogels exhibit linear elasticity
which is in contrast to physiological ECM which demonstrates viscoelastic behavior [5,6]. Since
natural proteins such as collagen, fibrin, and various tissues exhibit stress relaxation and elastic
recovery upon application of strain, new hydrogels with tunable viscoelastic properties continue to
be developed [7-10]. For instance, polyampholytes polymers use a combination of strong permanent
crosslinks and weak bonds that could reversibly break and re-form, to generate a viscoelastic
response [11]. Hyaluronic acid based dual-crosslinking viscoelastic hydrogels have also been
demonstrated to improve outcomes of a myocardial infarct in vivo model [12]. Hydrogels exhibiting
tunable rates of stress relaxation have also been demonstrate enhanced osteogenic differentiation of
mesenchymal stem cells [13]. Natural viscoelastic hydrogels have also been prepared by physically
mixing collagen protein and alginate; adding or removing divalent ions have been used to reversibly
modify its mechanical properties [14,15,16]. In this work, we present the synthesis and mechanical
characterization of a gelatin methacrylate-alginate (Gel-Alg) composite hydrogel, and demonstrate
the dynamic control over its viscoelastic property by adding or chelating calcium ions.

2. Materials and Methods
2.1. Gel-Alg Synthesis

GelMA was synthesized using an established protocol [17-20]. Briefly porcine skin gelatin
(Sigma Aldrich) mixed at 10% (w/v) in PBS was added to methacrylic anhydride and dialyzed
against distilled water (12—14 kDa cutoff dialysis tubing) for one week at 40 °C to remove the un-
reacted groups from the solution. The addition of methacrylamide moieties to the side groups of
natural gelatin enables crosslinking via ultraviolet (UV) light. The dialyzed GeIMA solution was
subsequently lyophilized in a freeze dryer (Labconco) for 1 week. The degree of methacrylation of
GelMA was determined to be 70% [21]. Gel-Alg solution was prepared by first, preparing 10% (w/v)
GelMA solution, using deionized water mixed with 0.5% of Irgacure 2595 photoinitiator, and
subsequently mixing alginate (5%, w/v) (Sigma Aldrich) in GeIMA solution in varying amounts (0,
20, 35 or 50% (v/v)). Gel-Alg solution was pipetted in a Teflon mold between two glass plates, and
was exposed to UV light (OmniCure Series 2000 S2000-XLA) with an intensity of 30 W/cm” and an
exposure time of 10 min to obtain a disc-shaped sample (diameter 5 mm, thickness 3 mm). Ionic
crosslinking of the alginate component was performed by immersing the samples in 50 mM solution
of calcium chloride for 30 min, followed by immersion in DI water for 2 hours to wash away
unbound calcium ions. lonic de-crosslinking was performed by immersing the samples in a 100 mM
sodium citrate dihydrate chelator solution, followed by immersion in DI water. All samples were
immersed in DI water at 25 °C for 24 hrs before testing their viscoelastic properties.
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2.2. Characterization of Compressive and Viscoelastic Properties

A Q800 Dynamic Mechanical Analysis (DMA) was used to test the mechanical properties of
Gel-Alg samples. Test samples were placed in the compression clamp of the DMA. A preload force
of 10 mN and initial displacement 10 um was used to obtain a stress-strain plot, and the modulus was
determined by calculating the slope from 0 to 5% strain. DMA was also used to perform creep tests
(preload of 10 mN, stress of 1 kPa) with force-application and recovery duration of 5 min each.
Viscoelastic strain (%) and elastic recovery (%) were calculated from this data (Figure 1A).
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Figure 1. (A) Typical plot of compressive creep strain as a function of time. (B) Creep
plot of GeIMA with varying concentrations of Alginate in a 50:50 ratio configuration.
Values of viscoelastic strain (%) are depicted. (C) Creep plot of Gel-Alg samples with
varying concentrations of GelMA-Alginate ratio. (Note: 5% Alginate is used in all
samples).

3. Results
3.1. Viscoelastic Properties of Gel-Alg Composite

Creep tests were performed on pure GeIMA and GelMA-Alginate composite (2% and 5%
alginate was used to make a 50/50 Gel-Alg) under 1 kPa stress. Pure GeIMA demonstrates 0.49%
viscoelastic strain after 5 min of loading, while addition of alginate exhibits a “fluid” like behavior
with increased viscoelastic stain (6.9% and 10%) with increased amount of alginate (2% and 5%).
Gel-Alg composite with 5% alginate was used to evaluate the effect of varying the volume (%) of
GelMA in the composite. Creep behavior was characterized for four ratios of GelMA: Alginate
(50:50, 75:35, 80:20 and 100:0) (Figure 1C). The viscoelastic strain of Gel-Alg composite decreases
with decreasing amounts of alginate, with the 50:50 ratio exhibiting the highest (7.33%) values of
viscoelastic strain. As depicted in Figure 2A, CaCl, solution was used to ionically crosslink the
alginate component of the UV-crosslinked composite. An increase in the concentration of Ca**
results in minimal change in the viscoelastic strain values, but leads to a large change in the elastic
recovery values. The elastic recovery (%) jumps from 1.2% to 13% with the addition of 100 mmol
CaCl, solution (Figure 2B). This composite (50:50 Gel-Alg; 5% (w/v) alginate; 50 mmol CaCl,) was
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chosen to evaluate the dynamic response of the elastic recovery using addition and removal of
calcium ions.
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Figure 2. (A) Schematic diagram showing reversible crosslinking in Gel-Alg composite.
In a two-component system, GelMA serves as the irreversible structural component,
while alginate can be reversibly switched between crosslinked states and un-crosslinked
states by use of divalent calcium ions. (B) Creep plot of Gel-Alg samples immersed in
varying concentrations of calcium chloride solution. Values of elastic recovery (%) are
depicted. (C-D) Creep plots and elastic recovery values (%) of Gel-Alg composites using
two case studies are depicted: Case 1 goes from an intial crosslinked state to
uncroslinked state and back to re-crosslinked state, while Case 2 goes from an initial un-
crosslinked state to a crosslinked state and back to the un-crosslinked state.

3.2. Dynamic and Reversible Switching of Gel-Alg Composite

Gel-Alg composites were evaluated for their reversible viscoelastic properties using two case
studies, with Case 1 starting from the ionically crosslinked state, while Case 2 begins with samples in
their ionically un-crosslinked state. Please note that the GelMA component for both cases is
crosslinked using UV light, as described in the Methods section. In Case 1, crosslinked samples
(using 50 mmol CaCl,) were de-crosslinked using a chelator solution (100 mM sodium citrate), and
re-crosslinked using a 50 mmol CaCl, solution. Creep tests were performed during each stage and

AIMS Materials Science Volume 4, Issue 2, 363-369.



367

initial loading strain, viscoelastic recovery strain, and elastic recovery were obtained (Figure 2C). As
expected, the elastic recovery increases from 14.7% to 19.5% after removal of Ca>" ions, and returns
back to a lower value of 13.6% when ions are added back again. In Case 2, un-crosslinked samples
were crosslinked using CaCl, solution, and returns de-crosslinked by using sodium citrate solution.
The values of crosslinked and re-crosslinked states are close to each other (Figure 3), but not
identical due to sample-to-sample experimental variation. As expected, the elastic recovery decreases
from 21.8% to 16.8% after the introduction of Ca®" ions, and return back to a higher value of 20.4%
when Ca®" ions are chelated. The compressive modulus of crosslinked and de-crosslinked samples
were also characterized (Figure 3). The modulus switches from lower values (1.02 kPa and 1.67 kPa)
to a higher values (3.56 kPa and 3.44 kPa), when samples are switched between the uncrosslinked
and crosslinked states.
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Figure 3. (A) Compression moduli of samples in un-crosslinked, crosslinked, de-
crosslinked and re-crosslinked states. (B—C) Details of the creep plots.

4. Discussion

Purely covalently UV-crosslinked GeIMA results in a predominantly elastic material, however
addition of alginate within GeIMA exhibits varying degrees of viscoelasticity depending upon the
amount of alginate in the composite. In Gel-Alg, GelMA acts as a stable structural element while
alginate acts as the dynamic modifiable element controlled by ionic non-covalent bonding in the
presence of calcium divalent ions. Instead of collagen, we choose GeIMA, a denatured derivative of
collagen, because GelMA possesses acrylate groups, which allow UV-enabled crosslinking of
irreversible bonds to ensure the overall structural integrity of the composite samples. In Gel-Alg, the
re-crosslinked states exhibit similar viscoelastic properties to the crosslinked state, confirming that
crosslinking is reversible and this process is capable of dynamically controlling the elastic recovery.
Lastly, crosslinked and re-crosslinked Gel-Alg samples also demonstrate an increase in compression
modulus, indicating a change in the elastic property with ionic crosslinking. Taken together, this
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work reports an easy-to-use method to dynamically and reversibly control the viscoelastic strain and
elastic recovery responses of an ECM-mimicking hydrogel.

5. Conclusion

In this work, we present the synthesis and mechanical characterization of a gelatin
methacrylate-alginate (Gel-Alg) composite hydrogel, which has the capability of dynamically
modulating the viscoelastic properties by simply adding or chelating calcium ions. This work could
potentially guide the development of new hydrogels that could mimic the unique viscoelastic
properties of native extracellular matrix.
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