
Evaluating the Tracing of Recursion in the
Substitution Notional Machine

Preston Tunnell Wilson
Brown University, USA
ptwilson@brown.edu

Kathi Fisler
Brown University, USA
kfisler@cs.brown.edu

Shriram Krishnamurthi
Brown University, USA

sk@cs.brown.edu

ABSTRACT

We evaluate a notional machine for recursion based on algebraic

substitution. To do this, we decompose recursion into a progression

of function call patterns, parameter name reuse, and data struc-

ture complexity. At each stage, we test students’ ability to trace

programs using substitution. We evaluate the correctness of their

traces along multiple dimensions, finding that students generally

do well, and also observe shortcuts and identify misconceptions.

For comparison, we also have students trace two problems using a

traditional, imperative notional machine. Even though the substitu-

tion model is unwieldy to use with compound data, students still

perform better with it than with the traditional notional machine.

ACM Reference Format:

Preston Tunnell Wilson, Kathi Fisler, and Shriram Krishnamurthi. 2018.

Evaluating the Tracing of Recursion in the Substitution Notional Machine.

In SIGCSE ’18: SIGCSE ’18: The 49th ACM Technical Symposium on Computer

Science Education, February 21–24, 2018, Baltimore , MD, USA. ACM, New

York, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159479

1 INTRODUCTION

Many authors (e.g., [6, 7]) have discussed student difficulties with

recursion. This paper focuses on students’ ability to trace recursive

programs using a notional machine [2]. Most computing pedagogy

uses an imperative, stack-based notional machine. We instead study

a rarely-used model, based on algebraic substitution (section 3), from

How to Design Programs [4] (htdp). Though this model has been

realized as a tool [1], it has not been evaluated before.

When tracing recursion, a student must track both where func-

tions return and what different values are bound to the same vari-

able name. Thus, instead of viewing recursion as an atomic activity,

we observe that it can follow a learning progression: a student

must understand what happens when (a) one function calls another

function and control returns; (b) variable names are reused across

functions; and (c) putting these together, when a function calls and

returns from itself (in which case, variable names are necessarily

reused). We use this progression to structure our study, observing

which skill causes problems. We also have students use tree-shaped

data, which are not covered in many prior recursion studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159479

2 RELATEDWORK

There is an extensive body of literature on recursion in computing

education. We focus just on the most relevant papers. Though

Settle [12] has a bibliography on recursion, it does not discuss the

substitution model at all, which is the focus of this paper.

Lewis [8] conducts talk-alouds on two recursive problems from

the 1988 AP CS A exam. She presents students’ traces and high-

lights four mental models of how substitution in recursive problems

works. We include her questions in our study. We do not observe

the same four mental models as she does, but this may be due to

differences in format (her talk-alouds versus our written quizzes).

Unlike Lewis, we discuss difficulties weaker students had with

tracing rather than focusing solely on successful traces.

McCauley et al. [9] test students’ ability to comprehend recursive

and iterative programs. There are many differences between our

efforts. They do not ask for traces; they include compound data

but only linked lists, not trees; their programs contain imperative

updates; and in general, we do not compare recursion and iteration

(which is anyway not straightforward on trees).

Tessler et al. [13] use a game to contextualize recursive oper-

ations, lecturing students on recursion either before or after the

game. They compare students’ traces and solutions between these

two conditions. All of our students are in the same condition, but

they use two different notional machines during the study.

Kurland et al. [7] ask students to think aloud about what recur-

sive graphical Logo programs would do, then draw out what they

think the program would do. This is more of a comprehension task

than one on tracingÐthese drawings are only loosely tracings.

Wiedenbeck [15] studies how students learn iteration and re-

cursion and how learning one impacts the other. She focuses on

using examples as the main pedagogic tool. Our focus is instead

on tracing, the substitution notional machine, and includes tree

recursion, which is not easily done with iteration.

Nelson et al. [10] use a combination of notional machines and

tracing to teach programming and compare their tutorial to Codea-

cademy. However, their notional machine is much lower level than

ours, with explicit stack manipulation, a program counter, and set-

ting values in a namespace, all of which are absent or attenuated

in substitution. Also, rather than analyzing students’ traces, they

provide traces to students through example programs.

Kahney [6] experiments on how novices’ understanding of re-

cursion differs from that of experts. His focus is on comprehension

rather than on tracing, giving students multiple purported solutions

and asking which ones would work. We also do not ask students

for their formal reasoning, nor did we compare against experts.

Sanders et al. [11] observe students’ mental models on recursion

and make changes to their pedagogy to improve their models. We

propose an alternative pedagogy based on the substitution model.

Paper Session: Recursion SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

1023



fun f(x):

(2 * x) + 15

end

1 f(3 + 2)

2 f(5)

3 (2 * 5) + 15

4 10 + 15

5 25

Figure 1: Sample function definition and trace through it

fun f(x):

3 + g(5)

end

fun g(y):

x + y

end

1 f(2)

2 3 + g(5)

3 3 + (x + 5)

Figure 2: How substitution prevents dynamic scope

3 BACKGROUND: SUBSTITUTION MODEL

The substitution model is familiar from algebra classes: when a

function is applied to arguments (the łactual parametersž), first the

arguments are evaluated, then all instances of the function’s formal

parameters are replaced with their argument values. The resulting

program is then evaluated using these concrete values.

Figure 1 shows an example of substitution in Pyret [pyret.org],

a Python-inspired, student-friendly programming language used

predominantly in the studies in this paper. The left shows the

definition of a function f, and the right a trace using substitution.

Line 1 shows the initial call. In line 2, the actual parameter is reduced

to a value, 5. Line 3 is the crucial substitution step: the body of f is

rewritten with all instances of the formal parameter, x, substituted

with the value 5. In lines 4 and 5, evaluation proceeds as expected

using the rules of arithmetic.

When a student traces through a function call using substitution,

they write a new line each time a new expression is evaluated. In

the process they copy the pending computations, or accumulated

context, from the previous line. Thus, in the transition from lines 3

to 4, while the expression 2 * 5 evaluates to 10, the context of +

15 is copied. Note that this copied context corresponds to a stack,

but without having to introduce it as a new concept. This notional

machine is explained in complete detail in htdp.

For programs without mutation, substitution is a viable notional

machine that avoids the need for stacks, stores, and other repre-

sentations of memory. We hypothesize that the substitution model

offers students a mechanical, consistent, and simple way of tracing

recursion. An expert can see that substitution encodes the łcopiesž

model and other concepts explored in earlier literature [6, 11].

One consequence of substitution is that it is easy to see whether

or not a variable is bound. Consider fig. 2. On the left, the function

g has an unbound variable (x). This is an error in all languages that

obey static scope (which is most modern languages), though prior

studies have shown that both novices [5] and professionals [14]

can be confused by this, thinking the x of f is still łvisiblež in g. On

the right, we show a trace with substitution. Because, on function

application, substitution replaces all parameters with their actual

values, any remaining variables must not be bound. In contrast, in

a traditional notional machine with an explicit stack and store, if

the student forgets to łdropž x on exit from f, they would assume

x were bound.

However, the substitution model, as we have described it, re-

quires a significant extension to model mutation [3]. For the Python

3 program on the left, consider the trace (right) of the call g(10):

1 def g(y):

2 y = y + 2

3 z = y + 1

4 return z

1 y = 10 + 2

2 z = 10 + 1

3 return 10 + 1

The trace result is clearly wrong. The error is because we assumed

ywould not change, but the assignment (y = ) changes it. Thus, stu-

dents must deal with time, looking up the current values of variables.

Therefore, many textbooks and authors explicitly or implicitly use

a mutable model, one where names are held in dictionaries that

can be updated as the program progresses. Note that in this model,

students must remember to explicitly drop variables as they exit

scopes, to avoid the dynamic scope problem described above.

4 STUDY DESIGN

4.1 A Learning Progression for Recursion

Webreak down the tracing of a recursive program into a progression

of separate concerns that a student must understand:

• function calls (dealing with parameters),

• function returns (dealing with the context),

• parameter name reuse across different functions,

• calling the same function more than once nonrecursively,

and

• a function calling itself (which combines the above two).

We conjecture that teaching these concerns one-by-one might make

recursion easier to follow. (Note that the first four concerns have

nothing to do with recursion per se, and hence are independently

useful.) Our formal research questions assess students’ ability to

trace programs through the lens of this progression (as reflected

concretely in the study problems (section 4.2)), and how students

use the substitution model within each stage:

RQ1: Where in the progression do students struggle?

RQ2: As students use the model, what misconceptions appear?

RQ3: What aspects of the model do students avoid with shortcuts?

4.2 Evaluation Programs

The above progression translates into a set of programs that stu-

dents are asked to trace. Representatives are shown in fig. 3. In

(a) we see just a function that uses its parameter. In (b) we have

f calling g, with both having the same parameter name. (Observe

that in substitution there should not be any confusion between

the two x’s, because the first x has łdisappearedžÐdue to having

been substitutedÐat the point of calling g.) In (c) we use a function

twice, to see whether this new concept creates any problems. In (d)

we show recursion over recursive data (rather than over numbers).

This function computes the product of all the numbers in the list. In

(e) we introduce a tree data structure and write a recursive function

that computes the height of the tree. Observe that in both (d) and (e)

Paper Session: Recursion SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

1024



1 # a: Simple function call

2 fun f(a):

3 a + (5 * a)

4 end

1 # b: Parameter name reuse

2 fun f(x):

3 x + g(x * 2)

4 end

5

6 fun g(x):

7 x - 3

8 end

1 # c: Function call reuse

2 fun f(x):

3 g(g(x - 5)) - 2

4 end

5

6 fun g(y):

7 3 * y

8 end

1 # d: Recursion over list

2 fun h(lst):

3 cases(List) lst:

4 | empty => 1

5 | link(f, r) =>

6 f * h(r)

7 end

8 end

1 # e: Recursion over tree

2 data BinTree:

3 | leaf()

4 | node(value , left , right)

5 end

6

7 fun f(t):

8 cases(BinTree) t:

9 | leaf() => 1

10 | node(v, l, r) =>

11 num -max(f(l), f(r)) + 1

12 end

13 end

Figure 3: Sample programs

the recursion is non-trivial, i.e., it is not tail-recursion (equivalent

to a loop).

In addition to these types of problems, we use three more. Two

are from an AP CS test and were used in a prior paper [8]. The third

is a purely numeric recursion implementing the Collatz function,

a.k.a., ł3n + 1ž (halt at n = 1; for even positive n, divide by two and

recur; for odd positive n, recur on 3n + 1).

4.3 Logistics: From Problems to Quizzes

To evaluate student understanding, we converted these problems

into quizzes/homeworks to administer in a class.

Class Context and Participants. The quizzes were administered

in a summer course (equivalent in content and credit to a regular

semester-long course) at a selective, private US university. The

course, an introduction to programming with no prerequisites,

covered basic expressions, functions, recursion over lists and trees,

variables, mutation (of both variables and fields within objects),

and conventional loops. The 19 students ranged from high-school

students to adult learners embarking on a professional master’s

degree in data science. One of the authors taught the course.

Quiz Logistics. All quizzes were given on paper. The first three

were given in class; students had 15ś20 minutes to complete each

one. The last two were unlimited-time take-home exercises. The

students knew that the quizzes were part of an ongoing course

diagnostic, and had little to no impact on overall course grades. All

quizzes were reviewed in class immediately after submission, so

students received feedback on their work. The quizzes were given

roughly once every 5-7 calendar days.

We administered a total of five quizzes, summarized below. The

first four were in Pyret, while the fifth was in Python 3 (matching

the course structure, which began in Pyret and ended in Python).1

(1) Substitution into functions performing arithmetic on num-

bers (fig. 3(a)) and concatenation on strings; calling two

1The details are on the Web at cs.brown.edu/research/plt/dl/sigcse2018-recursion/.

functions (like fig. 3(b), but without parameter name reuseÐ

the functions had different parameter names); and a dynamic

scope question (akin to fig. 2). For this quiz only, students

were given the result to a function call and asked to ex-

plain (through tracing) how that answer ensued, to focus on

tracing rather than on correctness. In subsequent quizzes,

students also had to determine the answer. The dynamic

scope question was phrased as łExplain what happens if we

evaluate f(2): what outcome do we get and why?ž

(2) Shared parameter names between functions (fig. 3(b)); mul-

tiple calls to the same function (fig. 3(c)); another dynamic

scope question; and the Collatz function as a pre-test, be-

cause recursion had not yet been taught in class. Questions

were phrased as łShow how the program f(7) evaluates to

an answer.ž

(3) Linear structural [4] recursion (fig. 3(d)). A sample question

is łShow how h([list: 5, 0, -2]) evaluates to an answer.ž

(4) Structural recursion over trees (fig. 3(e)); a tweak on the

Fibonacci function; and the two AP CS test questions [8]. A

sample question is łWhat does calling g(4) produce? List

the sequence of function calls that get made, with the actual

arguments to g, showing how the program arrives at its

answer.ž

(5) Recursion over trees and lists of tuples, done in Python.

By the last quiz the class had transitioned to Python, where they

were introduced to mutable variables as well as tuples. They were

also taught a dictionary-based traditional notional machine. The

łstackžwas represented by a process of adding to and removing from

the dictionary. Thus, they were effectively repeating the previous

two quizzes, but in a different language and, more importantly,

using a different notional machine.

In the quiz instructions, students were initially asked to łwrite

out the computations showing how [the question] evaluates.ž We

expected students to write out every step, as illustrated in section 3.

As the programs became more complex (involving conditionals and

data structures), we relaxed the steps that the students had to show:

Paper Session: Recursion SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

1025



the revised instructions added łYou only need to show steps with

function calls or the results of computations on numbers/strings/etc.

Don’t write out if or cases steps.ž

5 RESULTS

Given our goal to study whether students could effectively trace

recursive programs, our analysis examined the traces that students

provided as quiz answers. We defined multiple ways to compare

their traces against a ground-truth trace written by an expert. (The

substitution model has a long history, so there is widespread agree-

ment on what the ground-truth trace ought to be.) In performing

these comparisons, we noted shortcuts taken by students, as well

as errors.

We defined the following measures for traces:

Soundness Whether every step in the trace is in the ground-

truth trace. Individual steps of a trace could be unsound in

several ways: (a) miscopying either the body of a function

or a part of the previous line that was not being expanded

in this step (we called these transcription errors); (b) sim-

ple arithmetic mistakes when reducing expressions; or, (c)

expanding function calls within recursive parts of a data

structure, rather than substituting the function body.

Completeness Whether the student listed all the steps in the

ground-truth trace.

Correctness Whether the student determined the correct final

result of evaluating the program. (Relevant after the first

quiz.) Note that this is in principle subsumed by Soundness,

but is still useful to call out explicitly.

In addition, we also recorded:

Accumulated Context Whether the student copied the accu-

mulated context (section 3) from line to line. When students

omitted context in a step, we recorded whether the omitted

part was simple arithmetic or a function call.

Order of Evaluation Whether the student expanded expres-

sions łdepth-firstž (the left-most and inner-most expres-

sion first), or łbreadth-firstž (expanding multiple expressions

from the same level at the same time). If this order was not

clear from the answer (such as when students use arrows

to show how multiple parts of an expression expand), we

coded the order as łunknownž.

Granularity of Tracing Steps Whether students explicitly in-

cluded steps to evaluate arithmetic expressions or just used

the results of such expressions in the next step.

The authors coded the responses together, so we do not report on

inter-coder reliability.

Per-Quiz Results. Figure 4 shows students’ average correctness

scores (ignoring soundness and completeness) across all tracing

problems on each of the four quizzes. The dip in performance in

quiz 3 is due to the number of students who ran out of time. The

students who did not do well in quiz 4 generally suffered from

transcription errors. Besides these two issues, students generally

did well. The two students who did not get any questions right on

the fourth quiz were two of the weaker students: they also struggled

with issues outside of the substitution model. We explain specific

issues encountered in each quiz in the following sections.

0.00

0.25

0.50

0.75

1.00

q1 q2 q3 q4
Quiz

P
e
rc

e
n

t 
S

c
o

re

Figure 4: Student correctness over the four quizzes (lines are

jittered to make individual student performance clearer)

Figure 5: Tracing a program with multiple function calls

Quiz 1: Function Calls. Students were generally correct, sound,

and complete across these simple substitution programs. Twelve of

the 18 students who took this quiz achieved perfect scores on these

metrics across the questions, with the exception of the question

on dynamic scope. The following figure shows the dynamic scope

question and a correct trace of it:

Nine students correctly determined that this program would yield

an error, although two thought the error was that function д was

undefined (despite not making this mistake on other questions).

The other 9 incorrectly used the previous binding of x .

Shortcuts. Figure 5 shows a trace involving multiple function

calls. This student skipped some arithmetic steps, including replac-

ing the call g(0) directly with its result (without explicitly substi-

tuting into the body of g). Five students omitted copying simple

arithmetic when evaluating g(0). Some students put the evaluation

of g(0) elsewhere on the page, inserting the result into the context

when finished (akin to a simulating execution model [8]).

Paper Session: Recursion SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

1026



Misconceptions. Several students failed to substitute arguments

for all instances of a function parameter: for example, four students

turned f(1) into 2 * g(1 - 1) + x on the problem traced previ-

ously, failing to substitute the last x (though they substituted later

in the trace). This seems related to missing the dynamic scope ques-

tion, although one of these four students answered that question

correctly. On the dynamic scope question, one student thought that

the value bound to x was stored for later access, even though this

is not how the substitution model works (the course had taught

that value of constants were stored for later retrieval; this student

appeared to conflate this with storing parameter values). Three

students substituted the expanded expression for the body of g (x

+ 3) back into f, thus accidentally changing the scope of x. The

dynamic scope question thus proved particularly useful for uncov-

ering misunderstandings about the substitution notional machine.

One student thought that the call g(0) in fig. 5 would return 0

(its argument), a pattern we see repeated on later quizzes as well.

Quiz 2: Reusing both Functions and Parameter Names. All but

1ś2 students had sound and correct traces for these questions,

suggesting that parameter-name reuse does not cause problems

within the substitutionmodel. Errors on these included two students

who (incorrectly) reduced h(5) + h(4) to h(9). Expressions such

as h(5) + h(4) let us see whether students expand breadth-first

or depth-first: 8 students chose the former (a form of shortcut in

the substitution model).

This quiz also included the Collatz function, which was interest-

ing because the course had not yet shown or discussed recursive

calls. Thirteen (of the 18) students answered the question correctly

and had sound traces. In the in-class review of the quiz after stu-

dents turned it in, several asked about the new recursive pattern,

though they had traced it correctlyÐsuggesting that they noticed

this new feature but, armed with substitution, were not put off by

it. Among the students who did not answer correctly, three stopped

evaluating on the recursive call and two simply returned the argu-

ment to the function as its result (a misconception we also saw on

quiz 1, arising here with different students).

Misconceptions. The main misconceptions arose from students

applying incorrect algebraic manipulations to code expressions.

Two students reduced h(5) + h(4) to h(9). Another student

produced the following trace for f(3) (where f is shown in fig. 3(b)):

1 x + g(x * 2)

2 x + (2x - 3)

3 3x - 3

Rather than substitute f’s x, the student replaces the body of g in

the body of f, then uses algebraÐwhich produces the same result,

but is not at all how actual evaluation worksÐto result in 3x - 3.2

Quiz 3: Linear Structural Recursion. Most students traced re-

cursive functions over lists correctly, for both tail- and non-tail-

recursive functions. Seventeen (of 18) students correctly traced the

list recursion in fig. 3(d). Ten answered the tail-recursion question

(not shown) correctly; however, seven students did not finish all

of the questions. We have reason to believe this is due to lack of

2Note that terms like 3x, in place of 3 * x, are not even syntactically valid.

time rather than not knowing the subject. Errors were mainly in

transcription (e.g., copying the wrong variable into the next step).

Shortcuts. The introduction of lists, which are more complex data

than numbers (and thus take more time to write down), inspired

new shortcuts. One student mentally tracked the list bound to a

variable separately rather than copy its value into the body of the

function. Some students changed the written notation for a list

to drop the list: tag required in the language; others dropped

list notation entirely for single-element lists. This suggests (as we

might expect) that the substitution model starts to get cumbersome

with structured data.

Two students simply skipped steps that wouldn’t impact the

result (for a function that added zero in some cases). One student

evaluated the context at the same time as evaluating the function

call. It is hard to tell whether the student is using breadth-first

evaluation, or whether they are simply reducing the amount of text

they copy from line to line. Two students skipped substitution for

the base case (the empty list as input) when it did something simple

like return 0 or 1. This is similar to shortcuts seen on earlier quizzes

for functions that performed simple arithmetic computations.

Misconceptions. One student misunderstood list destructuring,

thinking it provided the first and last elements of a list, rather

than the first and rest. Another student also had trouble with list

structures, wrapping intermediate function results in lists.

Quiz 4: Tree Recursion. Most students used breadth-first eval-

uation on these programs. Eleven (of 15) students answered the

Fibonnaci-like question correctly; three of the others had transcrip-

tion errors, while one only expanded the left recursive branch.

In contrast, while 10 (of 15) students predicted the correct answer

for the problem in fig. 3(e), only one produced a sound and complete

trace. Most of the others suffered transcription errors (unsound)

or relied on intuition about what the function would compute on

subtrees (incomplete). Many who answered incorrectly dropped a

ł+ 1ž term from the context, resulting in the wrong answer.

Shortcuts. Shortcuts were similar to those on quiz 3; however,

three more students skipped the base case function-call on the

tree-recursion question. One student who skipped the base cases

in quiz 3 did not skip the base cases in quiz 4. Some questions

used longer function names, which students truncated to be shorter

while writing out traces.

6 SUPPORTING MUTATION

After the course switched to Python 3, it covered variables, for- and

while-loops, assignment statements, and mutation of fields. As we

discussed in section 3, we cannot use substitution with mutation.

In the case of mutable variables (as opposed to fields), we can use a

simpler mutable notional machine, where the names are mapped to

values by mutable dictionaries. (With mutable fields we must also

record the structure of the heap.) We refer to this as the mutable

environment notional machine.

In the Python segment, the instructor taught students this new

notional machine, then asked students (in the fifth quiz) to trace

two programs: one a loop through a list of words that concatenated

Paper Session: Recursion SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

1027



# student loop/list recursion/tree

7 correct (mostly) correct

2 (mostly) correct initial call only

4 (partly) correct no answer

2 initial call only initial call only

3 mix environment, evaluation,

substitution, and some prose

same as loop

1 no answer no answer

Table 1: Environment evolution for loop and tree-based re-

cursion in Python

those words longer than 3 characters, and the other a recursive

tree-traversal program.

Directly comparing these results to those on substitution is com-

plicated because this was the first task where students had used

the new notional machine. Nonetheless, we note that students per-

formed less well on recursion with this notional machine than with

substitution. More usefully, observations from this quiz provide

useful feedback to affect future versions of these studies.

Table 1 summarizes students’ performance on the two tracing

problems with mutable environments. For the students who did not

get both problems correct (all but the first row), the tree-recursion

problem caused more difficulty than the loop-based one. The 6

students across the second and third rows showed a basic under-

standing of the mutable environment model on the list problem,

but couldn’t apply it to the tree-recursion problem. Three students

(penultimate row) tried to integrate showing how the program eval-

uated (à la the first four quizzes) with showing the environment

evolution asked for here. We see elements of substitution in each

of these students’ answers, rather than an effective switch to the

new notional machine.

7 CONTRIBUTIONS, RESULTS, DISCUSSION

Our study shows that substitution is a very promising model for

understanding recursion. Students were able to handle a variety of

problemsÐincluding tree recursion, which is rarely considered in

prior researchÐwithout much difficulty. Perhaps even more surpris-

ingly, with substitution they were able to trace non-trivial problems

like the Collatz function even before being introduced to recursion.

While these studies have to be reproduced on different student

populations, this does suggest that the difficulty at least of tracing

recursion needs to be reconsidered.

As we have noted, substitution does not easily work with muta-

ble state. Most curricula have taken state for granted, and hence

cannot consider this notional machine. However, many curricula in

widespread use (such as htdp and Bootstrap [bootstrapworld.org])

are łfunctional firstž, and can and do use substitution. We even

have preliminary evidence (section 6) that an imperative notional

machine may not be easy. Thus, we need a broader discussion about

the style of programming used in introductory curricula.

More subtly, our observations highlight an interesting difference

between substitution and mutable environments: substitution re-

quires only one notation (a program in the syntax of the language)

to capture execution and the current state of the evaluation. The

mutable environment notional machine not only has more notation,

it also fails to directly capture return values from functions and

must be expanded to handle them. Students must then learn to

navigate all these components when tracing programs.

We have also identified weaknesses with the substitution model.

It can require too much copying of context, causing students to take

shortcuts, which can in turn get them into trouble. It also becomes

unwieldy when dealing with large data structures, further inducing

shortcuts. This suggests a need for a better model that enjoys the

benefits of substitution while avoiding these problems.

We have found the use of programs with unbound variables

useful at unearthing student misconceptions and hence evaluation

models. This fits the general pattern of giving students erroneous

programs to better probe their understanding. However, we are not

aware of prior recursion research using this particular idea.

We believe there are also several concrete takeaways for in-

structors. First, consider the use of substitution (in a mutation-free

setting) for teaching function application leading up to recursion.

Second, use erroneous programsÐe.g., with unbound identifiersÐto

probe student understanding. Finally, consider using our learning

progression for teaching recursion.

ACKNOWLEDGMENTS

We thank Natasha Danas, Matthias Felleisen, and our reviewers. We

also thank Colleen Lewis for answering questions on the design of

her study [8]. This work is partially supported by the US National

Science Foundation. First author’s last name is łTunnell Wilsonž

(index under łTž).

REFERENCES
[1] John Clements, Matthew Flatt, and Matthias Felleisen. 2001. Modeling an alge-

braic stepper. In European Symposium on Programming.
[2] Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of

Educational Computing Research (1986), 57ś73.
[3] Matthias Felleisen. 1987. The Calculi of Lambda-nu-CS Conversion: A Syntactic

Theory of Control and State in Imperative Higher-order Programming Languages.
Ph.D. Dissertation. Bloomington, IN, USA.

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press.

[5] Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing
and Teaching Scope, Mutation, and Aliasing in Upper-Level Undergraduates. In
ACM Symposium on Computer Science Education. ACM, New York, NY, USA.

[6] Hank Kahney. 1983. What Do Novice Programmers Know About Recursion. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, USA, 235ś239.

[7] D Midian Kurland and Roy D Pea. 1985. Children’s mental models of recursive
LOGO programs. Journal of Educational Computing Research (1985), 235ś243.

[8] Colleen M. Lewis. 2014. Exploring Variation in Students’ Correct Traces of Linear
Recursion. In ACM International Conference on Computing Education Research.
ACM, New York, NY, USA, 67ś74.

[9] Renee McCauley, Brian Hanks, Sue Fitzgerald, and Laurie Murphy. 2015. Re-
cursion vs. iteration: An empirical study of comprehension revisited. In ACM
Symposium on Computer Science Education. ACM, 350ś355.

[10] Greg L. Nelson, Benjamin Xie, and Andrew J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in CS1.
In ACM International Conference on Computing Education Research. 2ś11.

[11] Ian Sanders, Vashti Galpin, and Tina Götschi. 2006. Mental models of recursion
revisited. In ACM SIGCSE Bulletin. ACM, 138ś142.

[12] Amber Settle. 2014. What’s motivation got to do with it? A survey of recursion
in the computing education literature. Technical Reports (2014).

[13] Joe Tessler, Bradley Beth, and Calvin Lin. 2013. Using cargo-bot to provide con-
textualized learning of recursion. In ACM International Conference on Computing
Education Research. ACM, 161ś168.

[14] Preston Tunnell Wilson, Justin Pombrio, and Shriram Krishnamurthi. 2017. Can
we Crowdsource Language Design?. In Onward!’17. ACM, New York, NY, USA.

[15] Susan Wiedenbeck. 1989. Learning iteration and recursion from examples. Inter-
national Journal of Man-Machine Studies (1989), 1ś22.

Paper Session: Recursion SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

1028


	Abstract
	1 Introduction
	2 Related Work
	3 Background: Substitution Model
	4 Study Design
	4.1 A Learning Progression for Recursion
	4.2 Evaluation Programs
	4.3 Logistics: From Problems to Quizzes

	5 Results
	6 Supporting Mutation
	7 Contributions, Results, Discussion
	Acknowledgments
	References

