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Abstract—The problem of estimating a set of unknown pa-
rameters in a multi-agent network is considered. Each agent
can make noisy observations from a subset of the unknown
parameters, and different agents can potentially observe common
parameters. The objective of each agent is to estimate its observed
unknown parameters. This paper focuses on sequentially esti-
mating the parameters such that, in the quickest fashion, all the
agents form reliable estimates for their designated parameters.
A proper estimation cost function is adopted in order to signify
the fidelity of the estimates to the ground truth, and to ensure
consistency in the estimates of different agents. By imposing prac-
tical constraints on the number of data points that the network
affords to process, the sequential strategy dynamically decides
about the minimum number of measurements required to form
reliable estimates, the agents from which these measurements
should be collected, and the optimal estimators for each agent.
Specifically, a sequential strategy is proposed, which consists of
the stopping rule of the sampling process, a data-adaptive control
policy for selecting the agents over time, and a set of estimators,
combination of which admits asymptotic optimality.

I. INTRODUCTION

Due to the technological advances in information genera-
tion, sensing, and communication, many application domains
have evolved toward large-scale networks of interconnected
agents. Network of measurement devices in a power grid,
array of cameras in a surveillance system, and communities in
online social networks are a few examples. The data generated
by such networks is often processed for various inferential
purposes. Due to their large scale as well as the varying
degrees of connectivity and interaction among the agents,
the amount of information provided by various agents for a
desired inference goal is volatile. For instance, in a power grid,
during a fault event the data from the locality of the event
is more informative about the type and location of the fault,
or in a large-scale surveillance system cameras closer to an
external object provide more informative data. Therefore, it is
of interest to quickly focus the sensing resources to the areas
in the network that are most informative about the inference
goal of interest.

This paper considers the problem of sequentially estimating
a set of unknown parameters in a multi-agent network. It
assumes that each agent can observe only a subset of the
unknown parameters, and different agents can potentially
observe common parameters. The ultimate goal is 1) to provide
each agent with reliable estimates of the unknown parameters
it observes, and ii) the estimates of the same parameter ob-
tained by different agents are consistent. Forming a centralized
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optimal estimate by using all the measurements collected in
the network is computationally prohibitive. On the other hand,
forming local estimates at each agent solely based on their
own local observations, while being computationally efficient,
is agnostic to the structure of the network, and subsequently,
inherently suboptimal [1]. Therefore, in order to strike a
balance between these two extremes, in this paper we assume
that agents are capable of forming estimates based on their
own data and sharing their information among themselves.
In this sense, the setting of this paper is related to distributed
estimation, which is often studied under diffusion or consensus
setting. In consensus based estimation algorithms, the agents
exchange information among themselves to converge to a state
estimate for the systems [2] and [3], while in the diffusion
approach the agents interact with each other on a local level
and diffuse information across the network to estimate the
unknown parameters in a distributed manner [4] and [5]. The
distinction of this paper from these two approaches is that
there exists no constraint on the communication of agents, but
rather the structure of the estimation cost determines how the
information should be communicated among the agents.
Estimating unknown parameters observed by a network
arises in a number of application domains such as biochem-
istry [6], systems biology [7] and [8], social science [9],
and power grid [10]. The existing literature on parameter
estimation often focuses on settings in which the estimation
strategy and data-acquisition processes are decoupled, and
their focus is placed on forming the most reliable estimates
based on a given set of measurements [11]-[13]. Driven
by controlling communication, sensing, and decision delay
costs, this paper considers a sequential sampling strategy,
which is specified by the required number of observations,
as well as the order in which they are collected. When
the order is pre-specified, determining the optimal sampling
strategy reduces to minimizing the number of measurements
by dynamically deciding whether to take more measurements,
or to terminate the process and form the estimates [14]-[16].
However, incorporating dynamic decisions about the order
of sampling, especially for inference over networks, is less-
investigated. Forming such dynamic decisions that pertain
to data acquisition for inference naturally arises in a broad
range of applications such as sensor management [17], inspec-
tion and classification [18], medical diagnosis [19], cognitive
science [20], generalized binary search [21], and channel
coding with feedback [22]. One directly applicable approach
to treat such coupled sampling and decision-making problem
is controlled sensing, in which besides deciding when to



terminate the sampling process, the sequence of agents whose
data are collected over time should also be specified. The study
in [23] considers the setting in which the parameters observed
by different agents are unique, and provide asymptotically
optimal decision rules. In [24] the results are generalized to
the setting in which observations depend on common unknown
parameters. The problem considered in this paper is closely
related to [24] where, at each time instant and based on the
collected information up to that time, one of a finite number
of agents are selected. However, the presence of multiple
estimators, each one of which requiring to make reliable
estimates of the unknown parameters, makes the problem of
this paper fundamentally different from [24]. Furthermore,
the agent selection rules in this paper are fundamentally co-
dependent, while in [24] they are independent.

Controlled inference has also been studied in domains other
than sequential estimation [25]-[29]. The studies in [25]-[28]
focus on sequential hypothesis testing, with controlled actions,
while [29] adopts a controlled sensing based approach to graph
classification. In another direction, the problem of sequential
joint detection and estimation without any controlled action is
studied in [30] and [31]. The major distinction of this paper
from [30] and [31] is that, besides having a detection action
upon stopping, in these studies the observation process is fixed
and the only dynamic of the sampling process is the stopping
time. Furthermore, there exist two sequences to observe and
both of them are being observed at each time, while in this
paper multiple sequences are available and only one of them
is observed at each time instance.

II. MODEL AND FORMULATION
A. Data Model

Consider a network of K agents indexed by
U={1,...,K}, collectively making noisy observations
from a set of unknown and random parameters denoted
by X = {X; : i € M}, where M = {1,...,m}. These
parameters are assumed to be statistically independent. Due
to the large scale of the network, each agent can observe
only a subset of the unknown parameters X'. We denote the
set of parameters observed by agent i € M by &; C X.
Furthermore, for any ¢ € M the set of the agents that can
observe X; is denoted by S;. We consider a fully sequential
sampling process, in which only one agent is selected
at-a-time to make a noisy observation. By defining u(t) € U
as the index of the agent that makes the measurement at time
t € N, the measurement of agent ¢ € I/ at time ¢ is given by

yi — { gi(X:) + N{  ifu(t) =1
¢ 0 ifu(t)#i¢

where the convention ) denotes lack of a measurement, g; is a
known function that captures the measurement model of agent
1, and Nti accounts for the measurement noise, which for each
agent ¢ is independent and identically distributed over time.
Accordingly, we define i = {Y{,...,Y} as the ordered
set of measurements collected by agent ¢ € U up to time ¢.
The prior probability distribution function (pdf) of the scalar
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parameter X; for i € M is denoted by 7;, and when Y, # (),
we denote the pdf of Y} by f;.

The information collected sequentially up to time ¢ gener-
ates the filtration {F; : ¢t € N} where
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In the sequentially sampling process, at any time ¢ and based
on the information accumulated up to that time, i.e., F;, the
sensing mechanism takes one of the following two intertwined
actions.

A1) Observation: Due to lack of sufficient information,
forming the final estimates is deferred and one more
measurement is taken from one of the agents. Under
this action, the agent to be selected is specified.
Estimation: Sensing process is terminated and each
agent forms final estimates of its associated unknown
parameters. Under this action, the stopping time and the
final estimation rules upon stopping are specified.

Aj)

To formalize the observation action, we define a data-adaptive
control policy denoted by p. Specifically, at time ¢, the control
policy pu leverages all the past measurements, denoted by
ViU 2 (Yl ..., VE |}, and all the past agent selection
decisions, denoted by U*~* = {u(1),...u(t — 1)}, to deter-
mine u(t), i.e.,

po U X P sy 3)

In order to formalize the estimation action, we define T' € N
as the stochastic stopping time of the process, at which the
information gathering process is terminated and the estimates
are formed. Each agent ¢ € U/ needs to form an estimate of
the set X, the set of unknown parameters that it can observe
through Y;'. For this purpose, we define
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as the estimator of agent ¢ € Uf for unknown parameter
X; € X, and denote the estimate of X; by agent ¢ at time ¢
by X(t). Finally, we define A S0/ ielU, je M} as
the set of estimation rules in the network.

B. Problem Formulation

We aim to design a data acquisition policy u, the set of
estimators A, and the stopping time 7". Designing the optimal
strategy for achieving reliable estimates involves striking a
balance between two opposing figures of merit pertinent to the
quality of the estimates on the one hand, and the aggregate
number of measurements made, on the other hand. The quality
of the process is captured by the reliability of the estimates at
individual agents. Also, we assume that each agent desires
to have its estimates remain consistent with and in close
proximity of those of the other agents that observe the same
unknown parameters. To accommodate this, the cost function
for quantifying the estimation quality of the network at any



time ¢ is defined according to

) =TS TR - X)) | VL U

i€U JETL;

DI M0

JEMIES; keS;

J(t, p, A
- XFo)PP,  ©®

where 7Z; denotes the set of the indices of the un-
known parameters that are observed by agent i, i.e.,
Z; = {j: X; € X;} In this estimation cost function, the term
E[(X; — X1(t))%|Vi, U'] ensures that each agent i € U
forms an estimate of each X; € A; with high fidelity, and
| Xi(t) — XF(t)]* guarantees that the estimates of X; made
by all the agents observing X; stay consistent. By assuming
that the cost of each measurement is a constant ¢ > 0, we
integrate both estimation and the sampling costs into a unified
cost function. Specifically, at time ¢, we denote the unified
cost function by

J(t, 1, A 0) = J(t, 1, A) + te (6)

where c¢ controls the balance between the quality of the
estimates and the sensing cost.

III. SEQUENTIAL DECISION RULES

In this section, we provide a stopping rule, a design for
the estimators A, and a control policy p, and establish that
their combination admits certain optimality properties. To
proceed, we define I;(X;) as the Fisher information matrix
corresponding to the unknown parameters observed by agent
1, 1.e.,

I;(X;) = —E [V3, log fi(Y" | X3)] (7

where the expectation is with respect to Y for given X;. We
also define XthIe as the maximum likelihood estimate of A™

formed by agent ¢ € U at time ¢, i.e.,
b mle = arg max f; (V! | &;,U?) . (8)

A. Estimator Design

In this subsection, we propose a set of estimators, and
establish their optimality in Section IV. Specifically, at time ¢
and for any j € M, the estimators of X; by all agents k € S;
are defined as the solution to the following linear system of
|S;| equations:

(L+IS;DXF (1) = ELX; | EUT+ D X))

IE€S;

The estimators X Jk(t) which solve the linear system (9) are of
the form

=D Bl | VLU, (10)
leS;
where constants {aﬁgj} satisfy
> ap;=1. (a1

l€S;

This indicates that the estimators X Jk(t) are weighted average
of the local posterior means of the parameter X; from all the
agents that observe X ;.

Remark 1. The estimators designed according to (10) mini-
mize the estimation cost J(t,u, A) at any time t and for any
control policy p. Even though minimizing J(t,u, A) is not
directly related to the objective pursued in this paper, it serves
as evidence that these estimators are the optimal choices in
the non-sequential setting.

Throughout the rest of the paper, A* represents the
set of estimators designed according to (9). Define
p = [p1,...,pK]T, where p; is the probability of agent i € U
being chosen to collect the new measurement.

Lemma 1. For the given estimation cost function J(t, p, A)
defined in (5) and the estimators determined by solving (9),
we have

P(tinf J(t, 1, A*) > 0) = 1 (12)
“w
and Ve > 0,
. P(X)
Jim P(tme(t 1nA*) > Q(X)—€e) —=1,  (13)
t—00
where we have defined
Q(X) 2 inf > Qi(X,p) Z > Qi(x,p), (14)
S =y zel/l]EX,
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where [Iy(Xy)~';; is the diagonal entry of the matrix
I(Xx)~1 corresponding to X;, and ¢¥ is a the set of

probability mass functions (pmfs) over a discrete random
variable of size K. Q(X) is a positive random variable
and the convergence in (13) is under P(X), which is the
probability distribution of measurements when the true value
of the parameters is the set X.

Lemma 1 is instrumental to establishing the weak asymptotic
point-wise optimality of the control policy and stopping rule
presented in this paper.

B. Stopping Rule and Control Policy

We now provide the design of the control policy p* and
the stopping rule 7.

1) Control Policy: At time t, if we decide to collect
a new measurement at time (¢ + 1), we form the
maximum likelihood estimates Xt’mle,Vi € U based on

the measurements collected up to time ¢. Then at time



(t+1), we randomly choose the agent to collect the mea-
surement from according to the probability distribution
Py, where the probabilities p; = [p;(1),...,p:(K)]T are
determined as a solution to
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2) Stopping Time: At time ¢, we decide to stop collecting
measurements if it is the first time instant at which
the estimation cost J(t, u*, A*) falls below the total
sampling cost (¢t + 1), i.e.,

=inf{t: J(t, ", A") < (t+1)c} .

IV. PERFORMANCE ANALYSIS

(18)

The distribution of measurements collected in the network
depends on the sampling strategy. Hence, the performance
guarantees provided in this paper are based on the notion of
weakly asymptotic pointwise optimality defined in [24]. To
establish the weakly asymptotic pointwise optimality prop-
erties of the designed rules, some regularity conditions are
required to be satisfied for the pdfs f; to ensure the asymptotic
efficiency and consistency of maximum likelihood estimators
and Bayesian estimators, as well as their normality. The
complete list of these conditions can be found in [24] and [32].
We first provide the definition of weak asymptotic point-wise
optimality.

Definition 1. The sequential decision rules characterized by a
control policy u, a stopping rule T, and a set of estimators A,
are said to be weak asymptotically point-wise optimal if for
any € > 0, and any alternative control policy p', and stopping
time T' we have

J(T/’ lu’/’ A? C)
The sufficient conditions for weak asymptotically point-

wise optimality of sequential decision rules are established
in [24, Theorem 3.1].

§1—|—e>—>1. (19)

c—0

Theorem 1. The control policy p* specified in Section IlI-B
satisfies

x A%y PO,
tJ(t,p", AY) —= Q(X) .
The results in (12), (13), and (20) are sufficient to conclude
that the combination of control policy p*, stopping time
T* and the estimators A* satisfy the condition for weak

asymptotic point-wise optimality defined in Definition 1.

(20)

V. NUMERICAL EVALUATION

In this section, we evaluate the performance of the pro-
posed sequential sampling strategy on a network consisting
of 4 agents. The set of unknown parameters is given by
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Fig. 2. The average number of measurements vs the sampling cost ¢

X = {Xl,XQ,Xg,X4,X5,X6}, and we set Xl = {X17X2},
XQ = {X27X3,X4}, X3 = {X3,X5} and X4 = {X47X6}.
The prior pdf of X; is set to be N'(0,07), where o7 = 1,
O’% :2,a§ = 1.5,02 :3,U§ = ,anda6 = 4. The
measurement at agent ¢ is assumed to be a vector of the same
size as AX; with the additive noise vectors being i.i.d. and
Gaussian for each measurement of each individual agent. By
assuming different variance values for measurement noise of
different agents, we compare the performance of the proposed
rules with both a fixed sample-size setting and a sequential
setting with a random selection rule.

In order to highlight the advantage of sequential sampling,
Fig. 1 compares the estimation cost of the proposed strategy
with that of a fixed sample-size setting. It is observed that
our strategy outperforms the fixed sample setting uniformly
for any sample size. To showcase the gain obtained by using
the proposed control policy, Fig. 2 compares two sequential
setting, one of which uses the proposed control policy for agent
selection while the other one uses a random control policy
based on a uniform distribution. It is observed that the pro-
posed control policy requires fewer number of measurements
for any cost per sample c.

VI. CONCLUSION

In this paper, we have investigated the problem of parameter
estimation from noisy observations collected sequentially in
a multi-agent network, where each agent can observe only
a subset of the unknown parameters. The goal is to form



sufficiently reliable estimates at all agents with the minimum
number of measurements and a constraint on the number of
measurements that can be collected at any time instant. For
the design of estimators, we have adopted a cost function that
reflects the fidelity of the estimates formed at the agents and
the consistency of the estimates of the parameters commonly
observed by multiple agents. We have provided the design
for data-adaptive sequential decision rules consisting of the
design of optimal estimators at all agents, a control policy
for selection of agents to collect measurements from, and
a stopping rule to determine whether to stop or continue
collecting more measurements. We have established the weak
asymptotic point-wise optimality properties for these decision
rules.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

G. Fellouris, “Asymptotically optimal parameter estimation under com-
munication constraints,” The Annals of Statistics, vol. 40, no. 4, pp.
2239-2265, Aug. 2012.

S. Kar and J. M. FE. Moura, “Distributed consensus algorithms in sensor
networks with imperfect communication: Link failures and channel
noise,” IEEE Transactions on Signal Processing, vol. 57, no. 1, pp.
355-369, Jan. 2009.

S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter esti-
mation in sensor networks: Nonlinear observation models and imperfect
communication,” IEEE Transactions on Information Theory, vol. 58,
no. 6, pp. 3575-3605, Jun. 2012.

S. Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus
strategies for distributed estimation over adaptive networks,” IEEE
Transactions on Signal Processing, vol. 60, no. 12, pp. 6217-6234, Dec.
2012.

F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for dis-
tributed estimation,” /IEEE Transactions on Signal Processing, vol. 58,
no. 3, pp. 1035-1048, Mar. 2010.

P. Meyer, T. Cokelaer, D. Chandran, K. H. Kim, P.-R. Loh, G. Tucker,
M. Lipson, B. Berger, C. Kreutz, A. Raue, B. Steiert, J. Timmer, E. Bilal,
H. M. Sauro, G. Stolovitzky, and J. Saez-Rodriguez, “Network topology
and parameter estimation: from experimental design methods to gene
regulatory network kinetics using a community based approach,” BMC
Systems Biology, vol. 8, no. 1, p. 13, Feb. 2014.

J. Sun, J. M. Garibaldi, and C. Hodgman, “Parameter estimation using
metaheuristics in systems biology: A comprehensive review,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 9,
no. 1, pp. 185-202, Jan. 2012.

H. Eydgahi, W. W. Chen, J. L. Muhlich, D. Vitkup, J. N. Tsitsiklis, and
P. K. Sorger, “Properties of cell death models calibrated and compared
using Bayesian approaches,” Molecular Systems Biology, vol. 9, no. 1,
2013.

B. Golub and M. O. Jackson, “Naive learning in social networks and
the wisdom of crowds,” American Economic Journal: Microeconomics,
vol. 2, no. 1, Feb. 2010.

L. Xie, D. H. Choi, S. Kar, and H. V. Poor, “Fully distributed state
estimation for wide-area monitoring systems,” IEEE Transactions on
Smart Grid, vol. 3, no. 3, pp. 1154-1169, Sep. 2012.

S. Shahrampour and A. Jadbabaie, “Exponentially fast parameter esti-
mation in networks using distributed dual averaging,” in Proc. IEEE
Conference on Decision and Control, Dec. 2013, pp. 6196-6201.

[12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

A. Tajer, “Diversified parameter estimation in complex networks,” in
Proc. IEEE Global Conference on Signal and Information Processing,
Dec. 2014, pp. 905-908.

K. R. Rad and A. Tahbaz-Salehi, “Distributed parameter estimation in
networks,” in Proc. IEEE Conference on Decision and Control, Dec.
2010, pp. 5050-5055.

P. J. Bickel and J. A. Yahav, “Asymptotically pointwise optimal pro-
cedures in sequential analysis,” in Proc. Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics, 1967.

G. V. Moustakides, T. Yaacoub, and Y. Mei, “Sequential estimation
based on conditional cost,” in Proc. IEEE International Symposium on
Information Theory, June 2017, pp. 436—440.

P. Grambsch, “Sequential sampling based on the observed fisher infor-
mation to guarantee the accuracy of the maximum likelihood estimator,”
The Annals of Statistics, vol. 11, no. 1, pp. 68-77, Mar. 1983.

A. O. Hero and D. Cochran, “Sensor management: Past, present, and
future,” IEEE Sensors Journal, vol. 11, no. 12, pp. 3064-3075, Dec.
2011.

G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme,
“Active planning for underwater inspection and the benefit of adaptivity,”
International Journal of Robotics Research, vol. 32, no. 1, pp. 3-18, Jan.
2013.

S. M. Berry, B. P. Carlin, J. J. Lee, and P. Miiller, Bayesian adaptive
methods for clinical trials, ser. Chapman & Hall/CRC Biostatistics
Series. CRC Press, Boca Raton, FL, 2011, vol. 38, with a foreword
by David J. Spiegelhalter.

P. Shenoy and A. J. Yu, “Rational decision-making in inhibitory control,”
Frontiers in Human Neuroscience, vol. 48, no. 5, pp. 224-236, May
2011.

R. D. Nowak, “The geometry of generalized binary search,” IEEE
Transactions on Information Theory, vol. 57, no. 12, pp. 7893-7906,
Dec. 2011.

M. V. Burnashev, “Data transmission over a discrete channel with
feedback. random transmission time,” Problemy Peredachi Informatsii,
vol. 12, no. 4, pp. 10-30, 1976.

V. J. Yohai, “Asymptotically optimal bayes sequential design of exper-
iments for estimation,” The Annals of Statistics, vol. 1, no. 5, pp. 822—
837, Sep. 1973.

G. Atia and S. Aeron, “Asymptotic optimality results for controlled
sequential estimation,” in Proc. 51st Annual Allerton Conference Com-
munication, Control, and Computing, Oct. 2013.

S. Nitinawarat, G. K. Atia, and V. V. Veeravalli., “Controlled sensing
for multihypothesis testing,” in IEEE Transactions on Automatic Control,
vol. 58, no. 10, Oct. 2013, pp. 2451-2464.

G. K. Atia and V. V. Veeravalli, “Controlled sensing for sequential mul-
tihypothesis testing,” in Proc. International Symposium on Information
Theory, Jul. 2012, pp. 2196-2200.

S. Nitinawarat and V. V. Veeravalli, “Controlled sensing for sequential
multihypothesis testing with controlled Markovian observations and non-
uniform control cost.” in Sequential Analysis, vol. 34, no. 1, Jan. 2015,
pp. 1-24.

J. Heydari, A. Tajer, and H. V. Poor, “Quickest detection of Markov
networks,” arXiv:1711.04268v2, Dec. 2017.

J. G. Ligo, G. K. Atia, and V. V. Veeravalli, “A controlled sensing
approach to graph classification,” in IEEE Transactions on Signal
Processing, vol. 62, no. 24, Oct. 2014, pp. 6468-6480.

Y. Yilmaz, S. Li, and X. Wang, “Sequential joint detection and estima-
tion: Optimum tests and applications,” arXiv:1411.1440v1, 2014.

Y. Yilmaz, G. V. Moustakides, and X. Wang, “Sequential joint detection
and estimation,” Theory of Probability & Its Applications, vol. 59, no. 3,
pp. 452465, 2015.

A. DasGupta, Asymptotic Theory of Statistics and Probability. Springer,
New York, 2008.



