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ARTICLE INFO ABSTRACT

To predict the properties of nanocomposites, computational models have demonstrated that the interphase
behavior can be expressed using the matrix properties with a modified (shifted) frequency. The amount of the
shift necessary for a given sample data set can be determined by achieving the best fit between the predicted
curve from a computation model and the experimental data through trial-and-error. However, with the com-
plexity of experimental data and expensive computational costs, a manual process to solve this inverse problem
is impractical to handle many experimental data sets. This difficulty hinders investigation of the underlying
principles behind nanocomposite interphase. In this work, we present an adaptive optimization approach that
accelerates the search for interphase properties in polymer nanocomposite data sets by solving the inverse
problem using global optimization. The objective is to minimize the difference between the predicted bulk
property of a nanocomposite with that from the experiment data. A Gaussian Process (GP) model is built as a
surrogate of the objective function with quantification of prediction uncertainty. An adaptive sampling strategy
is applied to effectively navigate the complex search space by iteratively selecting the next sampling point based
on an expected improvement function. The surrogate model and the optimal solution evolve until the desired
objective is achieved. The approach is tested on both the simulations of dielectric and viscoelastic properties in
nanocomposites. Our work provides insight into identifying the interphase properties for polymer nano-
composites using adaptive optimization and demonstrates the potential of data-driven approach for achieving a
deeper understanding of the interphase properties and its origins.
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1. Introduction

Polymer nanocomposites have attracted great interest in recent
years because of their potential as tailored materials with enhanced
properties [1-3]. Recent experiments have shown that polymer nano-
composites are able to achieve significant improvement in dielectrical,
thermal, mechanical and other physical properties compared with their
parent polymer systems [4-9]. More importantly, these outstanding
properties can be achieved at low filler loadings such that the polymer
system does not sacrifice the advantages of easy processability [10,11].

One of the reasons for the enhancement in properties is the large
interphase region that results from both the strong chemical and geo-
metric interactions between the particle surface and the polymer

segments near the particle and the high surface-to-volume ratio of the
nanoinclusions. For example, if a composite sample contains 5 wt% of
40 nm particles perfectly dispersed, the resulting total interfacial sur-
face area is about 3.5m?/cm?. As illustrated in Fig. 1, due to the inter-
acting cooperative nature of the macromolecular network, the inter-
phase area extends beyond the layer of matrix chains directly bound to
the filler surface resulting in the significant extension of the interphase
domain into the matrix [12].

In order to understand the behavior of the interphase and make
accurate predictions of nanocomposite properties, efforts have been
made to measure the interphase thickness and its mechanical or di-
electric response [13-16]. Although direct measurements of the inter-
phase are limited because of challenges in experimental visualization at
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the nanoscale, recent studies focus on measuring the local elastic and
viscoelastic properties in different polymer microdomains by corre-
lating thin film and nanocomposite data, providing adequate evidence
that the local polymer properties are significantly altered in the vicinity
of polymer surface [17-22]. The actual thickness of the interphase may
vary depending on specific polymer-filler system and has a wide range
values from several nanometers to hundreds of nanometers. In parti-
cular, an atomic force microscopy (AFM) -based method that directly
measures the mechanical properties of polymers adjacent to a substrate
with nanometer resolution shows a gradient of mechanical properties
extending approximately 100 nm from confining surfaces [20,23].

To predict properties of nanocomposites, continuum mechanics
methods are often employed in which three phases must be considered:
polymer, particle and interphase. Micromechanical models [24], such
as Halpin-Tsai, Mori-Tanaka and the self-consistent scheme have been
applied to predict the thermomechanical behavior of nanocomposites
[25-28]. A variety of analytical models have been developed to analyze
the dielectric behaviors including the Bruggeman model [29], Lichte-
necker model [30] and Todd-Shi model [31]. Given experimental lim-
itations to measure interphase properties directly, one approach to
determine the interphase properties is inversely through tuning the
parameters in finite element analysis or micro-scale model constitutive
equations using the bulk composite properties from experiments
[31-34]. Importantly, in order to capture the dispersion state or the
morphology information of the fillers, multiscale simulations are often
necessary. For example, multiscale approaches have been applied to
study the viscoelastic properties in polymer nanocomposites [35-37].

FEA simulations can accommodate complicated non-homogeneous
material systems with explicit configuration of all relevant material
phases. This makes FEA a good option for to analyze behavior of na-
nocomposites and include both important nanofiller dispersion as well
as interphase properties. We have developed finite element models for
analyzing the thermal and mechanical [32,38-40] and dielectric be-
havior [33,41] of polymer nanocomposites and investigated the impact
of the interphase on the corresponding properties. We have shown that
in some cases, the interphase properties can be described by shifting
factors based on the pure matrix properties, which can be well re-
presented by the Prony Series as a parametric expression of multiple
relaxation times and strengths [38,41]. Given experimental data for
both the pure matrix and bulk nanocomposites properties (either di-
electric or thermomechanical) the necessary interphase properties can
be determined from a trial-and-error based iterative tuning procedure
by matching simulated results from FEA with experimental data.
However, there are several disadvantages for this trial-and-error based
manual fitting. First, this process can be very time-consuming given the
complexity of experimental data and computational cost of the FEA (a
single FEA model for one sample with ~10k elements requires 30 min
to run on typical server). Since many manual iterations are often
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Fig. 1. Interphase configuration. (a) Schematic of the
interphase regime in a nanocomposite sample. (b)

Schematic showing the extended interphase struc-
ture. Yellow chains directly anchored to or chemi-
cally interacting with nanofiller. Blue chains im-
1 pacted by filler indirectly through interaction with
yellow chains. Cooperatively interacting chains pro-
pagate interphase zone to persist to the order of
100 nm from the particle surface. Note: figures not to
scale.
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required, where the optimal shifting factors are guessed based on the
previous outputs, this tedious manual tuning process prohibits efficient
investigation of the correlation between shifting factors and material
constituent characteristics.

In this work, we present a combined FEA and optimization approach
to accelerate the search of optimal interphase properties given experi-
mental data of bulk property for the composite. Our objective is to find
the optimal interphase properties that minimize the difference between
simulations and experiments, and to do so with an automated proce-
dure. We adopt an adaptive global optimization approach that in-
corporates Gaussian Processing (GP) modeling [42,43] and sequential
sampling strategy [44] to efficiently find the global optimal solution.
Our proposed method can accurately find the optimal shifting factors
given experimental data in tens of iterations, which significantly eases
the computation costs from simulations. We demonstrate our method
by finding both dielectric and mechanical properties of the interphase
based on composite property data. This method is an efficient and re-
liable tool to determine interphase properties and can facilitate future
work of uncovering the relationship between interphase properties and
material constituents.

2. Methodology

Our goal is an optimization of interphase properties for a single
sample, for which we have a) constituent properties, b) composite
properties, ¢) microstructure information. We seek to determine the
interphase properties that will yield the composite properties (b) from
(a) and (c). We assume the interphase properties can be represented by
shift factors with respect to matrix properties (defined in more detail
below). Thus, we seek to find the shift factors that will optimally match
the composite data via an automated procedure applying adaptive op-
timization. Based on experience and literature data we begin with
reasonable bounds for the shift factor values, and the space defined by
the n-dimensional factors (n = 5 for dielectric case [41], n = 2 for
mechanical case [36]) varying in these bounds defines the search space
for the adaptive optimizer. The key components of the adaptive opti-
mization method are summarized in Fig. 2: (1) The empirical bounds of
shift factors are used to set the range to sample initial training sets of
shift factors from design of experiments (DOE) using Optimal Latin
hypercube (OLHC). For each set of shifting factors, the FEA model is run
and outputs the simulated result. Then the objective function is for-
mulated as the difference between the experimental data and the si-
mulation using mean square error (MSE); (2) A surrogate model, in our
case, a Gaussian Process (GP) model, uses the training data to learn the
relationship between the objective (Difference F) and features (shifting
factors), with uncertainties.; (3) adaptive optimization (selector) pro-
vides the most promising candidate points for the new simulation and
augments the initial shift factor set from DOE. In our study, new
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Fig. 2. Our automated adaptive optimization strategy for searching the interphase properties: (1) FEA is run on each point in the initial shift factor set from DOE and
then processed to formulated our objective function by calculating the difference between simulated results and experiments using MSE. (2) A GP model is applied to
construct the surrogates for predicting the value of objective function (Difference F) within the design space. The purple points are initial sampling points from DOE
and the yellow points are sequentially generated by EI in (3). (3) EI chooses the best candidate points for additional simulation. The new candidate points augment
the initial training shift factor set from DOE to further improve the surrogate model and prediction accuracy.

candidate points are selected based on the feedback from the surrogate
model at a previous step by calculating the Expected Improvement (EI).
Step (2) and (3) is usually identified as an adaptive optimizer, which
augments the initial training shift factor set and drives the subsequent
iterative improvement of the surrogate model and prediction accuracy.

2.1. Interphase FE model

Our method is developed and tested on two cases for polymer na-
nocomposite response data: viscoelastic simulations and dielectric si-
mulations. For both cases, we have developed finite element models to
simulate the composite properties given the microstructure from
Scanning Electron Microscope (SEM) or Transmission electron micro-
scopy (TEM) images [33,38]. The schematic of the FEA model for di-
electric studies and viscoelastic simulations is similar except different
software is used to run the simulations (COMSOL for dielectric and
ABAQUS for viscoelastic simulations). The FEA configuration is shown
in Fig. 3. The microstructure dispersion information is directly obtained
from TEM micrograph images (Fig. 3a). Then a binary image showing
filler and matrix phases is generated by application of a previously
developed Niblack analysis algorithm [45]. The binary image is then
characterized to identify the geometric descriptors and reconstruct the
equivalent 3D microstructure and assign each point to a material

constituent in the FEA model (filler, interphase, matrix) (Fig. 3c).

The geometric information of the filler and matrix can be directly
obtained from the original image, while the interphase regime between
the filler and particle is assumed to be represented by an extended layer
around each particle. Thickness of the interphase is reasonably assumed
to be 50 nm in our study based on previous studies on filler-filler spa-
cing and experiment measurements [20,46]. The FEA model is then run
in the respective software to obtain the frequency-dependent viscoe-
lastic or dielectric response.

These interphase FEA models have been used with a manual inverse
approach to determine interphase properties [36,38,41]. In these stu-
dies, the shift factors to relate interphase properties to matrix properties
are defined differently for each property case. In viscoelastic simula-
tions, a broadening factor B and frequency-shifting factor S are applied
to describe the interphase behavior based on the matrix property. B
accounts for the broadening effect of the loss peak while S accounts for
the horizontal shift of relaxation times in the frequency domain
(Fig. 4a). To describe the dielectric interphase, due to the multiple re-
laxations observed in the pure matrix, the alpha and beta relaxations
are modeled separately and a five-dimensional shifting factor set is
applied in the interphase model. The threshold value of the relaxation
time is determined based on experimental data (7o = 0.01 in our case) so
that the corresponding threshold frequency separates the relaxation

l

properties

Frequency/HZ
(@

Fig. 3. Configuration of FEA model in COMSOL (dielectric simulation) and ABAQUS (viscoelastic simulation). a) Sample TEM image, b) binary image of matrix and
filler phases, c) reconstructed microstructure, d) frequency dependent dielectric properties or viscoelastic response predicted from simulation.
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Fig. 4. Relation of material properties between the interphase and pure matrix represented by shifting factors in frequency space for (a) viscoelastic interphase
properties with S = 2, B = 2 (b) dielectric interphase properties with s, = 2, M, = 1.5, §g = 2, M3 = 1.5, C = 0.5.

peak into low (a relxation) and high frequency regions (S relxation).
For each relaxation (alpha or beta relaxation), two shifting factors (M,
and S, for alpha relaxation; Mz and S; for beta relaxation) are applied to
account for the change of intensity (M, and M;) and the shift of re-
laxation times (S, and Sg) for respective relaxations. An additional
constant, C, describes the intensity shift of ¢’ (Fig. 4b).

2.2. Optimization objective

The objective of this work is the development of a rigorous auto-
mated method to predict the optimal interphase shifting factor set
which enables a simulation result to best fit with the experimental data,
thus determining the interphase properties is an inverse problem. There
are a number of choices of mathematical measures that quantify the
discrepancy between simulation and experimental results. These mea-
sures can be divided into three categories: magnitude-phase-compre-
hensive metrics, single-value metrics, and analysis of variance metrics.
We tested the performance of different metrics on characterizing the
difference between simulation and experimental results and found that
the mean square error (MSE) is the best descriptor for our problem in
terms of the final prediction accuracy. The MSE of the predictor in our
study can be expressed as,

m

Z (ci—e)?

i=1

MSE:i
m

(€Y

where ¢; and e; represent each simulated data point in frequency and
experimental data point in frequency respectively.

In order to search for the optimal shifting factors, a proper target
function needs to be defined. Ideally, the optimal shift factors should
lead to well-matched data curves between FEA and experimental re-
sults. Equivalently, the minimal discrepancy between simulated and
experimental data across the entire frequency band is desired.
Additionally, for our case, it is required to minimize the difference from
both real and imaginary property data simultaneously, which leads to a
multi-objective optimization problem. To addresses this problem, we
first characterize the difference from the real and imaginary parts se-
parately using Equation (1) for every shift factors set across the OLHC
space (initially generated from DOE) and obtain the vector of real part
difference f! and imaginary part difference f? for each data point in the
OLHC space.

To develop the multi-objective approach, for every shift factors set
across the OLHC space we normalize the objective function as follows:

i_ gl
ginorm _ £ = fmin

(2)

Here, f! represents the vector of difference calculated from MSE for

i i
fmax - fmin

149

1
m

real (i = 1) or imaginary part (i = 2), f,;, and ffmx represent the
minimum and maximum difference value for the entire design space
respectively. So from this equation, we are able to generate two nor-
malized difference vectors for the real (f!*°™) and imaginary proper-
ties (f2m°rm) separately. Then, we formulate this multi-objective func-
tion as the summation of weighted difference of the real and imaginary

components:

F = Wl'fl norm Wz.onorm

3

Here, w;, and w; are the weight of real and imaginary components.
flnorm gnd f2rorm are normalized error vector from real and imaginary
components, respectively. F is the final vector form of the objective
describing the difference between the simulated data and the experi-
mental results. Using F as the objective function and shifting factors as
features, the next step is to build up surrogate models and make pre-
dictions.

Considering the relatively high cost of simulation models, direct
optimization that requires a large number of iterations is usually in-
feasible. An adaptive optimizer [47] has been developed to address
such challenges: it combines surrogate modeling [42] and infill cri-
terion [48] to refine the prediction adaptively while minimizing the
sampling cost. Such adaptive strategy has been applied to sequentially
optimize and design new materials with target properties [49-51].
Through detailed derivations in Supporting information, an adaptive
optimizer is applied to construct the surrogate model and suggest the
next optimal sampling points in order to minimize the objective func-
tion and return the optimal solution iteratively.

3. Results and discussion

In this section, a representative dielectric data set (for a nano-
composite composed of 2 wt% bimodal anthracene-PGMA grafted silica
in epoxy [33,52]) is first selected to develop and test our methods.
Detailed intermediate results are given to illustrate the methodology.
Later, this algorithm is further tested on viscoelastic studies with the
experiment samples collected from nanocomposite samples composed
of 2wt% Chloro-modified nanosilica in Polystyrene (PS) nanocompo-
sites [53]. Detailed experimental information on measurement of di-
electric and viscoelastic responses can be found in the supporting in-
formation. We have TEM images and reconstructed microstructures for
both the viscoelastic and dielectric samples as shown in Fig. 5. Note
that the microstructures are statistically equivalent to the actual sam-
ples and are created using an algorithm developed earlier [54].

In our previous work [41], we determined manually fitted shift
factors for a number of dielectric nanocomposites and using this prior
study, we can select reasonable ranges within which the shift factors
may vary (Table 1).
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Fig. 5. TEM images and the reconstructed microstructure used in FEA. (a) 2 wt% bimodal anthracene-PGMA grafted silica in epoxy TEM image, (b) reconstructed 2D
microstructure of (a), (¢) 2wt% Chloro-modified nanosilica in PS TEM image, (d) reconstructed 3D microstructure of (c).

Table 1

Dielectric shifting factor design space.
Shifting factor Sg Mg S M, c
Range 0.4-1 1.5-3 0-0.2 0.7-2 0.3-2.5

For this dielectric study, 20 sets of shifting factors are generated as
the initial data set within the empirical ranges through design of
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experiments (DOE) created by applying the optimal Latin hyper cube
(OLHC) sampling technique [55]. The sample points are selected to
cover the entire input variable space bounded by the given ranges (the
blue points in Fig. 7b—d illustrate the initial DOE for this example).
Given the microstructure obtained from the TEM image for the chosen
sample (Fig. 5a and b), FEA simulations are performed over the 20
OLHC samples for shift factors to obtain the composite dielectrical re-
sponse. The FEA model generates two outputs on each simulated

sample: frequency-dependent storage and loss dielectric (or
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Fig. 6. Differences between 20 DOE designed simulations and experiment data as applied to 2 wt% bimodal anthracene-PGMA grafted silica in epoxy sample. (a) Real
part difference characterized by MSE; (b) Imaginary part difference characterized by MSE.
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viscoelastic) curves. These results are then processed by calculating the
difference between the simulated curves and the target experimental
data using Equation (1). For the chosen dielectric data set, the real and
imaginary differences, f! and £, characterized for the initial 20 shifting
factor sets are plotted in Fig. 6.

It can be seen that the difference calculated from two parts have
significantly different orders of magnitudes, which makes direct com-
parison difficult. Therefore, it is necessary to normalize the magnitudes
using Equation (2) and formulate a multi-objective optimization pro-
blem applying Equation (3) such that minimizing the difference from
both real and imaginary data simultaneously can be achieved. Below,
an adaptive optimizer is applied to navigate the high dimensional de-
sign space and make accurate predictions.

In our study, our objective is to minimize the difference, for which
the ideally optimal value of 0 indicates a perfect match between the
simulated and experimental results. Practically, we find a threshold
value C, indicating an acceptable fit between the experimental data and
simulated results. By applying an adaptive optimizer, at each iteration,
a new sampling point is given based on the feedback from the optimi-
zation to augment the training set and the iteration will cease after the
output difference is less than the threshold:

min(Fy41) < C, 4

where Fy ,; represents the surrogate model at k + 1 step. The threshold C
may vary from case to case while the C is set to 0.01 in our study.
Additionally, to avoid infinite loop of the adaptive optimizer arising
from bad data or parameter limits, the loop is set to terminate after this
is no sign of decreasing difference after 20 iterations.

In order to evaluate the prediction accuracy of the surrogate model
at each iteration, a separate validation set with sample size 30 is gen-
erated by random sampling another 30-shifting factor sets within the
design space and running simulations accordingly. Then the difference
between the simulations and the experiment for the validation set can
be evaluated using Equation (3). The surrogate model error at each step
is then evaluated by calculating the mean square error between the
predicted difference from the surrogate model with that from the va-
lidation set. Fig. 7 shows the evolution of the surrogate model accuracy
as iteration progresses in the adaptive optimization process.

In order to visualize the sample distribution during the optimization
process, we choose two factors (S, and Sg) and plot the distribution on
iteration 2, 17, and 23 respectively (Fig. 7 b,c,d). On iteration 1, only
the initial 20 training points from OLHC (blue points in the Fig. 7b) are
used to make predictions. Then later, at each step, a new sampling point
(red in Fig. 7b) is added based on the maximum EI criterion. The newly
added points are concentrated on the boundaries and the space with
coarse initial sampling showing that the adaptive optimizer is able to
automatically explore the entire design space with high uncertainties
rather than search only in a local space which could result in a local
minimum. It is noted that the error for each step keeps decreasing
(though not monotonically, likely due to the model uncertainties) in-
dicating an increase in model accuracy as new sampling points are
added. Additionally, the dropping EI in the model also suggests the
decreasing uncertainty of the surrogate models and the increasing
model accuracy with the identified shift factors.

Fig. 8 shows how our predicted optimal solution behaves as a
function of iterations. The prediction accuracy at each step is evaluated
by calculating the discrepancy between the simulated data using the
predicted shifting factor from the adaptive optimizer and the given
experimental properties using Equation (3). Fig. 8a shows that the
prediction accuracy of xopty at each step increases as a function of
iterations. We also show the comparison between the simulated result
and the experimental data on iteration 1, 12, and 20, showing that the
improvement of fitting quality. Iteration 1 predicts the well at some
frequency ranges, but the difference is still much greater than our
threshold C = 0.01 (shown as dashed line in Fig. 8a). As the iteration
proceeds, the decreasing difference value indicates better fitting

Composites Science and Technology 162 (2018) 146-155

(iteration 12) and it takes 20 iterations before the difference is less than
the threshold. Ideally, the iteration stops at iteration 20 based on our
stopping criteria but we plot more iterations in order to show the
convergence of our adaptive optimization procedure.

Next, we want to compare different strategies including the con-
ventional manual tuning to illustrate that the adaptive GP model can
reduce the computation cost and improve searching efficiency. Using
the manual fitting result as a reference, in addition to the adaptive GP
model illustrated earlier, we also demonstrate the result of a one-stage
GP and a random search model. The results from one-stage GP is gen-
erated by building the surrogate model based on all the sampling points
in the data set and directly predict the minimal value of the objective
function and the associated optimal solution at one time without se-
quential sampling. The result from the random search is generated by
merely choosing the sample with minimal difference among all the
randomly generated samples without doing any optimization. Fig. 9
shows comparisons between these different algorithms by plotting the
fitted curves and the experimental data in the same figure. All the
searching algorithms are compared under the same prerequisite: the
simulation cost is the same (i.e. the number of performed simulations is
the same, in this comparison, the number of performed simulation is set
as 40). To compare the performance of each method, we also calculate
the discrepancy between the simulated data using the predicted shifting
factor and the given experimental properties using Equation (3) as
shown in Table 2. By comparing the fitting quality, we find that the
performance of the adaptive GP is at least comparable or even better
compared with the manual fitting quality.

However, it is noted that the manual fitting requires guessing the
optimal solution based on current fitting while the adaptive GP is able
to automatically explore the design space and determine the optimal
solution iteratively. Additionally, the comparison between the adaptive
GP and the one-stage GP illustrates the advantages of the sequential
sampling approach. The surrogate model is more accurate when de-
termining the next sampling points ‘intelligently’ through calculating
the EI based on the current surrogate model than sampling all the points
at one time. All optimization-evolved searching algorithms tested are
better than the random search. This result indicates that the prediction
accuracy of the adaptive GP model is the highest comparing with other
searching strategies (random searching and one-state GP) if the com-
putation cost is required to be the same. In other words, more simu-
lations need to be performed for other models to generate comparable
result as adaptive GP. These comparisons indicate that our adaptive GP
model is able to accelerate the search process while maintaining a si-
milar accuracy compared with the manual fitting procedure.

By applying the adaptive GP model as described above, the optimal
shifting factors can be determined. Since the shifting factors are de-
scriptors for the interphase properties and completely define those
properties, the interphase properties are thus determined. Fig. 10 shows
the optimal interphase properties together with the matrix and com-
posite properties. We can observe that the interphase properties are
significantly different from the neat polymer matrix. This change in
properties of the interphase is expected due to changes in the mobility
of polymer chains near the particles which cause changes in the local
physical properties such as dielectric spectra of the polymer. This in-
terphase regime shows a higher dielectric permittivity and loss than
both the matrix and composite data. This interphase property agrees
with the experimental data where the addition of functional groups on
fillers enhances the relative permittivity. Additionally, it is noted that
the magnitude of the optimal fitted properties is dependent upon the
size of the interphase regime chosen. While here we use a fixed size for
the interphase zone based on prior studies on filler-filler spacing and
interphase in nanodielectrics [46], the automated optimization proce-
dure developed here can allow a thorough exploration of such variables
and their impacts. Additional discussion on effect interphase thickness
to the properties can be found in the supporting information.

Our adaptive GP model is also able to automatically identify the
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interphase properties in viscoelastic studies. To demonstrate our
method with this variation, the experimental data is taken from 2 wt%
Chloro-modified nanosilica in PS [53] and we follow the same work-
flow as in the dielectric example. Similar to the dielectric study, the
ranges of the shifting factors S and B are determined based on our
understanding of physical bounds of interphase (S € [-2,0], B € [1,3] )
[23,38,56]. Within the empirical design space OLHC is applied to
sample the initial 10 shifting factor sets and the FEA model is run based
on those points. MSE is applied to characterize the difference between
the simulated and the experimental data and then form our objective
function and provide initial training data for the adaptive GP. Then the
adaptive GP is able to explore the entire design space and make accu-
rate predictions by sequentially adding training points based EI.

By using the strategy above, the adaptive GP model is able to au-
tomatically explore the shifting factors and obtain the simulated vis-
coelastic response that matches the experimental data. Fig. 11. Com-
parison between simulated viscoelastic response and experimental data
for 2wt% Chloro-modified nanosilica in PS shows the comparison be-
tween experimental data collected from the chosen sample and the si-
mulated viscoelastic response based on the predicted interphase prop-
erties from adaptive GP. With the predicted interphase shifting factors
from adaptive GP, simulated response is able to fit well with the ex-
perimental data. Similar to dielectric study above, the interphase
properties are readily obtained directly from the optimal shifting fac-
tors. Compared with the dielectric study, it takes only three iterations
for our adaptive GP model to obtain the optimal result while 20
iterations are required for the dielectric case. The two-dimensional

space of the viscoelastic study allows the initial OLHC points to be
nearly sufficient to build accurate surrogate models, while for the
higher dimensional dielectric study, initial OLHC points is too sparse to
construct accurate response surface and further iterations were re-
quired.

4. Conclusions

We have demonstrated a consistent and efficient approach for
identifying the interphase properties in polymer nanocomposites by
solving the inverse problem using adaptive optimization, improving
prior work which was limited in accuracy and efficiency by the labor-
ious manual iteration process. A multi-objective optimization problem
is formulated through characterizing the difference from simulations
and experimental data with the aim of minimizing the difference from
real and imaginary parts simultaneously for frequency-dependent
properties. The training data consists of shifting factor sets as optimi-
zation variables and difference as objectives. The Gaussian Process (GP)
surrogate model is used to build up the relationship between the fea-
tures and objectives because of its flexibility for assessing uncertainties
and capability to capture nonlinear response surfaces. By choosing
candidate points based on the concept of maximum expected im-
provement (EI) over the search space, we have shown that the surrogate
model evolves and the uncertainties in the model decrease by sequen-
tially adding points at each iteration using the EI criterion.

Using the proposed approach and given experimental data of
properties and microstructure, the interphase properties on dielectric
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Comparisons of different searching methods by calculating the difference.

Method

Difference between the simulation and experiment

Adaptive GP
Manual
One-stage GP
Random

0.0089
0.0097
0.1683
0.1854

and viscoelastic studies can be determined automatically. Results de-
monstrate that only tens of iterations are required for the method to
identify the optimal shifting factors and interphase properties to
achieve a good fit with the target experimental data. Comparisons are
made among different searching algorithms to show the ability of our
method to reduce the computational cost and improve the searching

efficiency.

This method can be used as a generalized automated approach to
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Fig. 11. Comparison between simulated viscoelastic response and experimental data for 2 wt% Chloro-modified nanosilica in PS.

determine the interphase properties in polymer nanocomposites. The
framework is also flexible to be applied to other computational models
to identify the interphase properties that are required. Additionally, the
method is very efficient compared with the manual-fitting process and
should facilitate the further investigation of a data-driven analysis
where many hundreds of samples would be required. The future work
may start from setting up a material interphase library through com-
bining this method with Nanomine, which is a data-driven web-based
platform for analysis and design of polymer nanocomposite systems
under the material genome concept [57]. With sufficient data in the
interphase library, relationship between the material constituents, mi-
crostructures, and the interphase properties can be created through
data mining. Such relationships have the potential to improve the un-
derstanding of material principles behind interphase properties and
guide the design of new materials with desired functionality and per-
formance.
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