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Abstract. Over the last couple of years, Bitcoin cryptocurrency and
the Blockchain technology that forms the basis of Bitcoin have witnessed
a flood of attention. In contrast to fiat currencies used worldwide, the
Bitcoin distributed ledger is publicly available by design. This facilitates
observing all financial interactions on the network, and analyzing how
the network evolves in time. We introduce a novel concept of chainlets,
or Bitcoin subgraphs, which allows us to evaluate the local topological
structure of the Bitcoin graph over time. Furthermore, we assess the role
of chainlets on Bitcoin price formation and dynamics. We investigate the
predictive Granger causality of chainlets and identify certain types of
chainlets that exhibit the highest predictive influence on Bitcoin price
and investment risk.

1 Introduction

Bitcoin cryptocurrency [17] has seen tremendous interest and has achieved sky-
rocketing adoption over the last couple of years. The bitcoin phenomenon is
due not only to revolutionizing online payments but also to a big number of
applications the underlying blockchain technology has witnessed in various do-
mains [21].

One interesting aspect of Bitcoin is that a distributed ledger (i.e., blockchain)
is maintained by all the participants to verify the authenticity of each Bitcoin
transaction. The existence of such a distributed ledger creates unique opportu-
nities with respect to graph analysis. Already, different applications have used
the distributed ledger and the Bitcoin graph information to track sex trafficking
[19] and money laundering activity [16].

We believe that the Bitcoin graph can be used for interesting off-the-beaten
track applications. For instance, in most stock analysis platforms, the market
trend is usually predicted by using historical prices and other financial and eco-
nomic indicators only, without accounting for financial network structure effects.
Since we can observe the complete Bitcoin graph, a natural question to ask is
whether the local graph structure impacts the price of an asset (e.g., Bitcoin). In
other domains, local higher-order structures of complex networks, or multiple-
node subgraphs, are found to be an indispensable tool for analysis of network
organization beyond the trivial scale of individual vertices and edges. The core
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idea is that if a particular subgraph occurs more or less frequently than the ex-
pected baseline occurrence, then such a subgraph is likely to play an important
role in network functionality.

Furthermore, structural properties of multiple complex networks can be com-
pared in terms of their (dis)similarities in subgraph patterns. The role of small
subgraphs, or network motifs and graphlets, in organization of complex systems
has been first discussed in conjunction with the assessment of stability and ro-
bustness of biological networks [15], and later have been studied in a variety of
contexts, from social networks to power grids (for overviews see [1] and refer-
ences therein). Most recently, network motifs are shown to provide an invaluable
insight into analysis of functionality and early warning stability indicators in
financial networks [9]. However, compared to biological networks, motif-induced
inference in financial systems is still an emerging field, and there yet exist no
studies on the role of motifs in the analysis of blockchain.

To our knowledge, we are the first to address the impact of local topologi-
cal structures/motifs on Bitcoin price. We can summarize our contributions as
follows:

— We introduce and formalize the notion of chainlet motifs to understand the
impact of local topological structures on Bitcoin price dynamics.

— We develop techniques to understand which local topological structures (i.e.,
chainlets) have a higher impact on the price dynamics and use those “im-
portant” chainlets for price prediction.

— We compare our techniques to the state of art time series analysis approaches
and show that employing chainlets leads to more competitive price prediction

mechanisms.

The remainder of this paper is organized as follows: In Section 2, we discuss
the related work. In Section 3, we formally define chainlets using a generalized
heterogeneous graph model. In Section 4 we compare the price prediction models
that use chainlets to other existing models to see the impact of chainlets on price.
Finally, in Section 5, we conclude with the summary of our results.

2 Related Work

Since the seminal Bitcoin paper [17] in 2008, digital coins [21] have been the
most prominent Blockchain applications. Among these, Bitcoin has been the
main focus of Blockchain analysis (see [2] for a review).

The earliest studies focused on the transaction graph to locate the coins used
in illegal activities, such as money laundering and blackmailing [3, 18], which is
known as the taint analysis [5]. Moser et al. [16] analyzed the opportunities and
limitations of anti-money laundering on Bitcoin by looking at how successive
transactions are used to transfer money.

The Bitcoin network itself has also been studied from multiple aspects. For
instance, [4] analyzed centralities, and [13] found that since 2010 the Bitcoin
network can be considered a scale-free network. Furthermore, [12] tracked the
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evolution of the Bitcoin transaction network, and modeled degree distributions
with power-laws. Although these studies analyzed the Bitcoin graphs, the pri-
mary focus was on global graph characteristics. In turn, our chainlet analysis
sheds light onto local topological structures of Bitcoin and their role on price
formation.

A number of recent studies show the utility of global graph features to pre-
dict the price [11,7,14]. For instance, [20] analyzed the predictive effects of
average balance, clustering coefficient, and number of new edges on the Bitcoin
price. Two network flow measures were recently proposed by [23] to quantify the
dynamics of the Bitcoin transaction network and to assess the relationship be-
tween flow complexity and Bitcoin market variables. Furthermore, [14] identified
16 features for 30, 60 or 120 minute intervals and used Random Forest models
to predict the price. The core idea behind all these approaches is to extract cer-
tain global network features and to employ them for predictions. On the other
hand, chainlets provide a finer grained insight at the network transactions. In
practice, chainlets can be used to refine the above-mentioned models, so that
features are computed on selected subgraphs only. Furthermore, network flows
can be detailed in terms of successive chainlets.

3 Methodology

The Bitcoin graph has three main components: addresses, transactions and

blocks. A transaction is a transfer of bitcoins from input addresses to output
addresses. Figure 1 shows such a network for 4 transactions and 13 addresses.

Our Bitcoin data come

from the official Bitcoin soft-

@\A _________ > ware; we installed the Bit-
. t
t

coin core wallet ! and had
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g the wallet download the entire
&y Bitcoin history from 2009 to
_* 2018. Afterwards, we parsed
t ts the Bitcoin blockchain files,
(as) Time —» _ and extracted blocks, trans-
actions and addresses. The
Fig.1: A transaction-address graph represen- source code of our Spark
tation of the Bitcoin network. Addresses and project is available on our

transactions are shown with circles and rectan- Github repository. 2
gles, respectively. An edge indicates a transfer of We model the Bitcoin
coins. The coins at address ag are unspent. graph as the following het-
erogeneous network with two

node types: addresses and
transactions.

! https://bitcoin.org/en/download
2 https://github.com/cakcora,/coinworks
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The Bitcoin Graph Model. The Bitcoin network is a directed graph G =
(V,E, B) where V is a set of vertices, and E C V x V is a set of edges. B =
{Address, Transaction} represents the set of vertex types. For any vertex u €
V, it has a vertex type ¢(u) € B. For each edge e, € E between adjacent nodes
u and v, we have ¢(u) # ¢(v), and either ¢(u) = {Transaction} or ¢(v) =
{Transaction}. That is, an edge e € FE represents a coin transfer between an
address node and a transaction node. This heterogeneous graph model subsumes
the homogeneous case (i.e., |B| = 1), where only transaction or address nodes
are used, and edges link vertices of the same type. In this paper, we focus on
the case where each address node is linked (i.e., input or output address of a
transaction) via a transaction node to another address node.

We emphasize three graph rules that shape the actual Bitcoin graph. First,
input coins from multiple transactions can be merged and spent in a single
transaction (as in transaction ¢4 in Fig. 1). Second, in a Bitcoin transaction the
input-output address mappings are not explicitly recorded. For instance, consider
the transaction t¢; in Fig. 1. The output to address ag may come from either aq
or as. Third, coins from multiple input transactions can be spent separately, but
those received from one transaction must all be spent in a single transaction.
Any amount that is not transferred is considered to be the transaction fee, and
gets collected by the miner who creates the block. For this reason, unless it
specifies itself as output address again, an address cannot transfer some bitcoins
from a previous transaction and keep the change. As a community practice, this
address reuse is discouraged, hence most nodes appear in the graph two times;
once when they receive coins and once when they spend it. See [2] for a detailed
graph representation of Blockchain.

Blocks order transactions in time, whereas each transaction with its input and
output nodes represents an immutable decision that is encoded as a subgraph
on the Bitcoin network. Rather than using individual edges or nodes, we chose
to use this subgraph as the building block in our Bitcoin analysis. We use the
term chainlet to refer to such subgraphs.

Our choice is due to two reasons. First, the subgraph can be taken as a
single data unit because inclusion of nodes and edges in it is based on a single
decision. As a transaction is immutable, joint inclusion of input/output nodes
in its subgraph cannot be changed afterwards. This is unlike the case on a social
network where nodes can become closer on the graph because of actions of their
neighbors. Second, we argue and prove that subgraphs have distinct shapes that
reflect their role in the network, and we can aggregate these roles to analyze
network dynamics.

3.1 Graph Chainlets

We introduce the concept of k-chainlets to assess local higher order topological
structure of the Bitcoin graph.

The k-Chainlet Model A Bitcoin subgraph G’ = (V’, E’, B) is a subgraph of
GtV CVand E' CE. If G = (V',FE’, B) is a subgraph of G and E’ contains
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all edges ey, € E such that (u,v) € V', then G’ is called an induced subgraph
of G. Two graphs ¢’ = (V/,E/,B) and G = (V"',E", B) are called isomorphic
if there exists a bijection h : V' — V" such that all node pairs u,v of G’ are
adjacent in G’ if and only if u and v are adjacent in Ga".

Let k-chainlet Gy = (Vi,Ey,B)
be a subgraph of G with k nodes of
type {Transaction}. If there exists ~ "eroe Transition split

an isomorphism between Gy and G, SRTE PN }; i ): Z,’
G' € G, we say that there exists an 7 T -7 §

occurrence, or embedding of G in G.
If a G occurs more/less frequently
than expected by chance, it is called
a blockchain k-chainlet. A k-chainlet
signature fg(Gy) is a number of oc-
currences of G in G.

Fig. 2: Merge (C3_,1), Transition (C3_,3)
and Split (C3_,4) chainlets for 3 inputs.

We start by focusing on the 1-chainlet signatures and their properties. For
simplicity, we refer to 1-chainlets as chainlets. A natural classification of chainlets
can be made in terms of the number of inputs x and outputs y since there is
only one transaction involved.

For a chainlet, we de-
note C,_,, if it has z in-
puts and y outputs. If the
branch is merging with other WW
branches, the corresponding split
chainlet will have a higher
number of inputs, compared
to outputs. We call these

. . transition
merge chainlets, ie., C,_,,
such that > y, which show merge
an aggregation of coins into
1/2009 18/2011 29/2015 28/2017
fewer addresses. Two other week

classes of chainlets are tran-

sition and split chainlets Fig 3: Percentage of aggregate chainlets in

with =y and © < y, respec-  weeks. Splits constitute around 60% of all trans-
tively, as shown in Fig. 2. In actions.

what follows, we refer to these
three chainlet types as the ag-
gregate chainlets.

Fig. 3 visualizes the percentage of aggregate chainlets in time. For example,
the transition chainlets are those C,_,, for x > 1. Fig. 3 shows that starting
as an unknown project, the Bitcoin network stabilized only after summer 2011.
From 2014 and onwards, the split chainlets continued to steadily rise, compared
to merge and transition chainlets.
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3.2 Clustering Chainlets

The Bitcoin protocol restricts numbers of input and output addresses in a trans-
action by putting a limit on the block size (1MB), but the number of inputs and
outputs can still reach thousands. As a result, we can have millions of distinct
chainlets (e.g., Ci900—200, C1901—-200 0r Ci900-5201)-

We use a matrix representation to model the Bitcoin graph in time with
chainlets. For a given time granularity, such as one day, we take snapshots of the
Bitcoin network and construct a Bitcoin graph. Chainlet counts obtained from
this graph are stored as an n X n-matrix O such that for i <n,j <n

#Ci; if i <n and j <n,
> #Cissz it i <nandj=n,
Oli il = Zo:on
i, = > #Cyyj if i=nand j <n,
'’ oo
> > #Cyy. ifi=nandj=n.
y=n z=n

In this matrix notation, choosing an n value, e.g., n = 5, means that a
chainlet with more than 5 inputs/outputs (i.e., C4yy s.t., £ > 5 or y > 5) is
recorded in the n-th row or column. That is, we aggregate chainlets with large
dimensions that would otherwise fall outside matrix dimensions. In what follows
we use the term extreme chainlets to refer to these aggregated chainlets on
the n-th row and column.

To select a suitable value for

the matrix dimension n, we an-

; ; alyzed the entire Bitcoin his-
: in (R tory. We found that % 90.50 of
5 the chainlets have n of 5 (i.e.,
; ; Cyoy st., z < 5 and y < 5)

. . in average for daily snapshots.
This value reaches % 97.57 for
n of 20. We chose to take n of
T MRS 08 R 20, because it can distinguish

(a) Daily clusters. (b) Weekly clusters. a sufficiently large number (i.e.,

400) of chainlets, and still offers
Fig.4: [Color online]. Chainlet clusters with . jense matrix.

day and week granularities. A chainlet Cy,_y With daily and weekly
is the intersection cell of the z-th row and y-th

snapshots of the Bitcoin net-
column.

work, we constructed 3.284 and
443 daily and weekly matrices,
respectively (with data from
2009 to 2018). Each of the 400 chainlets is represented as a vector of its count
in time.

We hierarchically clustered chainlets by using Cosine Similarity [8] over chain-
let vectors, and used a similarity cut threshold of 0.7 to create clusters from the
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hierarchical dendogram. Fig. 4 shows the resulting clusters. Cluster memberships
are shown with the same color. A white cell denotes a chainlet that constitutes a
cluster of its own. In both Fig. 4a and 4b, higher n values in the right low corner
are clustered together, and in the daily clusters extreme chainlets (Cy;),>8}-20)
have their own cluster. An interesting result is that in both matrices extreme
chainlets belong to the same clusters with some considerably smaller chainlets
such as Cy_3, C3,3 and Cy_4. In Section 4.2 we show that their similarity
extends to their impact on price predictions.

4 Experiments

Our experiments first prove the predictive power of chainlets with Granger
Causality. We then show how chainlets can be used to predict Bitcoin price.

4.1 Granger Causality

To assess a potential predictive role of chainlets in Bitcoin price formation, we
employ a widely adopted econometric concept of Granger causality [6]. The
causality test assesses whether one time series is useful in predicting another
(see an overview by White et al. [22]). In particular, assume Y, t € ZT is a
p X l-random vector (e.g., Bitcoin price) and let ]-'(tY) =0{Ys:5=0,1,...,t}
denote a o-algebra generated from all observations of Y in the market up to time
t. Consider a sequence of (k -+ 2)-tuples of random vectors {Yy, Xy, Z1,. .., ZF}.
For example, in the context of this paper X can be chainlets and Z*, ..., Z¥ can
be number of transactions. Suppose that for all h € ZF

Ft+h <'|f(ty_'71xyzl7__"zk)> = Ft+h <'|f(ty_'7lzly___’zk)>a (1)

where Fy <‘|_7:(t‘—(1x - Zk)> and Fiip <.|_7-"(t‘—{rlz1 Z’“)) are conditional dis-

tributions of Y, p, given Y1, Xy 1,Z} |,...,ZF [ and Y, 1,Z} ,,...,ZF |,
respectively. Then, X;_; is said not to Granger cause (G-cause) Y1, with re-
spect to f(t;}zly__”zk). Otherwise, X is said to G-cause Y, which can be denoted
by Gx,.vy, where — represents the direction of causality. Hence, G-causality
means that given information on the past of Y and Z', ..., Z*, the past of X
does not deliver any new information that can be used for predicting Y.

In practice G-causality is typically performed by fitting two linear vector
autoregressive (VAR) models of finite order d to Y, with and without X, re-
spectively, and then testing for statistical significance of model coefficients as-
sociated with X. Alternatively, we can compare predictive performance of two
models (i.e., with and without X), using an F-test, under the null hypothesis
of no explanatory power in X. For instance, consider a case of univariate time
series y;, o; and z;. To test G-causality of x;, we compare the fit of the full

d d d
model ¥y = oo + Y 31 OkYi—k + Doy BeTe—k + D1 YkZt—k + €, versus the
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fit of the reduced model y; = ag + 22:1 aplYi—k + 22:1 Brri_i + €. That is,
under the null hypothesis of no predictive effect in = onto y (i.e., x does not
G-cause y), Var(e:) = Var(é). If Var(e;) is (statistically) significantly lower
than Var(é;), then we conclude that x contains additional information that can
improve forecasting of y, i.e., Gyy.

Armed with the time series of chainlets, we are now interested in evaluating
the potential impact of local graph structures on future bitcoin price formation
and investment risk. We are primarily interested in two interlinked questions:

1. Do changes in chainlet characteristics exhibit any causal effect on future
Bitcoin price and Bitcoin returns?

2. Do chainlets convey some unique information about future Bitcoin prices,
given more conventional economic variables and non-network blockchain
characteristics?

Table 1 provides summary results of the Granger causality tests for predic-
tive utility of individual/aggregate chainlets, and chainlet clusters ® in analysis
of the Bitcoin price and its log returns (see Fig. 4a for the clusters). Log re-
turns of Bitcoin prices measure the relative change in prices and are defined as
LR; = logy; —logy:—1. As a more conventional predictor, we also include the
total number of transactions (# of Trans.) into the baseline models. Direction
of causality is denoted by »—. Table 1 indicates that individual chainlets, e.g.,
Co_1, C1s7, Co9_12, as well as aggregate chainlets, e.g., split chainlets, have a
predictive impact on price formation, and in some cases also exhibit causal link-
age with future log returns. Some chainlet clusters have predictive relationship
only with Bitcoin price, whereas Cluster 35 G-causes both price and log returns.
As expected, total number of transactions also has causality effects on both Bit-
coin price and log returns. The G-causality relationships of different chainlets
and Bitcoin price indicate that they are likely to contain important predictive
information on Bitcoin price formation and volatility.

4.2 Price prediction

In Section 4.1 we show that chainlets G-cause the Bitcoin price and hence,
exhibit predictive impact on prices. We are now interested in quantifying the
forecasting utility of chainlets. To evaluate the chainlets’ predictive power, we
can use any forecasting model and compare predictive performances with and
without chainlets. Typically such a comparative analysis is performed based on
the Box-Jenkins (BJ) class of parametric linear models. However, as indicated
by [10], more flexible Random Forest (RF) models often tend to outperform the
BJ models in their predictive capabilities. In particular, we find that the opti-
mal baseline autoregressive integrated moving average (ARIMA (p, d, ¢)) models
selected by minimizing the Akaike Information criterion (AIC), yield from 0.2%
to 40% higher prediction root mean squared error (RMSE) than the RF baseline

3 Some representative chainlets from daily clusters 7, 8, 16 and 35 are Co_11, C317,
Cs—14 and Cy_1, respectively.
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Table 1: In G-causality, P and LR denote significance in price & log returns,
respectively; blank space implies no significance. Confidence level is 95%.

Covariate Outcome with lag effects
Types Causality 1 2 3 4 5
# of Trans.| Total # Trans. — Outcome LR LR P/LR P/LR
Merge Chainlets — Outcome - - - - -
Aggregate | Split Chainlets — Outcome - LR P/LR P -
Chainlets |Trans. Chainlets ~— Outcome - - - - -
C1_7 — Outcome P P P P P
Individual Ce—1 — Outcome - P P P -
Chainlets Cs—3 »~ Outcome - P P P -
Cz0—2 = Outcome LR P/LR P/LR P/LR P
Extreme Cso0_3 = Outcome P P P P P
Chainlets Co0_12 » Outcome P P P P P
Co0—17 = Outcome - - P P P
Cluster 35 — Outcome LR LR P/LR P/LR -
Chainlet Cluster 16 »— Outcome - LR - - -
Clusters Cluster 8 — Outcome - P P P P
Cluster 7 — Outcome - P P P P

models. Here RMSE

n

t=1

(1/n)>" (y¢ — 4t)?, where y; is the test set of Bit-

coin price and g; is the corresponding predicted value. ARIMA and RF models
deliver comparable results, therefore, due to space limitations, we present the
comparison study based only on the RF type of models.

We performed extensive
experiments with various chain-

Model 1
Model 2
Model 3
Model 4
—— Model 5

% Decrease in RMSE, compared to Baseline model

-

lets and selected to showcase
six of these RF models. Ta-
ble 2 provides an overview of
the constructed models. The
baseline model includes only
the lagged (past period) val-
ues of the Bitcoin price. Other
models comprise of lagged

Fig.5: % Change (decrease) in RMSE compared

Prediction horizon (h)

to the baseline model.

cific cluster.

© prices with different covari-

ates, mainly chainlets or some
functions of chainlets such
as the mean of all aggre-
gate/split type chainlets and
mean of all chainlets in a spe-

In our study each RF model used 500 trees, and sampling all rows of the
data set is done with replacement. Number of variables used at each split are,
for example, 2, 3 and 4, for Models 1, 2 and 5, respectively.
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Table 2: Model description for Bitcoin price (response) and varying predictors.

Model Predictors
Baseline M) Price lag 1, Price lag 2, Price lag 3
Model 1 Price lag 1, Price lag 2, Price lag 3,
# Trans lag 1 , # Trans lag 2, # Trans lag 3
Model 2 Price lag 1, Price lag 2, Price lag 3, Split Pattern lag 1,

Split Pattern lag 2, Split Pattern lag 3

Cluster 8 lag 1, Cluster 8 lag 2, Cluster 8 lag 3
Model 3 Price lag 1, Price lag 2, Price lag 3,
Cisrlag 1, Ci7 lag 2, Ci7 lag 3
Model 4 Price lag 1, Price lag 2, Price lag 3, C17 lag 1, Ci17 lag 2,
C147 lag 27 (C(;*)l lag 1, (Caﬁn lag 27 (Ceﬁn lag 3
Model 5 Price lag 1, Price lag 2, Price lag 3,

(Cl*ﬂ 1ag 1, C1H7 lag 27 (C1*>7 lag 2, (Caﬁn lag 17
(C6—>1 lag 2, C6_>1 1ag 3, (CS_,:; lag 1, (C3_>3 lag 2, (C3_>3 lag 3

We continuously change the training data using a sliding window technique,
where we choose the window size of 200. That is, at each time step we train our
model based on the past 200 values, and armed with this estimated model, we
then construct a h step ahead forecast.

Predictive utilities of models in Table 2 over the baseline model can be mea-
sured as ¥ x,y) = Y(M)/y(My), where ¢ is a measure of prediction error, e.g.,
root mean squared error (RMSE). Here (M) is the prediction error of baseline
model, where lagged prices are the only predictor; and ¥ (M) is the prediction
error of a given model, where predictors are lagged prices and other exogenous
covariates (X). If ¥(x_,y) < 1, the covariate (X) is said to improve prediction
of Y. We also calculate the percentage change in v for a specific model w.r.t.
M() as A = (1 — W(XHy))l()O%

Fig. 5 compares the percent decrease in RMSE for different models, calculated
for varying prediction horizons h = 1,...,30. For 1-step ahead forecast, chain-
lets and other covariates do not contribute useful predictive information over
history of Bitcoin price. However, for 3 or more steps ahead forecasts, chainlets
play an increasingly significant predictive role in Bitcoin price formation, even
when other more conventional factors, such as historical price and number of
transactions, are already in the model.

Furthermore, some chainlets has a higher utility for price prediction. For
example, in Model 5, we observe the highest decrease in RMSE, compared to
the baseline model. Models 3 and 4 yield the second highest decrease in RMSE
until the forecast horizon h of 20. After h of 20, Model 2 delivers the second
highest reduction in RMSE over the baseline model.

Fig. 6 compares the observed data with fitted values from baseline model and
three other models, i.e., Model 1, 2, and 5. For h of 1, all models deliver similar
prediction accuracy and capture the variability of the data very well. Although,
as expected, the prediction performance of all models deteriorates as forecasting
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Fig. 6: [Color Online]. Price prediction for 2016 with 1, 5, 10 for 20 day horizons.

horizon h — oo, Models 1, 2, and 5 still yield a noticeably higher predictive
accuracy, compared to the baseline model without chainlets.

5 Conclusion

We introduce a novel concept of k-chainlets on Bitcoin that expands the ideas of
motifs and graphlets to Blockchain graphs. Chainlet analysis provides a deeper
insight into local topological properties of the Blockchain and the role of those
local higher-order topologies in the Bitcoin price formation. We find that certain
types of chainlets have a high predictive utility for Bitcoin prices. Furthermore,
extreme chainlets exhibit an important role in the Bitcoin price prediction.
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