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ABSTRACT 
 
Randomized Controlled Trials (RCTs) are increasingly popular in the social sciences, 

not only in medicine.  We argue that the lay public, and sometimes researchers, put 

too much trust in RCTs over other methods of investigation. Contrary to frequent 

claims in the applied literature, randomization does not equalize everything other 

than the treatment in the treatment and control groups, it does not automatically 

deliver a precise estimate of the average treatment effect (ATE), and it does not re-

lieve us of the need to think about (observed or unobserved) covariates. Finding out 

whether an estimate was generated by chance is more difficult than commonly be-

lieved. At best, an RCT yields an unbiased estimate, but this property is of limited 

practical value. Even then, estimates apply only to the sample selected for the trial, 

often no more than a convenience sample, and justification is required to extend the 

results to other groups, including any population to which the trial sample belongs, 

or to any individual, including an individual in the trial. Demanding ‘external validi-

ty’ is unhelpful because it expects too much of an RCT while undervaluing its poten-

tial contribution. RCTs do indeed require minimal assumptions and can operate 

with little prior knowledge. This is an advantage when persuading distrustful audi-

ences, but it is a disadvantage for cumulative scientific progress, where prior 

knowledge should be built upon, not discarded. RCTs can play a role in building sci-

entific knowledge and useful predictions but they can only do so as part of a cumula-

tive program, combining with other methods, including conceptual and theoretical 

development, to discover not ‘what works’, but ‘why things work’.  
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Introduction  
 
Randomized controlled trials (RCTs) are widely encouraged as the ideal methodolo-

gy for causal inference. This has long been true in medicine (e.g. for drug trials by 

the FDA.  A notable exception is the recent paper by Frieden (2017), ex-director of 

the U.S. Centers for Disease Control and Prevention, who lists key limitations of 

RCTs as well as a range of contexts where RCTs, even when feasible, are dominated 

by other methods. Earlier critiques in medicine include Feinstein and Horwitz 

(1997), Concato, Shah, and Horwitz (2000), Rawlins (2008), and Concato (2013).) It 

is also increasingly true in other health sciences and across the social sciences, in-

cluding psychology, economics, education, political science, and sociology. Among 

both researchers and the general public, RCTs are perceived to yield causal infer-

ences and estimates of average treatment effects (ATEs) that are more reliable and 

more credible than those from any other empirical method. They are taken to be 

largely exempt from the myriad problems that characterize observational studies, to 

require minimal substantive assumptions, little or no prior information, and to be 

largely independent of ‘expert’ knowledge that is often regarded as manipulable, po-

litically biased, or otherwise suspect. They are also sometimes felt to be more re-

sistant to researcher and publisher degrees of freedom (for example through p-

hacking, selective analyses, or publication bias) than non-randomized studies given 

that trial registration and pre-specified analysis plans are mandatory or at least the 

norm. 

We argue that any special status for RCTs is unwarranted. Which method is 

most likely to yield a good causal inference depends on what we are trying to dis-

cover as well as on what is already known. When little prior knowledge is available, 

no method is likely to yield well-supported conclusions. This paper is not a criticism 

of RCTs in and of themselves, nor does it propose any hierarchy of evidence, nor at-

tempt to identify good and bad studies. Instead, we will argue that, depending on 

what we want to discover, why we want to discover it, and what we already know, 

there will often be superior routes of investigation and, for a great many questions 
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where RCTs can help, a great deal of other work—empirical, theoretical, and con-

ceptual—needs to be done to make the results of an RCT serviceable.  

Our arguments are intended not only for those who are innocent of the tech-

nicalities of causal inference but also aim to offer something to those who are well 

versed with the field. Most of what is in the paper is known to someone in some sub-

ject. But what epidemiology knows is not what is known by economics, or political 

science, or sociology, or philosophy—and the reverse. The literatures on RCTs in 

these areas are overlapping but often quite different; each uses its own language 

and different understandings and misunderstandings characterize different fields 

and different kinds of projects. We highlight issues arising across a range of disci-

plines where we have observed misunderstanding among serious researchers and 

research users, even if not shared by all experts in those fields. Although we aim for 

a broad cross-disciplinary perspective, we will, given our own disciplinary back-

grounds, be most at home with how these issues arise in economics and how they 

have been treated by philosophers. 

We present two sets of arguments. The first is an enquiry into the idea that 

ATEs estimated from RCTS are likely to be closer to the truth than those estimated 

in other ways. The second explores how to use the results of RCTs once we have 

them.  

In the first section, our discussion runs in familiar statistical terms of bias 

and precision, or efficiency, or expected loss. Unbiasedness means being right on 

average, where the average is taken over an infinite number of repetitions using the 

same set of subjects in the trial, but with no limits on how far any one estimate is 

from the truth, while precision means being close to the truth on average; an estima-

tor that is far from the truth in one direction half of the time and equally far from the 

truth in the other direction half of the time is unbiased, but it is imprecise. We re-

view the difference between balance of covariates in expectation versus balance in a 

single run of the experiment (sometimes called ‘random confounding’ or `realized 

confounding’ in epidemiology, see for instance Greenland and Mansournia (2015) or 

VanderWeele (2012)) and the related distinction between precision and unbiased-

ness. These distinctions should be well known wherever RCTs are conducted or RCT 
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results are used, though much of the discussion is, if not confused, unhelpfully im-

precise. Even less recognized are problems with statistical inference, and especially 

the threat to significance testing posed when there is an asymmetric distribution of 

individual treatment effects in the study population.  

The second section describes several different ways to use the evidence from 

RCTs. The types of use we identify have analogues, with different labels, across dis-

ciplines. This section stresses the importance for using RCT results of being clear 

about the hypothesis at stake and the purpose of the investigation. It argues that in 

the usual literature, which stresses extrapolation and generalization, RCTs are both 

under- and over-sold. Oversold because extrapolating or generalizing RCT results 

requires a great deal of additional information that cannot come from RCTs; under-

sold, because RCTs can serve many more purposes than predicting that results ob-

tained in a trial population will hold elsewhere.   

One might be tempted to label the two sections ‘Internal validity’ and ‘Exter-

nal validity’. We resist this, especially in the way that external validity is often char-

acterized. RCTs are under-sold when external validity means that the ‘the same ATE 

holds in this new setting’, or ‘the ATE from the trial holds generally’, or even that the 

ATE in a new setting can be calculated in some reasonable way from that in the 

study population.  RCT results can be useful much more broadly. RCTs are oversold 

when their non-parametric and theory-free nature, which is arguably an advantage 

in estimation or internal validity, is used as an argument for their usefulness. The 

lack of structure is often a disadvantage when we try to use the results outside of 

the context in which the results were obtained; credibility in estimation can lead to 

incredibility in use. You cannot know how to use trial results without first under-

standing how the results from RCTs relate to the knowledge that you already pos-

sess about the world, and much of this knowledge is obtained by other methods. 

Once RCTs are located within this broader structure of knowledge and inference, 

and when they are designed to enhance it, they can be enormously useful, not just 

for warranting claims of effectiveness but for scientific progress more generally. 

Cumulative science is difficult; so too is reliable prediction about what will happen 

when we act.  
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Nothing we say in the paper should be taken as a general argument against 

RCTs; we simply try to challenge unjustifiable claims and expose misunderstand-

ings. We are not against RCTs, only magical thinking about them. The misunder-

standings are important because they contribute to the common perception that 

RCTs always provide the strongest evidence for causality and for effectiveness and 

because they detract from the usefulness of RCT evidence as part of more general 

scientific projects. In particular, we do not try to rank RCTs versus other methods. 

What methods are best to use and in what combinations depends on the exact ques-

tion at stake, the kind of background assumptions that can be acceptably employed, 

and what the costs are of different kinds of mistakes. By getting clear in Section 1 

just what an RCT, qua RCT, can and cannot deliver, and laying out in Section 2 a va-

riety of ways in which the information secured in an RCT can be used, we hope to 

expose how unavailing is the ‘head-to-head between methods’ discourse that often 

surrounds evidence-ranking schemes. 

  

Section 1: Do RCTs give good estimates of Average Treatment Effects 

We start from a trial sample, a collection of subjects that will be allocated randomly 

to either the treatment or control arm of the trial. This ‘sample’ might be, but rarely 

is, a random sample from some population of interest. More frequently, it is selected 

in some way, for example to those willing to participate, or is simply a convenience 

sample that is available to the those conducting the trial. Given random allocation to 

treatments and controls, the data from the trial allow the identification of the two 

(marginal) distributions, 𝐹1(𝑌1) and 𝐹0(𝑌0), of outcomes 𝑌1 and 𝑌0 in the treated and 

untreated cases within the trial sample. The ATE estimate is the difference in means 

of the two distributions and is the focus of much of the literature in social science 

and medicine.  

Policy makers and researchers may be interested in features of the two mar-

ginal distributions and not simply the ATE, which is our main focus here. For exam-

ple, if Y is disease burden, measured perhaps in QALYs, public health officials may 

be interested in whether a treatment reduced inequality in disease burden, or in 

what it did to the 10th or 90th percentiles of the distribution, even though different 
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people occupy those percentiles in the treatment and control distributions. Econo-

mists are routinely concerned with the 90/10 ratio in the income distribution, and 

in how a policy might affect it (see Bitler et al. (2006) for a related example in US 

welfare policy). Cancer trials standardly use the median difference in survival, 

which compares the times until half the patients have died in each arm. More com-

prehensively, policy makers may wish to compare expected utilities for treated and 

untreated under the two distributions and consider optimal expected-utility maxim-

izing treatment rules conditional on the characteristics of subjects (see Manski 

(2004) and Manski and Tetenov (2016); Bhattacharya and Dupas (2012) give an 

application.) These other kinds of information are important, but we focus on ATEs 

and do not consider these other uses of RCTs further in this paper.   

  

1.1 Estimating average treatment effects 

 A useful way to think about the estimation of treatment effects is to use a schematic 

linear causal model of the form:  

   (1) 

where,  is the outcome for unit i (which may be a person, a village, a hospital 

ward),   is a dichotomous (1,0) treatment dummy indicating whether or not i is 

treated, and  is the individual treatment effect of the treatment on i: it represents 

(or regulates) how much a value t of T contributes to the outcome Y for individual i.   

The x’s are observed or unobserved other linear causes of the outcome, and we sup-

pose that (1) captures a minimal set of causes of  sufficient to fix its value. J may be 

(very) large. The unrestricted heterogeneity of the individual treatment effects, , 

allows the possibility that the treatment interacts with the x’s or other variables, so 

that the effects of T can depend on (be modified by) any other variables. Note that 

we do not need i subscripts on the ’s that control the effects of the other causes; if 

their effects differ across individuals, we include the interactions of individual char-

acteristics with the original x’s as new x’s. Given that the x’s can be unobservable, 

this is not restrictive. Usage here differs across fields; we shall typically refer to fac-

tors other than T represented on the right-hand side of (1) by the term covariates, 

Yi iTi jxijj

J

Yi
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while noting that these include both what are sometimes labelled the ‘independent-

ly operating causes’ (represented by the x’s) as well as ‘effect modifiers’ when they 

interact with the 𝛽′𝑠, a case we shall return to below. They may also capture the 

possibility that there are different baselines for different observations. 

We can connect (1) with the counterfactual approach, often referred to as the 

Rubin Causal Model, now common in epidemiology and increasingly so in economics 

(see Rubin (2005), or Hernán (2004) for an exposition for epidemiologists, and 

Freedman (2006) for the history). To illustrate, suppose that T is dichotomous. For 

each unit i there will be two possible outcomes, typically labelled 𝑌𝑖0 and 𝑌𝑖1, the 

former occurring if there is no treatment at the time in question, the latter if the unit 

is treated. By inspection of (1), the differences between the two outcomes, 𝑌𝑖1 −

𝑌𝑖0,  are the individual treatment effects, 𝛽𝑖, which are typically different for different 

units. No unit can be both treated and untreated at the same time, so only one or 

other of the outcomes occurs, but not both—the other is counterfactual so that indi-

vidual treatment effects are in principle unobservable.  

The basic theorem from this setup is a remarkable one. It states that the av-

erage treatment effect is the difference between the average outcome in the treat-

ment group minus the average outcome in the control group so that, while we can-

not observe the individual treatment effects, we can observe their mean. The esti-

mate of the average treatment effect is simply the difference between the means in 

the two groups, and it has a standard error that can be estimated using the statisti-

cal theory that applies to the difference of two means, on which more below. The 

difference in means is an unbiased estimator of the mean treatment effect.  The the-

orem is remarkable because it requires so few assumptions, although it relies on the 

fact that the mean is a linear operator, so that the difference in means is the mean of 

differences. No similar fact is true for other statistics, such as medians, percentiles, 

or variances of treatment effects, none of which can be identified from an RCT with-

out substantive further assumptions, see Deaton (2010, 439) for a simple exposi-

tion. Otherwise, no model is required, no assumptions about covariates, confound-

ers, or other causes are needed, the treatment effects can be heterogeneous, and 
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nothing is required about the shapes of statistical distributions other than the exist-

ence of the counterfactual outcome values.  

Dawid (2000) argues that the existence of counterfactuals is a metaphysical 

assumption that cannot be confirmed (or refuted) by any empirical evidence and is 

controversial because, under some circumstances, there is an unresolvable arbitrar-

iness to causal inference, something that is not true of (1), for example. See also the 

arguments by the empiricist philosopher, Reichenbach (1954), reissued as Reichen-

bach (1976).) In economics, the case for the counterfactual approach is eloquently 

made by Imbens and Wooldridge (2009, Introduction), who emphasize the benefits 

of a theory-free specification with almost unlimited heterogeneity in treatment ef-

fects. Heckman and Vytlacil (2007, Introduction) are equally eloquent on the draw-

backs, noting that the counterfactual approach often leaves us in the dark about the 

exact nature of the treatment, so that the treatment effects can be difficult to link to 

invariant quantities that would be useful elsewhere (invariant in the sense of Hur-

wicz (1966)). 

Consider an experiment that aims to tell us something about the treatment 

effects; this might or might not use randomization. Either way, we can represent the 

treatment group as having 𝑇𝑖 = 1 and the control group as having 𝑇𝑖 = 0.  Given the 

study (or trial) sample, subtracting the average outcomes among the controls from 

the average outcomes among the treatments, we get 

 𝑌̅1 − 𝑌̅0 = 𝛽̅1 + ∑ 𝛾𝑗(

𝐽

𝑗=1

𝑥̅1𝑖𝑗 − 𝑥̅0𝑖𝑗) = 𝛽̅1  + (𝑆1̅ − 𝑆0̅) (2) 

 The first term on the far-right-hand side of (2), which is the ATE in the treated popu-

lation in the trial sample, is generally the quantity of interest in choosing to conduct 

an RCT, but the second term or error term, which is the sum of the net average bal-

ance of other causes across the two groups, will generally be non-zero and needs to 

be dealt with somehow. We get what we want when the means of all the other caus-

es are identical in the two groups, or more precisely (and less onerously) when the 

sum of their net differences 𝑆1̅ − 𝑆0̅ is zero; this is the case of perfect balance. With 

perfect balance, the difference between the two means is exactly equal to the aver-
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age of the treatment effects among the treated, so that we have the ultimate preci-

sion in that we know the truth in the trial sample, at least in this linear case. As al-

ways, the ‘truth’ here refers to the trial sample, and it is always important to be 

aware that the trial sample may not be representative of the population that is ulti-

mately of interest, including the population from which the trial sample comes; any 

such extension requires further argument. 

 How do we get balance, or something close to it? In a laboratory experiment, 

where there is usually much prior knowledge of the other causes, the experimenter 

has a good chance of controlling (or subtracting away the effects of) the other caus-

es, aiming to ensure that the last term in (1) is close to zero. Failing such knowledge 

and control, an alternative is matching, which is frequently used in non-randomized 

statistical, medical (case-control studies), and econometric studies, (see Heckman et 

al. (1997)). For each subject, a matched subject is found that is as close as possible 

on all suspected causes, so that, once again, the last term in (1) can be kept small. 

When we have a good idea of the causes, matching may also deliver a precise esti-

mate. Of course, when there are unknown or unobservable causes that have im-

portant effects, neither laboratory control nor matching offers protection. 

 What does randomization do? Suppose that no correlations of the x’s with Y 

are introduced post-randomization, for example by subjects not accepting their as-

signment, or by treatment protocols differing from those used for controls. With this 

assumption, randomization provides orthogonality of the treatment to the other 

causes represented in equation (1): Since the treatments and controls come from 

the same underlying distribution, randomization guarantees, by construction, that 

the last term on the right in (1) is zero in expectation. The expectation is taken over 

repeated randomizations on the trial sample, each with its own allocation of treat-

ments and controls. Assuming that our caveat holds, the last term in (2) will be zero 

when averaged over this infinite number of (entirely hypothetical) replications, and 

the average of the estimated ATEs will be the true ATE in the trial sample. So 𝛽̅1is an 

unbiased estimate of the ATE among the treated in the trial sample, and this is so 

whether or not the causes are observed. Unbiasedness does not require us to know 

anything about covariates, confounders, or other causes, though it does require that 
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they not change after randomization so as to make them correlated with the treat-

ment, an important caveat to which we shall return.  

In any one trial, the difference in means is the average treatment effect 

among those treated plus the term that reflects the randomly generated imbalance 

in the net effects of the other causes. We do not know the size of this error term, and 

there is nothing in randomization that limits its size though, as we discuss below, it 

will tend to be smaller in larger samples. In any single trial, the chance of randomi-

zation can over-represent an important excluded cause(s) in one arm over the oth-

er, in which case there will be a difference between the means of the two groups 

that is not caused by the treatment. In epidemiology, this is sometimes referred to as 

‘random confounding’, or ‘realized confounding’, a phenomenon that was recog-

nized by Fisher in his agricultural trials. (An instructive example of perfect random 

confounding is constructed by Greenland (1990).) 

If we were to repeat the trial many times, the over-representation of the un-

balanced causes will sometimes be in the treatments and sometimes in the controls. 

The imbalance will vary over replications of the trial, and although we cannot see 

this from our single trial, we should be able to capture its effects on our estimate of 

the ATE from an estimated standard error. This was Fisher’s insight: not that ran-

domization balanced covariates between treatments and controls but that, condi-

tional on the caveat that no post-randomization correlation with covariates occurs, 

randomization provides the basis for calculating the size of the error. Getting the 

standard error and associated significance statements right are of the greatest im-

portance; therein lies the virtue of randomization, not that it yields precise esti-

mates through balance.  

 

1.2 Misunderstandings: claiming too much 

Exactly what randomization does is frequently lost in the practical and popular lit-

erature. There is often confusion between perfect control, on the one hand (as in a 

laboratory experiment or perfect matching with no unobservable causes), and con-

trol in expectation on the other, which is what randomization contributes. If we 

knew enough about the problem to be able to control well, that is what we would 
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(and should) do. Randomization is an alternative when we do not know enough to 

control, but is generally inferior to good control when we do. We suspect that at 

least some of the popular and professional enthusiasm for RCTs, as well as the belief 

that they are precise by construction, comes from misunderstandings about balance 

or, in epidemiological language, about random or realized confounding on the one 

hand and confounding in expectation on the other. These misunderstandings are not 

so much among the researchers who will usually give a correct account when 

pressed. They come from imprecise statements by researchers that are taken literal-

ly by the lay audience that the researchers are keen to reach, and increasingly suc-

cessfully. 

Such a misunderstanding is well captured by a quote from the second edition 

of the online manual on impact evaluation jointly issued by the Inter-American De-

velopment Bank and the World Bank (the first, 2011 edition is similar): 

We can be confident that our estimated impact constitutes the true impact of 

the program, since we have eliminated all observed and unobserved factors 

that might otherwise plausibly explain the difference in outcomes. Gertler et 

al. (2016, 69) 

This statement is false, because it confuses actual balance in any single trial with 

balance in expectation over many (hypothetical) trials. If it were true, and if all fac-

tors were indeed controlled (and no imbalances were introduced post randomiza-

tion), the difference would be an exact measure of the average treatment effect 

among the treated in the trial population (at least in the absence of measurement 

error). We should not only be confident of our estimate but, as the quote says, we 

would know that it is the truth. Note that the statement contains no reference to 

sample size; we get the truth by virtue of balance, not from a large number of obser-

vations.  

 There are many similar quotes in the economics literature. From the medical 

literature, here is one from a distinguished psychiatrist who is deeply skeptical of 

the use of evidence from RCTs: 

The beauty of a randomized trial is that the researcher does not need to un-

derstand all the factors that influence outcomes. Say that an undiscovered 
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genetic variation makes certain people unresponsive to medication. The ran-

domizing process will ensure—or make it highly probable—that the arms of 

the trial contain equal numbers of subjects with that variation. The result will 

be a fair test. Kramer (2016,18) 

Claims are made that RCTs reveal knowledge without possibility of error. Judy 

Gueron, the long-time president of MDRC (originally known as the Manpower De-

velopment Research Corporation), which has been running RCTs on US government 

policy for 45 years, asks why federal and state officials were prepared to support 

randomization in spite of frequent difficulties and in spite of the availability of other 

methods and concludes that it was because “they wanted to learn the truth,” Gueron 

and Rolston (2013, 429). There are many statements of the form “We know that 

[project X] worked because it was evaluated with a randomized trial,” Dynarski 

(2015).  

 It is common to treat the ATE from an RCT as if it were the truth, not just in 

the trial sample but more generally. In economics, a famous example is Lalonde’s 

(1986) study of labor market training programs, whose results were at odds with a 

number of previous non-randomized studies. The paper prompted a large-scale re-

examination of the observational studies to try to bring them into line, though it 

now seems just as likely that the differences lie in the fact that the different study 

results apply to different populations (Heckman et al. (1999)). With heterogeneous 

treatment effects, the ATE is only as good as the study sample from which it was ob-

tained. (See Longford and Nelder (1999) who are concerned with the same issue in 

regulating pharmaceuticals. (We return to this in discussing support factors and 

moderator variables in Section 2.2) In epidemiology, Davey-Smith and Ibrahim 

(2002) state that “observational studies propose, RCTs dispose.” Another good ex-

ample is the RCT of hormone replacement therapy (HRT) for post-menopausal 

women. HRT had previously been supported by positive results from a high-quality 

and long-running observational study, but the RCT was stopped in the face of excess 

deaths in the treatment group. The negative result of the RCT led to widespread 

abandonment of the therapy, which might (or might not) have been a mistake (see 

Vandenbroucke (2009) and Frieden (2017)). Yet the medical and popular literature 
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routinely states that the RCT was right and the earlier study wrong, simply because 

the earlier study was not randomized. The gold standard or `truth’ view does harm 

when it undermines the obligation of science to reconcile RCTs results with other 

evidence in a process of cumulative understanding.  

 The false belief in automatic precision suggests that we need pay no atten-

tion to the other causes in (1) or (2). Indeed, Gerber and Green (2012, 5), in their 

standard text for RCTs in political science, note that RCTs are the successful resolu-

tion of investigators’ need for “a research strategy that does not require them to 

identify, let alone measure, all potential confounders.” But the RCT strategy is only 

successful if we are happy with estimates that are arbitrarily far from the truth, just 

so long as the errors cancel out over a series of imaginary experiments. In reality, 

the causality that is being attributed to the treatment might, in fact, be coming from 

an imbalance in some other cause in our particular trial; limiting this requires seri-

ous thought about possible covariates.  

  

1.3 Sample size, balance, and precision 

The literature on the precision of ATEs estimated from RCTs goes back to the very 

beginning. Gosset (writing as ‘Student’) never accepted Fisher’s arguments for ran-

domization in agricultural field trials and argued convincingly that his own non-

random designs for the placement of treatment and controls yielded more precise 

estimates of treatment effects (see Student (1938) and Ziliak (2014)). Gosset 

worked for Guinness where inefficiency meant lost revenue, so he had reasons to 

care, as should we. Fisher won the argument in the end, not because Gosset was 

wrong about efficiency, but because, unlike Gosset’s procedures, randomization 

provides a sound basis for statistical inference, and thus for judging whether an es-

timated ATE is different from zero by chance. Moreover, Fisher’s blocking proce-

dures can limit the inefficiency from randomization (see Yates (1939)). Gosset’s res-

ervations were echoed much later in Savage’s (1962) comment that a Bayesian 

should not choose the allocation of treatments and controls at random but in such a 

way that, given what else is known about the topic and the subjects, their placement 

reveals the most to the researcher. We return to this below. 
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 At the time of randomization and in the absence of post-randomization 

changes in other causes, a trial is more likely to be balanced when the sample size is 

large. As the sample size tends to infinity, the means of the x’s in the treatment and 

control groups will become arbitrarily close. Yet this is of little help in finite sam-

ples. As Fisher (1926) noted: “Most experimenters on carrying out a random as-

signment will be shocked to find how far from equally the plots distribute them-

selves,” quoted in Morgan and Rubin (2012, 1263). Even with very large sample siz-

es, if there is a large number of causes, balance on each cause may be infeasible. 

Vandenbroucke (2004) notes that there are three billion base pairs in the human 

genome, many or all of which could be relevant prognostic factors for the biological 

outcome that we are seeking to influence. It is true, as (2) makes clear, that we do 

not need balance on each cause individually, only on their net effect, the term 

𝑆1̅̅ ̅ − 𝑆0̅̅ ̅. But consider the human genome base pairs. Out of all those billions, only 

one might be important, and if that one is unbalanced, the results of a single trial can 

be ‘randomly confounded’ and far from the truth. Statements about large samples 

guaranteeing balance are not useful without guidelines about how large is large 

enough, and such statements cannot be made without knowledge of other causes 

and how they affect outcomes. Of course, lack of balance in the net effect of either 

observables or non-observables in (2) does not compromise the inference in an RCT 

in the sense of obtaining a standard error for the unbiased ATE (see Senn (2013) for 

a particularly clear statement), although it does clarify the importance of having 

credible standard errors, on which more below. 

 Having run an RCT, it makes good sense to examine any available covariates 

for balance between the treatments and controls; if we suspect that an observed 

variable x is a possible cause, and its means in the two groups are very different, we 

should treat our results with appropriate suspicion. In practice, researchers often 

carry out a statistical test for balance after randomization but before analysis, pre-

sumably with the aim of taking some appropriate action if balance fails. The first ta-

ble of the paper typically presents the sample means of observable covariates for 

the control and treatment groups, together with their differences, and tests for 
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whether or not they are significantly different from zero, either variable by variable, 

or jointly. These tests are appropriate for unbiasedness if we are concerned that the 

random number generator might have failed, or if we are worried that the randomi-

zation is undermined by non-blinded subjects who systematically undermine the 

allocation. Otherwise, supposing that no post-randomization correlations are intro-

duced, unbiasedness is guaranteed by the randomization, whatever the test shows, 

and the test is not informative about the balance that would lead to precision; Begg 

(1990, 223) notes, “(I)t is a test of a null hypothesis that is known to be true. There-

fore, if the test turns out to be significant it is, by definition, a false positive.” The 

Consort 2010 updated statement, guideline 15 notes “Unfortunately significance 

tests of baseline differences are still common; they were reported in half of 50 RCTs 

trials published in leading general journals in 1997.” We have not systematically ex-

amined the practice across other social sciences, but it is standard in economics, 

even in high-quality studies in leading journals, such as Banerjee et al. (2015), pub-

lished in Science.   

 Of course, it is always good practice to look for imbalances between observed 

covariates in any single trial using some more appropriate distance measure, for ex-

ample the normalized difference in means (Imbens and Wooldridge (2009, equation 

(3)). Similarly, it would have been good practice for Fisher to abandon a randomiza-

tion in which there were clear patterns in the (random) distribution of plots across 

the field, even though the treatment and control plots were randomly selections 

that, by construction, could not differ ‘significantly’ using the standard (incorrect) 

balance test. Whether such imbalances should be seen as undermining the estimate 

of the ATE depends on our priors about which covariates are likely to be important, 

and how important, which is (not coincidentally) the same thought experiment that 

is routinely undertaken in observational studies when we worry about confounding. 

One procedure to improve balance is to adapt the design before randomiza-

tion, for example, by stratification. Fisher, who as the quote above illustrates, was 

well aware of the loss of precision from randomization argued for ‘blocking’ (strati-

fication) in agricultural trials or for using Latin Squares, both of which restrict the 

amount of imbalance. Stratification, to be useful, requires some prior understanding 
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of the factors that are likely to be important, and so it takes us away from the ‘no 

knowledge required’ or ‘no priors accepted’ appeal of RCTs; it requires thinking 

about and measuring confounders. But as Scriven (1974, 69) notes: “(C)ause hunt-

ing, like lion hunting, is only likely to be successful if we have a considerable amount 

of relevant background knowledge.” Cartwright (1994, Chapter 2) puts it even more 

strongly, “No causes in, no causes out.” Stratification in RCTs, as in other forms of 

sampling, is a standard method for using background knowledge to increase the 

precision of an estimator. It has the further advantage that it allows for the explora-

tion of different ATEs in different strata which can be useful in adapting or trans-

porting the results to other locations (see Section 2). 

 Stratification is not possible if there are too many covariates, or if each has 

many values, so that there are more cells than can be filled given the sample size.  

With five covariates, and ten values on each, and no priors to limit the structure, we 

would have 100,000 possible strata. Filling these is well beyond the sample sizes in 

most trials. An alternative that works more generally is to re-randomize. If the ran-

domization gives an obvious imbalance on known covariates—treatment plots all 

on one side of the field, all the treatment clinics in one region, too many rich and too 

few poor in the control group—we try again, and keep trying until we get a balance 

measured as a small enough distance between the means of the observed covariates 

in the two groups. Morgan and Rubin (2012) suggest the Mahalanobis D–statistic be 

used as a criterion and use Fisher’s randomization inference (to be discussed fur-

ther below) to calculate standard errors that take the re-randomization into ac-

count. An alternative, widely adapted in practice, is to adjust for covariates by run-

ning a regression (or covariance) analysis, with the outcome on the left-hand side 

and the treatment dummy and the covariates as explanatory variables, including 

possible interactions between covariates and treatment dummies. Freedman (2008) 

shows that the adjusted estimate of the ATE is biased in finite samples, with the bias 

depending on the correlation between the squared treatment effect and the covari-

ates. Accepting some bias in exchange for greater precision will often make sense, 

though it certainly undermines any gold standard argument that relies on unbi-

asedness without consideration of precision. 
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1.4 Should we randomize? 

The tension between randomization and precision that goes back to Fisher, Gosset, 

and Savage has been reopened in recent papers by Kasy (2016), Banerjee et al. 

(BCS) (2016) and Banerjee et al. (BCMS) (2017).  

 The trade-off between bias and precision can be formalized in several ways, 

for example by specifying a loss or utility function that depends on how a user is af-

fected by deviations of the estimate of the ATE from the truth and then choosing an 

estimator or an experimental design that minimizes expected loss or maximizes ex-

pected utility. As Savage (1962, 34) noted, for a Bayesian, this involves allocating 

treatments and controls in “the specific layout that promised to tell him the most,” 

but without randomization. Of course, this requires serious and perhaps difficult 

thought about the mechanisms underlying the ATE, which randomization avoids. 

Savage also notes that several people with different priors may be involved in an 

investigation and that individual priors may be unreliable because of “vagueness 

and temptation to self-deception,” defects that randomization may alleviate, or at 

least evade. BCMS (2017) provide a proof of a Bayesian no-randomization theorem, 

and BCS (2016) provide an illustration of a school administrator who has long be-

lieved that school outcomes are determined, not by school quality, but by parental 

background, and who can learn the most by placing deprived children in (supposed) 

high-quality schools and privileged children in (supposed) low-quality schools, 

which is the kind of study setting to which case study methodology is well attuned. 

As BCS note, this allocation would not persuade those with different priors, and they 

propose randomization as a means of satisfying skeptical observers. As this example 

shows, it is not always necessary to encode prior information into a set of formal 

prior probabilities, though thought about what we are trying to learn is always re-

quired. 

Several points are important. First, the anti-randomization theorem is not a 

justification of any non-randomized design, for example, one that allows selection 

on unobservables, but only of the optimal design that is most informative. According 

to Chalmers (2001) and Bothwell and Podolsky (2016), the development of random-



 19 

ization in medicine originated with Bradford-Hill, who used randomization in the 

first RCT in medicine—the streptomycin trial—because it prevented doctors select-

ing patients on the basis of perceived need (or against perceived need, leaning over 

backward as it were), an argument recently echoed by Worrall (2007). Randomiza-

tion serves this purpose, but so do other non-discretionary schemes; what is re-

quired is that hidden information should not be allowed to affect the allocation as 

would happen, for example, if subjects could choose their own assignments. 

Second, the ideal rules by which units are allocated to treatment or control 

depend on the covariates and on the investigators’ priors about how they affect the 

outcomes. This opens up all sorts of methods of inference that are long familiar but 

that are excluded by pure randomization. For example, what philosophers call the 

hypothetico-deductive method works by using theory to make a prediction that can 

be taken to the data for potential falsification (as in the school example above). This 

is the way that physicists learn, as do other researchers when they use theory to de-

rive predictions that can be tested against the data, perhaps in an RCT, but more 

frequently not. As Lakatos 1970 (among others) has stressed, some of the most 

fruitful research advances are generated by the puzzles that result when the data 

fail to match such theoretical predictions. In economics, good examples include the 

equity premium puzzle, various purchasing power parity puzzles, the Feldstein-

Horioka puzzle, the consumption smoothness puzzle, the puzzle of why in India, 

where malnourishment is widespread, rapid income growth has been accompanied 

by s fall in calories consumed, and many others.  

Third, randomization, by ignoring prior information from theory and from 

covariates, is wasteful and even unethical when it unnecessarily exposes people, or 

unnecessarily many people, to possible harm in a risky experiment. Worrall (2008) 

documents the (extreme) case of ECMO (Extracorporeal Membrane Oxygenation), a 

new treatment for newborns with persistent pulmonary hypertension that was de-

veloped in the 1970s by intelligent and directed trial and error within a well-

understood theory of the disease and a good understanding of how the oxygenator 

should work. In early experimentation by the inventors, mortality was reduced from 

80 to 20 percent. The investigators felt compelled to conduct an RCT, albeit with an 
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adaptive ‘play-the-winner’ design in which each success in an arm increased the 

probability of the next baby being assigned to that arm. One baby received conven-

tional therapy and died, 11 received ECMO and lived. Even so, a standard random-

ized controlled trial was thought necessary. With a stopping rule of four deaths, four 

more babies (out of ten) died in the control group and none of the nine who re-

ceived ECMO. 

Fourth, the non-random methods use prior information, which is why they 

do better than randomization. This is both an advantage and a disadvantage, de-

pending on one’s perspective. If prior information is not widely accepted, or is seen 

as non-credible by those we are seeking to persuade, we will generate more credible 

estimates if we do not use those priors. Indeed, this is why BCS (2017) recommend 

randomized designs, including in medicine and in development economics. They de-

velop a theory of an investigator who is facing an adversarial audience who will 

challenge any prior information and can even potentially veto results based on it 

(think of administrative agencies such as the FDA or journal referees). The experi-

menter trades off his or her own desire for precision (and preventing possible harm 

to subjects), which would require prior information, against the wishes of the audi-

ence, who wants nothing to do with those priors. Even then, the approval of the au-

dience is only ex ante; once the fully randomized experiment has been done, nothing 

stops critics arguing that, in fact, the randomization did not offer a fair test because 

important other causes were not balanced. Among doctors who use RCTs, and espe-

cially meta-analysis, such arguments are (appropriately) common (see Kramer 

(2016)). We return to this topic in Section 2.1. 

Today, when the public has come to question expert prior knowledge, RCTs 

will flourish. In cases where there is good reason to doubt the good faith of experi-

menters, randomization will indeed be an appropriate response. But we believe 

such a simplistic approach is destructive for scientific endeavor (which is not the 

purpose of the FDA) and should be resisted as a general prescription in scientific 

research. Previous knowledge needs to be built on and incorporated into new 

knowledge, not discarded. The systematic refusal to use prior knowledge and the 

associated preference for RCTs are recipes for preventing cumulative scientific pro-
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gress. In the end, it is also self-defeating. To quote Rodrik (D. Rodrik, personal com-

munication, April 6, 2016) “the promise of RCTs as theory-free learning machines is 

a false one.”  

 

1.5 Statistical inference in RCTs 

The estimated ATE in a simple RCT is the difference in the means between the 

treatment and control groups. When covariates are allowed for, as in most RCTs in 

economics, the ATE is usually estimated from the coefficient on the treatment dum-

my in a regression that looks like (1), but with the heterogeneity in 𝛽 ignored. Mod-

ern work calculates standard errors allowing for the possibility that residual vari-

ances may be different in the treatment and control groups, usually by clustering the 

standard errors, which is equivalent to the familiar two sample standard error in 

the case with no covariates. Statistical inference is done with t-values in the usual 

way. Unfortunately, these procedures do not always give the right standard errors 

and, to reiterate, the value of randomization is that it permits inference about esti-

mates of ATEs, not that it guarantees the quality of these estimates, so credible 

standard errors are essential in any argument for RCTs. 

 Looking back at (1), the underlying objects of interest are the individual 

treatment effects 𝛽𝑖 for each of the individuals in the trial sample. Neither they, nor 

their distribution 𝐺(𝛽) is identified from an RCT; because RCTs make so few as-

sumptions which, in many cases, is their strength, they can identify only the mean of 

the distribution. In many observational studies, researchers are prepared to make 

more assumptions on functional forms or on distributions, and for that price we are 

able to identify other quantities of interest. Without these assumptions, inferences 

must be based on the difference in the two means, a statistic that is sometimes ill-

behaved, as we discuss below. This ill-behavior has nothing to do with RCTs, per se, 

but within RCTs, and their minimal assumptions, we cannot easily switch from the 

mean to some other quantity of interest. 

 Fisher proposed that statistical inference should be done using what has be-

come known as ‘randomization inference’, a procedure that is as non-parametric as 

the RCT-based estimate of an ATE itself. To test the null hypothesis that 𝛽𝑖 = 0 for 
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all i, note that, under the null that the treatment has no effect on any individual, an 

estimated nonzero ATE can only be a consequence of the particular random alloca-

tion that generated it (assuming no difference in the distributions of covariates post-

randomization). By tabulating all possible combinations of treatments and controls 

in our trial sample, and the ATE associated with each, we can calculate the exact dis-

tribution of the estimated ATE under the null. This allows us to calculate the proba-

bility of calculating an estimate as large as our actual estimate when the treatment 

has no effect. This randomization test requires a finite sample, but it will work for 

any sample size (see Imbens and Wooldridge (2009) for an excellent account of the 

procedure).  

 Randomization inference can be used to test the null hypotheses that all of 

the treatment effects are zero, as in the above example, but it cannot be used to test 

the hypothesis that the average treatment effect is zero, which will often be of inter-

est. In agricultural trials, and in medicine, the stronger (sharp) hypothesis that the 

treatment has no effect whatever is often of interest. In many public health applica-

tions, we are content with improving average health, and in economic applications 

that involve money, such as welfare experiments or cost-benefit analyses, we are 

interested in whether the net effect of the treatment is positive or negative, and in 

these cases, randomization inference cannot be used. None of which argues against 

its wider use in social sciences when appropriate. 

 In cases where randomization inference cannot be used, we must construct 

tests for the differences in two means. Standard procedures will often work well, but 

there are two potential pitfalls. One, the ‘Fisher-Behrens problem’, comes from the 

fact that, when the two samples have different variances—which we typically want 

to permit—the tstatistic as usually calculated does not have the t-distribution. The 

second problem, which is much harder to address, occurs when the distribution of 

treatment effects is not symmetric (Bahadur and Savage (1956)). Neither pitfall is 

specific to RCTs, but RCTs force us to work with means in estimating treatment ef-

fects and, with only a few exceptions in the literature, social scientists who use RCTs 

appear to be unaware of the difficulties. 
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 In the simple case of comparing two means in an RCT, inference is usually 

based on the two–sample t–statistic which is computed by dividing the ATE by the 

estimated standard error whose square is given by 

𝜎̂2 =
(𝑛1 − 1)−1 ∑ (𝑌𝑖 − 𝑌̅1)𝑖𝜖1

2

𝑛1
+  

(𝑛0 − 1)−1 ∑ (𝑌𝑖 − 𝑌̅0)𝑖𝜖0
2

𝑛0
#(3)  

where 0 refers to controls and 1 to treatments, so that there are 𝑛1 treatments and 

𝑛0 controls, and 𝑌̅1 and 𝑌̅0 are the two means. As has long been known, the 

“tstatistic’ based on (3) is not distributed as Student’s t if the two variances (treat-

ment and control) are not identical but has the Behrens–Fisher distribution. In ex-

treme cases, when one of the variances is zero, the t–statistic has effective degrees of 

freedom half of that of the nominal degrees of freedom, so that the test-statistic has 

thicker tails than allowed for, and there will be too many rejections when the null is 

true.  

Young (2017) argues that this problem is worse when the trial results are 

analyzed by regressing outcomes not only on the treatment dummy but also on ad-

ditional covariates and when using clustered or robust standard errors. When the 

design matrix is such that the maximal influence is large, which is likely if the distri-

bution of the covariates is skewed so that for some observations outcomes have 

large influence on their own predicted values, there is a reduction in the effective 

degrees of freedom for the t–value(s) of the average treatment effect(s) leading to 

spurious findings of significance. Young looks at 2,027 regressions reported in 53 

RCT papers in the American Economic Association journals and recalculates the sig-

nificance of the estimates using randomization inference applied to the authors’ 

original data. In 30 to 40 percent of the estimated treatment effects in individual 

equations with coefficients that are reported as significant, he cannot reject the null 

of no effect for any observation; the fraction of spuriously significant results in-

creases further when he simultaneously tests for all results in each paper.  These 

spurious findings come in part from issues of multiple-hypothesis testing, both 

within regressions with several treatments and across regressions. Within regres-

sions, treatments are largely orthogonal, but authors tend to emphasize significant 

t–values even when the corresponding F-tests are insignificant. Across equations, 
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results are often strongly correlated, so that, at worst, different regressions are re-

porting variants of the same result, thus spuriously adding to the ‘kill count’ of sig-

nificant effects. At the same time, the pervasiveness of observations with high influ-

ence generates spurious significance on its own. 

These issues are now being taken more seriously, at least in economics. In 

addition to Young (2017), Imbens and Kolesár (2016) provide practical advice for 

dealing with the Fisher-Behrens problem, and the best current practice tries to be 

careful about multiple hypothesis testing. Yet it remains the case that many of the 

results reported in the literature are spuriously significant. 

Spurious significance also arises when the distribution of treatment effects 

contains outliers or, more generally, is not symmetric. Standard t–tests break down 

in distributions with enough skewness (see Lehmann and Romano (2005, 466–8)). 

How difficult is it to maintain symmetry? And how badly is inference affected when 

the distribution of treatment effects is not symmetric? One important example is 

expenditures on healthcare. Most people have zero expenditure in any given period, 

but among those who do incur expenditures, a few individuals spend huge amounts 

that account for a large share of the total. Indeed, in the famous Rand health experi-

ment (see Manning, et al. (1987, 1988)), there is a single very large outlier. The au-

thors realize that the comparison of means across treatment arms is fragile, and, 

although they do not see their problem exactly as described here, they obtain their 

preferred estimates using an approach that is explicitly designed to model the 

skewness of expenditures.  Another example comes from economics, where many 

trials have outcomes valued in money. Does an anti-poverty innovation—for exam-

ple microfinance—increase the incomes of the participants? Income itself is not 

symmetrically distributed, and this might also be true of the treatment effects if 

there are a few people who are talented but credit-constrained entrepreneurs and 

who have treatment effects that are large and positive, while the vast majority of 

borrowers fritter away their loans, or at best make positive but modest profits. A 

recent summary of the literature is consistent with this (see Banerjee, Karlan, and 

Zinman (2015)).  
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 In some cases, it will be appropriate to deal with outliers by trimming, trans-

forming, or eliminating observations that have large effects on the estimates. But if 

the experiment is a project evaluation designed to estimate the net benefits of a pol-

icy, the elimination of genuine outliers, as in the Rand Health Experiment, will viti-

ate the analysis. It is precisely the outliers that make or break the program. Trans-

formations, such as taking logarithms, may help to produce symmetry, but they 

change the nature of the question being asked; a cost benefit analysis or healthcare 

reform costing must be done in dollars, not log dollars. 

 We consider an example that illustrates what can happen in a realistic but 

simplified case; the full results are reported in the Appendix. We imagine a popula-

tion of individuals, each with a treatment effect 𝛽𝑖. The parent population mean of 

the treatment effects is zero, but there is a long tail of positive values; we use a left-

shifted lognormal distribution. This could be a healthcare expenditure trial or a mi-

crofinance trial, where there is a long positive tail of rare individuals who incur very 

high costs or who can do amazing things with credit while most people cost nothing 

in the period studied or cannot use the credit effectively. A trial sample of 2n  indi-

viduals is randomly drawn from the parent population and is randomly split be-

tween n treatments and n controls. Within each trial sample, whose true ATE will 

generally differ from zero because of the sampling, we run many RCTs and tabulate 

the values of the ATE for each.  

Using standard ttests, the (true in the parent distribution) hypothesis that 

the ATE is zero is rejected between 14 (𝑛 = 25) and 6 percent (𝑛 = 500) of the time. 

These rejections come from two separate issues, both of which are relevant in prac-

tice: (a) that the ATE in the trial sample differs from the ATE in the parent popula-

tion of interest, and (b) that the tvalues are not distributed as t in the presence of 

outliers. The problem cases are when the trial sample happens to contain one or 

more outliers, something that is always a risk given the long positive tail of the par-

ent distribution. When this happens, everything depends on whether the outlier is 

among the treatments or the controls; in effect, the outliers become the sample, re-

ducing the effective number of degrees of freedom. In extreme cases, one of which is 
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illustrated in Figure A.1, the distribution of estimated ATEs is bimodal, depending 

on the group to which the outlier is assigned. When the outlier is in the treatment 

group, the dispersion across outcomes is large, as is the estimated standard error, 

and so those outcomes rarely reject the null using the standard table of t–values. 

The over-rejections come from cases when the outlier is in the control group, the 

outcomes are not so dispersed, and the t–values can be large, negative, and signifi-

cant. While these cases of bimodal distributions may not be common and depend on 

the existence of large outliers, they illustrate the process that generates the over-

rejections and spurious significance. Note that there is no remedy through randomi-

zation inference here, given that our interest is in the hypothesis that the average 

treatment effect is zero. 

 Our reading of the literature on RCTs in social and public health policy areas 

suggests that they are not exempt from these concerns. Many trials are run on 

(sometimes very) small samples, they have treatment effects where asymmetry is 

hard to rule out—especially when the outcomes are in money—and they often give 

results that are puzzling, or at least not easily interpreted theoretically. In the con-

text of development studies, neither Banerjee and Duflo (2012) nor Karlan and Ap-

pel (2011), who cite many RCTs, raise concerns about misleading inference, implic-

itly treating all results as reliable. Some of these results contradict standard theory. 

No doubt there are behaviors in the world that are inconsistent with conventional 

economics, and some can be explained by standard biases in behavioral economics, 

but it would also be good to be suspicious of the significance tests before accepting 

that an unexpected finding is well-supported and that theory must be revised. Repli-

cation of results in different settings may be helpful, if they are the right kind of 

places (see our discussion in Section 2). Yet it hardly solves the problem given that 

the asymmetry may be in the same direction in different settings, that it seems likely 

to be so in just those settings that are sufficiently like the original trial setting to be 

of use for inference about the population of interest, and that the ‘significant’ t–

values will show departures from the null in the same direction. This, then, repli-

cates the spurious findings.  
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1.6 Familiar threats to unbiasedness 

It is of great importance to note that randomization, by itself, is not sufficient to 

guarantee unbiasedness if post-randomization differences are permitted to affect 

the two groups. This requires ‘policing’ of the experiment, for example by requiring 

that subjects, experimenters, and analysts are blinded and that differences in treat-

ments or outcomes do not reveal their status to subjects. Familiar concerns about 

selection bias and the placebo, Pygmalion, Hawthorne, John Henry, and 'teach-

er/therapist' effects are widespread across studies of medical and social interven-

tions.  The difficulty of controlling for placebo effects can be especially acute in test-

ing medical interventions (see Howick (2011), Chapter 7 for a critical review), as is 

the difficulty in controlling both for placebo effects and the effects of therapist vari-

ables in testing psychological therapies. For instance, Pitman,  et al. (2017) suggest 

how difficult it will be to identify just what a psychological therapy consists of; Kra-

mer and Stiles (2015) treat the ‘responsiveness’ problem of categorizing therapist 

responses to emerging context; and there has been a lively debate about whether 

cognitive mechanisms of change are responsible for the effectiveness of cognitive 

therapy for depression based on data that shows the changes in symptoms occur 

mainly before the cognitive techniques are brought into play (Ilardi and Craighead 

(1999), Vittengl et al. (2014)).  

Many social and economic trials, medical trials, and public health trials are 

not blinded nor sufficiently controlled for other sources of bias, and indeed many 

cannot be, and a sufficient defense is rarely offered that unbiasedness is not under-

mined. Generally, it is recommended to extend blinding beyond participants and in-

vestigators to include those who measure outcomes and those who analyze the data, 

all of whom may be affected by both conscious and unconscious bias. The need for 

blinding in those who assess outcomes is particularly important in cases where out-

comes are not determined by strictly prescribed procedures whose application is 

transparent and checkable but requires elements of judgment. 

Beyond the need to control for ‘psychological’ or ‘placebo’ effects, blinding of 

trial participants is important in cases where there is no compulsion, so that people 

who are randomized into the treatment group are free to choose to refuse treat-
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ment. In many cases it is reasonable to suppose that people choose to participate if 

it is in their interest to do so. In consequence, those who estimate (consciously or 

unconsciously) that their gain is not high enough to offset the perceived drawbacks 

of compliance with the treatment protocol may avoid it. The selective acceptance of 

treatment limits the analyst’s ability to learn about people who decline treatment 

but who would have to accept it if the policy were implemented. In these cases, both 

the intention-to-treat estimator and the ‘as treated’ estimator that compares the 

treated and the untreated are affected by the kind of selection effects that randomi-

zation is designed to eliminate.  

So, blinding matters for unbiasedness and is very often missing (see also 

Hernán et al. (2013)). This is not to say that one should assume without argument 

that non-blinding at any point will introduce bias. That is a matter to be assessed 

case-by-case. But the contrary cannot be automatically assumed. This brings to the 

fore the trade-off between using an RCT-based estimate that may well be biased, 

and in ways we do not have good ideas how to deal with, versus one from an obser-

vational study where blinding may have been easier, or some of these sources of bi-

as may be missing or where we may have a better understanding of how to correct 

for them. For instance, blinding is sometimes automatic in observational studies, e.g. 

from administrative records. (See for example Horwitz et al. 2017 for a discussion of 

the complications of analyzing the result in the large Women’s Health Trial when it 

was noted that due to the presence of side effects of the treatment “blinding was 

broken for nearly half of the HRT users but only a small percentage of the placebo 

users” [1248].) 

Lack of blinding is not the only source of post-randomization bias. Subse-

quent treatment decisions can differ, and treatments and controls may be handled 

in different places, or by differently trained practitioners, or at different times of 

day, and these differences can bring with them systematic differences in the other 

causes to which the two groups are exposed. These can, and should, be guarded 

against. But doing so requires an understanding of what these causally relevant fac-

tors might be. 
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1.7 A summary 

What do the arguments of this section mean about the importance of randomization 

and the interpretation that should be given to an estimated ATE from a randomized 

trial?  

First, we should be sure that an unbiased estimate of an ATE for the trial 

population is likely to be useful enough to warrant the costs of running the trial.  

Second, since randomization does not ensure orthogonality, to conclude that 

an estimate is unbiased, warrant is required that there are no significant post-

randomization correlates with the treatment.  

Third, the inference problems reviewed here cannot just be presumed away. 

When there is substantial heterogeneity, the ATE in the trial sample can be quite dif-

ferent from the ATE in the population of interest, even if the trial is randomly select-

ed from that population; in practice, the relationship between the trial sample and 

the population is often obscure (see Longford and Nelder (1999)). 

Fourth, beyond that, in many case the statistical inference will be fine, but se-

rious attention should be given to the possibility that there are outliers in treatment 

effects, something that knowledge of the problem can suggest and where inspection 

of the marginal distributions of treatments and controls may be informative. For ex-

ample, if both are symmetric, it seems unlikely (though certainly not impossible) 

that the treatment effects are highly skewed. Measures to deal with Fisher-Behrens 

should be used and randomization inference considered when appropriate to the 

hypothesis of interest.  

All of this can be regarded as recommendations for improvement to current 

practice, not a challenge to it. More fundamentally, we strongly contest the often-

expressed idea that the ATE calculated from an RCT is automatically reliable, that 

randomization automatically controls for unobservables, or worst of all, that the cal-

culated ATE is true. If, by chance, it is close to the truth, the truth we are referring to 

is the truth in the trial sample only. To make any inference beyond that requires ar-

guments of the kind we consider in the next section. We have also argued that, de-

pending on what we are trying to measure and what we want to use that measure 
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for, there is no presumption that an RCT is the best means of estimating it. That too 

requires an argument, not a presumption. 

 

Section 2: Using the results of randomized controlled trials 

2.1 Introduction 

Suppose we have estimated an ATE from a well-conducted RCT on a trial sample, 

and our standard error gives us reason to believe that the effect did not come about 

by chance. We thus have good warrant that the treatment causes the effect in our 

trial sample, up to the limits of statistical inference. What are such findings good for?  

The literature discussing RCTs has paid more attention to obtaining results than to 

considering what can justifiably be done with them. There is insufficient theoretical 

and empirical work to guide us how and for what purposes to use the findings. What 

there is tends to focus on the conditions under which the same results hold outside 

of the original settings or how they might be adapted for use elsewhere, with almost 

no attention to how they might be used for formulating, testing, understanding, or 

probing hypotheses beyond the immediate relation between the treatment and the 

outcome investigated in the study. Yet it cannot be that knowing how to use results 

is less important than knowing how to demonstrate them. Any chain of evidence is 

only as strong as it weakest link, so that a rigorously established effect whose ap-

plicability is justified by a loose declaration of simile warrants little. If trials are to 

be useful, we need paths to their use that are as carefully constructed as are the tri-

als themselves.  

The argument for the ‘primacy of internal validity’ made by Shadish, Cook, 

and Campbell (2002) may be reasonable as a warning that bad RCTs are unlikely to 

generalize, although as Cook (2014) notes “inferences about internal validity are in-

evitability probabilistic.” Moreover, the primacy statement is sometimes incorrectly 

taken to imply that results of an internally valid trial will automatically, or often, ap-

ply ‘as is’ elsewhere, or that this should be the default assumption failing arguments 

to the contrary, as if a parameter, once well established, can be expected to be invar-

iant across settings. The invariance assumption is often made in medicine, for ex-

ample, where it is sometimes plausible that a particular procedure or drug works 
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the same way everywhere, though its effects cannot be the same at all stages of the 

disease. More generally, Horton (2000) gives a strong dissent and Rothwell (2005) 

provides arguments on both sides of the question. We should also note the recent 

movement to ensure that testing of drugs includes women and minorities because 

members of those groups suppose that the results of trials on mostly healthy young 

white males do not apply to them, as well as the increasing call for pragmatic trials, 

as in Williams et al. (2015): “[P]ragmatic trials …  ask ‘we now know it can work, but 

how well does it work in real world clinical practice?’”   

Our approach to the use of RCT results is based on the observation that 

whether, and in what ways, an RCT result is evidence depends on exactly what the 

hypothesis is for which the result is supposed to be evidence, and that what kinds of 

hypotheses these will be depends on the purposes to be served.  This should in turn 

affect the design of the trial itself. This is recognized in the medical literature in the 

distinction between explanatory and pragmatic trials and the proposals to adapt tri-

al design to the question asked, as for example in Patsopoulos (2011, 218): “The ex-

planatory trial is the best design to explore if and how an intervention works” 

whereas “The research question under investigation is whether an intervention ac-

tually works in real life.” It is also reflected in, for example, Rothman et l. (2013, 

1013), whom we echo in arguing that simple extrapolation is not the sole purpose to 

which RCT results can be put: “The mistake is to think that statistical inference is the 

same as scientific inference.”  We shall distinguish a number of different purposes 

and discuss how, and when, RCTs can serve them: (a) simple extrapolation and sim-

ple generalization, (b) drawing lessons about the population enrolled in the trial, (c) 

extrapolation with adjustment, (d) estimating what happens if we scale up, (e) pre-

dicting the results of treatment on the individual, and (f) building and testing theory.  

 This list is hardly exhaustive. We noted in Section 1.4 one further use that we 

do not pursue here: The widespread and largely uncritical belief that RCTs give the 

right answer permits them to be used as dispute-reconciliation mechanisms to re-

solve political conflicts. For example, at the Federal level in the US, prospective poli-

cies are vetted by the non-partisan Congressional Budget Office (CBO), which makes 

its own estimates of budgetary implications. Ideologues whose programs are scored 
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poorly by the CBO have an incentive to support an RCT, not to convince themselves, 

but to convince opponents. Once again, RCTs are valuable when your opponents do 

not share your prior.  

 

2.2 Simple extrapolation and simple generalization 

Suppose a trial has (probabilistically) established a result in a specific setting.  If `the 

same’ result holds elsewhere, it is said to have external validity. External validity 

may refer just to the replication of the causal connection or go further and require 

replication of the magnitude of the ATE. Either way, the result holds—everywhere, 

or widely, or in some specific elsewhere—or it does not.  

This binary concept of external validity is often unhelpful because it asks the 

results of an RCT to satisfy a condition that is neither necessary nor sufficient for 

trials to be useful, and so both overstates and understates their value. It directs us 

toward simple extrapolation—whether the same result holds elsewhere—or simple 

generalization—it holds universally or at least widely—and away from more com-

plex but equally useful applications of the results. The failure of external validity in-

terpreted as simple generalization or extrapolation says little about the value of the 

results of the trial.  

There are several uses of RCTs that do not require applying their results be-

yond the original context; we discuss these in Section 2.4. Beyond that, there are of-

ten good reasons to expect that the results from a well-conducted, informative, and 

potentially useful RCT will not apply elsewhere in any simple way. Without further 

understanding and analysis, even successful replication tells us little either for or 

against simple generalization nor does much to support the conclusion that the next 

will work in the same way. Nor do failures of replication make the original result 

useless. We often learn much from coming to understand why replication failed and 

can use that knowledge in looking for how the factors that caused the original result 

might operate differently in different settings. Third, and particularly important for 

scientific progress, the RCT result can be incorporated into a network of evidence 

and hypotheses that test or explore claims that look very different from the results 

reported from the RCT. We shall give examples below of valuable uses for RCTs that 
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are not externally valid in the (usual) sense that their results do not hold elsewhere, 

whether in a specific target setting or in the more sweeping sense of holding every-

where, or everywhere in some specified domain.  

The RAND health experiment (Manning et al. (1987, 88)) provides an instruc-

tive story if only because its results have permeated the academic and policy discus-

sions about healthcare ever since. It was originally designed to test whether more 

generous insurance causes people to use more medical care and, if so, by how much. 

The incentive effects are hardly in doubt today; the immortality of the study comes 

rather from the fact that its multi-arm (response surface) design allowed the calcu-

lation of an elasticity for the study population, that medical expenditures decreased 

by –0.1 to –0.2 percent for every percentage increase in the copayment. According 

to Aron-Dine et al. (2013), it is this dimensionless and thus apparently exportable 

number that has been used ever since to discuss the design of healthcare policy; the 

elasticity has come to be treated as a universal constant. Ironically, they argue that 

the estimate cannot be replicated in recent studies, and that it is unclear that it is 

firmly based on the original evidence. The simple direct exportability of the result 

was perhaps illusory.   

The drive to export and generalize RCTs results is at the core of the influen-

tial ‘what works’ movement across the medical and social sciences. At its most ambi-

tious, this aims for universal reach. For example, in the development economics lit-

erature, Duflo and Kremer (2008, 93) argue that “credible impact evaluations are 

global public goods in the sense that they can offer reliable guidance to international 

organizations, governments, donors, and nongovernmental organizations (NGOs) 

beyond national borders.” Sometimes the results of a single RCT are advocated as 

having wide applicability, with especially strong endorsement when there is at least 

one replication.  

Simple extrapolation is often used to move RCT results from one setting to 

another. Much of what is written in the ‘what works’ literature suggests that, unless 

there is evidence to the contrary, the direction and size of treatment effects can be 

transported from one place to another without serious adjustment. The Abdul Latif 

Jameel Poverty Action Lab (J-PAL) conducts RCTs around the world and summarizes 
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findings in an attempt to reduce poverty by the use of “scientific evidence to inform 

policy.” Some of their reports convert results into a common cost-effectiveness 

measure. For example, Improving Student Participation--Which programs most effec-

tively get children into school? classifies results into six categories: school time trav-

el, subsidies and transfers, health, perceived returns, education quality, and gender 

specific barriers; results are reported in the common unit, “additional years of edu-

cation for US$100 spent.”  “Health”, which top-rated by far, includes two studies, 

“deworming” in Kenya (11.91) and “iron & vitamin A” in India (2.61); “perceived re-

turns” to education has one study in the Dominican Republic (0.23); “subsidies and 

transfers” includes the most studies—six, with results ranging from 0.17 for “sec-

ondary scholarships” in Ghana to 0.01, for “CCT” (Conditional Cash Transfers) in 

Mexico and 0.09 and 0.07 for “CCT” in Malawi. 

What can we conclude from such comparisons? A philanthropic donor inter-

ested in education, who assumes that marginal and average effects are the same, 

might learn that the best place to devote a marginal dollar is in Kenya, where it 

would be used for deworming. This is certainly useful, but it is not as useful as 

statements that deworming programs are everywhere more cost-effective than pro-

grams involving vitamin A or scholarships, or if not everywhere, at least over some 

domain, and it is these second kinds of comparison that would genuinely fulfill the 

promise of ‘finding out what works.’  But such comparisons only make sense if the 

results from one place can be relied on to apply in another, if the Kenyan results also 

hold in the Dominican Republic, Mexico, Ghana, or in some specific list of places.  

What does J-PAL conclude? Here are two of their reported “Practical Implica-

tions”: “Conditional and unconditional cash transfers can increase school enrolment 

and attendance, but are expensive to implement...Eliminating small costs can have 

substantial impacts on school participation.” ‘Can’ here is admittedly an ambiguous 

word. It is certainly true in a logical sense that if a program has achieved a given re-

sult, then it can do so. But we suspect that the more natural sense for readers to take 

away is that the program ‘may well’ do so most other places, in the absence of spe-

cial problems, or that that is at least the default assumption. 
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Trials, as is widely noted, often take place in artificial environments which 

raises well recognized problems for extrapolation. For instance, with respect to eco-

nomic development, Drèze (J. Drèze, personal communications, November 8, 2017) 

notes, based on extensive experience in India, that “when a foreign agency comes in 

with its heavy boots and deep pockets to administer a ‘treatment,’ whether through 

a local NGO or government or whatever, there tends to be a lot going on other than 

the treatment.” There is also the suspicion that a treatment that works does so be-

cause of the presence of the ‘treators,’ often from abroad, and may not do so with 

the people who will work it in practice.  

J-PAL’s manual for cost-effectiveness (Dhaliwal et al. (2012)) explains in (en-

tirely appropriate) detail how to handle variation in costs across sites, noting varia-

ble factors such as population density, prices, exchange rates, discount rates, infla-

tion, and bulk discounts. But it gives short shrift to cross-site variation in the size of 

ATEs, which also play a key part in the calculations of cost effectiveness. The manual 

briefly notes that diminishing returns (or the last-mile problem) might be important 

in theory but argues that the baseline levels of outcomes are likely to be similar in 

the pilot and replication areas, so that the ATE can be safely assumed to apply as is. 

All of this lacks a justification for extrapolating results, some understanding of when 

results can be extrapolated, when they cannot, or better still, how they should be 

modified to make them applicable in a new setting.  Without well substantiated as-

sumptions to support the projection of results, this is just induction by simple enu-

meration—swan 1 is white, swan 2 is white, . . . , so all swans are white; and, as 

Francis Bacon (1859, 1.105) taught, “…the induction that proceeds by simple enu-

merations is childish.”  

Bertrand Russell’s chicken (Russell (1912)) provides an excellent example of 

the limitations to simple extrapolation from repeated successful replication. The 

bird infers, on repeated evidence, that when the farmer comes in the morning, he 

feeds her. The inference serves her well until Christmas morning, when he wrings 

her neck and serves her for dinner. Though this chicken did not base her inference 

on an RCT, had we constructed one for her, we would have obtained the same result 

that she did. Her problem was not her methodology, but rather that she did not un-
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derstand the social and economic structure that gave rise to the causal relations that 

she observed. (We shall return to the importance of the underlying structure for un-

derstanding what causal pathways are likely and what are unlikely below.) 

The problems with simple extrapolation and simple generalization extend 

beyond RCTs, to both ‘fully controlled’ laboratory experiments and to most non-

experimental findings. Our argument here is that evidence from RCTs is not auto-

matically simply generalizable, and that its superior internal validity, if and when it 

exists, does not provide it with any unique invariance across context. That simple 

extrapolation and simple generalization are far from automatic also tells us why 

(even ideal) RCTs of similar interventions give different answers in different set-

tings and the results of large RCTs may differ from the results of meta-analyses on 

the same treatment (as in LeLorier et al. (1997)). Such differences do not necessari-

ly reflect methodological failings and will hold across perfectly executed RCTs just 

as they do across observational studies.  

Our arguments are not meant to suggest that extrapolation or even generali-

zation is never reasonable. For instance, conditional cash transfers have worked for 

a variety of different outcomes in different places; they are often cited as a leading 

example of how an evaluation with strong internal validity leads to a rapid spread of 

the policy. Think through the causal chain that is required for CCTs to be successful: 

People must like money, they must like (or do not object too much) to their children 

being educated and vaccinated, there must exist schools and clinics that are close 

enough and well enough staffed to do their job, and the government or agency that 

is running the scheme must care about the wellbeing of families and their children. 

That such conditions hold in a wide range of (although certainly not all) countries 

makes it unsurprising that CCTs ‘work’ in many replications, though they certainly 

will not work in places where the schools and clinics do not exist, e.g. Levy (2006), 

nor in places where people strongly oppose education or vaccination. So, there are 

structural reasons why CCT results export where they do. Our objection is to the as-

sumption that it is ‘natural’ that well-established results export; to the contrary, 

good reasons are needed to justify that they do.  
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To summarize. Establishing causality does nothing in and of itself to guaran-

tee that the causal relation will hold in some new case, let alone in general. Nor does 

the ability of an ideal RCT to eliminate bias from selection or from omitted variables 

mean that the resulting ATE from the trial sample will apply anywhere else.  The is-

sue is worth mentioning only because of the enormous weight that is currently at-

tached to policing the rigor with which causal claims are established by contrast 

with the rigor devoted to all those further claims—often unstated even—that go in-

to warranting extrapolating or generalizing the relations. 

 

2.3 Support factors and the ATE  

The operation of a cause generally requires the presence of support factors (also 

known as ‘interactive variables’ or ‘moderators’), factors without which a cause that 

produces the targeted effect in one place, even though it may be present and have 

the capacity to operate elsewhere, will remain latent and inoperative. What Mackie 

(1974) called INUS causality (Insufficient but Non-redundant parts of a condition 

that is itself Unnecessary but Sufficient for a contribution to the outcome) is the kind 

of causality reflected in equation (1). (See Rothman (1976, 2012) for the same idea 

in epidemiology, which uses the term ‘causal pie’ to refer to a set of causes that are 

jointly but not separately sufficient for a contribution to an effect.) A standard ex-

ample is a house burning down because the television was left on, although televi-

sions do not operate in this way without support factors, such as wiring faults, the 

presence of tinder, and so on.  

The value of the ATE depends on the distribution of the values of the ‘support 

factors’ necessary for T to contribute to Y. This becomes clear if we rewrite (1) in 

the form 

𝑌𝑖 = 𝛽𝑖𝑇𝑖 + ∑ 𝛾𝑗𝑥𝑖𝑗 = 𝜃(𝑤𝑖)𝑇𝑖

𝐽

𝑗=1

+ ∑ 𝛾𝑗𝑥𝑖𝑗

𝐽

𝑗=1

#(4)  

where the function 𝜃(. ) controls how a k-vector 𝑤𝑖 of k ‘support factors’ affect indi-

vidual i’s treatment effect 𝛽𝑖. The support factors may include some of the x’s. Since 

the ATE is the average of the 𝛽𝑖𝑠, two populations will have the same ATE if and only 
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if they have the same average for the net effect of the support factors necessary for 

the treatment to work, i.e. for the quantity in front of 𝑇𝑖. These are however just the 

kind of factors that are likely to be differently distributed in different populations.,  

Given that support factors will operate with different strengths and effec-

tiveness in different places, it is not surprising that the size of the ATE differs from 

place to place; for example, Vivalt’s AidGrade website lists 29 estimates from a 

range of countries of the standardized (divided by local standard deviation of the 

outcome) effects of CCTs on school attendance; all but four show the expected posi-

tive effect, and the range runs from –8 to +38 percentage points (Vivalt (2016)). 

Even in this leading case, where we might reasonably conclude that CCTs ‘work’ in 

getting children into school, it would be hard to calculate credible cost-effectiveness 

numbers or to come to a general conclusion about whether CCTs are more or less 

cost effective than other possible policies. Both costs and effect sizes can be ex-

pected to differ in new settings, just as they have in observed ones, making these 

predictions difficult.  

 AidGrade uses standardized measures of effect size divided by standard de-

viation of outcome at baseline, as does the major multi-country study by Banerjee et 

al. (2015). But we might prefer measures that have an economic interpretation, such 

as J-PAL’s ‘additional months of schooling per US$100 spent’ (for example if a donor 

is trying to decide where to spend, as we noted). Nutrition might be measured by 

height, or by the log of height. Even if the ATE by one measure carries across, it will 

only do so using another measure if the relationship between the two measures is 

the same in both situations. This is exactly the sort of thing that a formal analysis of 

what reasons justify simple extrapolation and how to adjust predictions when sim-

ple extrapolation is not justified forces us to think about.  (Note also that the ATE in 

the original RCT can differ depending on whether the outcome is measured in levels 

or in logs; it is easy to construct examples where the two ATEs have different signs.) 

The worry is not just that the distribution of values for the support factors in 

a new setting will differ from the distribution in the trial but that what those sup-

port factors are will differ, or indeed whether there are any at all in the new setting 

that can get the treatment to work there. Causal processes often require highly spe-
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cialized economic, cultural, or social structures to enable them to work. Different 

structures will enable different processes with different causes and different sup-

port factors. Consider the Rube Goldberg machine that is rigged up so that flying a 

kite sharpens a pencil (Cartwright and Hardie (2012, 77)). The underlying structure 

affords a very specific form of (4) that will not describe causal processes elsewhere.  

The Rube Goldberg machine is an exaggerated example, but it makes transparent 

how unreliable simple extrapolation is likely to be when little knowledge of causal 

structure is available. 

For more typical examples, consider systems design, where we aim to con-

struct systems that will generate causal relations that we like and that will rule out 

causal relations that we do not like. Healthcare systems are designed to prevent 

nurses and doctors making errors; cars are designed so that drivers cannot start 

them in reverse; work schedules for pilots are designed so they do not fly too many 

consecutive hours without rest because alertness and performance are compro-

mised. In philosophy, a system of interacting parts that underpins causal processes 

and makes some possible and some impossible, some likely and some unlikely is la-

belled a mechanism. (Note that this is only one of many meanings in philosophy and 

elsewhere for the term ‘mechanism’; in particular it is not ‘mechanism’ in the sense 

of the causal pathway from treatment to outcomes, which is another common use, 

for example in Suzuki et al. (2011)). Mechanisms are particularly important in un-

derstanding the explanation of causal processes in biology and the philosophical lit-

erature is rife with biological examples, as in the account in the seminal Machamer 

et al. (2000) of how Shepherd (1988) uses biochemical mechanisms at chemical 

synapses to explain the process of transmitting electrical signals from one neuron to 

another. (See also Bechtel (2006), Craver (2007).) ‘Mechanism’ in this sense is nor 

restricted to physical parts and their interactions and constraints but includes so-

cial, cultural, and economic arrangements, institutions, norms, habits, and individual 

psychology. (See, for example, Seckinelgin (2016) on the importance of context in 

determining the effectiveness of HIV-AIDs therapies.) 

As in the Rube Goldberg machine and in the design of cars and work sched-

ules, the physical, social, and economic structure and equilibrium may differ in ways 
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that support, permit, or block different kinds of causal relations and thus render a 

trial in one setting useless in another. For example, a trial that relies on providing 

incentives for personal promotion is of no use in a state in which a political system 

locks people into their social and economic positions. Cash transfers that are condi-

tional on parents taking their children to clinics cannot improve child health in the 

absence of functioning clinics. Policies targeted at men may not work for women. 

We use a lever to toast our bread, but levers only operate to toast bread in a toaster; 

we cannot brown toast by pressing an accelerator, even if the principle of the lever 

is the same in both a toaster and a car. If we misunderstand the setting, if we do not 

understand why the treatment in our RCT works, we run the same risks as Russell’s 

chicken. (See Little (2007) and Howick et al. (2013) for many of the difficulties in 

using claims about mechanistic structure to support extrapolation, and Parkkinen et 

al. (2018) defending the importance of mechanistic reasoning both for internal va-

lidity and for extrapolation.) 

 

2.4 When RCTs speak for themselves: no extrapolation or generalization required 

For some things we want to learn, an RCT is enough by itself. An RCT may provide a 

counterexample to a general theoretical proposition, either to the proposition itself 

(a simple refutation test) or to some consequence of it (a complex refutation test). 

An RCT may also confirm a prediction of a theory, and although this does not con-

firm the theory, it is evidence in its favor, especially if the prediction seems inher-

ently unlikely in advance. This is all familiar territory, and there is nothing unique 

about an RCT; it is simply one among many possible testing procedures. Even when 

there is no theory, or very weak theory, an RCT, by demonstrating causality in some 

population can be thought of as proof of concept, that the treatment is capable of 

working somewhere (as in the remark from Curtis Meinert, prominent expert on 

clinical trial methodology: “There is no point in worrying whether a treatment 

works the same or differently in men and women until it has been shown to work in 

someone” (quoted in Epstein (2007, 108))). This is one of the arguments for the im-

portance of internal validity.  
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Nor is extrapolation called for when an RCT is used for evaluation, for exam-

ple to satisfy donors that the project they funded achieved its aims in the population 

in which it was conducted. Even so, for such evaluations, say by the World Bank, to 

be useful to the world at large (to be global public goods) requires arguments and 

guidelines that justify using the results in some way elsewhere; the global public 

good is not an automatic by-product of the Bank fulfilling its fiduciary responsibility.  

We need something, some regularity or invariance, and that something can rarely be 

recovered by simply generalizing across trials.  

 A third non-problematic and important use of an RCT is when the parameter 

of interest is the ATE in a well-defined population from which the trial sample is it-

self a random sample. In this case the sample average treatment effect (SATE) is an 

unbiased estimator of the population average treatment effect (PATE) that, by as-

sumption, is our target (see Imbens (2004) for these terms). We refer to this as the 

‘public health’ case; like many public health interventions, the target is the average, 

‘population health,’ not the health of individuals.  One major (and widely recog-

nized) danger of this use of RCTs is that exporting results from (even a random) 

sample to the population will not go through in any simple way if the outcomes of 

individuals or groups of individuals change the behavior of others—which is com-

mon in social examples and in public health whenever there is a possibility of conta-

gion.  

 

2.5 Reweighting and stratifying 

Many advocates of RCTs understand that ‘what works’ needs to be qualified to `what 

works under which circumstances’ and try to say something about what those cir-

cumstances might be, for example, by replicating RCTs in different places and think-

ing intelligently about the differences in outcomes when they find them. Sometimes 

this is done in a systematic way, for example by having multiple treatments within 

the same trial so that it is possible to estimate a ‘response surface’ that links out-

comes to various combinations of treatments (see Greenberg and Schroder (2004) 

or Shadish et al. (2002)). For example, the RAND health experiment had multiple 

treatments, allowing investigation of how much health insurance increased expendi-
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tures under different circumstances. Some of the negative income tax experiments 

(NITs) in the 1960s and 1970s were designed to estimate response surfaces, with 

the number of treatments and controls in each arm optimized to maximize precision 

of estimated response functions subject to an overall cost limit (see Conlisk (1973)). 

Experiments on time-of-day pricing for electricity had a similar structure (see Aign-

er (1985)). 

The experiments by MDRC have also been analyzed across cities in an effort 

to link city features to the results of the RCTs within them (see Bloom et al. (2005)). 

Unlike the RAND and NIT examples, these are ex post analyses of completed trials; 

the same is true of Vivalt (2015), who finds, for the collection of trials she studied, 

that development-related RCTs run by government agencies typically find smaller 

(standardized) effect sizes than RCTs run by academics or by NGOs. Bold et al. 

(2013), who ran parallel RCTs on an intervention implemented either by an NGO or 

by the government of Kenya, found similar results there. Note that these analyses 

have a different purpose from meta-analyses that assume that different trials esti-

mate the same parameter up to noise and average in order to increase precision. 

Statistical approaches are also widely used to adjust the results from a trial 

population to predict those in a target population; these are designed to deal with 

the fact that treatment effects vary systematically with variations in the support fac-

tors. One procedure to deal with this is post-experimental stratification, which paral-

lels post-survey stratification in sample surveys. The trial is broken up into sub-

groups that have the same combination of known, observable w’s (age, race, gender, 

co-morbidities for example), then the ATEs within each of the subgroups are calcu-

lated, and then they are reassembled according to the configuration of w’s in the 

new context. This can be used to estimate the ATE in a new context, or to correct es-

timates to the parent population when the trial sample is not a random sample of 

the parent. Other methods can be used when there are too many w’s for stratifica-

tion, for example by estimating the probability of each observation in the population 

included in the trial sample as a function of the w’s, then weighting each observation 

by the inverse of these propensity scores. A good reference for these methods is 

Stuart et al. (2011), or in economics, Angrist (2004) and Hotz et al. (2005).) 
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These methods are often not applicable, however. First, reweighting works 

only when the observable factors used for reweighting include all (and only) genu-

ine interactive causes (support/moderator factors). Second, as with any form of re-

weighting, the variables used to construct the weights must be present in both the 

original and new context. For example, if we are to carry a result forward in time, we 

may not be able to extrapolate from a period of low inflation to a period of high in-

flation; medical treatments that work in cold climates may not work in the tropics. 

As Hotz et al. (2005) note, it will typically be necessary to rule out such ‘macro’ ef-

fects, whether over time, or over locations. Third, reweighting also depends on the 

assumption that the same governing equation (4) covers both the trial and the tar-

get population.  

Pearl and Bareinboim (2011, 2014) and Bareinboim and Pearl (2013, 2014) 

provide strategies for inferring information about new populations from trial re-

sults that are more general than reweighting. They suppose we have available both 

causal information and probabilistic information for population A (e.g. the experi-

mental one), while for population B (the target) we have only (some) probabilistic 

information, and also that we know that certain probabilistic and causal facts are 

shared between the two and certain ones are not. They offer theorems describing 

what causal conclusions about population B are thereby fixed. Their work under-

lines the fact that exactly what conclusions about one population can be supported 

by information about another depends on exactly what causal and probabilistic facts 

they have in common. But as Muller (2015) notes, this, like the problem with simple 

reweighting, takes us back to the situation that RCTs are designed to avoid, where 

we need to start from a complete and correct specification of the causal structure. 

RCTs can avoid this in estimation—which is one of their strengths, supporting their 

credibility—but the benefit vanishes as soon as we try to carry their results to a new 

context.  

This discussion leads to a number of points. First it underlines our previous 

arguments that we cannot get to general claims by simple generalization; there is no 

warrant for the convenient assumption that the ATE estimated in a specific RCT is 
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an invariant parameter, nor that the kinds of interventions and outcomes we meas-

ure in typical RCTs participate in general causal relations.  

Second, thoughtful pre-experimental stratification in RCTs is likely to be val-

uable, or failing that, subgroup analysis, because it can provide information that may 

be useful for generalization or extrapolation. For example, Kremer and Holla (2009) 

note that, in their trials, school attendance is surprisingly sensitive to small subsi-

dies, which they suggest is because there are a large number of students and parents 

who are on the (financial) margin between attending and not attending school; if 

this is indeed the mechanism for their results, a good variable for stratification 

would be distance from the relevant cutoff. We also need to know that this same 

mechanism works in any new target setting, as discussed at the end of Section 2.3. 

Third, we need to be explicit about causal structure, even if that means more 

model building and more—or different—assumptions than advocates of RCTs are 

often comfortable with. We need something, some regularity or invariance, and that 

something can rarely be recovered by simply generalizing across trials. To be clear, 

modeling causal structure does not commit us to the elaborate and often incredible 

assumptions that characterize some structural modeling in economics, but there is 

no escape from thinking about the way things work; the why as well as the what. 

Fourth, to use these techniques for reweighting and stratifying, we will need 

to know more than the results of the RCT itself, for example about differences in so-

cial, economic, and cultural structures and about the joint distributions of causal 

variables, knowledge that will often only be available through observational studies. 

We will also need external information, both theoretical and empirical, to settle on 

an informative characterization of the population enrolled in the RCT because how 

that population is described is commonly taken to be some indication of which other 

populations would yield similar results.  

Many medical and psychological journals are explicit about this. For instance, 

the rules for submission recommended by the International Committee of Medical 

Journal Editors, ICMJE (2015, 14) insist that article abstracts “Clearly describe the 

selection of observational or experimental participants (healthy individuals or pa-

tients, including controls), including eligibility and exclusion criteria and a descrip-
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tion of the source population.” An RCT is conducted on a specific trial sample, some-

how drawn from a population of specific individuals. The results obtained are fea-

tures of that sample, of those very individuals at that very time, not any other popu-

lation with any different individuals that might, for example, satisfy one of the infi-

nite set of descriptions that the trial sample satisfies. If following the ICMJE advice is 

to produce warrantable extrapolation—simple or adjusted—from a trial population 

to some other, the descriptors for the trial population must be correctly chosen. As 

we have argued, they must pick out populations where the same form of equation 

(4) holds and that have approximately the same mean (or one that we know how to 

adjust) for the net effect of the support factors in the two populations. 

This same issue is confronted already in study design. Apart from special 

cases, like post hoc evaluation for payment-for-results, we are not especially con-

cerned to learn about the very individuals enrolled in the trial. Most experiments 

are, and should be, conducted with an eye to what the results can help us learn 

about other populations. This cannot be done without substantial assumptions 

about what might and what might not be relevant to the production of the outcome 

studied. So both intelligent study design and responsible reporting of study results 

involve substantial background assumptions.  

Of course, this is true for all studies. But RCTs require special conditions if 

they are to be conducted at all and especially if they are to be conducted successful-

ly—for example, local agreements, compliant subjects, affordable administrators, 

multiple blinding, people competent to measure and record outcomes reliably, a set-

ting where random allocation is morally and politically acceptable, etc.—whereas 

observational data are often more readily and widely available. In the case of RCTs, 

there is danger that these kinds of considerations have too much effect. This is espe-

cially worrisome where the features that the trial sample should have are not justi-

fied, made explicit, or subjected to serious critical review.  

The need for observational knowledge is one of many reasons why it is coun-

ter-productive to insist that RCTs are the gold standard or that some categories of 

evidence should be prioritized over others; these strategies leave us helpless in us-

ing RCTs beyond their original context. The results of RCTs must be integrated with 
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other knowledge, including the practical wisdom of policymakers, if they are to be 

useable outside the context in which they were constructed.  

Contrary to much practice in medicine as well as in economics, conflicts be-

tween RCTs and observational results need to be explained, for example by refer-

ence to the different characteristics of the different populations studied in each, a 

process that will sometimes yield important evidence, including on the range of ap-

plicability of the RCT results themselves. While the validity of the RCT will some-

times provide an understanding of why the observational study found a different 

answer, there is no basis (or excuse) for the common practice of dismissing the ob-

servational study simply because it was not an RCT and therefore must be invalid. It 

is a basic tenet of scientific advance that, as collective knowledge advances, new 

findings must be able to explain and be integrated with previous results, even re-

sults that are now thought to be invalid; methodological prejudice is not an explana-

tion.  

 

2.6 Using RCTs to build and test theory 

RCT results, as with any well-established scientific claims, can be used in the famil-

iar hypothetico-deductive way to test theory.  

For example, one of the largest and most technically impressive of the devel-

opment RCTs is by Banerjee et al. (2015), which tests a ‘graduation’ program de-

signed to permanently lift extremely poor people from poverty by providing them 

with a gift of a productive asset (from guinea-pigs, (regular-) pigs, sheep, goats, or 

chickens depending on locale), training and support, and life-skills coaching, as well 

as support for consumption, saving, and health services. The idea is that this pack-

age of aid can help people break out of poverty traps in a way that would not be 

possible with one intervention at a time. Comparable versions of the program were 

tested in Ethiopia, Ghana, Honduras, India, Pakistan, and Peru and, excepting Hon-

duras (where the chickens died) find largely positive and persistent effects—with 

similar (standardized) effect sizes—for a range of outcomes (economic, mental and 

physical health, and female empowerment). One site apart, essentially everyone ac-

cepted their assignment. Replication of positive ATEs over such a wide range of 
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places certainly provides proof of concept for such a scheme. Yet Bauchet et al. 

(2015) fail to replicate the result in South India, where the control group got access 

to much the same benefits. (Heckman, et al. (2000) call this `substitution’ bias). Even 

so, the results are important because, although there is a longstanding interest in 

poverty traps, many economists have been skeptical of their existence or that they 

could be sprung by such aid-based policies. In this sense, the study is an important 

contribution to the theory of economic development; it tests a theoretical proposi-

tion and will (or should) change minds about it. 

Economists have been combining theory and randomized controlled trials in 

a variety of other ways since the early experiments. The trials help build and test 

theory and theory in turn can answer questions about new settings and populations 

that we cannot answer by simple extrapolation or generalization of the trial results. 

We will outline a few economics examples to give a sense of how the interweaving 

of theory and results can work. 

Orcutt and Orcutt (1968) laid out the inspiration for the income tax trials us-

ing a simple static theory of labor supply. According to this, people choose how to 

divide their time between work and leisure in an environment in which they receive 

a minimum G if they do not work, and where they receive an additional amount 

(1t) w for each hour they work, where w is the wage rate, and t is a tax rate. The 

trials assigned different combinations of G and t to different trial groups, so that the 

results traced out the labor supply function, allowing estimation of the parameters 

of preferences, which could then be used in a wide range of policy calculations, for 

example to raise revenue at minimum utility loss to workers.  

 Following these early trials, there has been a continuing tradition of using 

trial results, together with the baseline data collected for the trial, to fit structural 

models that are to be used more generally. (Early examples include Moffitt (1979) 

on labor supply and Wise (1985) on housing; a more recent example is Heckman et 

al. (2013) for the Perry pre-school program. Development economics examples in-

clude Attanasio et al. (2012), Attanasio et al. (2015), Todd and Wolpin (2006), Wol-

pin (2013), and Duflo et al. (2012).) These structural models sometimes require 
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formidable auxiliary assumptions on functional forms or the distributions of unob-

servables, but they have compensating advantages, including the ability to integrate 

theory and evidence, to make out-of-sample predictions, and to analyze welfare, and 

the use of RCT evidence allows the relaxation of at least some of the assumptions 

that are needed for identification. In this way, the structural models borrow credi-

bility from the RCTs and in return help set the RCT results within a coherent frame-

work. Without some such interpretation, the welfare implications of RCT results can 

be problematic; knowing how people in general (let alone just people in the trial 

population) respond to some policy is rarely enough to tell whether or not they are 

made better off, Harrison (2014a, b). Traditional welfare economics draws a link 

from preferences to behavior, a link that is respected in structural work but often 

lost in the ‘what works’ literature, and without which we have no basis for inferring 

welfare from behavior. What works is not equivalent to what should be. 

 Even simple theory can do much to interpret, to extend, and to use RCT re-

sults. In both the RAND Health Experiment and negative income tax experiments, an 

immediate issue concerned the difference between short and long-run responses; 

indeed, differences between immediate and ultimate effects occur in a wide range of 

RCTs. Both health and tax RCTs aimed to discover what would happen if consum-

ers/workers were permanently faced with higher or lower prices/wages, but the 

trials could only run for a limited period. A temporarily high tax rate on earnings is 

effectively a ‘fire sale’ on leisure, so that the experiment provided an opportunity to 

take a vacation and make up the earnings later, an incentive that would be absent in 

a permanent scheme. How do we get from the short-run responses that come from 

the trial to the long-run responses that we want to know? Metcalf (1973) and Ash-

enfelter (1978) provided answers for the income tax experiments, as did Arrow 

(1975) for the Rand Health Experiment.  

Arrow’s analysis illustrates how to use both structure and observational data in 

combination with results from one setting to predict results in another. He models 

the health experiment as a two-period model in which the price of medical care is 

lowered in the first period only, and shows how to derive what we want, which is 

the response in the first period if prices were lowered by the same proportion in 
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both periods. The magnitude that we want is S, the compensated price derivative of 

medical care in period 1 in the face of identical increases in 𝑝1 and 𝑝2 in both peri-

ods 1 and 2. This is equal to 𝑠11 + 𝑠12, the sum of the derivatives of period 1’s de-

mand with respect to the two prices. The trial gives only 𝑠11. But if we have post-

trial data on medical services for both treatments and controls, we can infer 𝑠21, the 

effect of the experimental price manipulation on post-experimental care. Choice 

theory, in the form of Slutsky symmetry says that 𝑠12 = 𝑠21 and so allows Arrow to 

infer 𝑠12 and thus S. He contrasts this with Metcalf’s alternative solution, which 

makes different assumptions—that two period preferences are intertemporally ad-

ditive, in which case the long-run elasticity can be obtained from knowledge of the 

income elasticity of post-experimental medical care, which would have to come 

from an observational analysis.  

These two alternative approaches show how we can choose, based on our will-

ingness to make assumptions and on the data that we have, a suitable combination 

of (elementary and transparent) theoretical assumptions and observational data in 

order to adapt and use trial results. Such analysis can also help design the original 

trial by clarifying what we need to know in order to use the results of a temporary 

treatment to estimate the permanent effects that we need. Ashenfelter provides a 

third solution, noting that the two-period model is formally identical to a two-person 

model, so that we can use information on two-person labor supply to tell us about 

the dynamics. In the Rand case, internal evidence suggests that short-run and long-

run responses were not in fact very different, but Arrow’s analysis provides an illus-

tration of how theory can form a bridge from what we get to what we want. 

 Theory can often allow us to reclassify new or unknown situations as analo-

gous to situations where we already have background knowledge. In economics, one 

frequently useful way of doing this is when the new policy can be recast as equiva-

lent to a change in the prices and incomes faced by respondents. The consequences 

of a new policy may be easier to predict if we can reduce it to equivalent changes in 

income and prices, whose effects are often well understood and well-studied. Todd 

and Wolpin (2008) and Wolpin (2013) make this point and provide examples. In the 

labor supply case, an increase in the tax rate has the same effect as a decrease in the 
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wage rate, so that we can rely on previous literature to predict what will happen 

when tax rates are changed. In the case of Mexico’s PROGRESA conditional cash 

transfer program, Todd and Wolpin note that the subsidies paid to parents if their 

children go to school can be thought of as a combination of reduction in children’s 

wages and an increase in parents’ income, which allows them to predict the results 

of the conditional cash experiment with limited additional assumptions. If this 

works, as it partially does in their analysis, the trial helps consolidate previous 

knowledge and contributes to an evolving body of theory and empirical, including 

trial, evidence.  

The program of thinking about policy changes as equivalent to price and income 

changes has a long history in economics; much of rational choice theory can be so 

interpreted (see Deaton and Muellbauer (1980) for many examples). When this 

conversion is credible, and when a trial on some apparently unrelated topic can be 

modeled as equivalent to a change in prices and incomes, and when we can assume 

that people in different settings respond similarly to changes in prices and incomes, 

we have a readymade framework for incorporating the trial results into previous 

knowledge, as well as for extending the trial results and using them elsewhere. Of 

course, all depends on the validity and credibility of the theory; people may not in 

fact treat a tax increase as a decrease in the price of leisure, and behavioral econom-

ics is full of examples where apparently equivalent stimuli generate non-equivalent 

outcomes. The embrace of behavioral economics by many of the current generation 

of researchers may account for their limited willingness to use conventional choice 

theory in this way. Unfortunately, behavioral economics does not yet offer a re-

placement for the general framework of choice theory that is so useful in this regard. 

 Theory can also help with the problems we raised in the summary of Section 

1., that people who are randomized into the treatment group may refuse treatment. 

When theory is good enough to indicate how to represent the gain and losses that 

trial participants are likely to base compliance on, then analysis can sometimes help 

us adjust the trial estimates back to what we would like to know.   

 

2.6 Scaling up: using the average for populations 
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Many RCTs are small-scale and local, for example in a few schools, clinics, or farms 

in a particular geographic, cultural, socio-economic setting. If successful according 

to a cost-effectiveness criterion, for example, it is a candidate for scaling-up, apply-

ing the same intervention for a much larger area, often a whole country, or some-

times even beyond, as when some treatment is considered for all relevant World 

Bank projects. Predicting the same results at scale as in the trial is a case of simple 

extrapolation. We discuss it separately, however, because it can raise special prob-

lems. The fact that the intervention might work differently at scale has long been 

noted in the economics literature, e.g. Garfinkel and Manski (1992), Heckman 

(1992), and Moffitt (1992), and is recognized in the recent review by Banerjee and 

Duflo (2009).  

In medicine, where biological interactions between people are less common 

than are social interactions in social science, they can still be important. Infectious 

diseases are a well-known example, where immunization programs affect the dy-

namics of disease transmission through herd immunity (see Fine and Clarkson 

(1986) and Manski (2013, 52)). The social and economic setting also affects how 

drugs are actually used and the same issues can arise; the distinction between effi-

cacy and effectiveness in clinical trials is in part recognition of the fact. We want 

here to emphasize the pervasiveness of such effects as well as to note again that this 

should not be taken as an argument against using RCTs but only against the idea 

that effects at scale are likely to be the same as in the trial.  

 An example of what are often called ‘general equilibrium effects’ comes from 

agriculture. Suppose an RCT demonstrates that in the study population a new way of 

using fertilizer had a substantial positive effect on, say, cocoa yields, so that farmers 

who used the new methods saw increases in production and in incomes compared 

to those in the control group. If the procedure is scaled up to the whole country, or 

to all cocoa farmers worldwide, the price will drop, and if the demand for cocoa is 

price inelastic—as is usually thought to be the case, at least in the short run—cocoa 

farmers’ incomes will fall. Indeed, the conventional wisdom for many crops is that 

farmers do best when the harvest is small, not large. In this case, the scaled-up effect 

is opposite in sign to the trial effect. The problem is not with the trial results, which 
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can be usefully incorporated into a more comprehensive market model that incor-

porates the responses estimated by the trial. The problem is only if we assume that 

the aggregate looks like the individual. That other ingredients of the aggregate mod-

el must come from observational studies should not be a criticism, even for those 

who favor RCTs; it is simply the price of doing serious analysis.  

 There are many possible interventions that alter supply or demand whose 

effect, in aggregate, will change a price or a wage that is held constant in the original 

RCT. Indeed, any trial that changes the quantities that people demand or supply—

including labor supply—must, as a matter of logic, affect other people because the 

new demand has to be met, or the new supply accommodated. In the language of the 

Rubin causal model, this is a failure of SUTVA, the stable unit treatment value as-

sumption. Of course, each unit may be too small to have any perceptible effect by 

itself, so SUTVA holds to a high degree of approximation in the trial, but once we ag-

gregate to the population, the effects will often be large enough to modify or reverse 

the result from the trial. Examples include that education will change the supplies of 

skilled versus unskilled labor, with implications for relative wage rates. Conditional 

cash transfers increase the demand for (and perhaps supply of) schools and clinics, 

which will change prices or waiting lines, or both. There are interactions between 

people that will operate only at scale. Giving one child a voucher to go to private 

school might improve her future, but doing so for everyone can decrease the quality 

of education for those children who are left in the public schools (see the con-

trasting studies of Angrist et al. (2002) and Hsieh and Urquiola (2006)). Educational 

or training programs may benefit those who are treated but harm those left behind; 

Crépon et al. (2014) recognize the issue and show how to adapt an RCT to deal with 

it. 

 Much of economics is concerned with analyzing equilibria, most obviously in 

the equilibrium of supply and demand. Multiple causal mechanisms are reconciled 

by the adjustment of some variable, such as a price. RCTs will often be useful in ana-

lyzing one or other mechanism, in which the equilibrating variable is held constant, 

and the results of those RCTs can be used to analyze and predict the equilibrium ef-

fects of policies. But the results of implementing policies will often look very differ-
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ent from the trial results, as in the cocoa example above. If, as is often argued, eco-

nomics is about the analysis of equilibrium, simple extrapolation of the results of an 

RCT will rarely be useful. Note that we are making no claim about the success of 

economic models, either in analysis or prediction. But the analysis of equilibrium is 

a matter of logical consistency without which we are left with contradictory propo-

sitions. 

 

2.7 Drilling down: using the average for individuals 

Just as there are issues with scaling-up, it is not obvious how to use the results from 

RCTs at the level of individual units, even individual units that were included in the 

trial. A well-conducted RCT delivers an ATE for the trial population but, in general, 

that average does not apply to everyone. It is not true, for example, as argued in the 

American Medical Association’s Users’ guide to the medical literature that “if the pa-

tient would have been enrolled in the study had she been there—that is she meets 

all of the inclusion criteria and doesn’t violate any of the exclusion criteria—there is 

little question that the results are applicable” (see Guyatt et al. (1994, 60)). Even 

more misleading are the often-heard statements that an RCT with an average treat-

ment effect insignificantly different from zero has shown that the treatment works 

for no one.  

These issues are familiar to physicians practicing evidence-based medicine 

whose guidelines require “integrating individual clinical expertise with the best 

available external clinical evidence from systematic research” Sackett et al. (1996, 

71)). Exactly what this means is unclear; physicians know much more about their 

patients than is allowed for in the ATE from the RCT (though, once again, stratifica-

tion in the trial is likely to be helpful) and they often have intuitive expertise from 

long practice that can help them identify features in a particular patient that may 

influence the effectiveness of a given treatment for that patient (see Horwitz 

(1996)). But there is an odd balance struck here. These judgments are deemed ad-

missible in discussion with the individual patient, but they don’t add up to evidence 

to be made publicly available, with the usual cautions about credibility, by the 

standards adopted by most EBM sites.  It is also true that physicians can have preju-
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dices and `knowledge’ that might be anything but. Clearly, there are situations 

where forcing practitioners to follow the average will do better, even for individual 

patients, and others where the opposite is true (see Kahneman and Klein (2009)). 

Horwitz et al. (2017) propose that medical practice should move from evidence-

based medicine to what they call medicine-based evidence in which all individual 

case histories are assembled and matched to provide a basis for deviation from the 

means of RCTs. 

 Whether or not averages are useful to individuals raises the same issue 

throughout social science research. Imagine two schools, St Joseph’s and St. Mary’s, 

both of which were included in an RCT of a classroom innovation.  The innovation is 

successful on average, but should the schools adopt it? Should St Mary’s be influ-

enced by a previous attempt in St Joseph’s that was judged a failure? Many would 

dismiss this experience as anecdotal and ask how St Joseph’s could have known that 

it was a failure without benefit of ‘rigorous’ evidence. Yet if St Mary’s is like St Jo-

seph’s, with a similar mix of pupils, a similar curriculum, and similar academic 

standing, might not St Joseph’s experience be more relevant to what might happen 

at St Mary’s than is the positive average from the RCT? And might it not be a good 

idea for the teachers and governors of St Mary’s to go to St Joseph’s and find out 

what happened and why? They may be able to observe the mechanism of the failure, 

if such it was, and figure out whether the same problems would apply for them, or 

whether they might be able to adapt the innovation to make it work for them, per-

haps even more successfully than the positive average in the trial.  

Once again, these questions are unlikely to be easily answered in practice; 

but, as with exportability, there is no serious alternative to trying. Assuming that the 

average works for you will often be wrong, and it will at least sometimes be possible 

to do better; for instance, by judicious use of theory, reasoning by analogy, process 

tracing, identification of mechanisms, sub-group analysis, or recognizing various 

symptoms that a causal pathway is possible, as in Bradford-Hill (1965) (see also 

Cartwright (2015), Reiss (2017), and Humphreys and Jacobs (2017). As in the medi-

cal case, the advice to individual schools often lacks specificity. For example, the U.S. 

Institute of Education Sciences has provided a “user-friendly” guide to practices 
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supported by rigorous evidence (U.S. Department of Education (2003)). The advice, 

which is similar to recommendations throughout evidence-based social and health 

policy literature, is that the intervention be demonstrated effective through well-

designed RCTs in more than one site and that “the trials should demonstrate the in-

tervention’s effectiveness in school settings similar to yours” (2003, 17). No opera-

tional definition of “similar” is provided. 

 

Conclusions  

It is useful to respond to two challenges that are often put to us, one from medicine 

and one from social science. The medical challenge is, “If you are being prescribed a 

new drug, wouldn’t you want it to have been through an RCT?” The second (related) 

challenge is, “OK, you have highlighted some of the problems with RCTs, but other 

methods have all of those problems, plus problems of their own.” We believe that we 

have answered both of these in the paper but that it is helpful to recapitulate.  

The medical challenge is about you, a specific person, so that one answer 

would be that you may be different from the average, and you are entitled to and 

ought to ask about theory and evidence about whether it will work for you. This 

would be in the form of a conversation between you and your physician, who knows 

a lot about you. You would want to know how this class of drug is supposed to work 

and whether that mechanism is likely to work for you. Is there any evidence from 

other patients, especially patients like you, with your condition and in your circum-

stances, or are there suggestions from theory? What scientific work has been done 

to identify what support factors matter for success with this kind of drug? If the only 

information available is from the pharmaceutical company whose priors and finan-

cial interests might have somehow influenced the results, an RCT might seem like a 

good idea. But even then, and although knowledge of the mean effect among some 

group is certainly of value, you might give little weight to an RCT whose participants 

are selected in the way they were selected in the trial, or where there is little infor-

mation about whether the outcomes are relevant to you. Recall that many new drugs 

are prescribed ‘off-label’, for a purpose for which they were not tested, and beyond 

that, that many new drugs are administered in the absence of an RCT because you 
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are actually being enrolled in one. For patients whose last chance is to participate in 

a trial of some new drug, this is exactly the sort of conversation you should have 

with your physician (followed by one asking her to reveal whether you are in the 

active arm, so that you can switch if not), and such conversations need to take place 

for all prescriptions that are new to you. In these conversations, the results of an 

RCT may have marginal value. If your physician tells you that she endorses evidence-

based medicine, and that the drug will work for you because an RCT has shown that 

‘it works’, it is time to find a physician who knows that you and the average are not 

the same. 

The second challenge claims that other methods are always dominated by an 

RCT. That, as one of our referees challenged us, echoing Churchill, “that RCTs are 

horrible, except when compared to the alternatives.” We believe that this challenge 

is not well-formulated. Dominated for answering what question, for what purposes? 

The chief advantage of the RCT is that it can, if well-conducted, give an unbiased es-

timate of an ATE in a study (trial) sample and thus provide evidence that the treat-

ment caused the outcome in some individuals in that sample. Note that ‘well-

conducted”’ rules out all of the things that almost always occur in practice, including 

attrition, intentional lack of blinding or unintentional unblinding, and other post-

randomization confounding and selection biases (see Hernán et al. (2013)). If an 

unbiased estimate of the ATE is what you want and there’s little background 

knowledge available and the price is right, then an RCT may be the best choice.  As 

to other questions, the RCT result can be part—but usually only a small part—of the 

defense of (a) a general claim, (b) a claim that the treatment will cause that outcome 

for some other individuals, (c) a claim about what the ATE will be in some other 

population, or even (d) a claim about something very different that the RCT results 

tests. But they do little for these enterprises on their own. What is the best overall 

package of research work for tackling these questions—most cost-effective and 

most likely to produce correct results—depends on what we know and what differ-

ent kinds of research will cost. 

There are examples where an RCT does better than an observational study, 

and these seem to be the cases that come to mind for defenders of RCTs. For exam-
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ple, regressions of whether people who get Medicaid do better or worse than people 

with private insurance are vitiated by gross differences in the other characteristics 

of the two populations. But it is a long step from that to saying that an RCT can solve 

the problem, let alone that it is the only way to solve the problem. It will not only be 

expensive per subject, but it can only enroll a selected and almost certainly unrepre-

sentative study sample, it can be run only temporarily, and the recruitment to the 

experiment will necessarily be different from recruitment in a scheme that is per-

manent and open to the full qualified population. The subjects in the trial are likely 

to find out whether or not they are in the treatment arm, either because the treat-

ment itself prevents blinding, or because side-effects or differences in protocol re-

veal their status; subjects may differentially leave the trial given this information. 

None of this removes the blemishes of the observational study, but there are many 

methods of mitigating its difficulties, so that, in the end, an observational study with 

credible corrections and a more relevant and much larger study sample—today of-

ten the complete population of interest through administrative records, where 

blinding and selection issues are absent—may provide a better estimate.  

The medical community seems slow and reluctant to embrace other reliable 

methods of causal inference. The Academy of Medical Sciences (2017, 4) in its re-

view of sources of evidence on the efficacy and effectiveness of medicine agrees with 

us that “The type of evidence, and the methods needed to analyse that evidence, will 

depend on the research question being asked.”  Still, it does not mention methods 

widely used in social and economic sciences such as instrumental variables, econo-

metric modelling, deduction from theory, causal Bayesian nets, process tracing, or 

qualitative comparative analysis. Each of these has its strengths and weaknesses, 

each allows causal inference though not all allow an estimate of effect size, and 

each—as with every method—requires casual background knowledge as input in 

order to draw causal conclusions. But in the face of widespread unbinding and the 

increasing cost of RCTs, it is wasteful not to make use of these. Everything has to be 

judged on a case -by-case basis.  There is no valid argument for a lexicographic pref-

erence for RCTs.  
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There is also an important line of enquiry that goes, not only beyond RCTs, 

but beyond the ‘method of differences’ that is common to RCTs, regressions, or any 

form of controlled or uncontrolled comparison. The hypothetico-deductive method 

confronts theory-based deductions with the data—either observational or experi-

mental. As noted above, economists routinely use theory to tease out a new implica-

tion that can be taken to the data, and there are also good examples in medicine. One 

is Bleyer and Welch (2012)’s demonstration of the limited effectiveness of mam-

mography screening; the data do not show the compensating changes in early and 

late stage breast-cancer incidence that would accompany the large-scale introduc-

tion of successful screening. This is a topic where RCTs have been indecisive and 

controversial, if only because they are 2030 years old and therefore outdated rela-

tive to the current rapidly-changing environment (see Marmot et al. (2013)). Such 

uses of the hypothetico-deductive method are different from what seems to be usu-

ally meant by an ‘observational study,’ in which groups are compared with ques-

tionable controls for confounders, and where randomization, in spite of its inade-

quacies, is arguably better. 

RCTs are the ultimate in non-parametric estimation of average treatment ef-

fects in trial samples because they make so few assumptions about heterogeneity, 

causal structure, choice of variables, and functional form. RCTs are often convenient 

ways to introduce experimenter-controlled variance—if you want to see what hap-

pens, then kick it and see, twist the lion’s tail—but note that many experiments, in-

cluding many of the most important (and Nobel Prize winning) experiments in eco-

nomics, do not and did not use randomization (see Harrison (2013), Svorencik 

(2015)). But the credibility of the results, even internally, can be undermined by un-

balanced covariates and by excessive heterogeneity in responses, especially when 

the distribution of effects is asymmetric, where inference on means can be hazard-

ous. Ironically, the price of the credibility in RCTs is that we can only recover the 

mean of the distribution of treatment effects, and that only for the trial sample. Yet, 

in the presence of outliers in treatment effects or in covariates, reliable inference on 

means is difficult. And randomization in and of itself does nothing unless the details 
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are right; purposive selection into the experimental population, like purposive se-

lection into and out of assignment, undermines inference in just the same way as 

does selection in observational studies. Lack of blinding, whether of participants, 

investigators, data collectors, or analysts, undermines inference, akin to a failure of 

exclusion restrictions in instrumental variable analysis.  

The lack of structure can be seriously disabling when we try to use RCT re-

sults outside of a few contexts, such as program evaluation, hypothesis testing, or 

establishing proof of concept. Beyond that, the results cannot be used to help make 

predictions beyond the trial sample without more structure, without more prior in-

formation, and without having some idea of what makes treatment effects vary from 

place to place or time to time. There is no option but to commit to some causal 

structure if we are to know how to use RCT evidence out of the original context. 

Simple generalization and simple extrapolation do not cut the mustard. This is true 

of any study, experimental or observational. But observational studies are familiar 

with, and routinely work with, the sort of assumptions that RCTs claim to (but do 

not) avoid, so that if the aim is to use empirical evidence, any credibility advantage 

that RCTs have in estimation is no longer operative. And because RCTs tell us so lit-

tle about why results happen, they have a disadvantage over studies that use a wider 

range of prior information and data to help nail down mechanisms.  

Yet once that commitment has been made, RCT evidence can be extremely 

useful, pinning down part of a structure, helping to build stronger understanding 

and knowledge, and helping to assess welfare consequences. As our examples show, 

this can often be done without committing to the full complexity of what are often 

thought of as structural models. Yet without the structure that allows us to place 

RCT results in context, or to understand the mechanisms behind those results, not 

only can we not transport whether `it works’ elsewhere, but we cannot do one of the 

standard tasks of economics, which is to say whether the intervention is actually 

welfare improving. Without knowing why things happen and why people do things, 

we run the risk of worthless casual (`fairy story’) causal theorizing and have given 

up on one of the central tasks of economics and other social sciences.  
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We must back away from the refusal to theorize, from the exultation in our 

ability to handle unlimited heterogeneity, and actually SAY something. Perhaps par-

adoxically, unless we are prepared to make assumptions, and to say what we know, 

making statements that will be incredible to some, the credibility of the RCT does us 

very little good.  
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Appendix: Monte Carlo experiment for an RCT with outliers 

In this illustrative example, there is a parent population each member of which has his or 

her own treatment effect; these are continuously distributed with a shifted lognormal dis-

tribution with zero mean so that the population ATE is zero. The individual treatment ef-

fects  are distributed so that e , for standardized lognormal distribution 

 In the absence of treatment, everyone in the sample records zero, so the sample average 

treatment effect in any one trial is simply the mean outcome among the n treatments. For 

values of n equal to 25, 50, 100, 200, and 500 we draw from the parent population 100 trial 

samples each of size 2n; with five values of n, this gives us 500 trial samples in all; because 

http://personal.lse.ac.uk/YoungA/ChannellingFisher.pdf
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of sampling the true ATE’s in each trial sample will not be zero. For each of these 500 sam-

ples, we randomize into n controls and n treatments, estimate the ATE and its estimated t–

value (using the standard two-sample t–value, or equivalently, by running a regression with 

robust t–values), and then repeat 1,000 times, so we have 1,000 ATE estimates and t–values 

for each of the 500 trial samples. These allow us to assess the distribution of ATE estimates 

and their nominal t–values for each trial.  

The results are shown in Table A1. Each row corresponds to a sample size. In each 

row, we show the results of 100,000 individual trials, composed of 1,000 replications on 

each of the 100 trial (experimental) samples. The columns are averaged over all 100,000 

trials.  

 

 

Table A1: RCTs with skewed treatment effects 

Sample size Mean of ATE 

estimates 

Mean of nominal t–

values 

Fraction null re-

jected (percent) 

25 

50 

0.0268 

0.0266 

–0.4274 

–0.2952 

13.54 

11.20 

100 –0.0018 –0.2600 8.71 

200 0.0184 –0.1748 7.09 

500 –0.0024 –0.1362 6.06 

Note: 1,000 randomizations on each of 100 draws of the trial sample randomly drawn from 
a lognormal distribution of treatment effects shifted to have a zero mean. 

The last column shows the fractions of times the null that is true in the population is 

rejected in the trial samples and is our key result. When there are only 50 treatments and 

50 controls (row 2), the (true) null is rejected 11.2 percent of the time, instead of the 5 per-

cent that we would like and expect if we were unaware of the problem. When there are 500 

units in each arm, the rejection rate is 6.06 percent, much closer to the nominal 5 percent.  
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Figure A1: Estimates of an ATE with an outlier in the trial sample 

Figure A1 illustrates the estimated ATEs from an extreme trial sample from the simulations 

in the second row with 100 observations in total; the histogram shows the 1,000 estimates 

of the ATE for that trial sample. This trial sample has a single large outlying treatment effect 

of 48.3; the mean (s.d.) of the other 99 observations is –0.51 (2.1); when the outlier is in the 

treatment group, we get the observations around right-hand mode, when it is in the control 

group, we get the left-hand mode.  

 

 

 

 

 

 


