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ABSTRACT

We develop a model for the strahl population in the solar wind – a narrow, low-density and
high-energy electron beam centered on the magnetic field direction. Our model is based on
the solution of the electron drift-kinetic equation at heliospheric distances where the plasma
density, temperature, and the magnetic field strength decline as power-laws of the distance
along a magnetic flux tube. Our solution for the strahl depends on a number of parameters
that, in the absence of the analytic solution for the full electron velocity distribution function
(eVDF), cannot be derived from the theory. We however demonstrate that these parameters
can be efficiently found from matching our solution with observations of the eVDF made by
the Wind satellite’s SWE strahl detector. The model is successful at predicting the angular
width (FWHM) of the strahl for the Wind data at 1 AU, in particular by predicting how
this width scales with particle energy and background density. We find the strahl distribution
is largely determined by the local temperature Knudsen number γ ∼ |T dT/dx |/n, which
parametrizes solar wind collisionality. We compute averaged strahl distributions for typical
Knudsen numbers observed in the solar wind, and fit our model to these data. The model
can be matched quite closely to the eVDFs at 1 AU; however, it then overestimates the strahl
amplitude at larger heliocentric distances. This indicates that our model may be improved
through the inclusion of additional physics, possibly through the introduction of “anomalous
diffusion” of the strahl electrons.
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1 INTRODUCTION

The strahl is a narrow, magnetic field-aligned population of
suprathermal electrons (Rosenbauer et al. 1977) routinely observed
in the ambient solar wind. The strahl is comprised of “ther-
mal runaway” electrons (Gurevich & Istomin 1979). Because high
energy particles are relatively insensitive to Coulomb collisions
(νcoll ∼ v

−3), electrons of sufficiently high energy can stream
over large distances without coming into local thermal equilibrium
(Scudder & Olbert 1979). The strahl electrons generally move an-
tisunward, because the relatively hot inner regions of the helio-
sphere act as a source of high-energy particles. However, in some
instances—notably, during the transit of interplanetary coronal mass
ejections—“counterstreaming” strahls (e.g., Gosling et al. 1987;
Anderson et al. 2012), which are directed towards the sun, are also
observed. When it is prominent, the strahl can provide the dominant
contribution to the electron heat flux (Pilipp et al. 1987), which is

⋆ E-mail: horaites@wisc.edu

an important source of heating of the solar wind during its non-
adiabatic expansion (e.g., Štverák et al. 2015).

The beam-like shape of the strahl in velocity space is believed
to come from the competition of two physical processes: the mirror
force and pitch angle scattering. The mirror force narrows this pop-
ulation, so that electron velocities run nearly parallel to the local
magnetic field. The runaway electrons see a weakening field as they
travel to larger heliocentric distances, which converts the particles’
perpendicular velocity into parallel velocity. The observed strahls,
however, are not as narrow as one would expect from conservation
of the first adiabatic invariant. It is therefore inferred that a scattering
process provides some diffusion that broadens the distribution.

This pitch angle scattering is usually attributed to either
Coulomb collisions or wave-particle interactions, and interest in the
latter has been partially motivated by the perceived failure of the for-
mer. In particular, measurements conducted by Lemons & Feldman
(1983) showed the strahl to be even broader than would be predicted
by incorporating Coulomb collisions into exospheric theory, and it
was suggested that a source of “anomalous diffusion” in the form of
wave-particle interactions may be scattering the strahl particles.
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Nonetheless, there is a wealth of evidence indicating that on
average, characteristics of the strahl can be strongly correlated with
the Coulomb collisionality of the background solar wind. We here
refer to “collisionality” in terms of the Knudsen number γ(x =

const .) ∝ T2/n, which parameterizes the ratio between advective
and Coulomb scattering terms in the kinetic equation. Prominent,
narrow strahls have long been associated with the fast solar wind
(e.g., Feldman et al. 1978; Pilipp et al. 1987; Anderson et al. 2012).
The fast wind is less collisional on average, since typically n is
lower and T higher than in the slow wind. Ogilvie et al. (2000)
specifically noted that prominent, narrow strahls can be seen when
the fast solar wind has very low density. Salem et al. (2003) showed
that the solar wind heat flux q, which comes from the skewness of
f (v) owing partially to the strahl, is correlated with γ. Bale et al.
(2013) clarified this picture, demonstrating in a broad statistical
study of Wind data that the solar wind heat flux in fact scales
with γ exactly as predicted by classical theory (Spitzer & Härm
1953) in the collisional regime γ ≪ 1. In the regime γ & 1,
the heat flux was observed to “saturate” at a collisionless value
q ∼ nvthT . This saturation is also predicted, and may owe to the
onset of various plasma instabilities (e.g, Cowie & McKee 1977).
In Horaites et al. (2015), average field-parallel cuts of the electron
distribution computed from Helios data were shown to vary with γ
as predicted by a “self-similar” kinetic theory, with strahl amplitude
increasing with γ. The fact that the solar wind data are so well-
ordered by γ is a strong indication that Coulomb collisions play a
central role in the physics that shapes the electron strahl.

Most wave-particle theories of strahl scattering have con-
sidered the effect of whistler waves (e.g., Vocks & Mann 2003;
Vocks et al. 2005; Saito & Gary 2007). These waves can resonate
with the cyclotron motion of strahl electrons, scattering the particles
and broadening their distribution. Seough et al. (2015) suggested a
variation on this mechanism, in which anti-sunward halo particles
not scattered by whistlers can be focused by the magnetic field into
the strahl. Whistlers may be generated by the electron heat flux
instability (e.g., Gary et al. 1975, 1994); this view has been sup-
ported by studies of whistler wave events (e.g, Wilson et al. 2013;
Stansby et al. 2016). Whistlers may also be excited by the tempera-
ture anisotropy of the strahl population (e.g., Viñas et al. 2010), or
may help comprise the small-scale interplanetary turbulence (e.g.,
Pagel et al. 2007; Boldyrev et al. 2013). Recently, the first direct
observations of long-lived (lasting longer than 5 minutes) whistler
waves were made (Lacombe et al. 2014), using Cluster data. A sub-
sequent study (Kajdič et al. 2016) demonstrated that the presence
of whistler waves is correlated with broader strahl widths. How-
ever, the authors emphasized that whistler waves were detected
infrequently by Cluster in the “pristine” (unperturbed by transient
structures) fast wind: only 37 time intervals sustaining whistlers
for a minute or longer were observed in a 10-year period. Look-
ing beyond whistler waves, Pavan et al. (2013) proposed that strahl
distributions focused by the mirror force should generate Langmuir
oscillations. In their numerical simulations, quasilinear oscillations
continually scatter the strahl electrons, developing a steady state in
which scattering balances magnetic focusing.

The detailed shape of the strahl distribution, which carries
information about the physics that formed it, has been characterized
in multiple observational studies. Using data from the Imp 6, 7, and 8
satellites, Feldman et al. (1978) found that the angular breadth of the
strahl distribution decreases monotonically with energy in the fast
wind. This is consistent with the predictions of Coulomb scattering
models (see e.g., Saito & Gary 2007; Fairfield & Scudder 1985)
and some wave scattering models (e.g., Pavan et al. 2013). This

picture is not always observed in the data, however; Anderson et al.
(2012) reported that the strahl width can either increase or decrease
with energy. Some instances where the strahl broadens with energy
have been associated with rare transient events, such as solar electron
bursts (de Koning et al. 2007) and periods of increased wave activity
(Pagel et al. 2007). Counter to the notion that the magnetic field
continuously focuses the strahl as the particles travel away from the
sun, Hammond et al. (1996) found that the strahl width (at a given
energy) actually increases with heliocentric distance r for Ulysses
data r >1 AU (see also Graham et al. (2017)).

The goal of this work is to develop an analytical model for the
electron strahl population in the solar wind. The accurate analytic
derivation of the full electron distribution function is a very compli-
cated task since it requires one to solve the electron kinetic equation
in an expanding background, subject to the boundary conditions
at the base of the solar wind and at infinity. In our approach we
build upon our previous work (Horaites et al. 2015), and consider
the electron kinetic equation in the range of distances where the
parameters of the solar wind (density, temperature, magnetic field
strength) can be approximated as power laws of the distance along a
magnetic flux tube. We then expect that the solution for the strahl is
scale invariant, namely, it has similar structure at different distances
after appropriate rescaling of the velocity field and the amplitude
of the distribution function. This allows one to find a nontrivial
solution for the electron strahl, which incorporates the effects of ad-
vection, focusing by the expanding magnetic field, and pitch angle
scattering by Coulomb collisions.1

The scale-invariance does not allow us to determine the so-
lution uniquely, which reflects the fact that we do not solve a full
boundary value problem, and, therefore, do not have enough in-
formation to fully describe the fast electrons that stream from the
hot solar surface. We however demonstrate that the remaining arbi-
trariness can be removed very efficiently by matching our analytic
solution with the observations.

As a test of our theory, we examine high resolution measure-
ments of the strahl distribution made by the Wind satellite, whose
Solar Wind Experiment (SWE) had an electrostatic analyzer ded-
icated to measuring the strahl distribution (Ogilvie et al. 1995).
Wind’s strahl detector had very fine (∼4.5◦) angular resolution,
making it ideal for measuring the shape of the strahl distribution.
Following previous observational papers (e.g. Ogilvie et al. 2000),
we will characterize the breadth of the distribution in terms of the
angular full width at half maximum (FWHM). We will demonstrate
in section 3 that the strahl widths are accurately described by our
theory, as it correctly predicts how the width decreases with particle
energy and increases with background density.

Our conclusions differ somewhat from those of
Lemons & Feldman (1983), in that we do not find the strahl
widths at 1 AU to be too broad, necessarily. In our model, the
parameters defining the large-scale structure of the solar wind
(variation of temperature, density, etc.) are intertwined with the
predicted shape of the strahl distribution, including its width,
energy-dependence, and variation with heliocentric distance. So
although in section 3.4 we will show that our model can be matched
to average eVDFs at 1 AU, in section 4 we will infer from published
measurements of the solar wind structure that the strahl should
increase in amplitude with distance, relative to the core. This may
be in contradiction with measurements made by Maksimovic et al.

1 As it would greatly complicate our current project, we do not yet incor-
porate the effects of wave-particle scattering in our model.
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(2005) and Štverák et al. (2009), which show the opposite trend, at
least in the low-energy portion of the strahl distribution. We believe
a more complete theory of the strahl may require the inclusion of
additional physics, for instance in the form of anomalous diffusion.
The search for such a theory should be well-constrained by the
existing body of observations, including those presented here.

2 THEORY

Consider a solar wind in which the electron temperature T , density
n, and magnetic field strength B all vary as power laws with distance
x along a flux tube: n = n0 (x/x0)αn , T = T0(x/x0)αT , and B =

B0(x/x0)αB . Throughout this paper, the subscript 0 will be used to
note values of a variable at reference position x = x0. Specifically,
we will let x0 ∼ 1AU be the position of the Wind spacecraft.
We assume that the number of particles in the nearly maxwellian
core of the electron distribution function is typically much larger
than the number of particles in the strahl (and in the halo), so the
electron temperature is mostly defined by the core population (e.g.
Štverák et al. 2009). Without loss of generality, we will express the
electron distribution in the form:

f (v, x) = NF(v/vth (x), x)/T (x)α, (1)

where vth ≡
√

2T/me is the electron thermal speed and N

is a constant set by the normalizations
∫

f (v, x)d3
v = n(x),

∫

F(u, x)d3u = 1. Applying these normalizations to equation (1)
leads to the relation

α = 3/2 − αn/αT . (2)

We also define the Knudsen number γ(x), which parametrizes
the Coulomb collisionality:

γ(x) ≡ −T2(d lnT/dx)/(2πe4
Λn) = λmf p/LT , (3)

and the electric Knudsen number γE (x) which is the ratio of the
electric field to the Dreicer field

γE (x) ≡ E‖eT/(2πe4
Λn), (4)

where E‖ is the component of the electric field parallel to the
magnetic field. In these expressions we use the Coulomb logarithm
Λ, which we treat as a constant (Λ = 25.5), and introduce the
electron mean free path

λmf p ≡ T2/(2πe4
Λn), (5)

and the length scale of temperature variation

LT ≡ (d lnT/dx)−1
= −x/αT . (6)

At frequencies much smaller than the electron gyrofrequency,
and at scales much larger than the electron gyroscale, the distribution
function f (v, µ, x) obeys the drift-kinetic equation (e.g., Kulsrud
1983), which, in a steady state (∂ f /∂t = 0), takes the form:

µv
∂ f

∂x
− 1

2

d ln B

dx
v(1 − µ2)

∂ f

∂µ
−

−
eE‖
m

[
1 − µ2

v

∂ f

∂µ
+ µ
∂ f

∂v

]
= Ĉ( f ), (7)

where v = |v|, µ = v · B̂/v, the unit vector B̂ points anti-sunward
along the local magnetic field. Equation (7) presumes the E × B

drift is negligible. It describes the evolution of the (gyrotropic)
distribution function in the reference frame of a fixed flux tube,
for electrons with speeds much greater than the solar wind speed:
v ≫ vsw .

The effect of Coulomb collisions are described by the operator
Ĉ( f ). We will be mostly interested in the strahl component of
the distribution function, which has a relatively low density and a
relatively high velocity as compared to the core distribution. Under
these conditions, one can use the linearized, high-energy form of
the collision integral (e.g., Helander & Sigmar 2002):

Ĉ( f ) =
4πne4

Λ

m2
e

[
β

v3

∂

∂µ
(1 − µ2)

∂ f

∂µ

+

1

v2

∂ f

∂v
+

v
2
th

2v2

(

− 1

v2

∂ f

∂v
+

1

v

∂2 f

∂v2

)
. (8)

In this expression, β ≡ (1 + Ze f f )/2, and Ze f f is the effective
charge of the ion species (e.g., Rathgeber et al. 2010). We note
Ze f f ≈ 1 in the solar wind, where most ions are protons. The
derivation of Eq. (8) requires an explanation. The collision inte-
gral (8) describes the interaction of fast “test" electrons with the
Maxwellian electron and ion “field" populations (core), which are
assumed to have similar temperatures Te ∼ Ti . In the derivation of
Eq. (8) it is assumed that the density of the test particles is much
smaller than the density of the core particles and the energy of the
test particles is much larger than the core energy, (v/vth )2 ≫ 1.
The first term in the rhs of Eq. (8) describes the pitch angle scat-
tering of the test electrons by the core electrons and ions, while the
remaining terms describe the energy exchange of the test electrons
with the core electrons. Due to low density of the test electrons,
their mutual interactions are neglected. We will naturally identify
the test electrons with the strahl electrons, while the field particles
will correspond to the nearly maxwellian core of the solar wind
distribution function.

Substituting expression (1) into equation (7) and introducing
the dimensionless variable ξ ≡ (v/vth )2, we find the following
equation for F(x, ξ, µ):

λmf p (x)
∂F

∂x

+ γ(x)

[
αµF + µξ

∂F

∂ξ
+

αB

2
(α + 1/2)(1 − µ2)

∂F

∂µ

]

− γE (x)

[
µ
∂F

∂ξ
+

1 − µ2

2ξ

∂F

∂µ

]
= Ĉ(F), (9)

where the collision operator (8) takes the form (Krasheninnikov
1988; Krasheninnikov & Bakunin 1993):

Ĉ(F) =
1

ξ

[
∂F

∂ξ
+

∂2F

∂ξ2

]
+

β

2ξ2
∂

∂µ

(

1 − µ2
) ∂F

∂µ
. (10)

Equation (9) is nearly identical to the self-similar kinetic equation
studied in Horaites et al. (2015), where it was assumed that the
distribution function F, and the Knudsen numbers γ(x) and γE (x)

are independent of x. In the present work we do not make such
simplifying assumptions, and allow for explicit dependence of the
distribution function F on x. We however assume that similarly
to density, temperature, and magnetic field, γ(x) varies along a
magnetic flux tube as a power law:

γ(x) = γ0(x/x0)αγ , (11)

where, as it follows from the definition (3),

αγ = 2αT − αn − 1. (12)

We now apply the kinetic equation (7) to the strahl electron
population. The field-aligned, high-energy strahl population corre-
sponds to µ ≈ 1, ξ ≫ 1. Let us look for asymptotic solutions to equa-
tions (9) and (10) in this regime. We approximate (1−µ2) ≈ 2(1−µ),

MNRAS 000, 1–13 (2017)



4 K. Horaites et al.

and neglect the ambipolar electric field terms and the collisional
energy-exchange terms (the terms containing ξ-derivatives in (10)),
which are higher-order in 1/ξ.

Neglecting the electric field terms in equation (9) amounts to
assuming γE ≪ γξ, which requires further justification based on an
estimate of the function γE (x). For a rough estimate of the function
γE (x) we note that in spherically symmetric exospheric models of
the solar wind, in which the magnetic field lines are assumed to
point radially (x = r), the ambipolar electric field E‖ (x) can be
evaluated from the electron momentum equation (e.g., Hollweg
1970; Jockers 1970):

enE‖ +
d

dx
(nT ) = 0. (13)

This equation retains only the most important terms (neglecting,
e.g., gravity) and assumes that the electron bulk flow is subsonic.
In a scale-invariant model in which n(x) and T (x) are power laws,
the solution to this equation can be approximated as:

E‖ (x) ∼ T (x)

ex
. (14)

For such a model, we obtain using Eqs. (3) and (4) that
γE (x)/γ(x)∼1. It is therefore reasonable to assume γE ≪ γξ,
and we can indeed neglect the electric field terms in (9). We also
note that the latter condition may be re-written as mev

2 ≫ eE‖LT .
Noting that LT is on the order of the electron mean-free-path λmf p ,
we see that the electric field does not affect the dynamics of the fast
electrons between the collisions.

Defining

κ ≡ 2 − αγ/αT , (15)

and

α′ ≡ κ − (α + 1/2)αB, (16)

we write the resulting equation for F(x, ξ, µ) in the form:

λmf p (x)
∂F

∂x
+ γ(x)

{

αF + ξ
∂F

∂ξ
+ (κ − α′)(1 − µ) ∂F

∂µ

}

=

=

β

ξ2

∂

∂µ
(1 − µ) ∂F

∂µ
. (17)

Equation (17) includes the effects of advection, angular focusing due
to the spatially expanding magnetic field, and pitch angle scattering
due to e − e and e − p Coulomb collisions. To bring equation
(17) into a more tractable form, we would like to use the variable
v =
√
ξvth (x) instead of the variable x. This choice of variables

leads to the following equation for F(v, ξ, µ):

αF + ξ
∂F

∂ξ
+ (κ − α′)(1 − µ) ∂F

∂µ
=

β

γ(x)ξ2

∂

∂µ
(1 − µ) ∂F

∂µ
. (18)

In this equation the Knudsen number γ(x) should be expressed as
a function of ξ and v as follows

γ(x) ≡ γ0
(

v/vth,0

)2αγ /αT

ξ−αγ/αT . (19)

We show this intermediate step to demonstrate that equation (18)
contains no derivatives with respect to v, which significantly sim-
plifies the PDE. As a result, our solutions will include arbitrary
functions of v, which, as we demonstrate later, may be effectively
determined from comparison with observations.

To find the solution of Eq. (17) we perform another change of
variables by treating F as a function of independent variables v, η,

and z, where η = ln ξ and z = ξκ (1 − µ). The differential equation
for F(v, η, z) then takes the form:

αF +
∂F

∂η
+

[
α′z − β

G(v)

] ∂F

∂z
=

β

G(v)
z
∂2F

∂z2
, (20)

where

G(v) = γ0

(

v/vth,0

)2αγ /αT

= γ(x)ξ (αγ /αT ) . (21)

The solution of this advection-diffusion equation can be sought in
the form F(v, η, z) = exp{−za(v, η) + b(v, η)}, where a(v, η) and
b(v, η) are general functions. Substituting this solution form into
equation (18), and equating coefficients at like powers of z, we
obtain the following two equations:

α +
∂b

∂η
+

( β

G(v)

)

a = 0, (22)

∂a

∂η
+ α′a +

( β

G(v)

)

a2
= 0. (23)

Equation (23) can be solved for a(v, η) by integration, and
b(v, η) is similarly obtained from equation (22). Substituting these
functions into our assumed solution form yields the strahl distribu-
tion F(v, ξ, µ):

F(v, ξ, µ) = C1(v)

exp
{

α′C2 (v)ξκ−α
′
(1−µ)

1+βC2 (v)ξ−α′/G(v)

}

1 + βC2(v)ξ−α′/G(v)
ξ−α, (24)

where C1 (v) and C2 (v) are arbitrary functions. Due to assumed
scale invariance of the strahl distribution function, we expect that
the physically relevant solution should correspond to either 1 ≪
βC2(v)ξ−α

′
/G(v) or 1 ≫ βC2 (v)ξ−α

′
/G(v). It may be argued the

observed breadth of the strahl is more consistent with the first case
(see Appendix), in which case equation (24) reduces to the relatively
simple expression:

F(v, ξ, µ) = C(v)ξα
′−α exp

{
γ̃(v, ξ)Ωξ2(1 − µ)

}
, (25)

where C(v) is an arbitrary (dimensionless) function of v. For con-
venience later in the paper, we here introduced the notation

γ̃ ≡ T2/(2πe4
Λnx) = −γ(x)/αT , (26)

and

Ω ≡ −α′αT /β. (27)

For relevant solar wind profiles, α′ and αT (and Ω) are negative.
Equation (25) is an exact solution to equation (18). The field-

parallel (µ = 1) energy profile of the strahl amplitude depends on the
function C(v), which in turn determines how the strahl amplitude
varies with distance x at fixed ξ. The presence of the arbitrary
functionC(v) reflects the fact that the fast electrons are not generated
locally, but rather produced at the base of the solar wind and then
propagate along the magnetic field lines almost without collisions.
This function could be obtained if the analytic solution for the full
electron distribution function (for all energies and distances) were
available. Such an exact solution is however very complicated and
currently cannot be obtained. The function C(v) can however be well
constrained from the analysis of the observational data. We will do
this in the next section, where we compare equation (25) with direct
measurements of the distribution function made by Wind’s strahl
detector.
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3 OBSERVATIONS

3.1 SWE Strahl Detector

The Wind satellite’s strahl detector is a toroidal electrostatic ana-
lyzer (Ogilvie et al. 1995), which directly sampled the solar wind
electron distribution function (eVDF) at a heliocentric distance r =1
AU. The instrument’s 12 anodes are set in a vertical pattern in a
plane that contains the spacecraft spin axis, spanning a field of view
±28◦ centered around the ecliptic. Wind’s spin axis is set at a right
angle with the ecliptic plane, allowing different azimuthal angles
to be sampled as the spacecraft spins (3 sec spin period). These
azimuthal bins have a fixed separation of 3.53◦. Each strahl dis-
tribution measured by the spacecraft consists of a 14x12 angular
grid of electron counts, that was measured at a fixed energy dur-
ing a single spacecraft spin. Counts can be converted into physical
units of f (v) (e.g., cm−6s3) in the standard fashion by account-
ing for the detector efficiency and geometric factor. Accompanying
each strahl measurement is an analogous 14x12 measurement of the
“antistrahl”, made at a clock angle 180◦ with respect to the strahl
measurement. The detector voltage was set to a different value each
spin, so that 32 energies from 19.34 to 1238 eV would be sampled
in as many rotations.

In the original mode of operation, each measurement grid was
centered on the nominal average Parker spiral (in the ecliptic plane,
45◦ offset from the radial direction r̂). In practice, however, the local
magnetic field only fell within the field of view of the detector about
half the time. This prompted a revision of the instrument software in
February 1999 (Ogilvie et al. 2000), which matched the clock angle
of the strahl measurement with the instantaneous measurement of
the magnetic field provided by Wind’s Magnetic Field Investigation
(MFI).

Our data set ranges from January 1, 1995 to May 30, 2001,
which nearly covers the operational lifetime of the strahl instrument.
The strahl detector was reconfigured shortly after this period to
serve as a replacement for SWE’s Vector Electron/Ion Spectrometer
(VEIS), whose power supply had recently failed.

3.2 Strahl Data

The data studied here are derived primarily from Wind’s SWE strahl
detector, supplemented by plasma data from SWE/VEIS and vector
magnetic field data from MFI (Ogilvie et al. 1995; Lepping et al.
1995). The background electron density n is taken from the VEIS
measurement of proton density np , which is a reasonable estimate
for the quasineutral, proton-dominated solar wind. This is more
reliable than direct measurement of n with the electron instrument
since measurements of the proton distribution are less susceptible
to spacecraft charging effects (see, e.g., DeForest 1972; Pilipp et al.
1987). The temperature is calculated from the second-order moment
of the eVDF measured by VEIS. We note that this measurement
overestimates the core temperature T by a small factor (10-20%),
since the suprathermal populations are included in the calculation.
Plasma parameters (which are used to calculate ξ, γ, etc.) from
other instruments are associated with each strahl measurement by
matching to the nearest measurement time. If plasma data are not
available within 5 minutes of the strahl measurement, then the data
are excluded from our analysis. We also exclude data for which the
B̂ direction, as measured by the MFI instrument, is outside of the
strahl detector’s field of view.

Each measurement made by the SWE strahl detector is a com-
position of signals from the strahl, halo, and (at low energies) core

components of the electron distribution (e.g., Pilipp et al. 1987). In
order to conduct a statistical study of the fast wind strahl, we de-
veloped an automated procedure for isolating the strahl signal from
the background formed by the other populations. The procedure is
as follows:

Find the strahl—For each 14x12 strahl distribution f s (measured
at a single energy), find the bin where the distribution is at
a maximum, and designate the nominal velocity direction of
electrons measured in that bin as the “peak direction”.

Remove the halo—Let the maxima of the measured strahl and
associated anti-strahl distributions be designated f s,max ,
fa,max respectively. Zero out (ignore in future analy-
sis) the bins of the strahl distribution where the criterion
f s < Max{ fa,max × 3/2, f s,max/5} is satisfied.

Clean up residual noise—Calculate the pitch angle θ, relative
to the peak direction, of every bin in the 14x12 grid. Find the
minimum pitch angle θmin = Min{θ} among the bins zeroed out
in the previous step. Zero out every bin in the strahl distribution f s
that satisfies θ > θmin . From this point forward, “ f s” will refer to
the cleaned strahl distribution resulting from the above procedure.

This cleaning procedure leads to a very clearly defined strahl, an
example of which is shown in figure 1.

For strahl distributions measured after the February 1999 soft-
ware revision, anomalously high count rates were observed when the
sun was in the detector’s view (R. J. Fitzenreiter 2016, personal com-
munication). These spurious counts were caused by photoelectrons,
and should be removed from our analysis. As a simple correction,
we zero out (prior to step “Find the strahl” above) data from all 12
anodes at a given azimuthal angle, if one of these anodes pointed
within 10◦ of the sun’s position.

3.3 Analysis of Strahl Widths

We now compare the SWE strahl detector data with our model. We
will only consider the fast solar wind, i.e. when the solar wind bulk
velocity exceeded 550 km/sec. The strahl detector measures each
distribution at fixed energy ξ and position x. We therefore predict
that the distribution function F(µ) should fall off exponentially with
(1 − µ), as it follows from equation 25:

F(µ) ∝ exp{γ̃Ωξ2(1 − µ)}. (28)

Let us express equation 28 in terms of the pitch angle with respect
to the magnetic field, θ ≡ cos−1(µ). That is, for the small angles
(θ ≈ 0) relevant to the strahl, we can approximate µ ≈ 1 − θ2/2,
implying F should fall off as a Gaussian with θ:

F(θ) ∼ exp
{ γ̃Ωξ2θ2

2

}
. (29)

This prediction agrees with previous attempts to model the strahl;
functions of the form f (θ) ∝ exp(−Cθ2), where C is some constant,
have been used to fit measured strahl distributions at fixed energy
(Hammond et al. 1996; Anderson et al. 2012).
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Figure 1. An example strahl spectrum fs (linear z-axis scale), after applying
an automated procedure for removing the halo population. This plot can be
compared with figure 3, Fitzenreiter et al. (1998), which shows the “raw”
spectrum. The variables θS , φS are spherical (GSE) coordinates that de-
scribe the velocity direction of the measured electrons. The angle θS = 0
corresponds with the ecliptic. Note that the detector’s 12 anodes are not
evenly spaced in θS . The magnetic field direction B̂ is determined through
the process of nonlinear fitting described in section 3.3, and is shown in this
example by a “+” symbol.

The full width at half maximum of the strahl, θFWHM , follows
immediately from equation 28:

θFWHM = 2 cos−1
[
1 − ln(2)

γ̃ |Ω|ξ2
]

≈ 360

πξ

√

2 ln(2)

γ̃ |Ω| deg.

(30)

The approximate expression in equation 30, which we arrived at by
substituting µ ≈ 1 − θ2/2 into equation 28, reveals how θFWHM

should scale with other locally observable quantities, i.e. density n,
core temperature T , energy E = mev

2/2, and distance x along the
flux tube. In terms of these physical quantities, equation 30 can be
expressed:

θFWHM ≈ 951

√

nx

|Ω|E2
deg. (31)

Equation 31 is written with the choice of units, [n] = cm−3, [x] =
AU , [E] = eV . In the inner heliosphere, we can make the reasonable
estimate x ≈ r (for radial field lines).

In the context of our model, Ω is a constant that depends
on solar wind structure (eq. 27). From equation 30, we obtain the
following scaling relations for fixed x and Ω:

i For given n, θFWHM ∝ E−1

ii For given E, θFWHM ∝
√

n

The local quantities n and E, which determine the breadth of the
strahl in our model, are known to high accuracy. Measurements

of these parameters have relative errors 10% and 3% for n and E,
respectively (Ogilvie et al. 1995). We note also that our prediction
for θFWHM is independent of T .

To test our prediction for θFWHM , we fit each strahl distribu-
tion f s to our model (28). Recalling f s (µ) ∝ F(µ) (see eq. (1)), let
us define z ≡ ln( f s/ f s,max ), y ≡ (1 − µ), m ≡ γ̃Ωξ2, and write
equation 28 as:

z(y) = my +Z, (32)

where m and Z are constants.
Since our model (32) is linear when expressed in these vari-

ables, it would seem natural to employ the weighted ordinary least
squares (OLS) technique to find the parameters m, Z for each
distribution. This could be accomplished by fitting to the data zi
comprising the distribution, which is measured at independent co-
ordinates yi (“i” indexes the bins of f s). However, it turns out that
there is considerable error in our determination of the magnetic field
direction B̂ which must be corrected for. If our measurement of B̂

(as determined by the MFI instrument) is off by even a few degrees,
errors in yi will lead to significant inaccuracies in the determination
of the strahl width. This effect is most problematic when the angular
error of the B̂ direction is on the order of θFWHM , which can occur
for narrow strahls.

We therefore conduct a weighted nonlinear least squares fit
to the distribution function (z), in which the direction B̂ is deter-
mined by the fitting procedure. Our fits are generated using the MP-
FIT software (Markwardt 2009), which implements the Levenberg-
Marquardt algorithm. We fit to the (2D) model function:

z(φS, θS ) = my(φS, θS ; φB, θB ) +Z. (33)

Here we introduced the function y(φ, θ; φ′, θ′),

y(φ, θ; φ′, θ′) = 1 − Û (φ, θ) · Û (φ′, θ′), (34)

and Û (φ, θ) is a function that produces a unit vector pointing in the
direction specified by φ, θ (azimuth and altitude, in GSE coordi-
nates).

Equation (33) is the same as the OLS function (32) described
above, with some nuance. Now there are two independent coordi-
nates, φS and θS , which represent azimuth and altitude in spherical
(GSE) coordinates. The model (eq. 33) has four fit parameters: m,
φB , θB , andZ. The parameters m andZ are as above. The direction
B̂ is specified by the fit parameters φB and θB , i.e. B̂ = Û (φB, θB ).
The yi data are interpreted as above, but now yi = 1−µi depends on
the φi , θi identified with the nominal velocity direction of electrons
measured in the ith bin, as well as on the fit parameters φB and θB .
Namely, yi = y(φi, θi ; φB, θB ).

Our weighted fit requires an estimate of the standard error of the
zi measurements, which we denote as σi . This can be estimated by
assuming the strahl detector obeys Poisson (“counting”) statistics.
We assume the raw number of counts ζi registered by the detector
in the ith bin is sufficiently large, so that we can approximate the
error of ζi as Gaussian-distributed, with standard deviation

√
ζi .

Then, we find σi ≈ 1/
√
ζi from straightforward error propagation

(noting f s is proportional to counts).
Our fitting procedure minimizes the chi-squared statistic:

χ2
=

N
∑

i=1

(zi − zi )
2/σ2

i . (35)
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Figure 2. An illustration of our fitting method: the angular distribution
fs (from Figure 1) is displayed above as a pitch angle distribution z (y),
where y = (1 − µ) and z = ln( fs/ fs,max). The data in the vicinity of
the strahl peak is fit to the function z = my + Z. Our method of fitting, a
nonlinear least squares fit that allows the B̂ direction to vary, is a weighted
fit that accounts for the uncertainties σ i of the z i measurements. The σ i

are shown above as error bars. The full width at half-maximum of the strahl
(green dot), θFWHM , is calculated from m according to equation 36.

Here, (zi − zi ) represents the difference between our model function
and the data, for the ith bin of the distribution. N is the number of
non-zero data points in the 12×14 strahl distribution f s ; we only
conduct a fit if there are at least 6 points left after applying the
cleaning procedure (section 3.2), so 6 ≤ N ≤ 168. Figure 2 shows
an example of our fitting procedure, applied to the data appearing
in figure 1.

The normalized chi-squared statistic χ2/DOF can be used to
test goodness of fit. Here DOF = N-4 represents the degrees of
freedom of our 4-parameter model function (33). For our fast wind
data, we find 〈χ2/DOF〉 = 1.12. The angle brackets indicate the av-
erage value among the>100,000 fits in our analysis. To calculate this
average, we excluded outlier fits for which χ2/DOF > 10, which
constituted only 1% of the completed fits. Since 〈χ2/DOF〉 ≈ 1,
we conclude that equation 28 accurately describes the strahl data.

Having fit for the slope m for each strahl distribution f s , we
calculate the distribution’s “measured θFWHM”:

θFWHM = 2 cos−1{1 − log(1/2)/m}. (36)

This formula follows from equation (32), utilizing the definitions of
y and z. We can additionally calculate a “measured Ω”:

Ω =
m

γ̃ξ2
. (37)

For completeness, we note a selection criterion: a distribution f s
was only retained for study if the fit for the slope m (eq. 33) yielded a
“measured θFWHM ” (eq. 36) that was less than twice the maximum
pitch angle among the bins of f s . This avoids extrapolation errors
in our determination of θFWHM .

In Figure 3, the “measured θFWHM ” is compared with the
“expected θFWHM”. The latter quantity is calculated according
to equation 30 from the detector energy E and plasma electron

Figure 3. Expected θFWHM (degrees) from equation 30 (using Ω =
−0.34), plotted versus measured widths. The overplotted line, shown for
comparison, represents a one-to-one correspondence.

density n, assuming some value for Ω (which depends on the solar
wind’s large-scale structure, see eq. 40). Figure 3 is a normalized
2D histogram, with each column normalized to its peak value. The
measured θFWHM is observed to be proportional to the expected
θFWHM , with a slope near unity under the appropriate choice of the
quantityΩ. We here treat the quantity Ω, which appears in equation
30, as a single constant for all measurements. We set Ω = −0.34 to
produce figures 3, 4, and 5. This value is derived from the average
measuredΩ (eq. 37) among all distributions whose measured widths
(eq. 36) fall within a representative range: 8◦ < θFWHM < 50◦.

Our model predicts that θFWHM depends on both the electron
density n and the detector energy E, through scaling relations (i)
and (ii). These dependencies cannot be discriminated in figure 3, so
we will now examine them individually. In figure 4 we demonstrate
(i): the strahl width is inversely proportional to the energy, for fixed
density. To make this figure, we consider only fast wind data for
which the background electron density falls within a narrow range,
3.6 < n < 4.4 cm−3. For this data, which is effectively a subset of
the data shown in figure 3, we plot the measured θFWHM versus
the detector energy E. The column-normalized 2D histogram nicely
matches the predicted trend (equation 30), which is shown as a solid
line for n = 4 cm−3. Similar predictions for n = 3.6, 4.4 cm−3 are
shown as dotted lines.

We now verify scaling relation (ii), in a similar manner. The
SWE strahl detector only sampled the distribution function at dis-
crete energies; in figure 5, we only show fast wind data measured
at energy E = 270 eV. Here we plot a column-normalized 2D his-
togram of the measured θFWHM versus the electron density n. For
comparison, we show our model’s prediction for the strahl width at
this energy, as a solid line. Predictions resulting from varying E by
±3% (energy range admitted by the detector), are shown as dotted
lines.

In figures 3, 4, and 5, strahl widths are only shown for the
regime θFWHM < 50◦. This is because the asymptotic formula for
the strahl, equation 25, was derived under the assumption µ ≈ 1.
Including data with pitch angles less than 25◦ corresponds with the
regime µ > 0.9, so our assumption is well-satisfied.

Our 100,000 fits represent only about 1% of the distributions
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Figure 4. Experimental verification of scaling relation (i): θFWHM ∝ E−1

at fixed n. Data shown fall in the range of densities 3.6 < n < 4.4cm−3 .

Figure 5. Experimental verification of scaling relation (ii): θFWHM ∝
√
n

at fixed E. Data shown at detector energy 270 eV (specified by the detector
with accuracy ∆E/E ≈ 3%).

( f s) measured by the SWE strahl detector. Despite this low propor-
tion, we believe our data are representative of the fast wind strahl.
We note our cleaning procedure (section 3.2) and selection criteria
make only a small proportion of the observed f s suitable for our
study. That is, we only consider fast wind strahls that are promi-
nent and resolved by the detector. This tends to exclude high-energy
measurements. For example, SWE/strahl measured f s at energies
> 500 eV about 38% of the time; only 5% of our retained fits are at
these energies.

The data presented in this study include some measurements
made during transient events, such as shocks and coronal mass ejec-
tions (CMEs). During such events, the eVDF can exhibit properties
that are not representative of the ambient fast wind; e.g. “counter-
streaming” strahls associated with CMEs. Due to the complexity

of the task of sorting our data for all events that could potentially
exhibit anomalous anti-sunward strahls, we assume such events to
be infrequent enough as to not appreciably bias our data. To justify
this assumption, we have conducted a preliminary study, in which
we repeated the analysis presented in this section, but excluded data
measured during times when a CME passed the Earth (as tabulated
in Richardson & Cane (2010)). This exclusion had minimal effect
on the plots presented in figures 3, 4, and 5. We note also that of the
eVDF measurements used for fitting here, that took place after May
27, 1996 (the date of the first CME in the index), only 16% were
measured during the transit of a near-Earth CME.

3.4 Fitting to Fave

Having analyzed the angular variation of the strahl in detail, we now
conduct a new comparison between the data and equation 25, with
2D fits that describe the variation of the eVDF with both angle and
energy. We will assume the function C(v) appearing in equation
25 is a power law, so that our strahl model can be expressed in the
form:

F(x, ξ, µ) = C0(x/x0)αs ξǫ exp
{
γ̃(x)Ωξ2(1 − µ)

}
. (38)

Here αs and C0 are constants to be determined via the fitting proce-
dure, and we introduced the parameter ǫ for notational convenience:

ǫ ≡ α′ − α + αs
αT
. (39)

For convenience, we give here the expressions of Ω, ǫ , and γ̃(x) in
terms of the basic parameters αn , αT , αB , and αs :

Ω = αB (2αT − αn ) − αn − 1, (40)

where we assumed β = 1, the value for a proton-electron plasma,

ǫ =
1

αT

(

1 + 2αn −
3

2
αT + αs + αnαB − 2αT αB

)

, (41)

and

γ̃(x) = −γ(x)/αT , (42)

where the Knudsen number γ(x) is defined in Eq. (3).
Since each angular distribution f s was measured at a single

energy by the SWE strahl detector, for the purpose of filling out
the µ-ξ space with data we must develop a method of combining
multiple measurements. We choose to do this by computing an
average distribution Fave (µ, ξ) from the data, which will be used
for our 2D fits. Fave (µ, ξ) is composed from data that are measured
in principle at many different times within our >6 year period of
study, and may be associated with many different flux tubes. Since
we expect the prevalence of the strahl to vary significantly with
collisionality, we will only average together distributions that fall
within a narrow range of Knudsen numbers.

We first note that the function F(v/vth ) can be computed from
the local distribution f (v) by normalizing to the local density and
thermal speed (Horaites et al. 2015):

F(v/vth ) =
f (v)vth

3

n
(43)

Equation 43 follows from equation 1 and the normalizations
∫

f d3
v = n,

∫

Fd3 (v/vth ) = 1.
The mean distributions Fave are computed after fitting the

angular distributions f s for the strahl width, a process that was de-
scribed in section 3.3. That is, for each cleaned angular distribution
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f s , the associated normalized distribution Fs is calculated accord-
ing to equation 43 using the local plasma parameters n, vth . The
angular bins of Fs are assigned coordinates2 µ and ξ, which are
then sorted into a µ-ξ grid with resolution ∆µ = 0.0005, ∆ξ = 1.
All of the strahl data from our >100,000 fits are sorted in this way
and averaged by µ-ξ bin to construct the distribution Fave . As
mentioned, we expect the distribution to depend on the Knudsen
number, so we sort the data by γ̃ (calculated from n and T) when
computing Fave . We bin by γ̃ logarithmically, covering the range
0.365 < γ̃ < 3.651 in 8 bins. This range contains ∼90% of our
fast wind strahl measurements. Cuts of Fave , for these 8 Knudsen
numbers, are shown as points in figure 6. The error bars displayed
are the nominal standard deviation of the mean that is computed
during the averaging process.

Once the average distribution Fave (µ, ξ) is constructed, we fit
the data to our model function, equation 38. The parameters C0,
ǫ , and Ω are determined by a nonlinear least squares fit. For the
purpose of fitting, γ̃ is set to a fixed value, the geometric mean
of the maximum and minimum γ̃ that were used to bin Fave . A
comparison between Fave and our fitted model function is shown
in figure 6. In the interest of presenting the data clearly, we choose
to fit along only along a few cuts of Fave . Namely, we fit to data
along the cuts µ = 0.9995, 0.9960, 0.9850, 0.9660, 0.9395, 0.9065,
which corresponds with roughly 5◦ spacing in pitch angle. These
cuts of our fit function are shown as lines in the figure.

Some cuts in figure 6 span a larger energy range than others,
because the data must satisfy multiple selection criteria to be in-
cluded in the fit. Two of these selection criteria are based on the
expected width of the strahl at each energy ξ, which we predicted
by assuming Ω = −0.34 (section 3.3). First, if F at a given angle
is expected to be less than 1/5 the peak (µ = 0) value at that same
energy, then the data are not included in the fit; this is to prevent
any accidental contamination by the halo.3 Second, if the expected
θFWHM at a given energy is less than 10◦, these data are not in-
cluded; this is to ensure that the measured strahl is resolved by the
detector. Additionally, we only include data that falls in the energy
range ξ > 5, because our model equation was derived under the
assumption ξ >> 1.

The results of our fits, for various Knudsen numbers, are sum-
marized in table 1. We note that the overall amplitude of the strahl,
C0, increases with γ̃. This is as expected, since more runaway elec-
trons should be observed as collisionality decreases. The fit parame-
ter ǫ , which dictates the energy dependence of the strahl amplitude,
seems fairly independent of γ̃, with ǫ ≈ −2.1 for all 8 fits. The fit
parameter Ω is also fairly constant, with Ω ≈ −0.3 describing most
fits well. The fits are in reasonable agreement with our previous
estimate Ω = −0.34 (section 3.3).

4 DISCUSSION

The shape of the strahl distribution is characterized by the fit param-
etersΩ and ǫ in our model. We would like to determine whether our
observed values of Ω and ǫ are consistent with the known structure
of the solar wind. This structure is described by the parameters αn ,
αT , and αB .

2 The energy ξ = E/T is calculated from the detector energy E and local
temperature T , while µ depends on each angular bin and on the B̂ direction
that was determined during the angular fitting procedure (section 3.3).
3 see also step “Remove the halo” of our data cleaning procedure, section
3.2

The parameters Ω and ǫ are measured in this paper, so we will
treat them as given. If we select values for two parameters in the set
{αn, αT , αB, αs }, the remaining two are determined by equations
40, 41. We believe that αn and αB are the best-understood of these
four, so we will take these values from observations and solve for
αT , αs . We can consider our model to be reasonable if all these
values are within experimental error.

Inverting equations 40, 41, we find equations for αT and αs ,
in terms of the other parameters:

αT =
Ω + αn (αB + 1) + 1

2αB
, (44)

αs = αT (ǫ + 2αB + 3/2) − αn (αB + 2) − 1. (45)

Let us see which values of αT , αs are predicted by our model for the
typical fast wind, γ̃ ≈ 0.75. We will at first neglect the flux tube cur-
vature and substitute the observed radial power law indices directly
into equations 44, 45. Let us assume the bulk solar wind is spheri-
cally expanding and has reached its asymptotic velocity, so αn = −2
(which follows from the continuity equation). Mariani et al. (1979)
found B ∝ r−1.86 using Helios 2 fast wind data gathered over the
range of heliocentric distances 0.3AU < r < 1AU , so let us as-
sume αB = −1.86. If we substitute these values for αn and αB into
equation 44, while while also letting Ω = −0.30, ǫ = −2.14 (see
table 1), we predict αT = −0.65. Then it follows αs = 2.12 from
equation 45.

This predicted value of αT is consistent with the observed
radial scaling of the fast wind core temperature, T ∝ r−0.64, mea-
sured by Pilipp et al. (1990) using Helios 1 data. These findings are
summarized in table 2. Here the column “Measured (radial)” quotes
empirical values, uncertainties, and relevant references. The adja-
cent column, “Model (radial)”, presents the set of values described
above, that are consistent with our model.

Technically, the effective power law indices that describe vari-
ation along a curved flux tube will differ from the radial indices
quoted above. We can estimate these effective indices by assuming
the flux tube forms an arm in the Parker spiral. Let us assume that
the Parker spiral angle θp ≡ B̂ · r̂ in the ecliptic follows the well-
known formula tan θp (r) = ωr/vsw . This follows from magnetic
flux conservation, assuming the nominal angular velocity of the
Sun’s rotation ω and the solar wind speed vsw are both constant.
Observations show θP ≈ 45◦ at r = 1 AU (e.g., Luhmann et al.
1993), so let us write tan θp = r/r0, where r0 = 1 AU. We can
define the distance x along such a flux tube in terms of r , i.e.
x(r) =

∫ r

0 dr ′/ cos θp (r ′). Evaluating this integral, we find:

x(r) =
r0

2

{ r

r0

√

( r

r0

)2
+ 1 + ln

[ r

r0
+

√

( r

r0

)2
+ 1

]}
. (46)

Consider now a physical quantity, Y , that varies as a power law
with heliocentric distance: Y (r) = Y0(r/r0)αY , where Y0 and αY are
constants. The local power law along the flux tube, d lnY/d ln x(r),
evaluated at r = r0 is:

d lnY

d ln x(r)

���r=r0
=

√
2 + ln(1 +

√
2)

2
√

2
αY ≈ 0.812αY . (47)

We see from equation 47 that a power law with respect to r will
appear (locally) as a shallower power law with respect to x. In
the column “Measured (curvilinear)” of table 2, we correct for the
curvature of the Parker spiral at 1 AU by multiplying the values of
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Figure 6. The 2D strahl distributions Fave (µ, ξ) are constructed from averaging pitch angle distributions measured by the SWE strahl detector, from fast
wind data where γ̃ falls within a given range. Data are selected only where the strahl amplitude is sufficiently above the background, and where the strahl is
expected to be resolved (see section 3.4). Cuts of Fave are shown as points. Fits to a Coulomb scattering model (Fmodel), given by equation 38, are plotted
as lines. Parameters of the fits are displayed in table 1.

αn , αT and αB reported in column “Measured (radial)” by a factor
of 0.812. This describes the effective power law that is relevant
to our solutions to the drift-kinetic equation. We then repeat our
previous analysis, by setting αn , αB ,Ω, ǫ to their measured values,
and solving for αT and αs from equations 44, 45. The resulting
values, shown in column “Model (curvilinear)” of table 2, are self-
consistent with regards to our model and are in good agreement
with observations of the solar wind’s large-scale structure.

Table 2 serves to illustrate the ease with which observations of
the strahl shape can be explained in terms the solar wind’s large scale
structure. We note that the values of these structural parameters are
subject to appreciable experimental uncertainty, and the “true” val-
ues may be significantly different from those quoted here. In partic-
ular, different published measurements of αT in the fast wind near 1
AU vary quite widely, with some measurements falling well outside
the error bars quoted from our reference, Pilipp et al. (1990). For
a review of published measurements of αT , see Maksimovic et al.
(2000). We note it is generally agreed that temperature varies with
a significantly flatter profile than αT = −4/3, the value associated
with adiabatic expansion.

In both the radial and curvilinear models displayed in Table 2,
we predict αs > 0. The positive sign of αs means that the amplitude
of the strahl (in our normalized distribution F) should increase with
heliocentric distance r . This prediction holds even if we allow the
input parameters of our model to vary by ±20%. We highlight this
prediction because it is in some conflict with the observations of
Maksimovic et al. (2005) and Štverák et al. (2009), which showed
that the strahl density (relative to core density) actually decreases

with r .
To address this point, let us consider Figure 10 of Štverák et al.

(2009). The upper right panel of that figure shows the parallel cuts
of the average fast wind eVDF at different heliocentric distances.
The eVDF can be roughly interpreted as a cut of F(v/vth ), up to an
amplitude coefficient, since the velocities shown on the x-axis are
normalized to the core thermal speed, as in our equation 1. Their
figure indeed shows that the strahl diminishes with r , but only in
the velocity range v‖/vth . 5. We note that the trend is fairly weak,
so that although αs is negative we can estimate |αs | < 1 from
their plot. At higher velocities the opposite trend can be observed:
the relative strahl amplitude actually increases with distance, in
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γ̃ range (Fave) nominal γ̃ (Fmodel) C0 ǫ Ω

— — model: F (µ, ξ) = C0ξ
ǫ exp{γ̃Ωξ2 (1 − µ) }

0.365 < γ̃ < 0.486 γ̃ = 0.421 0.157 ± 0.011 −2.13 ± 0.031 −0.38 ± 0.013
0.486 < γ̃ < 0.649 γ̃ = 0.562 0.191 ± 0.014 −2.14 ± 0.033 −0.35 ± 0.013
0.649 < γ̃ < 0.865 γ̃ = 0.749 0.234 ± 0.019 −2.14 ± 0.035 −0.30 ± 0.012
0.865 < γ̃ < 1.154 γ̃ = 1.000 0.264 ± 0.020 −2.13 ± 0.033 −0.28 ± 0.011
1.154 < γ̃ < 1.539 γ̃ = 1.333 0.306 ± 0.025 −2.13 ± 0.036 −0.27 ± 0.010
1.539 < γ̃ < 2.053 γ̃ = 1.778 0.401 ± 0.040 −2.19 ± 0.045 −0.25 ± 0.011
2.053 < γ̃ < 2.738 γ̃ = 2.371 0.485 ± 0.053 −2.08 ± 0.050 −0.28 ± 0.010
2.738 < γ̃ < 3.651 γ̃ = 3.162 0.669 ± 0.065 −2.02 ± 0.046 −0.28 ± 0.009

Table 1. Model parameters C0 , ǫ, Ω corresponding with fits displayed in figure 6. The range of γ̃ listed in each row represents the Knudsen numbers spanned
by the data used to create Fave. The column “nominal γ̃” shows the Knudsen number used for the fit.

— Measured (radial) Model (radial) Measured (curvilinear) Model (curvilinear)
Ω −0.30 ± 0.01 (present paper) -0.30 −0.30 ± 0.01 (present paper) -0.30
ǫ −2.14 ± 0.04 (present paper) -2.14 −2.14 ± 0.04 (present paper) -2.14
αn -2 -2 −1.62 -1.62
αB −1.86 ± 0.05 (Mariani et al. 1979) -1.86 −1.51 ± 0.04 -1.51
αT −0.64 ± 0.06 (Pilipp et al. 1990) -0.65 −0.52 ± 0.05 -0.51
αs see “Discussion” 2.12 see “Discussion” 1.65

Table 2. Comparison between observations of the large-scale structure in the fast solar wind and a set of parameters that is consistent with our model (eq.
38). The relevant reference for each nominal observational value is given in parentheses in the “Measured (radial)” column. Values of αn , αT , αB in the
“Measured (curvilinear)” column are found by multiplying the corresponding values in the “Measured (radial)” column by 0.812 (eq. 47). This approximates
the local power law along a curved Parker spiral flux tube. Each “Model” column is identical to the corresponding “Measured” column, except for the values
of αT and αs , which are obtained from equations 44, 45, given the other model parameters.

agreement with our model. We note that this regime v ≫ vth is
actually where our model is most applicable, since in our derivation
we assumed ξ ≫ 1 and dropped terms that were low order in ξ
(e.g. the electric field terms). The strahl is certainly present at these
energies4, and is well above the halo background. However, only
some of our current measurements apply to this regime; velocities
only as high as v ≈ 6vth are used in our fits to Fave (figure 6). As
discussed in section 3.4, these data are excluded because the strahl
becomes unresolved at high energies. We conclude that the rate of
strahl growth relative to the core (∼αs ), at both intermediate and
very high strahl energies, deserves further empirical investigation.

Since current empirical evidence indicates that the relative
amplitude of the strahl at intermediate energies diminishes with
inceasing r , we must account for this discrepancy between the data
and our model. One possible explanation is that the regime v . 5vth
is not truly asymptotic, so that the electric field terms (which we
neglected) should be considered at these energies. Unfortunately, if
we include the electric field terms in the steps following equation 9
in section 2, we run into two difficulties. First, the spatial dependence
of the ambipolar field γE (x) must be assumed, and this quantity is
model-dependent and not directly measureable by current satellites.
Second, there is no guarantee that closed form analytic solutions,
analogous to equation 24, can be found if the electric field terms
are included. The problem appears intractable, for instance, if we

4 See e.g., Figure 4, Ogilvie et al. (2000). On May 11, 1999, a narrow
strahl beam was observed up to the highest energy sampled by the SWE
strahl detector, ∼1200 eV. Comparing with the local temperature T , this
energy corresponds with v/vt h ≈ 6.5. We have checked this distribution
by hand (not shown), which indeed exhibits a high-energy strahl. However,
we believe the distribution is too narrow to be resolved by the detector.
Indeed, if the strahl continues to narrow at high energies, the detector may
not register significant counts even if the field-parallel (peak) amplitude of
the strahl is significant, and falsely appear to be subsumed by the halo.

assume γE ∝ γ. We note ambipolar electric forces can be included
in kinetic simulations (e.g., Smith et al. 2012), so that the effect of
γE may be understood through numerical analysis.

Finally, we note that other diffusion mechanisms, such as
wave-particle interactions, may affect the solar wind strahl. In-
deed, Štverák et al. (2009) suggest the diminishment of the relative
strahl density with distance, and the corresponding increase in halo
density, might indicate that wave-particle interactions scatter strahl
electrons into the halo population (see also Gurgiolo et al. 2012).
We do not make an effort to include wave-particle scattering into
our current model, as this would greatly complicate our discussion.
However, we do note that if such interactions can be expressed in
terms of a pitch angle diffusion operator, it may be possible to pre-
dict a form for the strahl distribution via methods analogous to those
introduced in section 2.

5 SUMMARY AND CONCLUSIONS

The theory developed in this paper should be understood as a re-
duced model of solar wind electron kinetics. Our model assumes an
ordered structure of the large-scale profiles of n, T , and B, which al-
lows the drift kinetic equation to be written in a tractable form. This
yields, for the first time, a simple analytic prediction for the shape of
the strahl distribution (equation 25). In the present paper we show
this prediction captures the essential features of strahl eVDFs in
the ambient fast wind. In particular, we find that at a given energy,
the strahl is approximately Gaussian with respect to the pitch angle
θ. We obtain scaling relations (i) and (ii), which describe how the
beam width θFWHM varies with energy and density. We verify the
accuracy of our model by comparing it with data collected by the
Wind satellite’s SWE strahl detector, which sampled the eVDF at
high angular resolution.

Our model’s success in predicting the strahl widths strongly
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supports the view that Coulomb collisions are an important source
of pitch angle scattering. We note also that the temperature Knudsen
number γ, which describes Coulomb collisionality, plays a central
role in our model. Indeed, γ appears to be an important parame-
ter for ordering strahl eVDFs (figure 6), and we observe the strahl
amplitude (C0) is correlated with γ (table 1). However, we cannot
say definitively that strahl scattering is only due to Coulomb colli-
sions, as it seems our model’s predictiveness might be improved by
incorporating another physical effect.

Our observations show that the strahl narrows with energy, in
agreement with previous measurements (e.g., Feldman et al. 1978;
Pilipp et al. 1987; Fitzenreiter et al. 1998; Ogilvie et al. 2000).
However, one survey of strahl eVDFs measured at 1 AU by ACE
(Anderson et al. 2012) indicated that the strahl width broadens 40%
and narrows 60% of the time. This trend is not seen in our current
observations of the fast wind, in which the strahl appears systemati-
cally narrower at higher energies. We have conducted a preliminary
investigation of SWE strahl detector data measured in the slow wind
(not shown), and again find narrower strahls at higher energies. The
discrepancy with (Anderson et al. 2012) may be due to differences
in methodology and data selection—their study presented a broad
survey of strahl data, whereas the current work deals with narrow,
prominent strahls in the fast wind. We note that the SWE strahl de-
tector samples only a ∼50×60 degree field of view, so that we may
have difficulty identifying very broad strahls. Finally, we note that
identification of the strahl, as distinguished from the core and halo
populations that also help form the distribution, is in part a matter
of definition (see e.g., Štverák et al. 2009).

The presence of the arbitrary function C(v) makes our model
(eq. 25) quite flexible, in that it can be matched to any energy
spectrum observed at 1 AU. The function C(v) carries information
about the electrons’ origin—as argued in e.g., Smith et al. (2012),
the energy spectrum of the strahl may be a vestige of the thermal
distribution of electrons near the base of the corona. In practice, we
find that C(v) can be matched well to a power law (eq. 38). However,
matching our model to the eVDFs at 1 AU leads us to predict that
the relative strahl amplitude should grow with heliocentric distance
(αs > 0), which appears to conflict with observations. So, our model
may require further theoretical development, motivated by detailed
observations of the strahl over a range of heliocentric distances. Like
Lemons & Feldman (1983), we consider wave-particle interactions
to be a potentially important source of strahl scattering.

As discussed in Saito & Gary (2007), the energy dependence
of strahl widths is intimately connected with the energy dependence
of the diffusion operator. For diffusion caused by turbulent wave-
particle interactions, the relevant diffusion operator in the kinetic
equation is determined by the properties of the waves and their tur-
bulent spectrum. Therefore, the observed shape of the strahl should
help direct the search for theories of anomalous diffusion caused by
wave-particle scattering. We intend to discuss this in future work.

APPENDIX A:

As mentioned in section 2, we may reduce equation 24 to a
scale-invariant form by assuming either βC2 (v)ξ−α

′
/G(v) ≫ 1

or βC2 (v)ξ−α
′
/G(v) ≪ 1. Our model function (25) corresponds

with the former case. We will now consider the latter case, and show
that it is inconsistent with our observations of the solar wind strahl.

Let us assume

βC2 (v)ξ−α
′
/G(v) ≪ 1, (A1)

so that equation 24 can be written approximately as

F(v, ξ, µ) = C1(v)ξ−α exp
{
α′C2(v)ξκ−α

′
(1 − µ)

}
, (A2)

where C1 (v) and C2 (v) are arbitrary functions. If we try to match
equation A2 to the observed strahl, the function C2 (v) can be con-
strained by recalling scaling relation (i): the strahl width is inversely
proportional to the energy (figure 4). If we recast equation A2 in
terms of x, ξ, µ, we then require an overall factor ξ2 to appear inside
of the exponential function. This can only be accomplished if we
assume C2 (v) has the form:

C2 (v) = C3G(v)
( v

vth,0

)2α′

= C3G(v)ξα
′ ( x

x0

)α′αT

.

(A3)

Here, C3 is a dimensionless constant, and the function G(v) is
given by equation 21. Substituting (A3) into equation A2 yields a
prediction for the strahl width. At the position of the Wind satellite,
x = x0, this formula for the angular variation of the strahl at a given
energy ξ can be written:

F(µ) ∝ exp{C3α
′γ(x0)ξ2 (1 − µ)}.

= exp{γ̃(x0)Ω′ξ2(1 − µ)}
(A4)

Here we introduced the notation Ω′ ≡ −C3α
′αT . Equation A4

is analogous to equation 28, and has a similar form. If we were to
fit the strahl distribution f s to (A4), we would find values of Ω′

identical to the values of Ω found in section 3.3. So let us identify
Ω ∼ Ω′, and estimate the value of C3 that would be consistent with
our measurements:

C3 =
−Ω′
α′αT

∼ 1/β (A5)

However, from (A3), the scale-invariant assumption (A1) re-
duces to the requirement C3 ≪ 1/β, at the position of the Wind
satellite x = x0. We therefore have a contradiction, and judge eq. A2
to be less consistent with observed solar wind profiles than eq. 25.
In other words: the measured solar wind profiles (αn , αT , αB ) and
strahl widths (characterized byΩ, see eq. 40) conform well with the
model studied in this paper (see table 2)—these same parameters
could not be explained by a scale-invariant solution based on the
assumption (A1).
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